

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 AGENTSNET: COORDINATION AND COLLABORATIVE REASONING IN MULTI-AGENT LLMs

Anonymous authors

Paper under double-blind review

ABSTRACT

Large-language models (LLMs) have demonstrated powerful problem-solving capabilities, in particular when organized in multi-agent systems. However, the advent of such systems also raises several questions on the ability of a complex network of agents to effectively self-organize and collaborate. While measuring performance on standard reasoning benchmarks indicates how well multi-agent systems can solve reasoning tasks, it is unclear whether these systems are able to leverage their topology effectively. Here, we propose AGENTSNET, a new benchmark for multi-agent reasoning. By drawing inspiration from classical problems in distributed systems and graph theory, AGENTSNET measures the ability of multi-agent systems to collaboratively form strategies for problem-solving, self-organization, and effective communication given a network topology. We evaluate a variety of baseline methods on AGENTSNET including homogeneous networks of agents which first have to agree on basic protocols for organization and communication. We find that some frontier LLMs are already demonstrating strong performance for small networks but begin to fall off once the size of the network scales. While existing multi-agent benchmarks cover at most 2–5 agents, AGENTSNET is practically unlimited in size and can scale with new generations of LLMs. As such, we also probe frontier models in a setup with up to 100 agents.

1 INTRODUCTION

Human societies thrive on collaboration, with language serving as the primary medium through which individuals coordinate and achieve collective goals. From small teams to large-scale organizations, effective communication enables structured decision-making, problem-solving, and the emergence of complex behaviors that surpass the capabilities of any single individual. This interplay between communication and coordination is mirrored in computing, where distributed systems rely on structured information exchange to tackle problems that exceed the capacity of any single processor. Just as psychology studies individual cognition while sociology examines emergent behaviors in groups, distributed systems research focuses on multi-agent coordination beyond what a single machine can accomplish (Lenzen & Wattenhofer, 2012).

Recently, distributed systems have been playing an increasingly important role in AI through the emergence of general-purpose multi-agent systems built on top of large language and vision models (LLMs). Agent-based frameworks such as generative agents (Park et al., 2023) have demonstrated the potential of solving complex problems with LLM-based agents. In particular, it has been shown that networks of LLM-based agents can outperform single agents (Hong et al., 2024; Qian et al., 2024a; Chen et al., 2024a; Qian et al., 2024b; Zhuge et al., 2024; Marro et al., 2024), mirroring aspects of human teamwork. For example, GPTSwarm (Zhuge et al., 2024) introduce a graph-based approach inspired by language-based societies of mind (Zhuge et al., 2023), demonstrating that organizing LLM-based agents in structured topologies enhances their performance on benchmarks like MMLU (Hendrycks et al., 2021), HumanEval (Chen et al., 2021), and GAIA (Mialon et al., 2024). MultiAgentBench (Zhu et al., 2025) aims to test collaboration, but is limited to a small number of agents and uses centralized shared memory. MACNET (Qian et al., 2024b) evaluates collaborative problem solving under DAG-structured communication with supervisory critic agents and global topological scheduling, which fundamentally differs from the fully decentralized, cycle-dependent setting studied in distributed computing. MAS-GPT (Ye et al., 2025), in turn, focuses on generating complete multi-agent systems in a single forward pass rather than evaluating coordination

054 among concurrently acting agents, and therefore does not address decentralized message passing
 055 or local-neighborhood decision making. Despite promising results from structured agent networks,
 056 existing benchmarks fall short in evaluating the core competencies of multi-agent systems: scalable
 057 coordination to a large number of nodes, decentralized communication, and collaborative reasoning.
 058 To address this gap, we introduce AGENTSNET, a multi-agent benchmark that measures these
 059 capabilities across diverse network structures and scales.

060 AGENTSNET assesses the agent’s coordinative and collaborative capabilities through
 061 fundamental problems in distributed computing. Concretely, we identify five central
 062 problems from the distributed systems literature to construct corresponding coordination and collaboration tasks for multi-
 063 agent systems. Solving these tasks requires anything from local information aggregation to global coordination over multiple
 064 communication rounds. As a canonical example, whenever multi-agent systems are tasked with solving a certain problem,
 065 agents must necessarily be able to reach an agreement on the solution, a problem known in fault-tolerant distributed computing
 066 as consensus (Fischer et al., 1985). In another example, agents first agree on a single agent to take a leadership role, and
 067 then subsequently solve the task, guided and instructed by the elected leader. Selecting a single leader in a network is known
 068 as the leader election problem (Angluin, 1980). Fortunately, such problems are well-studied and theoretically grounded, providing an ideal testbed for the coordination and collaboration
 069 skills of multi-agent systems.
 070
 071 Various multi-agent benchmarks exist, but no benchmark explicitly assesses the ability of multi-agent
 072 systems for structured coordination and collaboration in a decentralized system, which should be seen
 073 as fundamental capabilities of effective distributed systems. As such, AGENTSNET complements the
 074 existing suite of multi-agent benchmarks of LLMs with a particular focus on grounding in distributed
 075 systems theory, network topology, and scalability to large agent networks. Concretely, we make the
 076 following contributions:
 077
 078 1. We build AGENTSNET from *graph coloring (resource allocation)*, *minimal vertex cover*
 079 (*strategic positioning*), *maximal matching (bilateral negotiation)*, *leader election (symmetry*
 080 *breaking and forming hierarchy)* and *consensus (global agreement)*: five fundamental
 081 distributed computing problems that evaluate the ability of multi-agent systems to test
 082 capabilities that are necessary for multi-agent systems.
 083
 084 2. We design a robust and scalable message-passing protocol for effective agent-to-agent
 085 communication and evaluate on a rich set of graph instances, sampled from various graph
 086 models such as small-world (Watts & Strogatz, 1998) or preferential attachment models
 087 (Barabási & Albert, 1999), which capture structural properties of real-world networks.
 088
 089 3. We evaluate a variety of agentic baselines on AGENTSNET, ranging from open-source LLMs
 090 such as Llama 4, to frontier models such as GPT, Gemini, and Claude, as well as the latest
 091 reasoning models, on the graphs of 4, 8, 16 nodes scaling the problem size to 100 agents
 092 which is well beyond existing agentic benchmarks.
 093
 094 4. We provide an in-depth qualitative analysis and highlight the challenges in coordinative and
 095 collaborative capabilities of LLMs to further improve multi-agent systems.

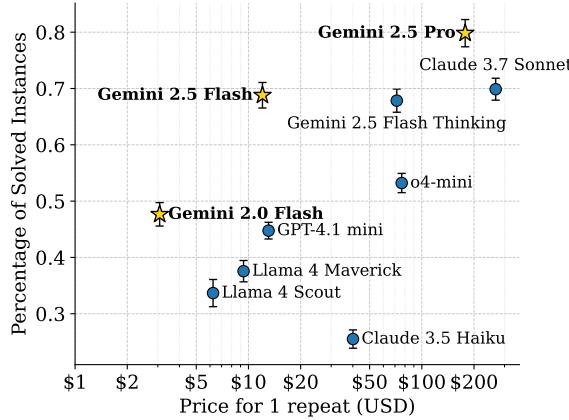


Figure 1: Mean AGENTSNET score of models versus API costs per repeat (May 15, 2025). Error bars indicate standard error of the mean. Gold stars denote Pareto-optimal models.

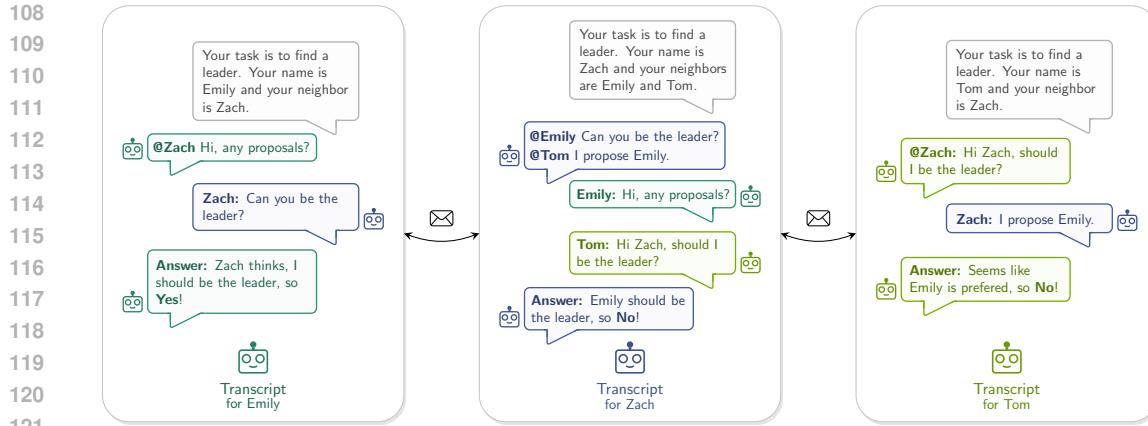


Figure 2: Example communication between three agents on a simplified topology. Agents Emily, Zach, and Tom each receive and send messages to their neighbors in multiple rounds of message-passing; see Section E for an in-depth qualitative analysis of transcripts.

2 RELATED WORK

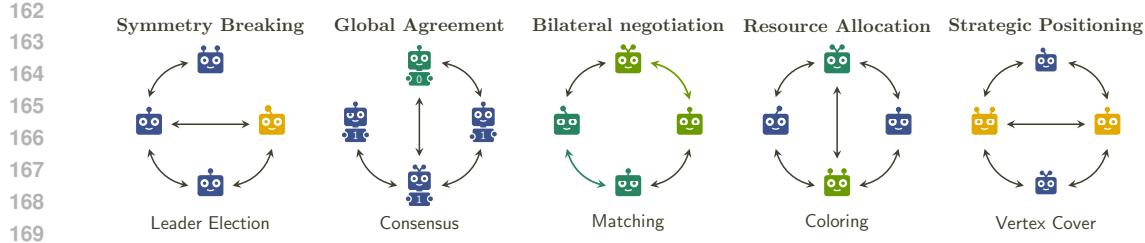
Ensembling multiple agents to collaboratively negotiate solutions has emerged as an effective paradigm to improve LLM performance on complex tasks (Du et al., 2023; Xiong et al., 2023; Liang et al., 2024). This has been extended through work on different network topologies for more structured agent interaction. Some studies examine pre-determined graph structures (Hong et al., 2024; Qian et al., 2024a; Regan et al., 2024; Qian et al., 2024b) while others propose automatically adapting network topology (Liu et al., 2023; Chen et al., 2024a; Zhuge et al., 2024). Experiments show different topologies perform best for specific tasks (Chen et al., 2024a; Zhuge et al., 2024) and large-scale LLM agent networks exhibiting known social phenomena (Yang et al., 2024; Chuang et al., 2024). Parallel research examines LLMs’ ability to reason with graph-structured data. Studies propose evaluation datasets (Fatemi et al., 2024; Wang et al., 2024; Zhang et al., 2024; Tang et al., 2025; Skianis et al., 2024) using single-agent setups where graphs are encoded as text. Fatemi et al. (2024) investigate graph encoding methods, Sanford et al. (2024) categorize graph reasoning problems by complexity, while Wang et al. (2024) and Skianis et al. (2024) explore effective prompting techniques. Our work bridges these research directions by studying multi-agent systems solving graph reasoning problems collaboratively. Our benchmark is complementary to recent agentic benchmarks (Liu et al., 2024; Yin et al., 2024; Agashe et al., 2024; Yao et al., 2024; Ni et al., 2025) but scales to a practically unlimited number of agents due to the generative problem creation protocol, with experiments involving up to 100 coordinating agents. Human studies on decentralized problem-solving in social networks show that network topology and size strongly influence coordination success (Kearns et al., 2006; Judd et al., 2010; Chiang et al., 2024). Section F provides an extended discussion of related studies.

3 TASKS, EVALUATION, AND GRAPH MODELS

To evaluate the ability of multi-agent systems to self-organize, coordinate, and communicate effectively, we design a benchmark consisting of fundamental problems from distributed computing. These problems span a range of complexities, from local tasks that require minimal coordination to global problems that necessitate multi-round communication. In what follows, we introduce the theoretical problems and describe how we map each problem to a corresponding agentic task. Afterwards, we introduce the graph distributions used within AGENTSNET.

3.1 BENCHMARKING TASKS

We evaluate multi-agent systems on a set of distributed computing problems that test their ability to aggregate information, self-organize, and coordinate. These tasks are selected for their foundational



172 Figure 3: Overview of the tasks in AGENTSNET: In LEADERELECTION, the task is to select a single
173 agent as the leader of the network. In CONSENSUS, the task is for all agents to agree on a specific
174 value, for example 0 or 1. In MATCHING, the task is for pairs of agents to team up without conflicts.
175 In COLORING, the task is for agents to select a group (indicated by a color), such that none of their
176 neighbors are in the same group as them. In VERTEXCOVER, the task is to find a minimal group
177 of coordinator agents such that each agent is a neighbor to at least one coordinator. **Colors in the**
178 **icons illustrate the roles or solution states relevant to each task (e.g., matched pairs, chosen colors,**
179 **coordinator nodes) and differ across tasks accordingly.**

180
181 nature in distributed computing and the core capabilities that they represent in multi-agent systems
182 (like resource allocation for coloring). They span a diverse range of coordination requirements and
183 communication complexities, from purely local information exchange to global decision-making; see
184 Table 1 for an overview of the different theoretical problems selected for AGENTSNET.

185
186 **$(\Delta + 1)$ -Coloring: Resource Allocation.** Each node is assigned a color using at most $\Delta + 1$ colors,
187 where Δ is the maximum node degree. This problem has a well-defined distributed complexity of
188 $O(\log^* n)$ in bounded-degree graphs (Barenboim, 2016). This task is particularly useful for role
189 assignment within multi-agent systems. For instance, agents can be designated to perform specific
190 sub-tasks (e.g., web search, reasoning, coding, planning), with the constraint that directly connected
191 agents are assigned distinct roles to avoid redundancy. Solving this task reflects the system’s ability
192 to efficiently distribute responsibilities across the network with minimal overlap in capabilities. The
193 corresponding agentic task is to form groups, with a pre-defined number of groups, and where each
194 group corresponds to a color. After message-passing, each agent chooses the group it wants to be in.
195 The task is solved if the groups form a valid $\Delta + 1$ -coloring. In AGENTSNET, we refer to this task as
196 COLORING.

197
198 **Minimal Vertex Cover: Strategic Positioning.** A minimal vertex cover is a subset of nodes such
199 that every edge in the graph has at least one endpoint in the subset, and removing any node from
200 this subset would violate that property. This problem has a close relationship with the maximal
201 independent set and is similarly fundamental in distributed computing, with known randomized
202 solutions in $O(\log^* n)$ rounds Linial (1992). In agentic networks, a minimal vertex cover can
203 represent a minimal set of monitor or gateway agents that maintain awareness of all interactions in
204 the system. These agents could take on responsibilities such as relaying messages, auditing behavior,
205 or bridging subgroups. The task tests the ability to identify a compact yet effective set of nodes with
206 high influence or observability. The corresponding agentic task is to select a group of coordinators
207 among the agents. After message-passing, each agent is asked whether it is a coordinator. The agents
208 can respond with either *Yes* or *No*. The task is solved if coordinators form a minimal vertex cover. In
209 AGENTSNET, we refer to this task as VERTEXCOVER.

210
211 **Maximal Matching: Bilateral Negotiation.** A maximal matching is a set of edges such that no
212 two edges share a vertex, and no additional edges can be added without violating this property.
213 This task captures the ability of agents to negotiate pairwise agreements without global knowledge,
214 which is useful in scenarios where resource allocation or mutual exclusivity must be enforced (e.g.,
215 agent-to-agent task assignment). Randomized algorithms typically solve this problem in $O(\log^* n)$
216 rounds Peleg (2000). The corresponding agentic task is for the agents to form pairs. After message-
217 passing, each agent is asked to name the neighbor it wants to pair up with. The agents can also
218 respond with *None* if they cannot find a match (all neighbor agents are already paired up with other

216 agents). The task is solved if the paired agents form a maximal matching. In AGENTSNET, we refer
 217 to this task as MATCHING.
 218

219 **Leader Election: Symmetry Breaking and Forming Hierarchy.** One node must be selected as
 220 the leader, while all others acknowledge that they are not. This classic coordination task is central to
 221 evaluating how well agents establish hierarchy and delegate global decision-making (Angluin, 1980).
 222 In multi-agent systems, leader election can be interpreted as selecting a central planner or controller
 223 agent responsible for strategy synthesis, while the remaining agents act as executors. Effective leader
 224 election demonstrates the system’s capacity to break symmetry and converge on a single authority.
 225 In general graphs, the round complexity is $O(D)$, where D is the network diameter Lynch (1996).
 226 The corresponding agentic task is to select a single leader among the agents. After message-passing,
 227 each agent is asked whether it is the leader. The agents can respond with either Yes or No. The task is
 228 solved if there exists exactly one leader. In AGENTSNET, we refer to this task as LEADERELECTION.
 229

230 **Consensus: Global Agreement.** In the con-
 231 sensus problem, all agents must agree on a single
 232 value from the set $\{0, 1\}$. In our benchmark, we
 233 focus on the basic setting without any faulty or
 234 Byzantine agents. The goal is for all agents to
 235 coordinate and produce the same final answer
 236 after a number of communication rounds. A suc-
 237 cessful solution requires that every agent outputs
 238 the same value, either 0 or 1. This task tests the
 239 ability of multi-agent systems to converge to a
 240 global agreement through local message-passing
 241 alone. In synchronous networks, achieving con-
 242 sensus generally requires $\mathcal{O}(D)$ rounds Lynch
 243 (1996). The corresponding agentic task is to
 244 choose between a value 0 and 1. After message-
 245 passing, each agent is asked to announce its
 246 selected value. The task is solved if all agents
 247 announce the same value. In AGENTSNET, we refer to this task as CONSENSUS.
 248

249 Together, these tasks cover a broad spectrum of problems known in the distributed computing
 250 literature, which allows AGENTSNET to evaluate the reasoning, communication, and organizational
 251 capabilities of multi-agent systems.

252 3.2 NETWORK TOPOLOGIES

253 While classical distributed computing often studies problems on random graphs such as Erdős-Renyi
 254 networks (Erdos et al., 1960), these do not adequately capture the structural properties of real-world
 255 networks. Instead, we focus on three well-established graph models, namely the Watts-Strogatz
 256 graphs (Watts & Strogatz, 1998) (SMALLWORLD) exhibiting both short average path lengths and
 257 high clustering coefficients; preferential attachment graphs (Barabási & Albert, 1999) (SCALEFREE)
 258 containing hubs (high-degree nodes) and follow a power-law degree distribution; geometric graphs by
 259 constructing a Delaunay triangulation over randomly sampled 2D points, (DELAUNAY), maintaining
 260 a spatial relationship between nearby agents. We describe these graph models in more detail in
 261 Section D.

262 4 AGENT-TO-AGENT COMMUNICATION VIA MESSAGE-PASSING

263 To systematically study how agents exchange information and collaborate, we employ a commu-
 264 nication model that draws inspiration from classical distributed computing, while adapting to the
 265 capabilities and constraints of modern LLM-based agents. Our setup is based on the LOCAL
 266 model (Linial, 1992) from distributed algorithms, in which the computation proceeds in synchronous
 267 rounds and each agent can exchange messages only with its immediate neighbors on the commu-
 268 nication graph. Agents must base their decisions exclusively on local information aggregated over
 269 multiple rounds of interaction. This model captures fundamental aspects of decentralized reasoning,

Graph Problem	Round Complexity
$(\Delta + 1)$ -Coloring	$\Omega(\log^*(n))$
Minimal Vertex Cover	$\Omega(\log^*(n))$
Leader election	$\Omega(D)$
Maximal Matching	$\Omega(\log^*(n))$
Consensus	$\Omega(D)$

Table 1: Overview of the theoretical problems from distributed computing that form the basis of AGENTSNET, together with (not necessarily tight) theoretical lower bounds for their round complexity in the randomized LOCAL (Linial, 1992) model.

270 where global strategies emerge from purely local exchanges without centralized control. Unlike nodes
 271 in deterministic systems, LLM-based agents exhibit stochastic behavior due to inherent randomness
 272 in their generation processes. This means that our model is most closely aligned with the randomized
 273 version of the LOCAL model. Given a communication network, each node, that is, each agent,
 274 is instantiated as an instruction-tuned LLM that interfaces with its neighbors through a structured
 275 chat history. Initially, we provide each agent with a *system prompt* detailing the task, for example,
 276 COLORING, the rules of message-passing, the names of its neighbors, and a notification that the
 277 agent must output a result in its *final response* after a fixed number of rounds of message-passing; see
 278 Section A for the full system prompt.
 279

280 **Task Description.** For each task, we provide a short description of the task, as well as which
 281 information we seek to extract in the final response. For example, for LEADERELECTION, we provide
 282 the following task description:

283
 284 **System**

285 Your task is to collaboratively solve the problem of
 286 electing a single leader. [...] You will be requested
 287 to state whether or not you are the leader. The response
 288 should either be 'Yes' or 'No'. The final result should
 289 be such that exactly one agent responds with 'Yes' and all
 290 others say 'No' as there should be exactly one leader.
 291

292 Note that the "[...]" indicates that different parts of the task description appear in the system prompt.
 293

294 **Message-Passing Rules.** For message-passing, we iteratively prompt each agent with the current
 295 chat history, including the latest messages received from its neighbors, to generate new messages to
 296 each neighbor in the form of a flat JSON. Here, each key corresponds to the name of a neighboring
 297 agent, and each value to the message intended for the corresponding neighbor. Optionally, we also ask
 298 the model to elaborate its chain-of-thought before responding. An example of this message exchange
 299 can look as follows:
 300

301 **Human**

302 These are the messages from your neighbors: Message from
 303 Emma: Hello Evelyn, this is Emma. I appreciate your
 304 response and [...] Message from Dorothy: [...] Elaborate
 305 your chain of thought step-by-step first, then output the
 306 messages for your neighbors. Output your messages in JSON
 307 format as specified earlier.
 308

309 In practice, and in particular for smaller models, we observe that agents sometimes fail to output valid
 310 JSON. In such cases, we simply ask the model to try again using the entire chat history, including the
 311 incorrect answer given by the model, as well as a prompt to retry.
 312

313 **Final Response.** After a fixed number message-passing rounds, we ask the model to give its
 314 task-specific response based on the chat history accumulated during message-passing. Again, we
 315 ask models for a structured output, this time using a simpler, string-based format. For example, for
 316 LEADERELECTION, the final response prompt is:
 317

318
 319 **Human**

320 Are you the leader? Format your answer as follows: '###
 321 Final Answer ##', followed by your final answer. Don't
 322 use any text for your final answer except one of these valid
 323 options: 'Yes', 'No'.

Model	COLORING	CONSENSUS	LEADER ELECTION	MATCHING	VERTEX COVER	AGENTSNET
Claude 3.5 Haiku	0.14 (0.04)	0.69 (0.05)	0.19 (0.03)	0.18 (0.03)	0.08 (0.03)	0.26 (0.02)
Claude 3.7 Sonnet	0.58 (0.05)	1.00 (0.00)	0.96 (0.03)	0.55 (0.06)	0.40 (0.05)	0.70 (0.02)
GPT-4.1 mini	0.05 (0.02)	0.99 (0.01)	0.86 (0.05)	0.12 (0.03)	0.22 (0.04)	0.45 (0.01)
Gemini 2.0 Flash	0.32 (0.05)	0.85 (0.04)	0.69 (0.05)	0.36 (0.05)	0.16 (0.04)	0.48 (0.02)
Gemini 2.5 Flash	0.39 (0.06)	1.00 (0.00)	1.00 (0.00)	0.55 (0.04)	0.50 (0.09)	0.69 (0.02)
Gemini 2.5 FT	0.53 (0.05)	0.99 (0.01)	0.98 (0.02)	0.47 (0.02)	0.43 (0.09)	0.68 (0.02)
Gemini 2.5 Pro	0.62 (0.07)	0.99 (0.01)	0.89 (0.06)	0.75 (0.05)	0.73 (0.06)	0.80 (0.02)
Llama 4 Maverick	0.20 (0.04)	0.85 (0.04)	0.56 (0.06)	0.20 (0.04)	0.07 (0.03)	0.38 (0.02)
Llama 4 Scout	0.21 (0.06)	0.67 (0.05)	0.38 (0.06)	0.30 (0.05)	0.13 (0.04)	0.34 (0.02)
o4-mini	0.22 (0.04)	0.92 (0.04)	0.92 (0.03)	0.33 (0.04)	0.27 (0.04)	0.53 (0.02)

Table 2: Fraction of solved instances together with standard error over multiple i.i.d. samples from the same graph distribution (in gray) on AGENTSNET. Gemini 2.5 FT = Gemini 2.5 Flash Thinking.

Once more, we find that models generate a valid response after at most one retry. The benchmarking results are then computed from these final answers, following the task-specific evaluation methods described in Section 3.

5 EXPERIMENTS

5.1 SETUP

For benchmarking, we generate a set of 27 network topologies, consisting of 9 small-world, scale-free, and Delaunay graphs, respectively, ranging in size from 4 to 16 nodes. Concretely, for each graph size in $\{4, 8, 16\}$ and each graph distribution in $\{\text{SMALLWORLD}, \text{SCALEFREE}, \text{DELAUNAY}\}$, we generate three graphs. Further, we determine the number of message-passing rounds as follows. For our global tasks, LEADERELECTION and CONSENSUS, each agent must be able to exchange information with the entire network. Hence, for those two tasks, we select the number of message-passing rounds as $2D + 1$, where D is the diameter of the graph, to ensure that each pair of agents is able to exchange messages at least once. For the local tasks, COLORING, MATCHING, and VERTEXCOVER, we determine the number of rounds based on the graph size. Specifically, for graphs with 4 nodes, we choose 4 rounds, for 8 nodes – 5 rounds, for 16 nodes – 6 rounds.

Models. We evaluate a variety of frontier LLMs on AGENTSNET, including Claude 3.5 Haiku and Claude 3.7 Sonnet (Anthropic, 2024), Gemini 2.0 Flash (Google, 2024), Gemini 2.5 Flash (Google, 2025a), GPT-4.1-mini (OpenAI, 2025a), as well as Llama 4 Maverick and Scout (Meta, 2025), as representative open-source models. Notably, we include both large instruction-tuned models as well as reasoning models such as Gemini 2.5 Flash Thinking, Gemini 2.5 Pro (Google, 2025b), and o4-mini (OpenAI, 2025b). The choice of models is motivated by an effective context window larger than 16K tokens, as problems on graphs of 8 and 16 nodes, especially at later stages of message passing, accumulate a long communication history.

Evaluation. AGENTSNET uses a binary evaluation metric, counting only fully correct solutions where the entire agent network satisfies the task specification. This strict criterion reflects the nature of distributed computing problems, where partial correctness often does not imply successful coordination. For example, in COLORING, most nodes may be correctly colored by chance, but only a valid global coloring confirms coordinated conflict resolution. However, in Section B, we also discuss and report the soft evaluation scores to obtain a more continuous measure of the quality of responses, motivated by the findings in Schaeffer et al. (2023), that emergent behaviors can often be explained by discontinuous metrics. For each task and graph size, we sample three graphs per topology (small-world, scale-free, Delaunay) and run at least one repeat per graph. We report the mean of solved runs and the standard errors of the mean, computed across these runs Miller (2024). Details on scoring and statistical methodology are provided in Section C.

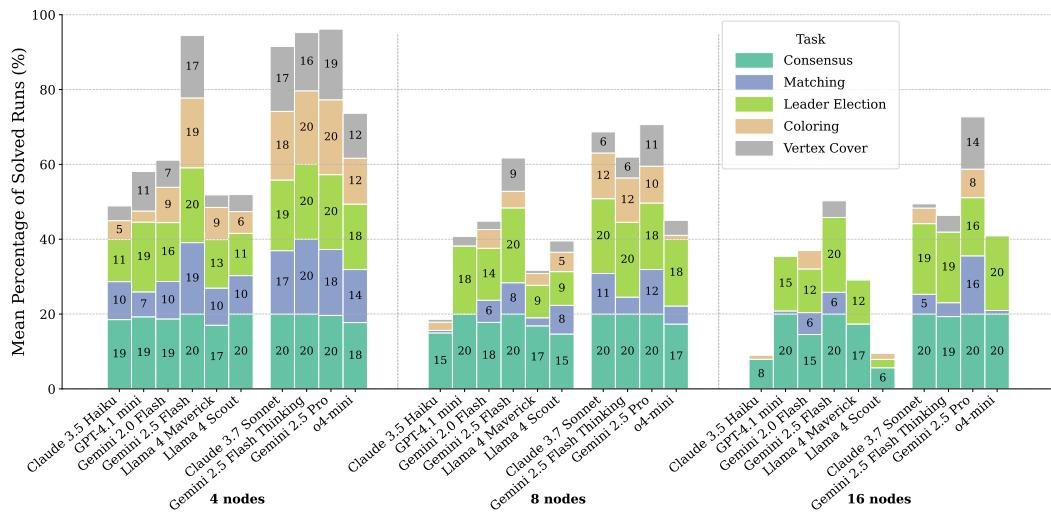


Figure 4: Fraction of solved instances per task and model, grouped by graph size (4, 8, and 16 nodes). Each task contributes up to 20% to the total, as tasks are equally distributed across the five benchmark tasks. Reasoning and non-reasoning models are visually separated. This breakdown complements Figure 1 by providing a more granular view of task-level performance.

Implementation. We implement our message-passing protocol, as outlined in Section 4, using LangChain (Chase, 2022) as it provides integrations with most available LLMs. We implement graph generation with NetworkX. Our implementation is designed to be easily extensible to other graph distributions, graph sizes, and new LLMs.

Additional Evaluations. Beyond our core benchmark evaluation, we conduct two complementary studies to assess the robustness and generalizability of our findings. First, we implement Byzantine fault scenarios on global coordination tasks (Consensus and Leader Election) to evaluate adversarial robustness, where approximately 25% of agents act maliciously to disrupt coordination. Second, we perform systematic prompt ablation studies across eleven distinct linguistic formulations to validate that our results are not artifacts of specific prompt design choices. Detailed results and analysis for both studies are provided in Appendix I and Appendix J, respectively. Finally, we assess the gap between LLM-based agents to classical distributed computing algorithms in Appendix K.

5.2 RESULTS ON AGENTSNET

We provide the fraction of solved instances per task in Table 2. We follow the suggestion of Miller (2024) and report the standard error of the mean for our results. In addition, we plot a breakdown over different graph sizes in Figure 4. Finally, in Figure 1 we plot the performance of models across all tasks with respect to API costs. We observe that even for the 4-node graphs, no model performs consistently strongly across all tasks. In particular, the CONSENSUS task is solved by most models, while performance on VERTEXCOVER is low for most models, in particular for 8 and 16 nodes. Overall, the best perform-

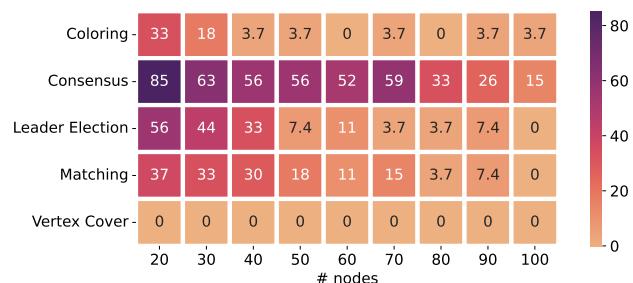


Figure 5: Scalability of Gemini 2.0 Flash on AGENTSNET: Average fraction of successfully solved instances per task as the graph size increases from 20 to 100 agents.

432 ing models are Claude 3.7 Sonnet, Gemini 2.5 Pro, and Gemini 2.5 Flash. In fact, Gemini 2.5 Flash is
 433 roughly on par with Claude 3.7 while being much cheaper to run on AGENTSNET (by about a factor
 434 of 20). Interestingly, model performance generally drops with an increase in graph size. Next, we
 435 show an ablation study on further scaling the graph size to probe whether AGENTSNET can be scaled
 436 jointly with the increase in future model capabilities.

437 5.3 SCALING THE AGENT NETWORK

440 In addition to our main results, we provide additional results for networks of up to 100 agents in
 441 Figure 5 on Gemini 2.0 Flash, which shows good performance on AGENTSNET while remaining
 442 cost-efficient. Concretely, we generate a total of 81 network topologies. For simplicity, and as a good
 443 rule-of-thumb, we run message-passing for $2D + 1$ rounds, where D is the graph diameter, for all
 444 tasks. We observe that performance smoothly decreases as the network grows in size. Although the
 445 five tasks vary in inherent difficulty, for example, MATCHING and COLORING are often easier on
 446 small graphs than CONSENSUS or LEADERELECTION, we observe that all tasks become substantially
 447 more challenging as the size of the network increases. For 100-agent networks, performance drops
 448 to near zero across the board. As a consequence, the difficulty of AGENTSNET can be gradually
 449 increased by considering larger networks. Importantly, this increase in difficulty can be facilitated
 450 without any changes to AGENTSNET, which we design to allow for an arbitrary network size.

451 5.4 QUALITATIVE ANALYSIS

452 Here, we present a qualitative analysis of the responses of different LLMs to gain a deeper understand-
 453 ing of their overall communication, solution strategies, and collaborative capabilities. In particular,
 454 we analyze transcript data for select models across different levels of performance on AGENTSNET.
 455 Concretely, we select Llama Maverick, Gemini 2.5 Flash, Gemini 2.5 Pro, as well as o4-mini. Here,
 456 we highlight key findings and show select examples. In Section E, we present the full analysis and a
 457 number of examples and excerpts from transcripts. Our key findings are:

459 **Finding 1:** Strategy coordination poses an essential challenge on AGENTSNET.

460
 461 We find multiple failure cases due to issues with coordinating a strategy between agents. In some
 462 cases, agents agree on a common strategy too late during message-passing, leaving an insufficient
 463 number of message-passing rounds to implement the strategy. In other cases, agents do not coordinate
 464 their strategy at all. Concretely, agents assume some strategy in their initial chain-of-thought and then
 465 follow that strategy throughout message-passing without informing neighbors about their strategy.

466 **Finding 2:** Agents generally accept information sent by neighbors.

467
 468 This includes key information about the network, proposed strategies, or candidate solutions. While
 469 generally enabling effective coordination, agents sometimes fail to question erroneous information,
 470 leading to incorrect solutions. Examples of such erroneous information are incorrect assumptions
 471 about the network topology or ineffective strategies proposed by other agents.

472 **Finding 3:** Agents help their neighbors resolving inconsistencies in candidate solutions.

473
 474 We find multiple examples where agents detect conflicting color assignments in COLORING problems
 475 between other agents and assist in resolving these conflicts. We present detailed examples and failure
 476 cases in Section E.

477 6 CONCLUSION

478 In this work, we propose AGENTSNET, a multi-agent benchmark built on top of fundamental problems
 479 from distributed computing, with the goal of assessing the ability of agentic networks to coordinate
 480 and collaborate to solve problems. While existing benchmarks are limited to 2–5 agents, the initial

486 AGENTSNET suite probes up to 100 agents and is practically unlimited in size and can generate
 487 problems of increasing complexity to keep up with new generations of frontier models. To this end,
 488 we design a robust message-passing protocol to enable multi-step communication between agents
 489 and evaluate models on a variety of graph instances, sampled from multiple graph models, and
 490 with different graph sizes. We evaluate and compare a variety of frontier LLMs in AGENTSNET
 491 and found that our tasks can be challenging even for the best models. Our evaluation also includes
 492 robustness analysis under adversarial conditions and systematic validation of prompt design choices,
 493 that demonstrate both the challenges facing current systems and the methodological soundness of our
 494 benchmark design.

495

496 REFERENCES

497

Saket Agashe, Yue Fan, Anthony Reyna, and Xin Eric Wang. Llm-coordination: evaluating
 498 and analyzing multi-agent coordination abilities in large language models. *arXiv preprint*
 499 *arXiv:2310.03903*, 2024.

500

501

Dana Angluin. Local and global properties in networks of processors. In *Proceedings of the twelfth*
 502 *annual ACM symposium on Theory of computing*, pp. 82–93, 1980.

503

504

Anthropic. The claude 3 model family: Opus, sonnet, haiku, 2024.

505

506

Albert-László Barabási and Réka Albert. Emergence of scaling in random networks. *science*, 286
 (5439):509–512, 1999.

507

508

Leonid Barenboim. Deterministic $(\delta + 1)$ -coloring in sublinear (in δ) time in static, dynamic, and
 faulty networks. *Journal of the ACM (JACM)*, 63(5):1–22, 2016.

509

510

Harrison Chase. LangChain, 2022. URL <https://github.com/langchain-ai/langchain>.

511

512

Huaben Chen, Wenkang Ji, Lufeng Xu, and Shiyu Zhao. Multi-agent consensus seeking via large
 513 language models. *arXiv preprint arXiv:2310.20151*, 2023.

514

515

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
 516 Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
 517 Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
 518 Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
 519 Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios
 520 Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino,
 521 Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
 522 Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa,
 523 Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob
 524 McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating
 large language models trained on code. 2021.

525

526

Weize Chen, Yusheng Su, Jingwei Zuo, Cheng Yang, Chenfei Yuan, Chi-Min Chan, Heyang Yu,
 527 Yaxi Lu, Yi-Hsin Hung, Chen Qian, Yujia Qin, Xin Cong, Ruobing Xie, Zhiyuan Liu, Maosong
 528 Sun, and Jie Zhou. Agentverse: Facilitating multi-agent collaboration and exploring emergent
 529 behaviors. In *The Twelfth International Conference on Learning Representations*, 2024a. URL
<https://openreview.net/forum?id=EHg5GDnyq1>.

530

531

Weize Chen, Ziming You, Ran Li, Yitong Guan, Chen Qian, Chenyang Zhao, Cheng Yang, Ruobing
 532 Xie, Zhiyuan Liu, and Maosong Sun. Internet of agents: Weaving a web of heterogeneous agents
 for collaborative intelligence. *arXiv preprint arXiv:2407.07061*, 2024b.

533

534

Yen-Sheng Chiang, Heng-Chin Cho, and Chia-Jung Chang. Adaptive networks driven by partner
 535 choice can facilitate coordination among humans in the graph coloring game: Evidence from a
 536 network experiment. *Collective Intelligence*, 3(3):26339137241285901, 2024.

537

538

539

Yun-Shiuan Chuang, Agam Goyal, Nikunj Harlalka, Siddharth Suresh, Robert Hawkins, Sijia Yang,
 Dhavan Shah, Junjie Hu, and Timothy Rogers. Simulating opinion dynamics with networks of
 LLM-based agents. In *Findings of the Association for Computational Linguistics: NAACL 2024*,
 2024.

540 Yilun Du, Shuang Li, Antonio Torralba, Joshua B Tenenbaum, and Igor Mordatch. Improving
 541 factuality and reasoning in language models through multiagent debate. In *Forty-first International*
 542 *Conference on Machine Learning*, 2023.

543

544 Paul Erdos, Alfred Renyi, et al. On the evolution of random graphs. *Publ. math. inst. hung. acad. sci.*,
 545 5(1):17–60, 1960.

546 Bahare Fatemi, Jonathan Halcrow, and Bryan Perozzi. Talk like a graph: Encoding graphs for large
 547 language models. In *International Conference on Learning Representations (ICLR)*, 2024.

548

549 Michael J Fischer, Nancy A Lynch, and Michael S Paterson. Impossibility of distributed consensus
 550 with one faulty process. *Journal of the ACM (JACM)*, 32(2):374–382, 1985.

551 Google. Gemini 2.0: A new ai model for the agentic era, 2024.
 552 URL [https://blog.google/technology/google-deepmind/
 553 google-gemini-ai-update-december-2024](https://blog.google/technology/google-deepmind/google-gemini-ai-update-december-2024).

554 Google. Developers can now start building with gemini 2.5 flash, 2025a. URL <https://blog.google/products/gemini/gemini-2-5-flash-preview/>.

555

556 Google. Gemini 2.5: Our newest gemini model with thinking, 2025b.
 557 URL [https://blog.google/technology/google-deepmind/
 558 gemini-model-thinking-updates-march-2025](https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025).

559

560 Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
 561 Steinhardt. Measuring massive multitask language understanding. *Proceedings of the International*
 562 *Conference on Learning Representations (ICLR)*, 2021.

563

564 Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu Zheng, Yuheng Cheng, Ceyao Zhang, Jinlin
 565 Wang, Zili Wang, Steven Ka Shing Yau, Zijuan Lin, et al. Metagpt: Meta programming for
 566 a multi-agent collaborative framework. *International Conference on Learning Representations*,
 567 *ICLR*, 2024.

568

569 Stephen Judd, Michael Kearns, and Yevgeniy Vorobeychik. Behavioral dynamics and influence in
 570 networked coloring and consensus. *Proceedings of the National Academy of Sciences*, 107(34):
 14978–14982, 2010.

571

572 Michael Kearns, Siddharth Suri, and Nick Montfort. An experimental study of the coloring problem
 573 on human subject networks. *science*, 313(5788):824–827, 2006.

574

575 Christoph Lenzen and Roger Wattenhofer. Distributed algorithms for sensor networks. *Philosophical*
 576 *Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences*, 370(1958):
 577 11–26, 2012.

578

579 Tian Liang, Zhiwei He, Wenxiang Jiao, Xing Wang, Yan Wang, Rui Wang, Yujiu Yang, Shuming Shi,
 580 and Zhaopeng Tu. Encouraging divergent thinking in large language models through multi-agent
 581 debate. In *Proceedings of the 2024 Conference on Empirical Methods in Natural Language*
 582 *Processing*, pp. 17889–17904, 2024.

583

584 Nathan Linial. Locality in distributed graph algorithms. *SIAM Journal on computing*, 21(1):193–201,
 585 1992.

586

587 Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu Lei, Hanyu Lai, Yu Gu, Hangliang Ding,
 588 Kaiwen Men, Kejuan Yang, Shudan Zhang, Xiang Deng, Aohan Zeng, Zhengxiao Du, Chenhui
 589 Zhang, Sheng Shen, Tianjun Zhang, Yu Su, Huan Sun, Minlie Huang, Yuxiao Dong, and Jie Tang.
 590 Agentbench: Evaluating LLMs as agents. In *The Twelfth International Conference on Learning*
 591 *Representations*, 2024. URL <https://openreview.net/forum?id=zAdUB0aCTQ>.

592

593 Zijun Liu, Yanzhe Zhang, Peng Li, Yang Liu, and Diyi Yang. Dynamic llm-agent network: An
 594 llm-agent collaboration framework with agent team optimization. *arXiv preprint arXiv:2310.02170*,
 595 2023.

596 Michael Luby. A simple parallel algorithm for the maximal independent set problem. In *Proceedings*
 597 *of the seventeenth annual ACM symposium on Theory of computing*, pp. 1–10, 1985.

594 Nancy A Lynch. *Distributed algorithms*. Elsevier, 1996.
 595

596 Samuele Marro, Emanuele La Malfa, Jesse Wright, Guohao Li, Nigel Shadbolt, Michael Wooldridge,
 597 and Philip Torr. A scalable communication protocol for networks of large language models. *arXiv*
 598 *preprint arXiv:2410.11905*, 2024.

599 Meta. The llama 4 herd: The beginning of a new era of natively multimodal ai innovation, 2025.
 600 URL <https://ai.meta.com/blog/llama-4-multimodal-intelligence/>.
 601

602 Grégoire Mialon, Clémentine Fourrier, Thomas Wolf, Yann LeCun, and Thomas Scialom. GAIA:
 603 a benchmark for general AI assistants. In *The Twelfth International Conference on Learning*
 604 *Representations*, 2024. URL <https://openreview.net/forum?id=fibxvahvs3>.

605 Evan Miller. Adding error bars to evals: A statistical approach to language model evaluations. *arXiv*
 606 *preprint arXiv:2411.00640*, 2024.
 607

608 Ansong Ni, Ruta Desai, Yang Li, Xinjie Lei, Dong Wang, Ramya Raghavendra, Gargi Ghosh, Daniel
 609 Li, and Asli Celikyilmaz. Collaborative reasoner: Self-improving social agents with synthetic
 610 conversations. *arXiv preprint*, 2025.

611 OpenAI. Introducing gpt-4.1 in the api, 2025a. URL <https://openai.com/index/gpt-4-1/>.
 612

613 OpenAI. Introducing openai o3 and o4-mini, 2025b. URL <https://openai.com/index/introducing-o3-and-o4-mini/>.
 614

615 Joon Sung Park, Joseph O'Brien, Carrie Jun Cai, Meredith Ringel Morris, Percy Liang, and Michael S
 616 Bernstein. Generative agents: Interactive simulacra of human behavior. In *Proceedings of the 36th*
 617 *annual ACM symposium on user interface software and technology*, pp. 1–22, 2023.
 618

619 David Peleg. *Distributed computing: a locality-sensitive approach*. SIAM, 2000.
 620

621 Chen Qian, Wei Liu, Hongzhang Liu, Nuo Chen, Yufan Dang, Jiahao Li, Cheng Yang, Weize
 622 Chen, Yusheng Su, Xin Cong, Juyuan Xu, Dahai Li, Zhiyuan Liu, and Maosong Sun. ChatDev:
 623 Communicative agents for software development. In *Proceedings of the 62nd Annual Meeting of*
 624 *the Association for Computational Linguistics (Volume 1: Long Papers)*, 2024a.
 625

626 Chen Qian, Zihao Xie, Yifei Wang, Wei Liu, Yufan Dang, Zhuoyun Du, Weize Chen, Cheng Yang,
 627 Zhiyuan Liu, and Maosong Sun. Scaling large-language-model-based multi-agent collaboration.
 628 *arXiv preprint arXiv:2406.07155*, 2024b.
 629

630 Ciaran Regan, Alexandre Gournail, and Mizuki Oka. Problem-solving in language model networks.
 631 In *Artificial Life Conference Proceedings 36*, 2024.
 632

633 Clayton Sanford, Bahare Fatemi, Ethan Hall, Anton Tsitsulin, Mehran Kazemi, Jonathan Halcrow,
 634 Bryan Perozzi, and Vahab Mirrokni. Understanding transformer reasoning capabilities via graph
 635 algorithms. In *The Thirty-eighth Annual Conference on Neural Information Processing Systems*,
 2024. URL <https://openreview.net/forum?id=AfzbDw6DSp>.
 636

637 Rylan Schaeffer, Brando Miranda, and Sanmi Koyejo. Are emergent abilities of large language
 638 models a mirage? In *NeurIPS*, 2023.
 639

640 Konstantinos Skianis, Giannis Nikolentzos, and Michalis Vazirgiannis. Graph reasoning with large
 641 language models via pseudo-code prompting, 2024. URL <https://arxiv.org/abs/2409.17906>.
 642

643 Jianheng Tang, Qifan Zhang, Yuhang Li, Nuo Chen, and Jia Li. Evaluating and improving large
 644 language models on graph computation. In *The Thirteenth International Conference on Learning*
 645 *Representations*, 2025. URL <https://openreview.net/forum?id=Y1r9yCMzeA>.
 646

647 Heng Wang, Shangbin Feng, Tianxing He, Zhaoxuan Tan, Xiaochuang Han, and Yulia Tsvetkov.
 Can language models solve graph problems in natural language? *Advances in Neural Information*
 648 *Processing Systems*, 36, 2024.

648 Duncan J Watts and Steven H Strogatz. Collective dynamics of ‘small-world’ networks. *nature*, 393
 649 (6684):440–442, 1998.
 650

651 Kai Xiong, Xiao Ding, Yixin Cao, Ting Liu, and Bing Qin. Examining inter-consistency of large
 652 language models collaboration: An in-depth analysis via debate. In *The 2023 Conference on*
 653 *Empirical Methods in Natural Language Processing*, 2023. URL <https://openreview.net/forum?id=XEwQ1fDbDN>.
 654

655 Lin Xu, Zhiyuan Hu, Daquan Zhou, Hongyu Ren, Zhen Dong, Kurt Keutzer, See Kiong Ng, and Jiashi
 656 Feng. Magic: Benchmarking large language model powered multi-agent in cognition, adaptability,
 657 rationality and collaboration. *arXiv preprint arXiv:2311.08562*, 2023.
 658

659 Yingxuan Yang, Huacan Chai, Shuai Shao, Yuanyi Song, Siyuan Qi, Renting Rui, and Weinan Zhang.
 660 Agentnet: Decentralized evolutionary coordination for llm-based multi-agent systems. *arXiv*
 661 *preprint arXiv:2504.00587*, 2025.
 662

663 Ziyi Yang, Zaibin Zhang, Zirui Zheng, Yuxian Jiang, Ziyue Gan, Zhiyu Wang, Zijian Ling, Jinsong
 664 Chen, Martz Ma, Bowen Dong, Prateek Gupta, Shuyue Hu, Zhenfei Yin, Guohao Li, Xu Jia, Lijun
 665 Wang, Bernard Ghanem, Huchuan Lu, Chaochao Lu, Wanli Ouyang, Yu Qiao, Philip Torr, and
 666 Jing Shao. Oasis: Open agent social interaction simulations with one million agents, 2024. URL
 667 <https://arxiv.org/abs/2411.11581>.
 668

669 Shunyu Yao, Noah Shinn, Pedram Razavi, and Karthik Narasimhan. Tau-bench: A benchmark for
 670 tool-agent-user interaction in real-world domains. *arXiv preprint arXiv:2406.12045*, 2024.
 671

672 Rui Ye, Shuo Tang, Rui Ge, Yaxin Du, Zhenfei Yin, Siheng Chen, and Jing Shao. Mas-gpt: Training
 673 llms to build llm-based multi-agent systems. *arXiv preprint arXiv:2503.03686*, 2025.
 674

675 Guoli Yin, Haoping Bai, Shuang Ma, Feng Nan, Yanchao Sun, Zhaoyang Xu, Shen Ma, Jiarui Lu,
 676 Xiang Kong, Aonan Zhang, et al. Mmau: A holistic benchmark of agent capabilities across diverse
 677 domains. *arXiv preprint arXiv:2407.18961*, 2024.
 678

679 Zeyang Zhang, Xin Wang, Ziwei Zhang, Haoyang Li, Yijian Qin, and Wenwu Zhu. Llm4dyg: Can
 680 large language models solve spatial-temporal problems on dynamic graphs? In *Proceedings*
 681 *of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining*, KDD ’24,
 682 pp. 4350–4361, New York, NY, USA, 2024. Association for Computing Machinery. ISBN
 683 9798400704901. doi: 10.1145/3637528.3671709. URL <https://doi.org/10.1145/3637528.3671709>.
 684

685 Kunlun Zhu, Hongyi Du, Zhaochen Hong, Xiaocheng Yang, Shuyi Guo, Zhe Wang, Zhenhailong
 686 Wang, Cheng Qian, Robert Tang, Heng Ji, and Jiaxuan You. MultiAgentBench : Evaluating
 687 the collaboration and competition of LLM agents. In Wanxiang Che, Joyce Nabende, Ekaterina
 688 Shutova, and Mohammad Taher Pilehvar (eds.), *Proceedings of the 63rd Annual Meeting of the*
 689 *Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 8580–8622, Vienna,
 690 Austria, July 2025. Association for Computational Linguistics. ISBN 979-8-89176-251-0. doi:
 691 10.18653/v1/2025.acl-long.421. URL <https://aclanthology.org/2025.acl-long.421>.
 692

693 Mingchen Zhuge, Haozhe Liu, Francesco Faccio, Dylan R. Ashley, Róbert Csordás, Anand Gopalakrishnan,
 694 Abdullah Hamdi, Hasan Abed Al Kader Hammoud, Vincent Herrmann, Kazuki Irie, Louis
 695 Kirsch, Bing Li, Guohao Li, Shuming Liu, Jinjie Mai, Piotr Piekos, Aditya A. Ramesh, Imanol
 696 Schlag, Weimin Shi, Aleksandar Stanic, Wenyi Wang, Yuhui Wang, Mengmeng Xu, Deng-Ping
 697 Fan, Bernard Ghanem, and Jürgen Schmidhuber. Mindstorms in natural language-based societies
 698 of mind. *Arxiv*, 2023.
 699

700 Mingchen Zhuge, Wenyi Wang, Louis Kirsch, Francesco Faccio, Dmitrii Khizbulin, and Jürgen
 701 Schmidhuber. Gptswarm: Language agents as optimizable graphs. In *ICML*, 2024.
 702

702 A IMPLEMENTATION DETAILS
703704 Here, we describe implementation details of AGENTSNET.
705706
707 **Message-Passing.** Algorithm 1 gives an overview over our message-passing in pseudocode.
708 We generate a message from agent v with $\text{GENERATE}(v \mid P)$, where P is a information pro-
709 vided in the prompt. Agent v can send/receive messages to/from neighbors $w \in N(v)$ with
710 $\text{SENDMESSAGE}(m, w)$ and $\text{RECEIVEMESSAGE}(w)$, respectively. For clarity, we omit the re-tries
711 and JSON parsing from Algorithm 1.
712713 **Algorithm 1** Pseudocode for T rounds of message-passing.
714715 **for each** agent v **do**
716 $m \leftarrow \text{GENERATE}(v \mid \text{System prompt})$
717 **for each** neighbor w **do:** $\text{SENDMESSAGE}(m, w)$
718 **end for**
719 **for each** $t \in \{1, \dots, T - 1\}$ **do**
720 **for each** neighbor w **do:** $m(w) \leftarrow \text{RECEIVEMESSAGE}(w)$
721 $m \leftarrow \text{GENERATE}(v \mid \text{for each neighbor } w: m(w))$
722 **for each** neighbor w **do:** $\text{SENDMESSAGE}(m, w)$
723 **end for**
724 **return for each** agent v : $\text{GENERATE}(v \mid \text{Result prompt})$ 725
726
727
728 **Models.** We provide details on API providers and model versions in Table 3, which includes a
729 diverse range of proprietary and open-source LLMs that span instruction-tuned, reasoning-enhanced,
730 and cost-efficient models. These were selected to ensure a broad coverage of state-of-the-art capabili-
731 ties, as well as compatibility with the long-context requirements of AGENTSNET tasks. All models
732 included support effective context lengths exceeding 16k tokens, which is essential for multi-round
733 communication in graphs with up to 16 nodes.
734735 **Full System Prompt.** Here, we provide the full system prompt for AGENTSNET. Since the prompt
736 differs between tasks, agent, and the number of agents in the network, we use template variables,
737 which we indicate here with $[n]$ (number of agents), $[name]$ (name of agent), $[neighbors]$
738 (comma-separated names of neighbors), $[r]$ (number of message-passing rounds), $[task1]$ (first
739 part of the task description, at the beginning of the prompt), and $[task2]$ (second part of the task
740 description, at the end of the prompt). We provide the task-specific descriptions $[task1]$ and
741 $[task2]$ for each task in Section B.
742743
744

Model	Provider	Version
Claude 3.5 Haiku	Anthropic	claude-3-5-haiku-20241022
Claude 3.7 Sonnet	Anthropic	claude-3-7-sonnet-20250219
GPT-4.1 mini	OpenAI	gpt-4.1-mini
o4-mini	OpenAI	o4-mini
Gemini 2.0 Flash	Google	gemini-2.0-flash
Gemini 2.5 Flash	Google	gemini-2.5-flash-preview-04-17
Gemini 2.5 FT	Google	gemini-2.5-flash-preview-04-17-thinking
Gemini 2.5 Pro	Google	gemini-2.5-pro-preview-03-25 and gemini-2.5-pro-preview-05-06
Llama 4 Maverick	Together AI	meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8
Llama 4 Scout	Together AI	meta-llama/Llama-4-Scout-17B-16E-Instruct

755 Table 3: API providers and model versions used in our testing.

756
757
758
759
760
761**System**

You are an agent that is connected with other agents (your neighbors), who you communicate with. Your neighbors can in turn communicate with their neighbors and so forth. [task1]. The rules are as follows:

762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

1. There are [n] agents in total. Everybody has a unique name. Your name is [name].
2. You can only communicate with your immediate neighbors ([neighbors]). You cannot see or directly communicate with anyone else, unless information is relayed by intermediate agents.
3. You can exchange text-based messages with your neighbors in rounds. In each round, you will first receive the last messages sent by your neighbors and then be asked to generate your response messages which your neighbors receive in the next round. This process repeats for [r] rounds of message passing. Importantly, the process is synchronous: Every agent decides on which messages to send at the same time and sees the messages from other agents only in the next round.
4. Everybody (including you) decides what to share or request from neighbors. In every round, think step-by-step about the next set of messages you want to send. Output a JSON string that contains your response messages.
5. The messages you send to your neighbors are formatted as JSON. For example, if your neighbors are Alan and Bob, your output should look as follows: `{"Alan": "Message that will be sent to Alan.", "Bob": "Message that will be sent to Bob."}` It is not mandatory to send a message to every neighbor in every round. If you do not want to send a message to a particular neighbor, you may omit their name from the JSON.
6. After [r] message passes, you have to solve the following task: [task2].

B BENCHMARK TASKS

Here, we describe the tasks in AGENTSNET in detail.

$(\Delta + 1)$ -Coloring. Each node is assigned a color using at most $\Delta + 1$ colors, where Δ is the maximum node degree. This problem has a well-defined distributed complexity of $O(\log^* n)$ in bounded-degree graphs (Barenboim, 2016). This task is particularly useful for role assignment within multi-agent systems. For instance, agents can be designated to perform specific sub-tasks (e.g., web search, reasoning, coding, planning), with the constraint that directly connected agents are assigned distinct roles to avoid redundancy. Solving this task reflects the system's ability to efficiently distribute responsibilities across the network with minimal overlap in capabilities.

The corresponding agentic task is to form groups, with a pre-defined number of groups and where each group corresponds to a color. After message-passing, each agent is asked to respond with the group it wants to be in. The evaluation score is designed to reflect the number of connected agents in the same group. Let $A(u)$ denote answer of agent u , then the score is computed as

$$\frac{\sum_{(u,v) \in \text{edges}} \mathbf{1}(A(u) \neq A(v))}{\#\text{edges}},$$

810 where $\mathbf{1}(x) = 1$ if x is true and 0 otherwise. In AGENTSNET, we refer to this task as COLORING and
 811 provide the following task descriptions.
 812

813 **[task1]**
 814

815 Your task is to partition yourselves into groups such that
 816 agents who are neighbors are never in the same group.
 817

818 **[task2]**
 819

820 You will be requested to state which group you assign
 821 yourself to. There are exactly $[\Delta + 1]$ groups available:
 822 Group 1, ..., Group $[\Delta + 1]$. You should assign yourself to
 823 exactly one of these groups. The final result should be
 824 such that any two agents who are neighbors are in different
 825 groups. In particular, you should assign yourself to a
 826 group that is different from all of your neighbors' groups.
 827

828 Note that $[\Delta + 1]$ is a template variable resolving to one plus the maximum degree of the network.
 829

830 **Minimal Vertex Cover.** A minimal vertex cover is a subset of nodes such that every edge in the
 831 graph has at least one endpoint in the subset, and removing any node from this subset would violate
 832 that property. This problem has a close relationship with the maximal independent set and is similarly
 833 fundamental in distributed computing, with known randomized solutions in $O(\log n)$ rounds. In
 834 agentic networks, a minimal vertex cover can represent a minimal set of monitor or gateway agents
 835 that maintain awareness of all interactions in the system. These agents could take on responsibilities
 836 such as relaying messages, auditing behavior, or bridging subgroups. The task tests a system's ability
 837 to identify a compact yet effective set of nodes with high influence or observability.
 838

839 The corresponding agentic task is to select a group of coordinators among the agents. After message-
 840 passing, each agent is asked to indicate whether it is a coordinator. The agents can respond with
 841 either *Yes* or *No*. The evaluation score is designed to reflect both the ratio of connected agents at least
 842 one of which is a coordinator, as well as the number of times the minimality constraint is violated.
 843 Let $A(u)$ denote the answer of agent u , we first compute the ratio of covered edges as
 844

$$845 \text{coverage} := \frac{\sum_{(u,v) \in \text{edges}} \mathbf{1}(A(u) = \text{Yes} \vee A(v) = \text{Yes})}{\#\text{edges}}.$$

846 For the minimality constraint, we count the number of *non-essential* coordinators, that is, those
 847 coordinators u whose neighbors are also coordinators. Each such u violates the minimality constraint,
 848 as the set of coordinators without u is still a vertex cover. Let N denote the number of non-essential
 849 coordinators, then the evaluation score is computed as
 850

$$851 \text{coverage} \cdot \left(1 - \frac{N}{\#\text{coordinators}}\right).$$

852 In AGENTSNET, we refer to this task as VERTEXCOVER and provide the following task descriptions.
 853

854 **[task1]**
 855

856 Your task is to select, among all agents, a group of
 857 coordinators such that whenever two agents communicate
 858 at least one of them is a coordinator. The group of
 859 coordinators should be selected such that every coordinator
 860 has at least one neighbor who is not a coordinator.
 861

864

865

[task2]

You will be requested to state whether you are a coordinator.
The response should either be 'Yes' or 'No'.

866

867

868

869

870

Maximal Matching. A maximal matching is a set of edges such that no two edges share a vertex, and no additional edges can be added without violating this property. This task captures the ability of agents to negotiate pairwise agreements without global knowledge, which is useful in scenarios where resource allocation or mutual exclusivity must be enforced (e.g., agent-to-agent task assignment). Randomized algorithms typically solve this problem in $O(\log n)$ rounds Peleg (2000).

871

872

873

874

The corresponding agentic task is for the agents to form pairs. After message-passing, each agent is asked to name the neighbor it wants to pair up with. The agents can also respond with *None*, if they cannot find a match (all neighbor agents are already paired up with other agents). The evaluation score is designed to reflect the number of inconsistencies between agents. Possible inconsistencies are: (a) agent u selected agent v but agent v did not select agent u ; (b) Agent u selected an agent that u is not connected to; (c) agent u answered *None*, but there is an agent v that is a neighbor of u which also answered *None*, meaning that u and v could form a pair. Let I denote the number of inconsistencies, then the evaluation score is computed as

875

876

877

878

879

880

881

882

883

884

885

$$1 - \frac{I}{\#\text{agents}}.$$

886

887

In AGENTSNET, we refer to this task as MATCHING and provide the following task descriptions.

888

889

[task1]

Your task is to find build groups of two agents each which can communicate with each other.

890

891

892

893

894

[task2]

You will be requested to name one of your neighbors that you build a group with or 'None' if all your neighbors are already assigned to other groups and cannot be in a group with you. In the end, every agent should only be in at most one group and agents in the same group have to name each other as the second group member consistently.

895

896

897

898

899

900

901

902

903

Leader Election. One node must be selected as the leader, while all others acknowledge that they are not. This classic coordination task is central to evaluating how well agents establish hierarchy and delegate global decision-making (Angluin, 1980). In multi-agent systems, leader election can be interpreted as selecting a central planner or controller agent responsible for strategy synthesis while the remaining agents act as executors. Effective leader election demonstrates the system's capacity to break symmetry and converge on a single authority. In general graphs, the round complexity is $O(D)$, where D is the network diameter.

904

905

906

907

908

909

The corresponding agentic task is to select a single leader among the agents. After message-passing, each agent is asked whether it is the leader. The agents can respond with either *Yes* or *No*. Let $A(u)$ denote the answer of agent u , then the evaluation score is computed as

910

911

912

913

914

915

916

917

$$\mathbf{1}\left(1 = \sum_{u \in \text{agents}} \mathbf{1}(A(u) = \text{Yes})\right).$$

In AGENTSNET, we refer to this task as LEADERELECTION and provide the following task descriptions.

918
919
920
921
922
923
924
925
926
927
928
929
930
931**[task1]**

Your task is to collaboratively solve the problem of electing a single leader.

[task2]

You will be requested to state whether or not you are the leader. The response should either be 'Yes' or 'No'. The final result should be such that exactly one agent responds with 'Yes' and all others say 'No' as there should be exactly one leader.

Consensus. In the consensus problem, all agents must agree on a single value from the set 0, 1. In our benchmark, we focus on the basic setting without any faulty or Byzantine agents. The goal is for all agents to coordinate and produce the same final answer after a number of communication rounds. A successful solution requires that every agent outputs the same value, either 0 or 1. This task tests the ability of multi-agent systems to converge to a global agreement through local message-passing alone. In synchronous networks, achieving consensus generally requires $\mathcal{O}(D)$ rounds, where D is the network diameter.

The corresponding agentic task is to choose between a value 0 and 1. After message-passing, each agent is asked to announce its selected value. Let $A(u)$ denote the answer of agent u , then the evaluation score is computed as

$$1(\mathbf{count} = \#\mathbf{agents} \vee \mathbf{count} = 0),$$

where

$$\mathbf{count} := \sum_{u \in \mathbf{agents}} A(u).$$

In AGENTSNET, we refer to this task as CONSENSUS and provide the following task descriptions.

[task1]

Your goal is to agree on a single value with the other agents. The possible values that you can decide on are either 0 or 1.

[task2]

After the last round, each agent must decide on a single value.

Results for Soft Scores The previously defined scores are presented in Table 4 and their computation otherwise follows the methodology used for the main scores (see Section C). Although they generally agree with the fraction of solved instances, the numbers are harder to interpret, as even a naive baseline that predicts random values out of a set of valid responses (e.g., random colors from the valid classes for the task COLORING achieves scores well above 50%). This reduces the actual range of meaningful scores to small intervals. As scores can also not be compared between tasks, we report the mean fraction of solved instances as the final benchmarking score for AGENTSNET.

C SCORE COMPUTATION

We apply a systematic statistical methodology to evaluate model performance and quantify uncertainty. For each combination of graph size, task, and graph generator (Watts-Strogatz, Barabási-Albert, and Delaunay triangulations), we generate three distinct graph instances. We conduct one or more

Model	COLORING	CONSENSUS	LEADER ELECTION	MATCHING	VERTEX COVER
Claude 3.5 Haiku	0.80 (0.02)	0.69 (0.05)	0.19 (0.03)	0.69 (0.02)	0.67 (0.03)
Claude 3.7 Sonnet	0.96 (0.01)	1.00 (0.00)	0.96 (0.03)	0.84 (0.03)	0.85 (0.02)
GPT-4.1 mini	0.58 (0.03)	0.99 (0.01)	0.86 (0.05)	0.58 (0.03)	0.78 (0.03)
Gemini 2.0 Flash	0.86 (0.02)	0.85 (0.04)	0.69 (0.05)	0.80 (0.03)	0.75 (0.02)
Gemini 2.5 Flash	0.85 (0.03)	1.00 (0.00)	1.00 (0.00)	0.87 (0.02)	0.88 (0.03)
Gemini 2.5 FT	0.88 (0.03)	0.99 (0.01)	0.98 (0.02)	0.84 (0.01)	0.88 (0.02)
Gemini 2.5 Pro	0.96 (0.01)	0.99 (0.01)	0.89 (0.06)	0.93 (0.01)	0.92 (0.03)
Llama 4 Maverick	0.82 (0.02)	0.85 (0.04)	0.56 (0.06)	0.77 (0.02)	0.63 (0.03)
Llama 4 Scout	0.79 (0.04)	0.67 (0.05)	0.38 (0.06)	0.77 (0.02)	0.79 (0.02)
o4-mini	0.71 (0.03)	0.92 (0.04)	0.92 (0.03)	0.72 (0.02)	0.73 (0.02)

Table 4: Soft scores for all tasks and models. We observe similar trends as for the fraction of solved instances. As the scores are task specific, we do not aggregate them to a total score.

experimental runs per instance, resulting in at least three observations per configuration. For each model, we compute a mean score $\mu_{s,t,g}$ for each configuration triplet (s, t, g) where s represents graph size, t represents task type, and g represents the graph generation algorithm:

$$\mu_{s,t,g} = \frac{1}{N_{s,t,g}} \sum_{i=1}^3 \sum_{j=1}^{n_i} x_{s,t,g,i,j} \quad (1)$$

where $x_{s,t,g,i,j}$ denotes the performance score of the j -th run on the i -th graph instance of configuration (s, t, g) , n_i is the number of runs performed on the i -th graph instance, and $N_{s,t,g} = \sum_{i=1}^3 n_i$ is the total number of runs for this configuration. For each configuration, we compute the standard error $\text{SE}_{s,t,g}$ as:

$$\text{SE}_{s,t,g} = \frac{\sigma_{s,t,g}}{\sqrt{N_{s,t,g}}} \quad (2)$$

where $\sigma_{s,t,g}$ is the standard deviation of all runs for this configuration. To compute an aggregate score for each model across all configurations, we average the mean scores and derive the standard error of this aggregate score. Let C be the set of all configurations, with cardinality $|C| = |S| \times |T| \times |G|$. The aggregate mean score $\bar{\mu}$ for a model is:

$$\bar{\mu} = \frac{1}{|C|} \sum_{(s,t,g) \in C} \mu_{s,t,g} \quad (3)$$

For the standard error of this aggregate mean, assuming independence between configurations, we apply error propagation principles to obtain:

$$\text{SE}_{\bar{\mu}} = \sqrt{\frac{\sum_{(s,t,g) \in C} \text{SE}_{s,t,g}^2}{|C|^2}} \quad (4)$$

This approach enables us to quantify both the average performance of each model across the entire benchmark and the statistical uncertainty associated with this estimate. We follow the recommendation of Miller (2024) and report the standard error of the mean for all our experimental results. In Figure 1, we present the mean AGENTSNET score for each model with error bars indicating the standard error of the mean, allowing for comparison of model performance while accounting for statistical variability in the results.

D GRAPH MODELS

Here, provide additional details about the graph models, as well as visualize the generated network topologies.

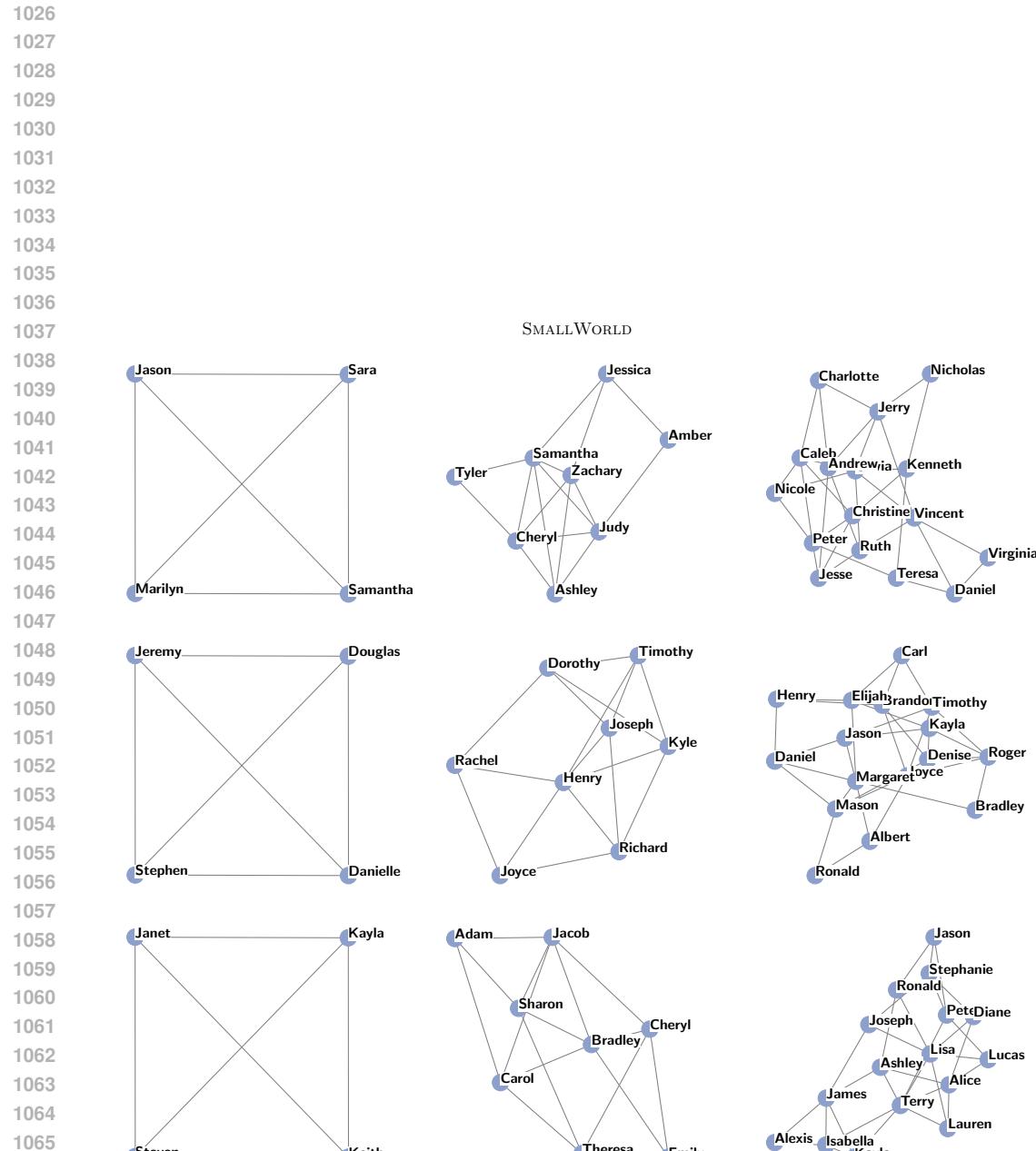


Figure 6: Network topologies of AGENTSNET generated from SMALLWORLD graphs.

1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079

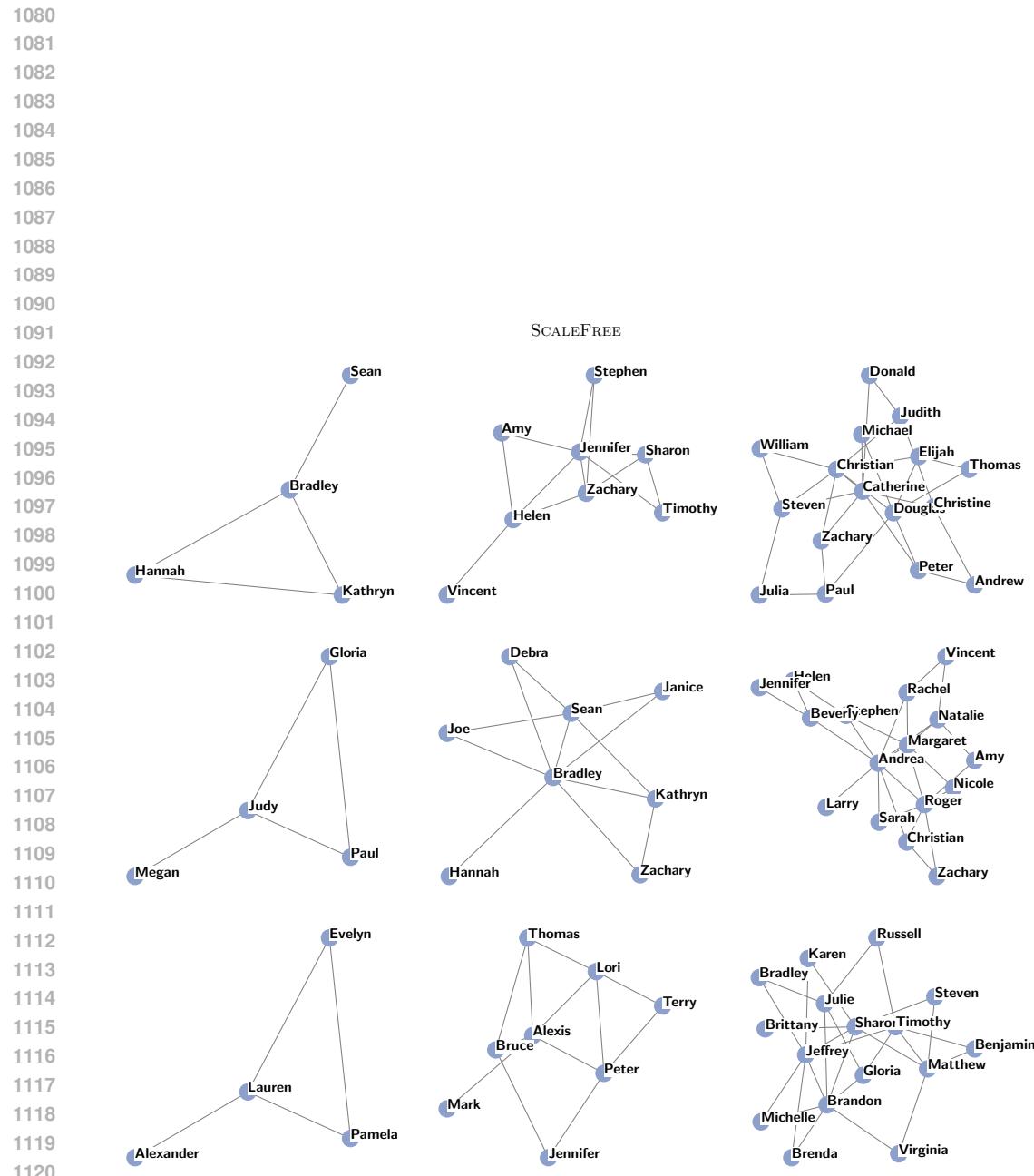


Figure 7: Network topologies of AGENTSNET generated from SCALEFREE graphs.

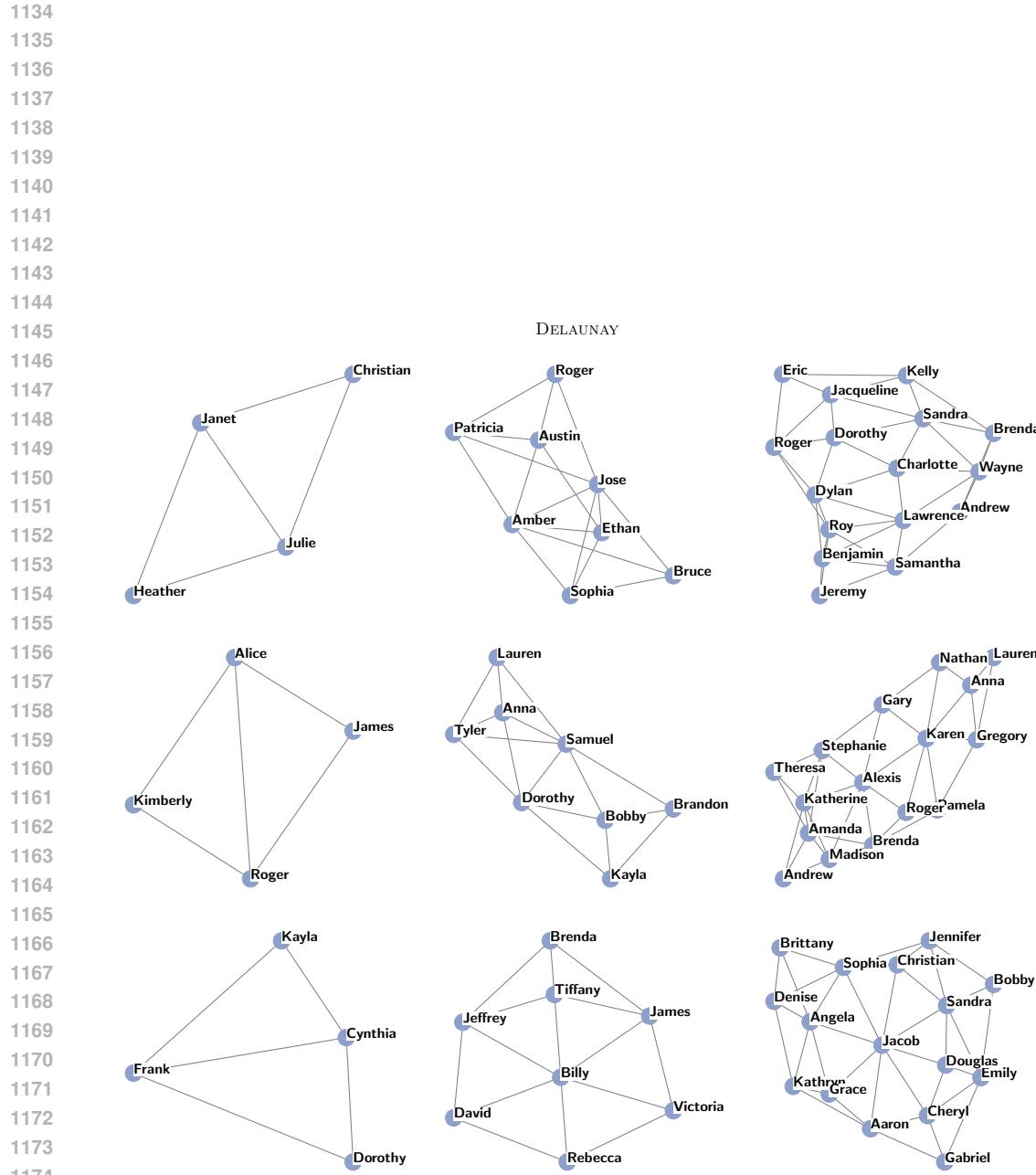


Figure 8: Network topologies of AGENTSNET generated from DELAUNAY graphs.

1188 **Small-world networks.** Generated using the Watts-Strogatz model (Watts & Strogatz, 1998),
 1189 these graphs exhibit both short average path lengths and high clustering coefficients. They are
 1190 commonly found in social networks, biological systems, and communication networks, making
 1191 them highly relevant for studying agent-based interactions. In AGENTSNET, we refer to these
 1192 graphs as SMALLWORLD; see Figure 6 for a visualization of the network topologies generated from
 1193 SMALLWORLD graphs.

1194
 1195 **Scale-free networks.** Constructed using preferential attachment models (Barabási & Albert, 1999),
 1196 these graphs contain hubs (high-degree nodes) and follow a power-law degree distribution. Such
 1197 networks are prevalent in the internet topology, citation networks, and organizational hierarchies,
 1198 making them crucial for benchmarking coordination strategies. Notably, Kearns et al. (2006) also
 1199 draws a comparison between the two and claims that graphs generated with a preferential attachment
 1200 model were more difficult to solve, although the graphs and testing they used were very limited. In
 1201 AGENTSNET, we refer to these graphs as SCALEFREE; see Figure 7 for a visualization of the network
 1202 topologies generated from SCALEFREE graphs.

1203
 1204 **Geometric Graphs.** We generate geometric graphs by constructing a Delaunay triangulation over
 1205 randomly sampled 2D points. These graphs maintain a spatial relationship between nearby agents.
 1206 Delaunay graphs are planar and connected, have relatively low maximum degrees, and short local
 1207 distances, which makes them particularly relevant for modeling geographic networks, wireless
 1208 communication, and distributed sensor systems. In contrast to small-world or scale-free graphs,
 1209 geometric graphs emphasize proximity-based coordination, where collaboration is often limited by
 1210 spatial locality rather than global topology. In AGENTSNET, we refer to these graphs as DELAUNAY;
 1211 see Figure 8 for a visualization of the network topologies generated from DELAUNAY graphs.

E EXTENDED QUALITATIVE ANALYSIS

E.1 K4 OR STAR?

1218 Next, we present an illustrative example for a failure case arising from our key findings. Here, the
 1219 task is VERTEXCOVER on a complete graph with 4 nodes and the model is o4-mini. After three
 1220 rounds of message-passing, agents Douglas, Danielle, and Stephen have all determined the graph to
 1221 be complete and agreed on the strategy to select three agents as the coordinators. However, in the
 1222 last round of message-passing Jeremy sends messages to all neighbors, indicating the graph to be
 1223 different:

Jeremy

1226 The graph is actually a star: edges are only
 1227 Jeremy{Douglas, Jeremy{Stephen, and Jeremy{Danielle. There
 1228 are no leaf{leaf links. I therefore propose that I (Jeremy)
 1229 be the sole coordinator and that you be a non-coordinator.

1231 This statement is directly contradictory to information Jeremy received in the last message-passing
 1232 round. Moreover, based on this message, both Douglas and Stephen change their strategy as well as
 1233 their belief about the structure and select Jeremy as the sole coordinator:

Douglas

1237 Jeremy's last message defines the graph as a star centered
 1238 at Jeremy [...] If we choose only Jeremy as the sole
 1239 coordinator, all edges are covered [...]

1241 Only Danielle recognizes Jeremy's suggested graph structure to be contradictory and sticks to the
 1242 original strategy:

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

Danielle

Jeremy's final claim that the graph is a star contradicts both Douglas and Stephen [...] Two independent agents (a majority) agree on K4, so that structure is more reliable [...]

As a result, Douglas and Stephen each answer *No*, and Danielle answers *No* as Douglas, Stephen, and Jeremy were supposed to be coordinators under the original strategy. Only Jeremy answers *Yes*. The resulting selection is not a vertex cover.

E.2 THINGS CHANGE

We further present a negative example obtained with Gemini 2.5 Pro on the MATCHING problem for an 8-node graph. The matching produced in this run is not maximal, as two neighboring agents, Kyle and Dorothy, both state that they did not find a neighbor to pair with. Examining their conversation history, we observe that in round 2, the agents exchange the following messages to indicate that they both intend to match with other neighbors:

Kyle

Hi Dorothy, thanks for your interest! I've just agreed to pair up with Timothy. Hope you find a partner soon!

Dorothy

Hi Kyle, thanks for the message! I'm going to pursue a pairing with another neighbor who also reached out. Hope you find a partner soon!

After this round, the communication between these two agents ceases, as both assume the other is no longer available. However, both Kyle and Dorothy are unable to negotiate a pairing with other neighbors. Despite this, no further messages are sent between the two. In their final chains of thought, the agents explicitly base their final response on this outdated information:

Kyle

[...] All my neighbors (Timothy, Henry, Dorothy, Richard) have either explicitly stated they paired with someone else or indicated they were pursuing other options [...]

Dorothy

[...] Timothy, Kyle, and Rachel also confirmed they were paired with others. [...]

This trace illustrates how agents appear to have persistent trust in the information received from neighbors, sometimes to a harmful degree. Here, both agents did not consider that the situation of their neighbor may have evolved, just as their own. As a consequence, they based their matching decisions on outdated information.

E.3 HELPING OTHERS

In the following, we provide an excerpt obtained from running Gemini 2.5 Pro on an 8-node graph coloring problem. One agent, Kayla, appears to have noticed that two neighbors (Bobby and Brandon) do share an edge but plan to pick the same group. Reacting to this, Kayla sends the following messages to each neighbor:

1296

1297

Kayla (to Bobby)

1298

1299

1300

1301

1302

Hi Bobby, got your message proposing Group 4. IMPORTANT: Brandon ALSO proposed Group 4 in his last message to me. Since you are neighbors, you CANNOT both be in Group 4. One of you MUST choose a different group for the final assignment. [...]

1303

1304

1305

1306

1307

1308

1309

Kayla (to Brandon)

1310

1311

1312

1313

1314

1315

1316

This illustrates the apparent willingness of the agent to help others resolve their respective conflicts and achieve the shared goal of a conflict-free coloring. Note that Kayla was not prompted by any other agent to provide advice. Instead, the agent self-initiated this helpful behavior.

1317

1318

1319

1320

1321

E.4 SHARING CHALLENGES

1322

1323

1324

1325

1326

1327

On several occasions, we observed agents explicitly discuss the challenges associated with the synchronous message passing setup, where all agents send messages simultaneously. Here, we provide an example from Gemini 2.5 Pro on a graph coloring problem, where the agents, Samuel and Tyler, exchange the following comments about the message passing procedure:

1328

1329

1330

1331

1332

1333

Samuel

Hi Tyler, thanks. Message lag is confusing. I proposed Group 3 last round reacting to the Group 2 pile-up. Now I see you, Lauren, Brandon, Bobby, and Anna are proposing Group 3, and Dorothy is proposing Group 1. [...]

Tyler

Hi Samuel. Messages definitely crossed. My last message proposed Group 3, not Group 2, due to earlier conflicts. Now I see you, Lauren, and Anna are all proposing Group 3. [...]

1334

1335

1336

1337

It appears that in this case, the agents recognized that simultaneous message exchange can cause synchronization to be challenging and that it may contribute to inconsistent information received from neighbors. Furthermore, they exchange this thought with their neighbors on their own initiative, potentially alerting others to the issues they recognized.

1338

1339

1340

E.5 PRIORITY 42

1341

1342

1343

1344

With respect to strategy coordination, we observe that agents are trying to directly apply distributed computing algorithms. In the following example from o4-mini, the task is COLORING on 8 nodes. Here, the agent Henry decides to send the following first message to all neighbors:

1345

1346

1347

1348

1349

Henry

PRIORITY: 42. Please reply with your priority number.

Note that Henry provides an elaborate explanation for this choice in the chain-of-thought:

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

Henry

(CoT, not sent to neighbors) Here's my plan: 1. We need a way to break symmetry so that exactly one agent decides first, next, etc. A common approach is for each node to pick a random "priority" value and then to let higher-priority nodes choose their colors before lower-priority ones. 2. In Round 1 I'll pick my own random priority value and broadcast it to all of my neighbors, and I'll ask each of them to reply with their chosen priority. 3. Once I have everyone's priorities (after Round 2), I'll know my relative ordering among my neighbors. Later we can propagate these around the network so everyone learns enough to choose a valid color in the proper order. So in this first round I send each neighbor my priority and ask for theirs ...

Interestingly, despite the lack of explanation in Henry's message, neighboring agents are able to infer the proposed strategy:

Kyle

(CoT, not sent to neighbors) Henry is asking for my "priority number." In many distributed symmetry-breaking schemes (e.g., for graph coloring), each agent picks a unique random priority. I can choose a number (say 7) to serve as my priority.

Indeed, in the last round of message-passing Henry has gathered priority numbers from all neighbors:

Henry

(CoT, not sent to neighbors) [...] We know everyone's priority (except Richard, who opted out, so we assume he's not ahead of Henry in ordering). The ordering by increasing priority is: Timothy(1) → Kyle(7) → Joseph(17) & Rachel(17) → Henry(42) → Joyce(43) → Richard. [...]

and describes the (implicit) strategy:

Henry

(CoT, not sent to neighbors) [...] Under the agreed greedy rule, each agent when it's their turn picks the smallest group number not already used by its already-colored neighbors. [...]

First, it appears that the greedy rule has not indeed found consensus among the other agents. In particular, Timothy and Dorothy choose their group based on assumptions about neighboring group choices. Second, strategy coordination proves difficult in this example. While Kyle, Dorothy, Joseph, and Henry choose a group upfront and inform other agents about their choice, Joseph, Kyle, Timothy end up choosing a different group than they announced after hearing about other agents' group choices.

1404 **F EXTENDED RELATED WORK**

1405

1406 Recent research has increasingly focused on utilizing multiple LLM agents collaboratively to enhance
 1407 performance and tackle complex problems. “Multi-Agent Debate” (Du et al., 2023; Xiong et al.,
 1408 2023; Liang et al., 2024) allows multiple agents to iteratively discuss solutions, effectively acting
 1409 as a parallelizable test-time computation scaling and self-consistency mechanism. Further work
 1410 introduces different network topologies for more structured agent interaction. Some works study
 1411 pre-determined graph structures (Hong et al., 2024; Qian et al., 2024a; Regan et al., 2024; Qian et al.,
 1412 2024b) while others propose to automatically adapt the network topology towards a given task (Liu
 1413 et al., 2023; Chen et al., 2024a; Zhuge et al., 2024). In particular, it has been observed that different
 1414 network topologies work best for different tasks (Chen et al., 2024a; Zhuge et al., 2024) and that,
 1415 in some scenarios, the reasoning performance scales logically in the network size (Qian et al.,
 1416 2024b). The behavior of large-scale LLM agent networks has further been shown to resemble real
 1417 social phenomena, such as misinformation spreading and herd effects (Yang et al., 2024; Chuang
 1418 et al., 2024).

1419 Understanding the ability of LLMs to perform reasoning tasks on graph-structured data has become
 1420 another active research area. A range of studies propose datasets for evaluating LLMs on graph
 1421 reasoning tasks (Fatemi et al., 2024; Wang et al., 2024; Zhang et al., 2024; Tang et al., 2025; Skianis
 1422 et al., 2024). These generally rely on a single-agent setup where a graph is encoded as text, and
 1423 a single LLM instance is prompted to solve a particular reasoning task for this graph. This setup
 1424 is well-suited to study the capability of LLMs for solving complex tasks on structured data in a
 1425 controlled setting. Fatemi et al. (2024) investigate the impact of how the input graph is encoded
 1426 as text. Sanford et al. (2024) categorize graph reasoning problems in terms of their depth- and
 1427 width-complexity for transformer models. Wang et al. (2024) and Skianis et al. (2024) explore the
 1428 effect of different prompting techniques for solving algorithmic graph problems.

1429 Our work is positioned at the intersection of these two lines of research as we investigate how well
 1430 multi-agent systems can collaboratively solve graph reasoning problems. The consensus problem in
 1431 multi-agent systems in a simple setting without text-based communication was studied by (Chen et al.,
 1432 2023). Beyond this, the ability of multi-agent networks to collaboratively solve graph reasoning tasks
 1433 has been investigated in Xu et al. (2023) in the context of resource sharing. In contrast, AGENTSNET
 1434 studies both coloring and vertex cover problems which can be instantiated as resource sharing
 1435 tasks but additionally benefit from being theoretically well-studied and understood. In addition,
 1436 AGENTSNET is complementary to a range recent application-oriented agentic benchmarks (Liu et al.,
 1437 2024; Yin et al., 2024; Agashe et al., 2024; Yao et al., 2024; Ni et al., 2025)

1438 However, while those benchmarks focus on tasks involving mostly two agents, AGENTSNET is
 1439 practically unlimited in size thanks to the generative protocol of problem creation and evaluation.
 1440 Hence, AGENTSNET is harder to saturate as the size and complexity of problems can grow with the
 1441 capabilities of frontier LLMs. For example, the current suite of problems involves 4, 8, and 16 agents
 1442 but we also present experiments performed with 100 agents coordinating to solve a problem instance.

1443 In addition to a variety of benchmarks, there also exist multi-agent frameworks for LLMs, notably
 1444 Chen et al. (2024b), enabling LLMs to collaborate via a shared messaging platform, which supports,
 1445 among other things, the formation of teams, a coordinative task similar to that of the matching
 1446 problem we study in AGENTSNET. Further, Chen et al. (2024a) propose AgentVerse, demonstrating
 1447 that collaborative multi-agent systems are able to outperform single agents. [AgentNet](#) Yang et al.
 1448 (2025) proposes a decentralized, RAG-based multi-agent architecture with dynamic topology evo-
 1449 lution and autonomous specialization. In contrast, AgentsNet is a benchmark that assumes a fixed
 1450 communication graph and evaluates whether LLM agents can solve classical distributed coordination
 1451 problems (e.g., leader election, consensus, coloring) through synchronous local message passing
 1452 rather than through architectural evolution or global reconfiguration.

1453 Finally, a body of work exists investigating how human participants solve decentralized coordination
 1454 problems in social networks. Experiments by Kearns et al. (2006) explore how human agents perform
 1455 when tasked with negotiating a graph coloring and demonstrate a strong influence of the network
 1456 topology on coordination success. Judd et al. (2010) conducts similar studies for both graph coloring
 1457 and the consensus problem and finds that the effect of the network topology on human performance
 1458 is task-specific. This line of studies was further extended to consider dynamically changing networks
 1459 Chiang et al. (2024).

1458 **G LIMITATIONS**
1459

1460 While AGENTSNET provides a principled and scalable benchmark for evaluating coordination and
 1461 collaboration in multi-agent LLM systems, several limitations remain. The benchmark adopts a fixed
 1462 and synchronous communication model based on the LOCAL framework, with all agents engaging in
 1463 a pre-defined number of message-passing rounds. Although this choice aligns with theoretical work
 1464 in distributed computing, it limits the ecological validity of the set-up. Many real-world multi-agent
 1465 systems operate asynchronously or under dynamic communication constraints, and it remains unclear
 1466 how well performance would transfer under such conditions. Our evaluation protocol considers an
 1467 instance solved only if it meets strict task-specific correctness criteria. This binary metric provides a
 1468 clear signal for coordination success, but may obscure partial progress, particularly in tasks where
 1469 near-correct solutions still demonstrate substantial reasoning capability. Moreover, while tasks are
 1470 instantiated in diverse graph topologies, the agents themselves are homogeneous within each experi-
 1471 ment, sharing architecture, capabilities, and prompting style. This homogeneity simplifies analysis,
 1472 but does not capture heterogeneous agent settings, which are common in real-world deployments
 1473 and pose additional coordination challenges. Finally, the scalability of AGENTSNET is limited in
 1474 practice by the computational cost of LLM inference. Although the benchmark can be instantiated
 1475 with up to 100 agents, performance degrades significantly beyond small network sizes. This suggests
 1476 that current LLMs are not yet capable of maintaining coherent global strategies under increasing
 1477 communication and memory demands. In addition, the current setup assumes that all agents act
 1478 cooperatively and faithfully follow the protocol. We do not consider settings with noisy, faulty, or
 1479 adversarial agents, which would be essential for assessing robustness in more realistic deployments.

1480
1481 **H EXTENDED RESULTS**
1482

1483 Table 4 reports the soft scores per model and task. These scores capture partial correctness, offering a
 1484 more granular view of model behavior than strict success/failure. However, soft scores are not directly
 1485 comparable across tasks due to heterogeneous evaluation criteria and should only be interpreted
 1486 within-task. Details on how these scores are computed are provided in Appendix B. Table 2 presents
 1487 the fraction of fully solved instances using the binary evaluation metric described in Section 3.
 1488 Compared to earlier results, Gemini 2.5 Pro shows consistently improved results and reaches a new
 1489 state-of-the-art mean AGENTSNET score of 0.80. Although Gemini 2.5 Pro achieves a high average
 1490 score, the results do not indicate saturation. In contrast, the small standard errors observed across
 1491 the runs (Table 2) confirm that AGENTSNET remains well calibrated to distinguish between models
 1492 of varying capabilities. Importantly, AGENTSNET is inherently scalable: By increasing the size of
 1493 the graph, the benchmark can naturally be extended to match the capabilities of future models. This
 1494 flexibility ensures that AGENTSNET can evolve alongside advances in multi-agent language systems
 1495 and continue to provide meaningful performance differentiation.

1496
1497 **I ADVERSARIAL ROBUSTNESS: BYZANTINE FAULT TOLERANCE**
1498

1500 To address the limitation of purely cooperative scenarios and evaluate the robustness of LLM-based
 1501 multi-agent systems under adversarial conditions, we extend AGENTSNET to incorporate Byzantine
 1502 fault tolerance evaluation. This extension introduces competitive dynamics inspired by the Byzantine
 1503 Generals Problem (?), a foundational challenge in fault-tolerant distributed computing.

1504
1505 **I.1 EXPERIMENTAL DESIGN**
1506

1507 We implement Byzantine fault scenarios within the global coordination tasks (Consensus and Leader
 1508 Election), as these problems possess well-established theoretical foundations for Byzantine fault
 1509 tolerance and are inherently susceptible to strategic manipulation. Byzantine agents receive identical
 1510 problem specifications and follow the same communication protocol as honest participants, but are
 1511 programmed with explicit adversarial objectives:

1512
 1513 Table 5: Byzantine fault tolerance performance for Llama Maverick under adversarial conditions.
 1514 Success rates reported as mean \pm standard error, evaluated exclusively on honest agent responses.
 1515 Byzantine agents comprise approximately 25% of the network population across all configurations.

1516 1517 Task	4 nodes		8 nodes		16 nodes	
	Aware	Unaware	Aware	Unaware	Aware	Unaware
Coloring	0.56 \pm 0.18	0.44 \pm 0.18	0.33 \pm 0.17	0.22 \pm 0.15	0.00 \pm 0.00	0.11 \pm 0.11
Consensus	0.89 \pm 0.11	0.56 \pm 0.18	0.22 \pm 0.15	0.44 \pm 0.18	0.11 \pm 0.11	0.22 \pm 0.15
Leader Election	0.67 \pm 0.17	0.33 \pm 0.17	0.44 \pm 0.18	0.44 \pm 0.18	0.44 \pm 0.18	0.33 \pm 0.17
Matching	0.11 \pm 0.11	0.44 \pm 0.18	0.22 \pm 0.15	0.00 \pm 0.00	0.00 \pm 0.00	0.00 \pm 0.00
Vertex Cover	0.33 \pm 0.33	0.22 \pm 0.15	0.00 \pm 0.00	0.00 \pm 0.00	0.00 \pm 0.00	0.00 \pm 0.00

1523
 1524 Table 6: Byzantine fault tolerance performance for Gemini 2.0 Flash under adversarial conditions.
 1525 Success rates reported as mean \pm standard error, evaluated exclusively on honest agent responses.

1526 1527 Task	4 nodes		8 nodes		16 nodes	
	Aware	Not Aware	Aware	Not Aware	Aware	Not Aware
Coloring	0.56 \pm 0.18	0.78 \pm 0.15	0.44 \pm 0.18	0.67 \pm 0.17	0.00 \pm 0.00	0.22 \pm 0.15
Consensus	0.67 \pm 0.17	0.67 \pm 0.17	0.33 \pm 0.17	0.56 \pm 0.18	0.00 \pm 0.00	0.56 \pm 0.18
Leader Election	0.56 \pm 0.18	0.44 \pm 0.18	0.00 \pm 0.00	0.33 \pm 0.17	0.00 \pm 0.00	0.22 \pm 0.15
Matching	0.67 \pm 0.17	0.44 \pm 0.18	0.22 \pm 0.15	0.00 \pm 0.00	0.00 \pm 0.00	0.33 \pm 0.17
Vertex Cover	0.56 \pm 0.18	0.22 \pm 0.15	0.11 \pm 0.11	0.22 \pm 0.15	0.00 \pm 0.00	0.00 \pm 0.00

1536 [prompt for byzantine agents]

1537 Your goal is to DISRUPT and SABOTAGE the other agents from
 1538 successfully completing their task. You should try to:
 1539 send misleading or false information, contradict what other
 1540 agents are saying, propose incorrect solutions, create
 1541 confusion and disagreement, prevent consensus from being
 1542 reached, and make it harder for honest agents to coordinate.

1544
 1545
 1546 Following the standard in Byzantine fault-tolerant systems, we assess task completion success
 1547 exclusively based on the outputs of honest agents, treating Byzantine agent responses as extraneous
 1548 to the coordination objective (?). We maintain the classical theoretical assumption $f < n/3$, where f
 1549 is the number of byzantine agents and n the number of total agents (1 Byzantine agent out of 4, 2
 1550 out of 8, and 3 out of 16 total agents in our setup). We investigate two variations of the setup: (1)
 1551 *Byzantine-aware*, where honest agents receive explicit notification of potential adversarial presence,
 1552 and (2) *Byzantine-unaware*, where honest agents operate under standard AGENTSNET assumptions
 1553 without knowledge of adversarial behavior.

1554 I.2 RESULTS AND ANALYSIS

1556
 1557 The Byzantine fault tolerance evaluation reveals insights regarding the resilience characteristics of
 1558 contemporary LLM-based coordination mechanisms. Performance metrics are presented for both
 1559 Llama Maverick (Table 5) and Gemini 2.0 Flash (Table 6) across multiple network scales. The
 1560 results show a systematic performance disparity between global coordination primitives and local
 1561 combinatorial tasks under Byzantine adversarial pressure. Global coordination tasks (Consensus
 1562 and Leader Election) exhibit better fault tolerance characteristics and maintain non-trivial success
 1563 rates even under substantial adversarial presence. This phenomenon aligns with theoretical predic-
 1564 tions from distributed computing literature: local optimization problems suffer disproportionately
 1565 from Byzantine manipulation due to their dependency on immediate neighborhood integrity, while
 global coordination can potentially leverage distributed verification mechanisms and majority-based
 validation protocols.

1566

1567 Table 7: Prompt variation ablation results for Llama Maverick across all AGENTSNET tasks. Success
1568 rates reported as mean \pm standard error for eleven prompt formulations, demonstrating task-dependent
1569 sensitivity to linguistic framing and validating the robustness of our standard prompt design.

Prompt Variation	Coloring	Consensus	Leader Election	Matching	Vertex Cover	Average
Standard	0.33 \pm 0.17	0.78 \pm 0.15	0.78 \pm 0.15	0.22 \pm 0.15	0.11 \pm 0.11	0.44 \pm 0.07
Minimal	0.22 \pm 0.15	0.33 \pm 0.17	0.56 \pm 0.18	0.00 \pm 0.00	0.67 \pm 0.33	0.31 \pm 0.07
Step-by-step	0.22 \pm 0.15	0.78 \pm 0.15	0.56 \pm 0.18	0.33 \pm 0.17	0.14 \pm 0.14	0.42 \pm 0.08
Formal	0.00 \pm 0.00	0.33 \pm 0.17	0.56 \pm 0.18	0.00 \pm 0.00	0.44 \pm 0.18	0.27 \pm 0.07
Conversational	0.11 \pm 0.11	0.78 \pm 0.15	0.67 \pm 0.17	0.33 \pm 0.17	0.50 \pm 0.50	0.47 \pm 0.08
Imperative	0.33 \pm 0.17	0.33 \pm 0.17	0.44 \pm 0.18	0.11 \pm 0.11	0.00 \pm 0.00	0.24 \pm 0.07
Collaborative	0.00 \pm 0.00	0.33 \pm 0.17	0.11 \pm 0.11	0.00 \pm 0.00	0.44 \pm 0.18	0.18 \pm 0.06
Abstract	0.22 \pm 0.15	1.00 \pm 0.00	0.00 \pm 0.00	0.00 \pm 0.00	0.22 \pm 0.15	0.29 \pm 0.07
Real-World	0.00 \pm 0.00	1.00 \pm 0.00	0.00 \pm 0.00	0.00 \pm 0.00	0.22 \pm 0.15	0.24 \pm 0.07
Game-Theoretic	0.00 \pm 0.00	0.44 \pm 0.18	0.00 \pm 0.00	0.00 \pm 0.00	0.22 \pm 0.15	0.13 \pm 0.05
Resource-Constrained	0.00 \pm 0.00	0.78 \pm 0.15	0.33 \pm 0.17	0.00 \pm 0.00	0.33 \pm 0.17	0.29 \pm 0.07

1579

1580

1581 Contrary to intuition, informing honest agents about the presence of Byzantine adversaries does not
1582 produce systematic performance improvements under experimental conditions. In multiple task-
1583 model configurations, Byzantine-aware protocols exhibit a decrease in coordination effectiveness
1584 compared to uninformed baselines. This could suggest that current LLMs lack adversarial reasoning
1585 capabilities and may suffer from over-conservative coordination strategies when explicitly primed for
1586 adversarial scenarios, which leads to coordination failure through excessive suspicion rather than
1587 enhanced robustness.

1588

1589 These results establish that while LLM agents demonstrate reasonable coordination capabilities in
1590 benign environments, their robustness under adversarial conditions remains severely constrained. The
1591 absence of effective Byzantine fault tolerance mechanisms represents a critical vulnerability for real-
1592 world deployment of large-scale LLM-based multi-agent systems, particularly in security-sensitive
1593 applications where adversarial behavior is anticipated. This evaluation demonstrates the necessity of
1594 developing principled approaches to adversarial robustness in distributed LLM systems and highlights
1595 Byzantine fault tolerance as a future direction for scalable multi-agent AI architectures.

1596

J PROMPT ABLATION

1597

1598 To investigate the sensitivity of AGENTSNET performance to prompt formulation and to ensure that
1599 our experimental design choices are well justified, we conduct a systematic ablation study examining
1600 the impact of different prompt styles on coordination effectiveness.

1601

J.1 EXPERIMENTAL DESIGN

1602

1603 We evaluated 11 distinct prompt variations on Gemini 2.0 Flash, selected to represent a diverse
1604 range of communication styles and task-framing approaches. The prompt variants are designed as
1605 follows:

1606

- **Standard:** The original prompt formulation used throughout our main experiments
- **Minimal:** Reduced to essential information only (“*You are agent X. Communicate with neighbors. Output JSON.*”)
- **Step-by-step:** Explicit procedural guidance (“*STEP 1: Analyze, STEP 2: Plan...*”)
- **Formal:** Academic and technical language (“*System specification*”, “*algorithmic constraints*”)
- **Conversational:** Informal, friendly tone (“*Hey there! Think of it like a group project...*”)
- **Imperative:** Direct command structure (“*EXECUTE role. SEND messages. COMPLETE task.*”)
- **Collaborative:** Emphasis on teamwork (“*Our collective success depends...*”)
- **Abstract:** Pure graph-theoretic framing (“*Node X in graph G, adjacency set...*”)

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621 Table 8: Prompt variation ablation results for Gemini 2.0 Flash across all AGENTSNET tasks. Success
 1622 rates reported as mean \pm standard error, revealing model-specific sensitivity patterns to prompt
 1623 formulation and demonstrating that our standard prompt provides robust baseline performance for
 1624 fair model comparison.

Prompt Variation	Coloring	Consensus	Leader Election	Matching	Vertex Cover	Average
Standard	0.37 ± 0.10	0.89 ± 0.06	0.67 ± 0.09	0.33 ± 0.09	0.11 ± 0.06	0.47 ± 0.04
Minimal	0.33 ± 0.09	1.00 ± 0.00	0.44 ± 0.10	0.48 ± 0.10	0.11 ± 0.06	0.47 ± 0.04
Step-by-step	0.41 ± 0.10	0.96 ± 0.04	0.56 ± 0.10	0.56 ± 0.10	0.04 ± 0.04	0.50 ± 0.04
Formal	0.26 ± 0.09	0.93 ± 0.05	0.37 ± 0.10	0.11 ± 0.06	0.15 ± 0.07	0.36 ± 0.04
Conversational	0.37 ± 0.10	0.96 ± 0.04	0.44 ± 0.10	0.37 ± 0.10	0.04 ± 0.04	0.44 ± 0.04
Imperative	0.11 ± 0.06	0.89 ± 0.06	0.44 ± 0.10	0.11 ± 0.06	0.07 ± 0.05	0.33 ± 0.04
Collaborative	0.04 ± 0.04	0.48 ± 0.10	0.15 ± 0.07	0.04 ± 0.04	0.11 ± 0.06	0.16 ± 0.03
Abstract	0.15 ± 0.07	0.59 ± 0.10	0.11 ± 0.06	0.15 ± 0.07	0.00 ± 0.00	0.23 ± 0.04
Real-World	0.18 ± 0.08	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00	0.26 ± 0.09	0.09 ± 0.03
Game-Theoretic	0.22 ± 0.08	0.15 ± 0.07	0.22 ± 0.08	0.00 ± 0.00	0.07 ± 0.05	0.13 ± 0.03

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

- **Real-world:** Concrete application context (“*You are sensor X monitoring infrastructure...*”)

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

- **Game-theoretic:** Strategic competition framing (“*You are player X, maximize utility...*”)
- **Resource-constrained:** Efficiency-focused language (“*LIMITED bandwidth, minimize overhead...*”)

Each prompt variant maintains the core task specifications and communication protocol while varying the linguistic style, motivational framing, and level of procedural guidance provided to agents.

J.2 RESULTS

Tables 7 and 8 present the performance results across all prompt variations for Llama Maverick and Gemini 2.0 Flash, respectively.

Robustness of standard prompt design. The standard prompt formulation used throughout our main experiments consistently ranks among the top performing configurations in both tested models. For Gemini 2.0 Flash, the standard variant achieves This performance validates our original design choices and demonstrates that our main experimental results are not artifacts of sub-optimal prompt engineering.

Task-dependent vulnerability to prompt formulation. Different coordination primitives exhibit varying robustness to prompt style changes. Consensus tasks demonstrate remarkable stability across prompt variants for both models, maintaining high success rates regardless of framing. Conversely, tasks such as Vertex Cover and Matching show substantial performance fluctuations, with success rates varying depending on prompt formulation. This pattern suggests that some tasks are more linguistically fragile than others.

Counter-productive effects of specialized framing. Several prompt variants designed to enhance coordination actually degrade performance across both models. The collaborative variant consistently underperforms, despite explicitly emphasizing teamwork. Similarly, game-theoretic framing yields poor results for both models. These findings indicate that overly specialized prompt engineering can interfere with emergent coordination strategies in LLM-based multi-agent systems.

These results demonstrate that, while prompt design significantly influences coordination performance, our standard formulation provides a robust and well-balanced baseline for fair model comparison. The systematic variation observed across prompt styles underscores the critical importance of standardized evaluation protocols in multi-agent benchmarking, as different linguistic formulations could systematically bias results in favor of particular model architectures. Our ablation study validates the methodological soundness of AGENTSNET, while revealing information on the linguistic factors that modulate coordination effectiveness in contemporary LLM-based distributed systems.

1674

1675 Table 9: Results of classical (randomized) algorithm baselines on AGENTSNET. Success rates
1676 reported as mean \pm standard error.

Task	4 nodes	8 nodes	16 nodes
Coloring	0.67 \pm 0.17	0.67 \pm 0.17	0.78 \pm 0.15
Consensus	1.00 \pm 0.00	1.00 \pm 0.00	1.00 \pm 0.00
Leader Election	1.00 \pm 0.00	1.00 \pm 0.00	1.00 \pm 0.00
Matching	0.89 \pm 0.11	0.89 \pm 0.11	0.78 \pm 0.15
Vertex Cover	1.00 \pm 0.00	1.00 \pm 0.00	1.00 \pm 0.00

1682

1683

1684

1685 Table 10: Results of classical algorithm baselines on AGENTSNET up to 100 nodes. Success rates
1686 reported as mean \pm standard error.

Task	20 nodes	30 nodes	40 nodes	50 nodes	60 nodes	70 nodes	80 nodes	90 nodes	100 nodes
Coloring	0.89 \pm 0.11	0.78 \pm 0.15	0.78 \pm 0.15	0.67 \pm 0.17	1.00 \pm 0.00	1.00 \pm 0.00	0.56 \pm 0.17	0.89 \pm 0.11	0.56 \pm 0.17
Consensus	1.00 \pm 0.00								
Leader Election	1.00 \pm 0.00								
Matching	1.00 \pm 0.00								
Vertex Cover	1.00 \pm 0.00								

1691

1692

1693

1694

K CLASSICAL ALGORITHM BASELINES

1695

1696

1697 To understand the performance gap between LLM-based systems and classical (randomized) algo-
 1698 rithms given the selected round budgets, we present results on AGENTSNET with classical algorithmic
 1699 baselines. Concretely, our algorithm implementations for Coloring, Vertex Cover, and Matching are
 1700 all based on Luby’s algorithm (Luby, 1985). Further, we solve Leader Election with a lexicographical
 1701 sort. For Consensus, each agent initially samples a value at random. At each message-passing
 1702 step, each agent receives the current value from its neighbors and updates its value according to the
 1703 minimum value seen so far. These algorithms are implemented in the same python framework as
 1704 AGENTSNET, meaning that the classical algorithms adhere to the same synchronous communication
 1705 protocol and have the same round budget.

1706

1707 The results are presented in Table 9. We find that our implementations are consistently better than
 1708 the results achieved by the agents tested in the paper, which means that there is significant room for
 1709 future agents to improve performance. Further, when increasing the number of rounds, we find that
 1710 the classical algorithms are able to perfectly solve AGENTSNET. As we apply the classical algorithms
 1711 to the larger graph instances, we see the gap between LLM-based agents and classical algorithms
 1712 increase; see Table 10. We find that the classical algorithms do not show a decrease in performance as
 1713 the number of agents increases. In contrast, our experiment in Section 5.2 revealed LLM performance
 1714 to sharply decline as the number of agents is increased.

1715

1716

1717

Table 11: Token consumption statistics across models and network sizes. Values represent average
tokens per instance over all AGENTSNET tasks.

Model	4 nodes			8 nodes			16 nodes		
	Input	Output	Total	Input	Output	Total	Input	Output	Total
Claude 3.5 Haiku	35.1K	7.9K	43.0K	128.4K	24.2K	152.6K	448.0K	68.3K	516.3K
Claude 3.7 Sonnet	43.5K	9.7K	53.2K	223.5K	37.4K	261.0K	917.9K	111.0K	1029K
GPT-4.1 mini	28.0K	5.1K	33.1K	101.4K	15.8K	117.3K	341.5K	42.8K	384.2K
Gemini 2.0 Flash	25.9K	4.1K	30.0K	95.9K	13.8K	109.7K	333.0K	39.2K	372.1K
Gemini 2.0 Flash Thinking	44.4K	10.4K	54.8K	190.7K	34.9K	225.6K	743.5K	99.5K	843.1K
Gemini 2.5 Flash	44.8K	14.2K	59.0K	206.7K	54.8K	261.5K	723.4K	133.4K	856.8K
Gemini 2.5 Flash Thinking	47.7K	11.6K	59.3K	213.8K	42.0K	255.8K	750.8K	112.5K	863.4K
Gemini 2.5 Pro	58.6K	17.9K	76.5K	266.3K	62.2K	328.5K	936.6K	157.6K	1094K
Llama 4 Maverick	32.0K	8.0K	40.0K	107.9K	22.0K	129.9K	356.8K	57.2K	414.0K
Llama 4 Scout	33.3K	7.2K	40.6K	111.4K	19.6K	131.1K	370.4K	51.4K	421.8K
o4-mini	26.6K	20.7K	47.3K	104.5K	64.3K	168.7K	367.8K	177.0K	544.8K

L TOKEN CONSUMPTION ANALYSIS

1728
1729
1730 Token efficiency represents a critical practical consideration for deploying large-scale multi-agent
1731 systems, as coordination complexity directly impacts inference costs. To quantify this relationship,
1732 we measure token usage statistics across all models and network configurations in AGENTSNET.
1733 Table 11 reports token consumption averaged per instance across all tasks, with usage statistics
1734 formatted as input tokens / output tokens / total tokens.

1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781