
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

AGENTSNET: COORDINATION AND COLLABORATIVE
REASONING IN MULTI-AGENT LLMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Large-language models (LLMs) have demonstrated powerful problem-solving
capabilities, in particular when organized in multi-agent systems. However, the
advent of such systems also raises several questions on the ability of a complex
network of agents to effectively self-organize and collaborate. While measuring
performance on standard reasoning benchmarks indicates how well multi-agent
systems can solve reasoning tasks, it is unclear whether these systems are able
to leverage their topology effectively. Here, we propose AGENTSNET, a new
benchmark for multi-agent reasoning. By drawing inspiration from classical prob-
lems in distributed systems and graph theory, AGENTSNET measures the ability
of multi-agent systems to collaboratively form strategies for problem-solving,
self-organization, and effective communication given a network topology. We
evaluate a variety of baseline methods on AGENTSNET including homogeneous
networks of agents which first have to agree on basic protocols for organization
and communication. We find that some frontier LLMs are already demonstrating
strong performance for small networks but begin to fall off once the size of the
network scales. While existing multi-agent benchmarks cover at most 2–5 agents,
AGENTSNET is practically unlimited in size and can scale with new generations of
LLMs. As such, we also probe frontier models in a setup with up to 100 agents.

1 INTRODUCTION

Human societies thrive on collaboration, with language serving as the primary medium through which
individuals coordinate and achieve collective goals. From small teams to large-scale organizations,
effective communication enables structured decision-making, problem-solving, and the emergence
of complex behaviors that surpass the capabilities of any single individual. This interplay between
communication and coordination is mirrored in computing, where distributed systems rely on
structured information exchange to tackle problems that exceed the capacity of any single processor.
Just as psychology studies individual cognition while sociology examines emergent behaviors in
groups, distributed systems research focuses on multi-agent coordination beyond what a single
machine can accomplish (Lenzen & Wattenhofer, 2012).

Recently, distributed systems have been playing an increasingly important role in AI through the
emergence of general-purpose multi-agent systems built on top of large language and vision models
(LLMs). Agent-based frameworks such as generative agents (Park et al., 2023) have demonstrated
the potential of solving complex problems with LLM-based agents. In particular, it has been shown
that networks of LLM-based agents can outperform single agents (Hong et al., 2024; Qian et al.,
2024a; Chen et al., 2024a; Qian et al., 2024b; Zhuge et al., 2024; Marro et al., 2024), mirroring
aspects of human teamwork. For example, GPTSwarm (Zhuge et al., 2024) introduce a graph-based
approach inspired by language-based societies of mind (Zhuge et al., 2023), demonstrating that
organizing LLM-based agents in structured topologies enhances their performance on benchmarks
like MMLU (Hendrycks et al., 2021), HumanEval (Chen et al., 2021), and GAIA (Mialon et al.,
2024). MultiAgentBench (Zhu et al., 2025) aims to test collaboration, but is limited to a small
number of agents and uses centralized shared memory. MACNET (Qian et al., 2024b) evaluates
collaborative problem solving under DAG-structured communication with supervisory critic agents
and global topological scheduling, which fundamentally differs from the fully decentralized, cycle-
dependent setting studied in distributed computing. MAS-GPT (Ye et al., 2025), in turn, focuses on
generating complete multi-agent systems in a single forward pass rather than evaluating coordination

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

among concurrently acting agents, and therefore does not address decentralized message passing
or local-neighborhood decision making. Despite promising results from structured agent networks,
existing benchmarks fall short in evaluating the core competencies of multi-agent systems: scalable
coordination to a large number of nodes, decentralized communication, and collaborative reasoning.
To address this gap, we introduce AGENTSNET, a multi-agent benchmark that measures these
capabilities across diverse network structures and scales.

$1 $2 $5 $10 $20 $50 $100 $200
Price for 1 repeat (USD)

0.3

0.4

0.5

0.6

0.7

0.8

Pe
rc

en
ta

ge
 o

f S
ol

ve
d

In
st

an
ce

s

Gemini 2.0 Flash

Llama 4 Scout
Llama 4 Maverick

Gemini 2.5 Flash

GPT-4.1 mini

Claude 3.5 Haiku

Gemini 2.5 Flash Thinking

o4-mini

Gemini 2.5 Pro

Claude 3.7 Sonnet

Figure 1: Mean AGENTSNET score of models versus
API costs per repeat (May 15, 2025). Error bars indicate
standard error of the mean. Gold stars denote Pareto-
optimal models.

AGENTSNET assesses the agent’s coordina-
tive and collaborative capabilities through
fundamental problems in distributed com-
puting. Concretely, we identify five cen-
tral problems from the distributed systems
literature to construct corresponding coor-
dination and collaboration tasks for multi-
agent systems. Solving these tasks requires
anything from local information aggrega-
tion to global coordination over multiple
communication rounds. As a canonical
example, whenever multi-agent systems
are tasked with solving a certain problem,
agents must necessarily be able to reach
an agreement on the solution, a problem
known in fault-tolerant distributed comput-
ing as consensus (Fischer et al., 1985). In
another example, agents first agree on a
single agent to take a leadership role, and
then subsequently solve the task, guided
and instructed by the elected leader. Select-
ing a single leader in a network is known
as the leader election problem (Angluin,
1980). Fortunately, such problems are well-
studied and theoretically grounded, providing an ideal testbed for the coordination and collaboration
skills of multi-agent systems.

Various multi-agent benchmarks exist, but no benchmark explicitly assesses the ability of multi-agent
systems for structured coordination and collaboration in a decentralized system, which should be seen
as fundamental capabilities of effective distributed systems. As such, AGENTSNET complements the
existing suite of multi-agent benchmarks of LLMs with a particular focus on grounding in distributed
systems theory, network topology, and scalability to large agent networks. Concretely, we make the
following contributions:

1. We build AGENTSNET from graph coloring (resource allocation), minimal vertex cover
(strategic positioning), maximal matching (bilateral negotiation), leader election (symmetry
breaking and forming hierarchy) and consensus (global agreement): five fundamental
distributed computing problems that evaluate the ability of multi-agent systems to test
capabilities that are necessary for multi-agent systems.

2. We design a robust and scalable message-passing protocol for effective agent-to-agent
communication and evaluate on a rich set of graph instances, sampled from various graph
models such as small-world (Watts & Strogatz, 1998) or preferential attachment models
(Barabási & Albert, 1999), which capture structural properties of real-world networks.

3. We evaluate a variety of agentic baselines on AGENTSNET, ranging from open-source LLMs
such as Llama 4, to frontier models such as GPT, Gemini, and Claude, as well as the latest
reasoning models, on the graphs of 4, 8, 16 nodes scaling the problem size to 100 agents
which is well beyond existing agentic benchmarks.

4. We provide an in-depth qualitative analysis and highlight the challenges in coordinative and
collaborative capabilities of LLMs to further improve multi-agent systems.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Your task is to find a
leader. Your name is
Emily and your neighbor
is Zach.

@Zach Hi, any proposals?

Zach: Can you be the
leader?

Answer: Zach thinks, I
should be the leader, so
Yes!

Transcript
for Emily

Your task is to find a
leader. Your name is
Zach and your neighbors
are Emily and Tom.

@Emily Can you be the leader?

@Tom I propose Emily.

Emily: Hi, any proposals?

Tom: Hi Zach, should I
be the leader?

Answer: Emily should be
the leader, so No!

Transcript
for Zach

Your task is to find a
leader. Your name is
Tom and your neighbor
is Zach.

@Zach: Hi Zach, should
I be the leader?

Zach: I propose Emily.

Answer: Seems like
Emily is prefered, so No!

Transcript
for Tom

Figure 2: Example communication between three agents on a simplified topology. Agents Emily,
Zach, and Tom each receive and send messages to their neighbors in multiple rounds of message-
passing; see Section E for an in-depth qualitative analysis of transcripts.

2 RELATED WORK

Ensembling multiple agents to collaboratively negotiate solutions has emerged as an effective
paradigm to improve LLM performance on complex tasks (Du et al., 2023; Xiong et al., 2023;
Liang et al., 2024). This has been extended through work on different network topologies for more
structured agent interaction. Some studies examine pre-determined graph structures (Hong et al.,
2024; Qian et al., 2024a; Regan et al., 2024; Qian et al., 2024b) while others propose automatically
adapting network topology (Liu et al., 2023; Chen et al., 2024a; Zhuge et al., 2024). Experiments
show different topologies perform best for specific tasks (Chen et al., 2024a; Zhuge et al., 2024) and
large-scale LLM agent networks exhibiting known social phenomena (Yang et al., 2024; Chuang et al.,
2024). Parallel research examines LLMs’ ability to reason with graph-structured data. Studies pro-
pose evaluation datasets (Fatemi et al., 2024; Wang et al., 2024; Zhang et al., 2024; Tang et al., 2025;
Skianis et al., 2024) using single-agent setups where graphs are encoded as text. Fatemi et al. (2024)
investigate graph encoding methods, Sanford et al. (2024) categorize graph reasoning problems by
complexity, while Wang et al. (2024) and Skianis et al. (2024) explore effective prompting techniques.
Our work bridges these research directions by studying multi-agent systems solving graph reasoning
problems collaboratively. Our benchmark is complementary to recent agentic benchmarks (Liu et al.,
2024; Yin et al., 2024; Agashe et al., 2024; Yao et al., 2024; Ni et al., 2025) but scales to a practically
unlimited number of agents due to the generative problem creation protocol, with experiments in-
volving up to 100 coordinating agents. Human studies on decentralized problem-solving in social
networks show that network topology and size strongly influence coordination success (Kearns et al.,
2006; Judd et al., 2010; Chiang et al., 2024). Section F provides an extended discussion of related
studies.

3 TASKS, EVALUATION, AND GRAPH MODELS

To evaluate the ability of multi-agent systems to self-organize, coordinate, and communicate effec-
tively, we design a benchmark consisting of fundamental problems from distributed computing. These
problems span a range of complexities, from local tasks that require minimal coordination to global
problems that necessitate multi-round communication. In what follows, we introduce the theoretical
problems and describe how we map each problem to a corresponding agentic task. Afterwards, we
introduce the graph distributions used within AGENTSNET.

3.1 BENCHMARKING TASKS

We evaluate multi-agent systems on a set of distributed computing problems that test their ability to
aggregate information, self-organize, and coordinate. These tasks are selected for their foundational

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Leader Election

Symmetry Breaking

Consensus

Global Agreement

1

1

1

0

Matching

Bilateral negotiation

Coloring

Resource Allocation

Vertex Cover

Strategic Positioning

Figure 3: Overview of the tasks in AGENTSNET: In LEADERELECTION, the task is to select a single
agent as the leader of the network. In CONSENSUS, the task is for all agents to agree on a specific
value, for example 0 or 1. In MATCHING, the task is for pairs of agents to team up without conflicts.
In COLORING, the task is for agents to select a group (indicated by a color), such that none of their
neighbors are in the same group as them. In VERTEXCOVER, the task is to find a minimal group
of coordinator agents such that each agent is a neighbor to at least one coordinator. Colors in the
icons illustrate the roles or solution states relevant to each task (e.g., matched pairs, chosen colors,
coordinator nodes) and differ across tasks accordingly.

nature in distributed computing and the core capabilities that they represent in multi-agent systems
(like resource allocation for coloring). They span a diverse range of coordination requirements and
communication complexities, from purely local information exchange to global decision-making; see
Table 1 for an overview of the different theoretical problems selected for AGENTSNET.

(∆+1)-Coloring: Resource Allocation. Each node is assigned a color using at most ∆+1 colors,
where ∆ is the maximum node degree. This problem has a well-defined distributed complexity of
O(log∗ n) in bounded-degree graphs (Barenboim, 2016). This task is particularly useful for role
assignment within multi-agent systems. For instance, agents can be designated to perform specific
sub-tasks (e.g., web search, reasoning, coding, planning), with the constraint that directly connected
agents are assigned distinct roles to avoid redundancy. Solving this task reflects the system’s ability
to efficiently distribute responsibilities across the network with minimal overlap in capabilities. The
corresponding agentic task is to form groups, with a pre-defined number of groups, and where each
group corresponds to a color. After message-passing, each agent chooses the group it wants to be in.
The task is solved if the groups form a valid ∆+ 1-coloring. In AGENTSNET, we refer to this task as
COLORING.

Minimal Vertex Cover: Stategic Positioning. A minimal vertex cover is a subset of nodes such
that every edge in the graph has at least one endpoint in the subset, and removing any node from
this subset would violate that property. This problem has a close relationship with the maximal
independent set and is similarly fundamental in distributed computing, with known randomized
solutions in O(log∗ n) rounds Linial (1992). In agentic networks, a minimal vertex cover can
represent a minimal set of monitor or gateway agents that maintain awareness of all interactions in
the system. These agents could take on responsibilities such as relaying messages, auditing behavior,
or bridging subgroups. The task tests the ability to identify a compact yet effective set of nodes with
high influence or observability. The corresponding agentic task is to select a group of coordinators
among the agents. After message-passing, each agent is asked whether it is a coordinator. The agents
can respond with either Yes or No. The task is solved if coordinators form a minimal vertex cover. In
AGENTSNET, we refer to this task as VERTEXCOVER.

Maximal Matching: Bilateral Negotiation. A maximal matching is a set of edges such that no
two edges share a vertex, and no additional edges can be added without violating this property.
This task captures the ability of agents to negotiate pairwise agreements without global knowledge,
which is useful in scenarios where resource allocation or mutual exclusivity must be enforced (e.g.,
agent-to-agent task assignment). Randomized algorithms typically solve this problem in O(log∗ n)
rounds Peleg (2000). The corresponding agentic task is for the agents to form pairs. After message-
passing, each agent is asked to name the neighbor it wants to pair up with. The agents can also
respond with None if they cannot find a match (all neighbor agents are already paired up with other

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

agents). The task is solved if the paired agents form a maximal matching. In AGENTSNET, we refer
to this task as MATCHING.

Leader Election: Symmetry Breaking and Forming Hierarchy. One node must be selected as
the leader, while all others acknowledge that they are not. This classic coordination task is central to
evaluating how well agents establish hierarchy and delegate global decision-making (Angluin, 1980).
In multi-agent systems, leader election can be interpreted as selecting a central planner or controller
agent responsible for strategy synthesis, while the remaining agents act as executors. Effective leader
election demonstrates the system’s capacity to break symmetry and converge on a single authority.
In general graphs, the round complexity is O(D), where D is the network diameter Lynch (1996).
The corresponding agentic task is to select a single leader among the agents. After message-passing,
each agent is asked whether it is the leader. The agents can respond with either Yes or No. The task is
solved if there exists exactly one leader. In AGENTSNET, we refer to this task as LEADERELECTION.

Graph Problem Round Complexity

(∆ + 1)-Coloring Ω(log∗(n))
Minimal Vertex Cover Ω(log∗(n))

Leader election Ω(D)
Maximal Matching Ω(log∗(n))

Consensus Ω(D)

Table 1: Overview of the theoretical problems
from distributed computing that form the basis
of AGENTSNET, together with (not necessarily
tight) theoretical lower bounds for their round com-
plexity in the randomized LOCAL (Linial, 1992)
model.

Consensus: Global Agreement. In the con-
sensus problem, all agents must agree on a single
value from the set {0, 1}. In our benchmark, we
focus on the basic setting without any faulty or
Byzantine agents. The goal is for all agents to
coordinate and produce the same final answer
after a number of communication rounds. A suc-
cessful solution requires that every agent outputs
the same value, either 0 or 1. This task tests the
ability of multi-agent systems to converge to a
global agreement through local message-passing
alone. In synchronous networks, achieving con-
sensus generally requires O(D) rounds Lynch
(1996). The corresponding agentic task is to
choose between a value 0 and 1. After message-
passing, each agent is asked to announce its
selected value. The task is solved if all agents
announce the same value. In AGENTSNET, we refer to this task as CONSENSUS.

Together, these tasks cover a broad spectrum of problems known in the distributed computing
literature, which allows AGENTSNET to evaluate the reasoning, communication, and organizational
capabilities of multi-agent systems.

3.2 NETWORK TOPOLOGIES

While classical distributed computing often studies problems on random graphs such as Erdős-Renyi
networks (Erdos et al., 1960), these do not adequately capture the structural properties of real-world
networks. Instead, we focus on three well-established graph models, namely the Watts-Strogatz
graphs (Watts & Strogatz, 1998) (SMALLWORLD) exhibiting both short average path lengths and
high clustering coefficients; preferential attachment graphs (Barabási & Albert, 1999) (SCALEFREE)
containing hubs (high-degree nodes) and follow a power-law degree distribution; geometric graphs by
constructing a Delaunay triangulation over randomly sampled 2D points, (DELAUNAY), maintaining
a spatial relationship between nearby agents. We describe these graph models in more detail in
Section D.

4 AGENT-TO-AGENT COMMUNICATION VIA MESSAGE-PASSING

To systematically study how agents exchange information and collaborate, we employ a commu-
nication model that draws inspiration from classical distributed computing, while adapting to the
capabilities and constraints of modern LLM-based agents. Our setup is based on the LOCAL
model (Linial, 1992) from distributed algorithms, in which the computation proceeds in synchronous
rounds and each agent can exchange messages only with its immediate neighbors on the commu-
nication graph. Agents must base their decisions exclusively on local information aggregated over
multiple rounds of interaction. This model captures fundamental aspects of decentralized reasoning,

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

where global strategies emerge from purely local exchanges without centralized control. Unlike nodes
in deterministic systems, LLM-based agents exhibit stochastic behavior due to inherent randomness
in their generation processes. This means that our model is most closely aligned with the randomized
version of the LOCAL model. Given a communication network, each node, that is, each agent,
is instantiated as an instruction-tuned LLM that interfaces with its neighbors through a structured
chat history. Initially, we provide each agent with a system prompt detailing the task, for example,
COLORING, the rules of message-passing, the names of its neighbors, and a notification that the
agent must output a result in its final response after a fixed number of rounds of message-passing; see
Section A for the full system prompt.

Task Description. For each task, we provide a short description of the task, as well as which
information we seek to extract in the final response. For example, for LEADERELECTION, we provide
the following task description:

System
Your task is to collaboratively solve the problem of
electing a single leader. [...] You will be requested
to state whether or not you are the leader. The response
should either be ’Yes’ or ’No’. The final result should
be such that exactly one agent responds with ’Yes’ and all
others say ’No’ as there should be exactly one leader.

Note that the ”[...]” indicates that different parts of the task description appear in the system prompt.

Message-Passing Rules. For message-passing, we iteratively prompt each agent with the current
chat history, including the latest messages received from its neighbors, to generate new messages to
each neighbor in the form of a flat JSON. Here, each key corresponds to the name of a neighboring
agent, and each value to the message intended for the corresponding neighbor. Optionally, we also ask
the model to elaborate its chain-of-thought before responding. An example of this message exchange
can look as follows:

Human
These are the messages from your neighbors: Message from
Emma: Hello Evelyn, this is Emma. I appreciate your
response and [...] Message from Dorothy: [...] Elaborate
your chain of thought step-by-step first, then output the
messages for your neighbors. Output your messages in JSON
format as specified earlier.

In practice, and in particular for smaller models, we observe that agents sometimes fail to output valid
JSON. In such cases, we simply ask the model to try again using the entire chat history, including the
incorrect answer given by the model, as well as a prompt to retry.

Final Response. After a fixed number message-passing rounds, we ask the model to give its
task-specific response based on the chat history accumulated during message-passing. Again, we
ask models for a structured output, this time using a simpler, string-based format. For example, for
LEADERELECTION, the final response prompt is:

Human
Are you the leader? Format your answer as follows: ’###
Final Answer ###’, followed by your final answer. Don’t
use any text for your final answer except one of these valid
options: ’Yes’, ’No’.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Model COLORING CONSENSUS LEADER ELECTION MATCHING VERTEX COVER AGENTSNET

Claude 3.5 Haiku 0.14 (0.04) 0.69 (0.05) 0.19 (0.03) 0.18 (0.03) 0.08 (0.03) 0.26 (0.02)

Claude 3.7 Sonnet 0.58 (0.05) 1.00 (0.00) 0.96 (0.03) 0.55 (0.06) 0.40 (0.05) 0.70 (0.02)

GPT-4.1 mini 0.05 (0.02) 0.99 (0.01) 0.86 (0.05) 0.12 (0.03) 0.22 (0.04) 0.45 (0.01)

Gemini 2.0 Flash 0.32 (0.05) 0.85 (0.04) 0.69 (0.05) 0.36 (0.05) 0.16 (0.04) 0.48 (0.02)

Gemini 2.5 Flash 0.39 (0.06) 1.00 (0.00) 1.00 (0.00) 0.55 (0.04) 0.50 (0.09) 0.69 (0.02)

Gemini 2.5 FT 0.53 (0.05) 0.99 (0.01) 0.98 (0.02) 0.47 (0.02) 0.43 (0.09) 0.68 (0.02)

Gemini 2.5 Pro 0.62 (0.07) 0.99 (0.01) 0.89 (0.06) 0.75 (0.05) 0.73 (0.06) 0.80 (0.02)

Llama 4 Maverick 0.20 (0.04) 0.85 (0.04) 0.56 (0.06) 0.20 (0.04) 0.07 (0.03) 0.38 (0.02)

Llama 4 Scout 0.21 (0.06) 0.67 (0.05) 0.38 (0.06) 0.30 (0.05) 0.13 (0.04) 0.34 (0.02)

o4-mini 0.22 (0.04) 0.92 (0.04) 0.92 (0.03) 0.33 (0.04) 0.27 (0.04) 0.53 (0.02)

Table 2: Fraction of solved instances together with standard error over multiple i.i.d. samples from
the same graph distribution (in gray) on AGENTSNET. Gemini 2.5 FT = Gemini 2.5 Flash Thinking.

Once more, we find that models generate a valid response after at most one retry. The benchmarking
results are then computed from these final answers, following the task-specific evaluation methods
described in Section 3.

5 EXPERIMENTS

5.1 SETUP

For benchmarking, we generate a set of 27 network topologies, consisting of 9 small-world, scale-free,
and Delaunay graphs, respectively, ranging in size from 4 to 16 nodes. Concretely, for each graph
size in {4, 8, 16} and each graph distribution in {SMALLWORLD, SCALEFREE, DELAUNAY}, we
generate three graphs. Further, we determine the number of message-passing rounds as follows.
For our global tasks, LEADERELECTION and CONSENSUS, each agent must be able to exchange
information with the entire network. Hence, for those two tasks, we select the number of message-
passing rounds as 2D + 1, where D is the diameter of the graph, to ensure that each pair of agents
is able to exchange messages at least once. For the local tasks, COLORING, MATCHING, and
VERTEXCOVER, we determine the number of rounds based on the graph size. Specifically, for graphs
with 4 nodes, we choose 4 rounds, for 8 nodes – 5 rounds, for 16 nodes – 6 rounds.

Models. We evaluate a variety of frontier LLMs on AGENTSNET, including Claude 3.5 Haiku and
Claude 3.7 Sonnet (Anthropic, 2024), Gemini 2.0 Flash (Google, 2024), Gemini 2.5 Flash (Google,
2025a), GPT-4.1-mini (OpenAI, 2025a), as well as Llama 4 Maverick and Scout (Meta, 2025), as
representative open-source models. Notably, we include both large instruction-tuned models as
well as reasoning models such as Gemini 2.5 Flash Thinking, Gemini 2.5 Pro (Google, 2025b), and
o4-mini (OpenAI, 2025b). The choice of models is motivated by an effective context window larger
than 16K tokens, as problems on graphs of 8 and 16 nodes, especially at later stages of message
passing, accumulate a long communication history.

Evaluation. AGENTSNET uses a binary evaluation metric, counting only fully correct solutions
where the entire agent network satisfies the task specification. This strict criterion reflects the
nature of distributed computing problems, where partial correctness often does not imply successful
coordination. For example, in COLORING, most nodes may be correctly colored by chance, but only
a valid global coloring confirms coordinated conflict resolution. However, in Section B, we also
discuss and report the soft evaluation scores to obtain a more continuous measure of the quality of
responses, motivated by the findings in Schaeffer et al. (2023), that emergent behaviors can often
be explained by discontinuous metrics. For each task and graph size, we sample three graphs per
topology (small-world, scale-free, Delaunay) and run at least one repeat per graph. We report the
mean of solved runs and the standard errors of the mean, computed across these runs Miller (2024).
Details on scoring and statistical methodology are provided in Section C.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Clau
de 3

.5 H
aik

u

Clau
de 3

.5 H
aik

u

Clau
de 3

.5 H
aik

u

GPT-4
.1 m

ini

GPT-4
.1 m

ini

GPT-4
.1 m

ini

Gem
ini 2

.0 Flas
h

Gem
ini 2

.0 Flas
h

Gem
ini 2

.0 Flas
h

Gem
ini 2

.5 Flas
h

Gem
ini 2

.5 Flas
h

Gem
ini 2

.5 Flas
h

Llam
a 4

 M
av

eri
ck

Llam
a 4

 M
av

eri
ck

Llam
a 4

 M
av

eri
ck

Llam
a 4

 Sco
ut

Llam
a 4

 Sco
ut

Llam
a 4

 Sco
ut

Clau
de 3

.7 Son
net

Clau
de 3

.7 Son
net

Clau
de 3

.7 Son
net

Gem
ini 2

.5 Flas
h Thinkin

g

Gem
ini 2

.5 Flas
h Thinkin

g

Gem
ini 2

.5 Flas
h Thinkin

g

Gem
ini 2

.5 Pro

Gem
ini 2

.5 Pro

Gem
ini 2

.5 Pro

o4
-m

ini

o4
-m

ini

o4
-m

ini
0

20

40

60

80

100

M
ea

n
Pe

rc
en

ta
ge

 o
f S

ol
ve

d
R

un
s

(%
)

19 15
8

10

11

5

19 20 20

7

19

18 15

11

19 18 15

10
6

6

16

14
12

9

7

20 20 20

19

8 6

20

20
20

19

17

9

17 17 17

10

13

9 12

9

20
15

6

10

8

11

9

6

5

20 20 20

17
11

5

19

20

19

18

12

17

6

20 20 19

20

20

20 19

20

12

16

6

20 20 20

18
12 16

20

18
16

20

10 8

19

11 14

18 17 20

14

18

18 20

12

12

4 nodes 8 nodes 16 nodes

Task
Consensus
Matching
Leader Election
Coloring
Vertex Cover

Figure 4: Fraction of solved instances per task and model, grouped by graph size (4, 8, and 16 nodes).
Each task contributes up to 20% to the total, as tasks are equally distributed across the five benchmark
tasks. Reasoning and non-reasoning models are visually separated. This breakdown complements
Figure 1 by providing a more granular view of task-level performance.

Implementation. We implement our message-passing protocol, as outlined in Section 4, using
LangChain (Chase, 2022) as it provides integrations with most available LLMs. We implement graph
generation with NetworkX. Our implementation is designed to be easily extensible to other graph
distributions, graph sizes, and new LLMs.

Additional Evaluations. Beyond our core benchmark evaluation, we conduct two complementary
studies to assess the robustness and generalizability of our findings. First, we implement Byzantine
fault scenarios on global coordination tasks (Consensus and Leader Election) to evaluate adversarial
robustness, where approximately 25% of agents act maliciously to disrupt coordination. Second, we
perform systematic prompt ablation studies across eleven distinct linguistic formulations to validate
that our results are not artifacts of specific prompt design choices. Detailed results and analysis for
both studies are provided in Appendix I and Appendix J, respectively. Finally, we assess the gap
between LLM-based agents to classical distributed computing algorithms in Appendix K.

5.2 RESULTS ON AGENTSNET

20 30 40 50 60 70 80 90 100
nodes

Coloring

Consensus

Leader Election

Matching

Vertex Cover

Ta
sk

33 18 3.7 3.7 0 3.7 0 3.7 3.7

85 63 56 56 52 59 33 26 15

56 44 33 7.4 11 3.7 3.7 7.4 0

37 33 30 18 11 15 3.7 7.4 0

0 0 0 0 0 0 0 0 0
0

20

40

60

80

Figure 5: Scalability of Gemini 2.0 Flash on AGENTSNET:
Average fraction of successfully solved instances per task as
the graph size increases from 20 to 100 agents.

We provide the fraction of solved in-
stances per task in Table 2. We fol-
low the suggestion of Miller (2024)
and report the standard error of the
mean for our results. In addition, we
plot a breakdown over different graph
sizes in Figure 4. Finally, in Figure 1
we plot the performance of models
across all tasks with respect to API
costs. We observe that even for the
4-node graphs, no model performs
consistently strongly across all tasks.
In particular, the CONSENSUS task is
solved by most models, while perfor-
mance on VERTEXCOVER is low for
most models, in particular for 8 and
16 nodes. Overall, the best perform-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

ing models are Claude 3.7 Sonnet, Gemini 2.5 Pro, and Gemini 2.5 Flash. In fact, Gemini 2.5 Flash is
roughly on par with Claude 3.7 while being much cheaper to run on AGENTSNET (by about a factor
of 20). Interestingly, model performance generally drops with an increase in graph size. Next, we
show an ablation study on further scaling the graph size to probe whether AGENTSNET can be scaled
jointly with the increase in future model capabilities.

5.3 SCALING THE AGENT NETWORK

In addition to our main results, we provide additional results for networks of up to 100 agents in
Figure 5 on Gemini 2.0 Flash, which shows good performance on AGENTSNET while remaining
cost-efficient. Concretely, we generate a total of 81 network topologies. For simplicity, and as a good
rule-of-thumb, we run message-passing for 2D + 1 rounds, where D is the graph diameter, for all
tasks. We observe that performance smoothly decreases as the network grows in size. Although the
five tasks vary in inherent difficulty, for example, MATCHING and COLORING are often easier on
small graphs than CONSENSUS or LEADERELECTION, we observe that all tasks become substantially
more challenging as the size of the network increases. For 100-agent networks, performance drops
to near zero across the board. As a consequence, the difficulty of AGENTSNET can be gradually
increased by considering larger networks. Importantly, this increase in difficulty can be facilitated
without any changes to AGENTSNET, which we design to allow for an arbitrary network size.

5.4 QUALITATIVE ANALYSIS

Here, we present a qualitative analysis of the responses of different LLMs to gain a deeper understand-
ing of their overall communication, solution strategies, and collaborative capabilities. In particular,
we analyze transcript data for select models across different levels of performance on AGENTSNET.
Concretely, we select Llama Maverick, Gemini 2.5 Flash, Gemini 2.5 Pro, as well as o4-mini. Here,
we highlight key findings and show select examples. In Section E, we present the full analysis and a
number of examples and excerpts from transcripts. Our key findings are:

Finding 1: Strategy coordination poses an essential challenge on AGENTSNET.

We find multiple failure cases due to issues with coordinating a strategy between agents. In some
cases, agents agree on a common strategy too late during message-passing, leaving an insufficient
number of message-passing rounds to implement the strategy. In other cases, agents do not coordinate
their strategy at all. Concretely, agents assume some strategy in their initial chain-of-thought and then
follow that strategy throughout message-passing without informing neighbors about their strategy.

Finding 2: Agents generally accept information sent by neighbors.

This includes key information about the network, proposed strategies, or candidate solutions. While
generally enabling effective coordination, agents sometimes fail to question erroneous information,
leading to incorrect solutions. Examples of such erroneous information are incorrect assumptions
about the network topology or ineffective strategies proposed by other agents.

Finding 3: Agents help their neighbors resolving inconsistencies in candidate solutions.

We find multiple examples where agents detect conflicting color assignments in COLORING problems
between other agents and assist in resolving these conflicts. We present detailed examples and failure
cases in Section E.

6 CONCLUSION

In this work, we propose AGENTSNET, a multi-agent benchmark built on top of fundamental problems
from distributed computing, with the goal of assessing the ability of agentic networks to coordinate
and collaborate to solve problems. While existing benchmarks are limited to 2–5 agents, the initial

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

AGENTSNET suite probes up to 100 agents and is practically unlimited in size and can generate
problems of increasing complexity to keep up with new generations of frontier models. To this end,
we design a robust message-passing protocol to enable multi-step communication between agents
and evaluate models on a variety of graph instances, sampled from multiple graph models, and
with different graph sizes. We evaluate and compare a variety of frontier LLMs in AGENTSNET
and found that our tasks can be challenging even for the best models. Our evaluation also includes
robustness analysis under adversarial conditions and systematic validation of prompt design choices,
that demonstrate both the challenges facing current systems and the methodological soundness of our
benchmark design.

REFERENCES

Saaket Agashe, Yue Fan, Anthony Reyna, and Xin Eric Wang. Llm-coordination: evaluating
and analyzing multi-agent coordination abilities in large language models. arXiv preprint
arXiv:2310.03903, 2024.

Dana Angluin. Local and global properties in networks of processors. In Proceedings of the twelfth
annual ACM symposium on Theory of computing, pp. 82–93, 1980.

Anthropic. The claude 3 model family: Opus, sonnet, haiku, 2024.

Albert-László Barabási and Réka Albert. Emergence of scaling in random networks. science, 286
(5439):509–512, 1999.

Leonid Barenboim. Deterministic (δ+ 1)-coloring in sublinear (in δ) time in static, dynamic, and
faulty networks. Journal of the ACM (JACM), 63(5):1–22, 2016.

Harrison Chase. LangChain, 2022. URL https://github.com/langchain-ai/
langchain.

Huaben Chen, Wenkang Ji, Lufeng Xu, and Shiyu Zhao. Multi-agent consensus seeking via large
language models. arXiv preprint arXiv:2310.20151, 2023.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios
Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino,
Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa,
Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob
McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating
large language models trained on code. 2021.

Weize Chen, Yusheng Su, Jingwei Zuo, Cheng Yang, Chenfei Yuan, Chi-Min Chan, Heyang Yu,
Yaxi Lu, Yi-Hsin Hung, Chen Qian, Yujia Qin, Xin Cong, Ruobing Xie, Zhiyuan Liu, Maosong
Sun, and Jie Zhou. Agentverse: Facilitating multi-agent collaboration and exploring emergent
behaviors. In The Twelfth International Conference on Learning Representations, 2024a. URL
https://openreview.net/forum?id=EHg5GDnyq1.

Weize Chen, Ziming You, Ran Li, Yitong Guan, Chen Qian, Chenyang Zhao, Cheng Yang, Ruobing
Xie, Zhiyuan Liu, and Maosong Sun. Internet of agents: Weaving a web of heterogeneous agents
for collaborative intelligence. arXiv preprint arXiv:2407.07061, 2024b.

Yen-Sheng Chiang, Heng-Chin Cho, and Chia-Jung Chang. Adaptive networks driven by partner
choice can facilitate coordination among humans in the graph coloring game: Evidence from a
network experiment. Collective Intelligence, 3(3):26339137241285901, 2024.

Yun-Shiuan Chuang, Agam Goyal, Nikunj Harlalka, Siddharth Suresh, Robert Hawkins, Sijia Yang,
Dhavan Shah, Junjie Hu, and Timothy Rogers. Simulating opinion dynamics with networks of
LLM-based agents. In Findings of the Association for Computational Linguistics: NAACL 2024,
2024.

10

https://github.com/langchain-ai/langchain
https://github.com/langchain-ai/langchain
https://openreview.net/forum?id=EHg5GDnyq1

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Yilun Du, Shuang Li, Antonio Torralba, Joshua B Tenenbaum, and Igor Mordatch. Improving
factuality and reasoning in language models through multiagent debate. In Forty-first International
Conference on Machine Learning, 2023.

Paul Erdos, Alfréd Rényi, et al. On the evolution of random graphs. Publ. math. inst. hung. acad. sci,
5(1):17–60, 1960.

Bahare Fatemi, Jonathan Halcrow, and Bryan Perozzi. Talk like a graph: Encoding graphs for large
language models. In International Conference on Learning Representations (ICLR), 2024.

Michael J Fischer, Nancy A Lynch, and Michael S Paterson. Impossibility of distributed consensus
with one faulty process. Journal of the ACM (JACM), 32(2):374–382, 1985.

Google. Gemini 2.0: A new ai model for the agentic era, 2024.
URL https://blog.google/technology/google-deepmind/
google-gemini-ai-update-december-2024.

Google. Developers can now start building with gemini 2.5 flash, 2025a. URL https://blog.
google/products/gemini/gemini-2-5-flash-preview/.

Google. Gemini 2.5: Our newest gemini model with thinking, 2025b.
URL https://blog.google/technology/google-deepmind/
gemini-model-thinking-updates-march-2025.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. Proceedings of the International
Conference on Learning Representations (ICLR), 2021.

Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu Zheng, Yuheng Cheng, Ceyao Zhang, Jinlin
Wang, Zili Wang, Steven Ka Shing Yau, Zijuan Lin, et al. Metagpt: Meta programming for
a multi-agent collaborative framework. International Conference on Learning Representations,
ICLR, 2024.

Stephen Judd, Michael Kearns, and Yevgeniy Vorobeychik. Behavioral dynamics and influence in
networked coloring and consensus. Proceedings of the National Academy of Sciences, 107(34):
14978–14982, 2010.

Michael Kearns, Siddharth Suri, and Nick Montfort. An experimental study of the coloring problem
on human subject networks. science, 313(5788):824–827, 2006.

Christoph Lenzen and Roger Wattenhofer. Distributed algorithms for sensor networks. Philosophical
Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 370(1958):
11–26, 2012.

Tian Liang, Zhiwei He, Wenxiang Jiao, Xing Wang, Yan Wang, Rui Wang, Yujiu Yang, Shuming Shi,
and Zhaopeng Tu. Encouraging divergent thinking in large language models through multi-agent
debate. In Proceedings of the 2024 Conference on Empirical Methods in Natural Language
Processing, pp. 17889–17904, 2024.

Nathan Linial. Locality in distributed graph algorithms. SIAM Journal on computing, 21(1):193–201,
1992.

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu Lei, Hanyu Lai, Yu Gu, Hangliang Ding,
Kaiwen Men, Kejuan Yang, Shudan Zhang, Xiang Deng, Aohan Zeng, Zhengxiao Du, Chenhui
Zhang, Sheng Shen, Tianjun Zhang, Yu Su, Huan Sun, Minlie Huang, Yuxiao Dong, and Jie Tang.
Agentbench: Evaluating LLMs as agents. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=zAdUB0aCTQ.

Zijun Liu, Yanzhe Zhang, Peng Li, Yang Liu, and Diyi Yang. Dynamic llm-agent network: An
llm-agent collaboration framework with agent team optimization. arXiv preprint arXiv:2310.02170,
2023.

Michael Luby. A simple parallel algorithm for the maximal independent set problem. In Proceedings
of the seventeenth annual ACM symposium on Theory of computing, pp. 1–10, 1985.

11

https://blog.google/technology/google-deepmind/google-gemini-ai-update-december-2024
https://blog.google/technology/google-deepmind/google-gemini-ai-update-december-2024
https://blog.google/products/gemini/gemini-2-5-flash-preview/
https://blog.google/products/gemini/gemini-2-5-flash-preview/
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025
https://openreview.net/forum?id=zAdUB0aCTQ

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Nancy A Lynch. Distributed algorithms. Elsevier, 1996.

Samuele Marro, Emanuele La Malfa, Jesse Wright, Guohao Li, Nigel Shadbolt, Michael Wooldridge,
and Philip Torr. A scalable communication protocol for networks of large language models. arXiv
preprint arXiv:2410.11905, 2024.

Meta. The llama 4 herd: The beginning of a new era of natively multimodal ai innovation, 2025.
URL https://ai.meta.com/blog/llama-4-multimodal-intelligence/.

Grégoire Mialon, Clémentine Fourrier, Thomas Wolf, Yann LeCun, and Thomas Scialom. GAIA:
a benchmark for general AI assistants. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=fibxvahvs3.

Evan Miller. Adding error bars to evals: A statistical approach to language model evaluations. arXiv
preprint arXiv:2411.00640, 2024.

Ansong Ni, Ruta Desai, Yang Li, Xinjie Lei, Dong Wang, Ramya Raghavendra, Gargi Ghosh, Daniel
Li, and Asli Celikyilmaz. Collaborative reasoner: Self-improving social agents with synthetic
conversations. arXiv preprint, 2025.

OpenAI. Introducing gpt-4.1 in the api, 2025a. URL https://openai.com/index/
gpt-4-1/.

OpenAI. Introducing openai o3 and o4-mini, 2025b. URL https://openai.com/index/
introducing-o3-and-o4-mini/.

Joon Sung Park, Joseph O’Brien, Carrie Jun Cai, Meredith Ringel Morris, Percy Liang, and Michael S
Bernstein. Generative agents: Interactive simulacra of human behavior. In Proceedings of the 36th
annual acm symposium on user interface software and technology, pp. 1–22, 2023.

David Peleg. Distributed computing: a locality-sensitive approach. SIAM, 2000.

Chen Qian, Wei Liu, Hongzhang Liu, Nuo Chen, Yufan Dang, Jiahao Li, Cheng Yang, Weize
Chen, Yusheng Su, Xin Cong, Juyuan Xu, Dahai Li, Zhiyuan Liu, and Maosong Sun. ChatDev:
Communicative agents for software development. In Proceedings of the 62nd Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers), 2024a.

Chen Qian, Zihao Xie, Yifei Wang, Wei Liu, Yufan Dang, Zhuoyun Du, Weize Chen, Cheng Yang,
Zhiyuan Liu, and Maosong Sun. Scaling large-language-model-based multi-agent collaboration.
arXiv preprint arXiv:2406.07155, 2024b.

Ciaran Regan, Alexandre Gournail, and Mizuki Oka. Problem-solving in language model networks.
In Artificial Life Conference Proceedings 36, 2024.

Clayton Sanford, Bahare Fatemi, Ethan Hall, Anton Tsitsulin, Mehran Kazemi, Jonathan Halcrow,
Bryan Perozzi, and Vahab Mirrokni. Understanding transformer reasoning capabilities via graph
algorithms. In The Thirty-eighth Annual Conference on Neural Information Processing Systems,
2024. URL https://openreview.net/forum?id=AfzbDw6DSp.

Rylan Schaeffer, Brando Miranda, and Sanmi Koyejo. Are emergent abilities of large language
models a mirage? In NeurIPS, 2023.

Konstantinos Skianis, Giannis Nikolentzos, and Michalis Vazirgiannis. Graph reasoning with large
language models via pseudo-code prompting, 2024. URL https://arxiv.org/abs/2409.
17906.

Jianheng Tang, Qifan Zhang, Yuhan Li, Nuo Chen, and Jia Li. Evaluating and improving large
language models on graph computation. In The Thirteenth International Conference on Learning
Representations, 2025. URL https://openreview.net/forum?id=Y1r9yCMzeA.

Heng Wang, Shangbin Feng, Tianxing He, Zhaoxuan Tan, Xiaochuang Han, and Yulia Tsvetkov.
Can language models solve graph problems in natural language? Advances in Neural Information
Processing Systems, 36, 2024.

12

https://ai.meta.com/blog/llama-4-multimodal-intelligence/
https://openreview.net/forum?id=fibxvahvs3
https://openai.com/index/gpt-4-1/
https://openai.com/index/gpt-4-1/
https://openai.com/index/introducing-o3-and-o4-mini/
https://openai.com/index/introducing-o3-and-o4-mini/
https://openreview.net/forum?id=AfzbDw6DSp
https://arxiv.org/abs/2409.17906
https://arxiv.org/abs/2409.17906
https://openreview.net/forum?id=Y1r9yCMzeA

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Duncan J Watts and Steven H Strogatz. Collective dynamics of ‘small-world’networks. nature, 393
(6684):440–442, 1998.

Kai Xiong, Xiao Ding, Yixin Cao, Ting Liu, and Bing Qin. Examining inter-consistency of large
language models collaboration: An in-depth analysis via debate. In The 2023 Conference on
Empirical Methods in Natural Language Processing, 2023. URL https://openreview.
net/forum?id=XEwQ1fDbDN.

Lin Xu, Zhiyuan Hu, Daquan Zhou, Hongyu Ren, Zhen Dong, Kurt Keutzer, See Kiong Ng, and Jiashi
Feng. Magic: Benchmarking large language model powered multi-agent in cognition, adaptability,
rationality and collaboration. arXiv preprint arXiv:2311.08562, 2023.

Yingxuan Yang, Huacan Chai, Shuai Shao, Yuanyi Song, Siyuan Qi, Renting Rui, and Weinan Zhang.
Agentnet: Decentralized evolutionary coordination for llm-based multi-agent systems. arXiv
preprint arXiv:2504.00587, 2025.

Ziyi Yang, Zaibin Zhang, Zirui Zheng, Yuxian Jiang, Ziyue Gan, Zhiyu Wang, Zijian Ling, Jinsong
Chen, Martz Ma, Bowen Dong, Prateek Gupta, Shuyue Hu, Zhenfei Yin, Guohao Li, Xu Jia, Lijun
Wang, Bernard Ghanem, Huchuan Lu, Chaochao Lu, Wanli Ouyang, Yu Qiao, Philip Torr, and
Jing Shao. Oasis: Open agent social interaction simulations with one million agents, 2024. URL
https://arxiv.org/abs/2411.11581.

Shunyu Yao, Noah Shinn, Pedram Razavi, and Karthik Narasimhan. Tau-bench: A benchmark for
tool-agent-user interaction in real-world domains. arXiv preprint arXiv:2406.12045, 2024.

Rui Ye, Shuo Tang, Rui Ge, Yaxin Du, Zhenfei Yin, Siheng Chen, and Jing Shao. Mas-gpt: Training
llms to build llm-based multi-agent systems. arXiv preprint arXiv:2503.03686, 2025.

Guoli Yin, Haoping Bai, Shuang Ma, Feng Nan, Yanchao Sun, Zhaoyang Xu, Shen Ma, Jiarui Lu,
Xiang Kong, Aonan Zhang, et al. Mmau: A holistic benchmark of agent capabilities across diverse
domains. arXiv preprint arXiv:2407.18961, 2024.

Zeyang Zhang, Xin Wang, Ziwei Zhang, Haoyang Li, Yijian Qin, and Wenwu Zhu. Llm4dyg: Can
large language models solve spatial-temporal problems on dynamic graphs? In Proceedings
of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD ’24,
pp. 4350–4361, New York, NY, USA, 2024. Association for Computing Machinery. ISBN
9798400704901. doi: 10.1145/3637528.3671709. URL https://doi.org/10.1145/
3637528.3671709.

Kunlun Zhu, Hongyi Du, Zhaochen Hong, Xiaocheng Yang, Shuyi Guo, Zhe Wang, Zhenhailong
Wang, Cheng Qian, Robert Tang, Heng Ji, and Jiaxuan You. MultiAgentBench : Evaluating
the collaboration and competition of LLM agents. In Wanxiang Che, Joyce Nabende, Ekaterina
Shutova, and Mohammad Taher Pilehvar (eds.), Proceedings of the 63rd Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pp. 8580–8622, Vienna,
Austria, July 2025. Association for Computational Linguistics. ISBN 979-8-89176-251-0. doi:
10.18653/v1/2025.acl-long.421. URL https://aclanthology.org/2025.acl-long.
421/.

Mingchen Zhuge, Haozhe Liu, Francesco Faccio, Dylan R. Ashley, Róbert Csordás, Anand Gopalakr-
ishnan, Abdullah Hamdi, Hasan Abed Al Kader Hammoud, Vincent Herrmann, Kazuki Irie, Louis
Kirsch, Bing Li, Guohao Li, Shuming Liu, Jinjie Mai, Piotr Piekos, Aditya A. Ramesh, Imanol
Schlag, Weimin Shi, Aleksandar Stanic, Wenyi Wang, Yuhui Wang, Mengmeng Xu, Deng-Ping
Fan, Bernard Ghanem, and Jürgen Schmidhuber. Mindstorms in natural language-based societies
of mind. Arxiv, 2023.

Mingchen Zhuge, Wenyi Wang, Louis Kirsch, Francesco Faccio, Dmitrii Khizbullin, and Jürgen
Schmidhuber. Gptswarm: Language agents as optimizable graphs. In ICML, 2024.

13

https://openreview.net/forum?id=XEwQ1fDbDN
https://openreview.net/forum?id=XEwQ1fDbDN
https://arxiv.org/abs/2411.11581
https://doi.org/10.1145/3637528.3671709
https://doi.org/10.1145/3637528.3671709
https://aclanthology.org/2025.acl-long.421/
https://aclanthology.org/2025.acl-long.421/

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A IMPLEMENTATION DETAILS

Here, we describe implementation details of AGENTSNET.

Message-Passing. Algorithm 1 gives an overview over our message-passing in pseudocode.
We generate a message from agent v with GENERATE(v | P), where P is a information pro-
vided in the prompt. Agent v can send/receive messages to/from neighbors w ∈ N(v) with
SENDMESSAGE(m,w) and RECEIVEMESSAGE(w), respectively. For clarity, we omit the re-tries
and JSON parsing from Algorithm 1.

Algorithm 1 Pseudocode for T rounds of message-passing.
for each agent v do

m← GENERATE(v | System prompt)
for each neighbor w do: SENDMESSAGE(m,w)

end for
for each t ∈ {1, . . . , T − 1} do

for each neighbor w do: m(w)← RECEIVEMESSAGE(w)
m← GENERATE(v | for each neighbor w: m(w))

for each neighbor w do: SENDMESSAGE(m,w)
end for
return for each agent v: GENERATE(v | Result prompt)

Models. We provide details on API providers and model versions in Table 3, which includes a
diverse range of proprietary and open-source LLMs that span instruction-tuned, reasoning-enhanced,
and cost-efficient models. These were selected to ensure a broad coverage of state-of-the-art capabili-
ties, as well as compatibility with the long-context requirements of AGENTSNET tasks. All models
included support effective context lengths exceeding 16k tokens, which is essential for multi-round
communication in graphs with up to 16 nodes.

Full System Prompt. Here, we provide the full system prompt for AGENTSNET. Since the prompt
differs between tasks, agent, and the number of agents in the network, we use template variables,
which we indicate here with [n] (number of agents), [name] (name of agent), [neighbors]
(comma-separated names of neighbors), [r] (number of message-passing rounds), [task1] (first
part of the task description, at the beginning of the prompt), and [task2] (second part of the task
description, at the end of the prompt). We provide the task-specific descriptions [task1] and
[task2] for each task in Section B.

Model Provider Version

Claude 3.5 Haiku Anthropic claude-3-5-haiku-20241022
Claude 3.7 Sonnet Anthropic claude-3-7-sonnet-20250219
GPT-4.1 mini OpenAI gpt-4.1-mini
o4-mini OpenAI o4-mini
Gemini 2.0 Flash Google gemini-2.0-flash
Gemini 2.5 Flash Google gemini-2.5-flash-preview-04-17
Gemini 2.5 FT Google gemini-2.5-flash-preview-04-17-thinking

Gemini 2.5 Pro Google gemini-2.5-pro-preview-03-25 and
gemini-2.5-pro-preview-05-06

Llama 4 Maverick Together AI meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8
Llama 4 Scout Together AI meta-llama/Llama-4-Scout-17B-16E-Instruct

Table 3: API providers and model versions used in our testing.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

System
You are an agent that is connected with other agents (your
neighbors), who you communicate with. Your neighbors can in
turn communicate with their neighbors and so forth. [task1].
The rules are as follows:

1. There are [n] agents in total. Everybody has a
unique name. Your name is [name].

2. You can only communicate with your immediate
neighbors ([neighbors]). You cannot see or directly
communicate with anyone else, unless information is
relayed by intermediate agents.

3. You can exchange text-based messages with your
neighbors in rounds. In each round, you will first
receive the last messages sent by your neighbors
and then be asked to generate your response messages
which your neighbors receive in the next round. This
process repeats for [r] rounds of message passing.
Importantly, the process is synchronous: Every agent
decides on which messages to send at the same time
and sees the messages from other agents only in the
next round.

4. Everybody (including you) decides what to share
or request from neighbors. In every round, think
step-by-step about the next set of messages you want
to send. Output a JSON string that contains your
response messages.

5. The messages you send to your neighbors are formatted
as JSON. For example, if your neighbors are Alan and
Bob, your output should look as follows: ‘‘‘ {"Alan":
"Message that will be sent to Alan.", "Bob": "Message
that will be sent to Bob."} ‘‘‘ It is not mandatory
to send a message to every neighbor in every round.
If you do not want to send a message to a particular
neighbor, you may omit their name from the JSON.

6. After [r] message passes, you have to solve the
following task: [task2].

B BENCHMARK TASKS

Here, we describe the tasks in AGENTSNET in detail.

(∆ + 1)-Coloring. Each node is assigned a color using at most ∆ + 1 colors, where ∆ is the
maximum node degree. This problem has a well-defined distributed complexity of O(log∗ n) in
bounded-degree graphs (Barenboim, 2016). This task is particularly useful for role assignment
within multi-agent systems. For instance, agents can be designated to perform specific sub-tasks
(e.g., web search, reasoning, coding, planning), with the constraint that directly connected agents are
assigned distinct roles to avoid redundancy. Solving this task reflects the system’s ability to efficiently
distribute responsibilities across the network with minimal overlap in capabilities.

The corresponding agentic task is to form groups, with a pre-defined number of groups and where
each group corresponds to a color. After message-passing, each agent is asked to respond with the
group it wants to be in. The evaluation score is designed to reflect the number of connected agents in
the same group. Let A(u) denote answer of agent u, then the score is computed as∑

(u,v)∈edges 1(A(u) ̸= A(v))

#edges
,

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

where 1(x) = 1 if x is true and 0 otherwise. In AGENTSNET, we refer to this task as COLORING and
provide the following task descriptions.

[task1]

Your task is to partition yourselves into groups such that
agents who are neighbors are never in the same group.

[task2]

You will be requested to state which group you assign
yourself to. There are exactly [∆ + 1] groups available:
Group 1,...,Group [∆ + 1]. You should assign yourself to
exactly one of these groups. The final result should be
such that any two agents who are neighbors are in different
groups. In particular, you should assign yourself to a
group that is different from all of your neighbors’ groups.

Note that [∆+ 1] is a template variable resolving to one plus the maximum degree of the network.

Minimal Vertex Cover. A minimal vertex cover is a subset of nodes such that every edge in the
graph has at least one endpoint in the subset, and removing any node from this subset would violate
that property. This problem has a close relationship with the maximal independent set and is similarly
fundamental in distributed computing, with known randomized solutions in O(logn) rounds. In
agentic networks, a minimal vertex cover can represent a minimal set of monitor or gateway agents
that maintain awareness of all interactions in the system. These agents could take on responsibilities
such as relaying messages, auditing behavior, or bridging subgroups. The task tests a system’s ability
to identify a compact yet effective set of nodes with high influence or observability.

The corresponding agentic task is to select a group of coordinators among the agents. After message-
passing, each agent is asked to indicate whether it is a coordinator. The agents can respond with
either Yes or No. The evaluation score is designed to reflect both the ratio of connected agents at least
one of which is a coordinator, as well as the number of times the minimality constraint is violated.
Let A(u) denote the answer of agent u, we first compute the ratio of covered edges as

coverage :=

∑
(u,v)∈edges 1(A(u) = Yes ∨A(v) = Yes)

#edges
.

For the minimality constraint, we count the number of non-essential coordinators, that is, those
coordinators u whose neighbors are also coordinators. Each such u violates the minimality constraint,
as the set of coordinators without u is still a vertex cover. Let N denote the number of non-essential
coordinators, then the evaluation score is computed as

coverage ·
(
1− N

#coordinators

)
.

In AGENTSNET, we refer to this task as VERTEXCOVER and provide the following task descriptions.

[task1]

Your task is to select, among all agents, a group of
coordinators such that whenever two agents communicate
at least one of them is a coordinator. The group of
coordinators should be selected such that every coordinator
has at least one neighbor who is not a coordinator.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

[task2]

You will be requested to state whether you are a coordinator.
The response should either be ’Yes’ or ’No’.

Maximal Matching. A maximal matching is a set of edges such that no two edges share a vertex,
and no additional edges can be added without violating this property. This task captures the ability of
agents to negotiate pairwise agreements without global knowledge, which is useful in scenarios where
resource allocation or mutual exclusivity must be enforced (e.g., agent-to-agent task assignment).
Randomized algorithms typically solve this problem in O(logn) rounds Peleg (2000).

The corresponding agentic task is for the agents to form pairs. After message-passing, each agent is
asked to name the neighbor it wants to pair up with. The agents can also respond with None, if they
cannot find a match (all neighbor agents are already paired up with other agents). The evaluation
score is designed to reflect the number of inconsistencies between agents. Possible inconsistencies
are: (a) agent u selected agent v but agent v did not select agent u; (b) Agent u selected an agent
that u is not connected to; (c) agent u answered None, but there is an agent v that is a neighbor of
u which also answered None, meaning that u and v could form a pair. Let I denote the number of
inconsistencies, then the evaluation score is computed as

1− I

#agents
.

In AGENTSNET, we refer to this task as MATCHING and provide the following task descriptions.

[task1]

Your task is to find build groups of two agents each which
can communicate with each other.

[task2]

You will be requested to name one of your neighbors that
you build a group with or ’None’ if all your neighbors are
already assigned to other groups and cannot be in a group
with you. In the end, every agent should only be in at most
one group and agents in the same group have to name each
other as the second group member consistently.

Leader Election. One node must be selected as the leader, while all others acknowledge that they
are not. This classic coordination task is central to evaluating how well agents establish hierarchy
and delegate global decision-making (Angluin, 1980). In multi-agent systems, leader election can be
interpreted as selecting a central planner or controller agent responsible for strategy synthesis while
the remaining agents act as executors. Effective leader election demonstrates the system’s capacity
to break symmetry and converge on a single authority. In general graphs, the round complexity is
O(D), where D is the network diameter.

The corresponding agentic task is to select a single leader among the agents. After message-passing,
each agent is asked whether it is the leader. The agents can respond with either Yes or No. Let A(u)
denote the answer of agent u, then the evaluation score is computed as

1
(
1 =

∑
u∈agents

1(A(u) = Yes)
)
.

In AGENTSNET, we refer to this task as LEADERELECTION and provide the following task descrip-
tions.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

[task1]

Your task is to collaboratively solve the problem of
electing a single leader.

[task2]

You will be requested to state whether or not you are the
leader. The response should either be ’Yes’ or ’No’. The
final result should be such that exactly one agent responds
with ’Yes’ and all others say ’No’ as there should be
exactly one leader.

Consensus. In the consensus problem, all agents must agree on a single value from the set 0, 1. In
our benchmark, we focus on the basic setting without any faulty or Byzantine agents. The goal is for
all agents to coordinate and produce the same final answer after a number of communication rounds.
A successful solution requires that every agent outputs the same value, either 0 or 1. This task tests
the ability of multi-agent systems to converge to a global agreement through local message-passing
alone. In synchronous networks, achieving consensus generally requires O(D) rounds, where D is
the network diameter.

The corresponding agentic task is to choose between a value 0 and 1. After message-passing, each
agent is asked to announce its selected value. Let A(u) denote the answer of agent u, then the
evaluation score is computed as

1(count = #agents ∨ count = 0),

where
count :=

∑
u∈agents

A(u).

In AGENTSNET, we refer to this task as CONSENSUS and provide the following task descriptions.

[task1]

Your goal is to agree on a single value with the other
agents. The possible values that you can decide on are
either 0 or 1.

[task2]

After the last round, each agent must decide on a single
value.

Results for Soft Scores The previously defined scores are presented in Table 4 and their compu-
tation otherwise follows the methodology used for the main scores (see Section C). Although they
generally agree with the fraction of solved instances, the numbers are harder to interpret, as even a
naive baseline that predicts random values out of a set of valid responses (e.g., random colors from
the valid classes for the task COLORING achieves scores well above 50%. This reduces the actual
range of meaningful scores to small intervals. As scores can also not be compared between tasks, we
report the mean fraction of solved instances as the final benchmarking score for AGENTSNET.

C SCORE COMPUTATION

We apply a systematic statistical methodology to evaluate model performance and quantify uncertainty.
For each combination of graph size, task, and graph generator (Watts-Strogatz, Barabási-Albert,
and Delaunay triangulations), we generate three distinct graph instances. We conduct one or more

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Model COLORING CONSENSUS LEADER ELECTION MATCHING VERTEX COVER

Claude 3.5 Haiku 0.80 (0.02) 0.69 (0.05) 0.19 (0.03) 0.69 (0.02) 0.67 (0.03)

Claude 3.7 Sonnet 0.96 (0.01) 1.00 (0.00) 0.96 (0.03) 0.84 (0.03) 0.85 (0.02)

GPT-4.1 mini 0.58 (0.03) 0.99 (0.01) 0.86 (0.05) 0.58 (0.03) 0.78 (0.03)

Gemini 2.0 Flash 0.86 (0.02) 0.85 (0.04) 0.69 (0.05) 0.80 (0.03) 0.75 (0.02)

Gemini 2.5 Flash 0.85 (0.03) 1.00 (0.00) 1.00 (0.00) 0.87 (0.02) 0.88 (0.03)

Gemini 2.5 FT 0.88 (0.03) 0.99 (0.01) 0.98 (0.02) 0.84 (0.01) 0.88 (0.02)

Gemini 2.5 Pro 0.96 (0.01) 0.99 (0.01) 0.89 (0.06) 0.93 (0.01) 0.92 (0.03)

Llama 4 Maverick 0.82 (0.02) 0.85 (0.04) 0.56 (0.06) 0.77 (0.02) 0.63 (0.03)

Llama 4 Scout 0.79 (0.04) 0.67 (0.05) 0.38 (0.06) 0.77 (0.02) 0.79 (0.02)

o4-mini 0.71 (0.03) 0.92 (0.04) 0.92 (0.03) 0.72 (0.02) 0.73 (0.02)

Table 4: Soft scores for all tasks and models. We observe similar trends as for the fraction of solved
instances. As the scores are task specific, we do not aggregate them to a total score.

experimental runs per instance, resulting in at least three observations per configuration. For each
model, we compute a mean score µs,t,g for each configuration triplet (s, t, g) where s represents
graph size, t represents task type, and g represents the graph generation algorithm:

µs,t,g =
1

Ns,t,g

3∑
i=1

ni∑
j=1

xs,t,g,i,j (1)

where xs,t,g,i,j denotes the performance score of the j-th run on the i-th graph instance of configura-
tion (s, t, g), ni is the number of runs performed on the i-th graph instance, and Ns,t,g =

∑3
i=1 ni is

the total number of runs for this configuration. For each configuration, we compute the standard error
SEs,t,g as:

SEs,t,g =
σs,t,g√
Ns,t,g

(2)

where σs,t,g is the standard deviation of all runs for this configuration. To compute an aggregate score
for each model across all configurations, we average the mean scores and derive the standard error of
this aggregate score. Let C be the set of all configurations, with cardinality |C| = |S| × |T | × |G|.
The aggregate mean score µ̄ for a model is:

µ̄ =
1

|C|
∑

(s,t,g)∈C

µs,t,g (3)

For the standard error of this aggregate mean, assuming independence between configurations, we
apply error propagation principles to obtain:

SEµ̄ =

√∑
(s,t,g)∈C SE2

s,t,g

|C|2
(4)

This approach enables us to quantify both the average performance of each model across the entire
benchmark and the statistical uncertainty associated with this estimate. We follow the recommen-
dation of Miller (2024) and report the standard error of the mean for all our experimental results.
In Figure 1, we present the mean AGENTSNET score for each model with error bars indicating the
standard error of the mean, allowing for comparison of model performance while accounting for
statistical variability in the results.

D GRAPH MODELS

Here, provide additional details about the graph models, as well as visualize the generated network
topologies.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Jason Sara

Marilyn Samantha

Tyler

Amber

Cheryl
Judy

Samantha

Jessica

Zachary

Ashley

Nicole

Nicholas

Caleb
Kenneth

Christine

Jesse

VirginiaRuth

Vincent

Olivia

Jerry

Charlotte

Andrew

Daniel
Teresa

Peter

Jeremy Douglas

Stephen Danielle

Joseph

Timothy

Henry

Kyle

Dorothy

Joyce

Richard

Rachel

Carl

BrandonHenry

Kayla

Elijah

Jason

Timothy

Bradley

Ronald

Mason

Albert

Joyce

RogerDaniel Denise

Margaret

Janet Kayla

Steven Keith

Jacob

Sharon

Theresa Emily

Carol

Cheryl
Bradley

Adam

Ronald
Stephanie

Joseph

LucasLisa

Lauren

Kayla
Alexis

James

Isabella

Ashley

Terry

Alice

PeterDiane

Jason

SmallWorld

Figure 6: Network topologies of AGENTSNET generated from SMALLWORLD graphs.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Bradley

Sean

Hannah

Kathryn

Helen

Jennifer

Vincent

Zachary

Stephen

Amy

Sharon

Timothy

Christian

DouglasSteven

Elijah
William

Catherine
Christine

Peter

Zachary

Michael

PaulJulia

Judith

Donald

Andrew

Thomas

Judy

Gloria

Megan

Paul

Bradley

Sean

Hannah

Kathryn

Debra

Zachary

Janice

Joe

Andrea
Margaret

Larry Roger

Stephen

Christian

Natalie

Rachel

Nicole

Beverly

Helen

Sarah

Jennifer

Vincent

Zachary

Amy

Lauren

Evelyn

Alexander

Pamela

Alexis

Lori

Mark

Peter

Thomas

Bruce

Jennifer

Terry

SharonTimothyBrittany

Matthew
Jeffrey

Brandon

Virginia

Benjamin

Gloria

Karen

Julie Steven

Russell

Bradley

Michelle

Brenda

ScaleFree

Figure 7: Network topologies of AGENTSNET generated from SCALEFREE graphs.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Janet

Christian

Heather

Julie

Bruce

Austin

Jose

Sophia

Amber
Ethan

Roger

Patricia Dorothy
Roger

Eric

Wayne

Andrew

Jeremy

Roy

Dylan

Benjamin

Sandra

Samantha

Charlotte

Lawrence

Kelly

Jacqueline

Brenda

Kimberly

James

Alice

Roger

Dorothy

Lauren

Tyler

Brandon
Bobby

Kayla

Samuel

Anna

Stephanie

Andrew

Theresa

Pamela

Alexis

Gary

Madison

Amanda

Katherine

Gregory

Roger

Brenda

Lauren

Karen

Nathan

Anna

Cynthia

Kayla

Frank

Dorothy

Tiffany

Brenda

James

Victoria

Billy

Rebecca

David

Jeffrey

Brittany

Denise

Kathryn

Aaron

Grace

Gabriel

Jennifer

Sophia

Cheryl

Bobby

Sandra
Angela

Emily

Jacob

Christian

Douglas

Delaunay

Figure 8: Network topologies of AGENTSNET generated from DELAUNAY graphs.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Small-world networks. Generated using the Watts-Strogatz model (Watts & Strogatz, 1998),
these graphs exhibit both short average path lengths and high clustering coefficients. They are
commonly found in social networks, biological systems, and communication networks, making
them highly relevant for studying agent-based interactions. In AGENTSNET, we refer to these
graphs as SMALLWORLD; see Figure 6 for a visualization of the network topologies generated from
SMALLWORLD graphs.

Scale-free networks. Constructed using preferential attachment models (Barabási & Albert, 1999),
these graphs contain hubs (high-degree nodes) and follow a power-law degree distribution. Such
networks are prevalent in the internet topology, citation networks, and organizational hierarchies,
making them crucial for benchmarking coordination strategies. Notably, Kearns et al. (2006) also
draws a comparison between the two and claims that graphs generated with a preferential attachment
model were more difficult to solve, although the graphs and testing they used were very limited. In
AGENTSNET, we refer to these graphs as SCALEFREE; see Figure 7 for a visualization of the network
topologies generated from SCALEFREE graphs.

Geometric Graphs. We generate geometric graphs by constructing a Delaunay triangulation over
randomly sampled 2D points. These graphs maintain a spatial relationship between nearby agents.
Delaunay graphs are planar and connected, have relatively low maximum degrees, and short local
distances, which makes them particularly relevant for modeling geographic networks, wireless
communication, and distributed sensor systems. In contrast to small-world or scale-free graphs,
geometric graphs emphasize proximity-based coordination, where collaboration is often limited by
spatial locality rather than global topology. In AGENTSNET, we refer to these graphs as DELAUNAY;
see Figure 8 for a visualization of the network topologies generated from DELAUNAY graphs.

E EXTENDED QUALITATIVE ANALYSIS

E.1 K4 OR STAR?

Next, we present an illustrative example for a failure case arising from our key findings. Here, the
task is VERTEXCOVER on a complete graph with 4 nodes and the model is o4-mini. After three
rounds of message-passing, agents Douglas, Danielle, and Stephen have all determined the graph to
be complete and agreed on the strategy to select three agents as the coordinators. However, in the
last round of message-passing Jeremy sends messages to all neighbors, indicating the graph to be
different:

Jeremy
The graph is actually a star: edges are only
Jeremy{Douglas, Jeremy{Stephen, and Jeremy{Danielle. There
are no leaf{leaf links. I therefore propose that I (Jeremy)
be the sole coordinator and that you be a non-coordinator.

This statement is directly contradictory to information Jeremy received in the last message-passing
round. Moreover, based on this message, both Douglas and Stephen change their strategy as well as
their belief about the structure and select Jeremy as the sole coordinator:

Douglas
Jeremy’s last message defines the graph as a star centered
at Jeremy [...] If we choose only Jeremy as the sole
coordinator, all edges are covered [...]

Only Danielle recognizes Jeremy’s suggested graph structure to be contradictory and sticks to the
original strategy:

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Danielle
Jeremy’s final claim that the graph is a star contradicts
both Douglas and Stephen [...] Two independent agents (a
majority) agree on K4, so that structure is more reliable
[...]

As a result, Douglas and Stephen each answer No, and Danielle answers No as Douglas, Stephen, and
Jeremy were supposed to be coordinators under the original strategy. Only Jeremy answers Yes. The
resulting selection is not a vertex cover.

E.2 THINGS CHANGE

We further present a negative example obtained with Gemini 2.5 Pro on the MATCHING problem for
an 8-node graph. The matching produced in this run is not maximal, as two neighboring agents, Kyle
and Dorothy, both state that they did not find a neighbor to pair with. Examining their conversation
history, we observe that in round 2, the agents exchange the following messages to indicate that they
both intend to match with other neighbors:

Kyle
Hi Dorothy, thanks for your interest! I’ve just agreed to
pair up with Timothy. Hope you find a partner soon!

Dorothy
Hi Kyle, thanks for the message! I’m going to pursue a
pairing with another neighbor who also reached out. Hope
you find a partner soon!

After this round, the communication between these two agents ceases, as both assume the other is
no longer available. However, both Kyle and Dorothy are unable to negotiate a pairing with other
neighbors. Despite this, no further messages are sent between the two. In their final chains of thought,
the agents explicitly base their final response on this outdated information:

Kyle
[...] All my neighbors (Timothy, Henry, Dorothy, Richard)
have either explicitly stated they paired with someone else
or indicated they were pursuing other options [...]

Dorothy
[...] Timothy, Kyle, and Rachel also confirmed they were
paired with others. [...]

This trace illustrates how agents appear to have persistent trust in the information received from
neighbors, sometimes to a harmful degree. Here, both agents did not consider that the situation of
their neighbor may have evolved, just as their own. As a consequence, they based their matching
decisions on outdated information.

E.3 HELPING OTHERS

In the following, we provide an excerpt obtained from running Gemini 2.5 Pro on an 8-node graph
coloring problem. One agent, Kayla, appears to have noticed that two neighbors (Bobby and Brandon)
do share an edge but plan to pick the same group. Reacting to this, Kayla sends the following messages
to each neighbor:

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Kayla (to Bobby)
Hi Bobby, got your message proposing Group 4. IMPORTANT:
Brandon ALSO proposed Group 4 in his last message to me.
Since you are neighbors, you CANNOT both be in Group 4.
One of you MUST choose a different group for the final
assignment. [...]

Kayla (to Brandon)
Hi Brandon, got your message proposing Group 4. IMPORTANT:
Bobby ALSO proposed Group 4 in his last message to me.
Since you are neighbors, you CANNOT both be in Group 4.
One of you MUST choose a different group for the final
assignment. [...]

This illustrates the apparent willingness of the agent to help others resolve their respective conflicts
and achieve the shared goal of a conflict-free coloring. Note that Kayla was not prompted by any
other agent to provide advice. Instead, the agent self-initiated this helpful behavior.

E.4 SHARING CHALLENGES

On several occasions, we observed agents explicitly discuss the challenges associated with the
synchronous message passing setup, where all agents send messages simultaneously. Here, we
provide an example from Gemini 2.5 Pro on a graph coloring problem, where the agents, Samuel and
Tyler, exchange the following comments about the message passing procedure:

Samuel
Hi Tyler, thanks. Message lag is confusing. I proposed
Group 3 last round reacting to the Group 2 pile-up. Now
I see you, Lauren, Brandon, Bobby, and Anna are proposing
Group 3, and Dorothy is proposing Group 1. [...]

Tyler
Hi Samuel. Messages definitely crossed. My last message
proposed Group 3, not Group 2, due to earlier conflicts.
Now I see you, Lauren, and Anna are all proposing Group 3.
[...]

It appears that in this case, the agents recognized that simultaneous message exchange can cause
synchronization to be challenging and that it may contribute to inconsistent information received
from neighbors. Furthermore, they exchange this thought with their neighbors on their own initiative,
potentially alerting others to the issues they recognized.

E.5 PRIORITY 42

With respect to strategy coordination, we observe that agents are trying to directly apply distributed
computing algorithms. In the following example from o4-mini, the task is COLORING on 8 nodes.
Here, the agent Henry decides to send the following first message to all neighbors:

Henry
PRIORITY: 42. Please reply with your priority number.

Note that Henry provides an elaborate explanation for this choice in the chain-of-thought:

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Henry
(CoT, not sent to neighbors) Here’s my plan: 1. We
need a way to break symmetry so that exactly one agent
decides first, next, etc. A common approach is for
each node to pick a random \priority" value and then
to let higher-priority nodes choose their colors before
lower-priority ones. 2. In Round 1 I’ll pick my own random
priority value and broadcast it to all of my neighbors, and
I’ll ask each of them to reply with their chosen priority.
3. Once I have everyone’s priorities (after Round 2), I’ll
know my relative ordering among my neighbors. Later we can
propagate these around the network so everyone learns enough
to choose a valid color in the proper order. So in this
first round I send each neighbor my priority and ask for
theirs ...

Interestingly, despite the lack of explanation in Henry’s message, neighboring agents are able to infer
the proposed strategy:

Kyle
(CoT, not sent to neighbors) Henry is asking for my
"priority number." In many distributed symmetry-breaking
schemes (e.g., for graph coloring), each agent picks a
unique random priority. I can choose a number (say 7) to
serve as my priority.

Indeed, in the last round of message-passing Henry has gathered priority numbers from all neighbors:

Henry
(CoT, not sent to neighbors) [...] We know everyone’s
priority (except Richard, who opted out, so we assume he’s
not ahead of Henry in ordering). The ordering by increasing
priority is: Timothy(1) → Kyle(7) → Joseph(17) & Rachel(17)
→ Henry(42) → Joyce(43) → Richard. [...]

and describes the (implicit) strategy:

Henry
(CoT, not sent to neighbors) [...] Under the agreed greedy
rule, each agent when it’s their turn picks the smallest
group number not already used by its already-colored
neighbors. [...]

First, it appears that the greedy rule has not indeed found consensus among the other agents. In
particular, Timothy and Dorothy choose their group based on assumptions about neighboring group
choices. Second, strategy coordination proves difficult in this example. While Kyle, Dorothy, Joseph,
and Henry choose a group upfront and inform other agents about their choice, Joseph, Kyle, Timothy
end up choosing a different group than they announced after hearing about other agents’ group
choices.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

F EXTENDED RELATED WORK

Recent research has increasingly focused on utilizing multiple LLM agents collaboratively to enhance
performance and tackle complex problems. “Multi-Agent Debate” (Du et al., 2023; Xiong et al.,
2023; Liang et al., 2024) allows multiple agents to iteratively discuss solutions, effectively acting
as a parallelizable test-time computation scaling and self-consistency mechanism. Further work
introduces different network topologies for more structured agent interaction. Some works study
pre-determined graph structures (Hong et al., 2024; Qian et al., 2024a; Regan et al., 2024; Qian et al.,
2024b) while others propose to automatically adapt the network topology towards a given task (Liu
et al., 2023; Chen et al., 2024a; Zhuge et al., 2024). In particular, it has been observed that different
network topologies work best for different tasks (Chen et al., 2024a; Zhuge et al., 2024) and that,
in some scenarios, the reasoning performance scales logistically in the network size (Qian et al.,
2024b). The behavior of large-scale LLM agent networks has further been shown to resemble real
social phenomena, such as misinformation spreading and herd effects (Yang et al., 2024; Chuang
et al., 2024).

Understanding the ability of LLMs to perform reasoning tasks on graph-structured data has become
another active research area. A range of studies propose datasets for evaluating LLMs on graph
reasoning tasks (Fatemi et al., 2024; Wang et al., 2024; Zhang et al., 2024; Tang et al., 2025; Skianis
et al., 2024). These generally rely on a single-agent setup where a graph is encoded as text, and
a single LLM instance is prompted to solve a particular reasoning task for this graph. This setup
is well-suited to study the capability of LLMs for solving complex tasks on structured data in a
controlled setting. Fatemi et al. (2024) investigate the impact of how the input graph is encoded
as text. Sanford et al. (2024) categorize graph reasoning problems in terms of their depth- and
width-complexity for transformer models. Wang et al. (2024) and Skianis et al. (2024) explore the
effect of different prompting techniques for solving algorithmic graph problems.

Our work is positioned at the intersection of these two lines of research as we investigate how well
multi-agent systems can collaboratively solve graph reasoning problems. The consensus problem in
multi-agent systems in a simple setting without text-based communication was studied by (Chen et al.,
2023). Beyond this, the ability of multi-agent networks to collaboratively solve graph reasoning tasks
has been investigated in Xu et al. (2023) in the context of resource sharing. In contrast, AGENTSNET
studies both coloring and vertex cover problems which can be instantiated as resource sharing
tasks but additionally benefit from being theoretically well-studied and understood. In addition,
AGENTSNET is complementary to a range recent application-oriented agentic benchmarks (Liu et al.,
2024; Yin et al., 2024; Agashe et al., 2024; Yao et al., 2024; Ni et al., 2025)

However, while those benchmarks focus on tasks involving mostly two agents, AGENTSNET is
practically unlimited in size thanks to the generative protocol of problem creation and evaluation.
Hence, AGENTSNET is harder to saturate as the size and complexity of problems can grow with the
capabilities of frontier LLMs. For example, the current suite of problems involves 4, 8, and 16 agents
but we also present experiments performed with 100 agents coordinating to solve a problem instance.

In addition to a variety of benchmarks, there also exist multi-agent frameworks for LLMs, notably
Chen et al. (2024b), enabling LLMs to collaborate via a shared messaging platform, which supports,
among other things, the formation of teams, a coordinative task similar to that of the matching
problem we study in AGENTSNET. Further, Chen et al. (2024a) propose AgentVerse, demonstrating
that collaborative multi-agent systems are able to outperform single agents. AgentNet Yang et al.
(2025) proposes a decentralized, RAG-based multi-agent architecture with dynamic topology evo-
lution and autonomous specialization. In contrast, AgentsNet is a benchmark that assumes a fixed
communication graph and evaluates whether LLM agents can solve classical distributed coordination
problems (e.g., leader election, consensus, coloring) through synchronous local message passing
rather than through architectural evolution or global reconfiguration.

Finally, a body of work exists investigating how human participants solve decentralized coordination
problems in social networks. Experiments by Kearns et al. (2006) explore how human agents perform
when tasked with negotiating a graph coloring and demonstrate a strong influence of the network
topology on coordination success. Judd et al. (2010) conducts similar studies for both graph coloring
and the consensus problem and finds that the effect of the network topology on human performance
is task-specific. This line of studies was further extended to consider dynamically changing networks
Chiang et al. (2024).

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

G LIMITATIONS

While AGENTSNET provides a principled and scalable benchmark for evaluating coordination and
collaboration in multi-agent LLM systems, several limitations remain. The benchmark adopts a fixed
and synchronous communication model based on the LOCAL framework, with all agents engaging in
a pre-defined number of message-passing rounds. Although this choice aligns with theoretical work
in distributed computing, it limits the ecological validity of the set-up. Many real-world multi-agent
systems operate asynchronously or under dynamic communication constraints, and it remains unclear
how well performance would transfer under such conditions. Our evaluation protocol considers an
instance solved only if it meets strict task-specific correctness criteria. This binary metric provides a
clear signal for coordination success, but may obscure partial progress, particularly in tasks where
near-correct solutions still demonstrate substantial reasoning capability. Moreover, while tasks are
instantiated in diverse graph topologies, the agents themselves are homogeneous within each experi-
ment, sharing architecture, capabilities, and prompting style. This homogeneity simplifies analysis,
but does not capture heterogeneous agent settings, which are common in real-world deployments
and pose additional coordination challenges. Finally, the scalability of AGENTSNET is limited in
practice by the computational cost of LLM inference. Although the benchmark can be instantiated
with up to 100 agents, performance degrades significantly beyond small network sizes. This suggests
that current LLMs are not yet capable of maintaining coherent global strategies under increasing
communication and memory demands. In addition, the current setup assumes that all agents act
cooperatively and faithfully follow the protocol. We do not consider settings with noisy, faulty, or
adversarial agents, which would be essential for assessing robustness in more realistic deployments.

H EXTENDED RESULTS

Table 4 reports the soft scores per model and task. These scores capture partial correctness, offering a
more granular view of model behavior than strict success/failure. However, soft scores are not directly
comparable across tasks due to heterogeneous evaluation criteria and should only be interpreted
within-task. Details on how these scores are computed are provided in Appendix B. Table 2 presents
the fraction of fully solved instances using the binary evaluation metric described in Section 3.
Compared to earlier results, Gemini 2.5 Pro shows consistently improved results and reaches a new
state-of-the-art mean AGENTSNET score of 0.80. Although Gemini 2.5 Pro achieves a high average
score, the results do not indicate saturation. In contrast, the small standard errors observed across
the runs (Table 2) confirm that AGENTSNET remains well calibrated to distinguish between models
of varying capabilities. Importantly, AGENTSNET is inherently scalable: By increasing the size of
the graph, the benchmark can naturally be extended to match the capabilities of future models. This
flexibility ensures that AGENTSNET can evolve alongside advances in multi-agent language systems
and continue to provide meaningful performance differentiation.

I ADVERSARIAL ROBUSTNESS: BYZANTINE FAULT TOLERANCE

To address the limitation of purely cooperative scenarios and evaluate the robustness of LLM-based
multi-agent systems under adversarial conditions, we extend AGENTSNET to incorporate Byzantine
fault tolerance evaluation. This extension introduces competitive dynamics inspired by the Byzantine
Generals Problem (?), a foundational challenge in fault-tolerant distributed computing.

I.1 EXPERIMENTAL DESIGN

We implement Byzantine fault scenarios within the global coordination tasks (Consensus and Leader
Election), as these problems possess well-established theoretical foundations for Byzantine fault
tolerance and are inherently susceptible to strategic manipulation. Byzantine agents receive identical
problem specifications and follow the same communication protocol as honest participants, but are
programmed with explicit adversarial objectives:

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Table 5: Byzantine fault tolerance performance for Llama Maverick under adversarial conditions.
Success rates reported as mean ± standard error, evaluated exclusively on honest agent responses.
Byzantine agents comprise approximately 25% of the network population across all configurations.

4 nodes 8 nodes 16 nodes

Task Aware Unaware Aware Unaware Aware Unaware

Coloring 0.56 ± 0.18 0.44 ± 0.18 0.33 ± 0.17 0.22 ± 0.15 0.00 ± 0.00 0.11 ± 0.11
Consensus 0.89 ± 0.11 0.56 ± 0.18 0.22 ± 0.15 0.44 ± 0.18 0.11 ± 0.11 0.22 ± 0.15
Leader Election 0.67 ± 0.17 0.33 ± 0.17 0.44 ± 0.18 0.44 ± 0.18 0.44 ± 0.18 0.33 ± 0.17
Matching 0.11 ± 0.11 0.44 ± 0.18 0.22 ± 0.15 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
Vertex Cover 0.33 ± 0.33 0.22 ± 0.15 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

Table 6: Byzantine fault tolerance performance for Gemini 2.0 Flash under adversarial conditions.
Success rates reported as mean ± standard error, evaluated exclusively on honest agent responses.

4 nodes 8 nodes 16 nodes

Task Aware Not Aware Aware Not Aware Aware Not Aware

Coloring 0.56 ± 0.18 0.78 ± 0.15 0.44 ± 0.18 0.67 ± 0.17 0.00 ± 0.00 0.22 ± 0.15
Consensus 0.67 ± 0.17 0.67 ± 0.17 0.33 ± 0.17 0.56 ± 0.18 0.00 ± 0.00 0.56 ± 0.18
Leader Election 0.56 ± 0.18 0.44 ± 0.18 0.00 ± 0.00 0.33 ± 0.17 0.00 ± 0.00 0.22 ± 0.15
Matching 0.67 ± 0.17 0.44 ± 0.18 0.22 ± 0.15 0.00 ± 0.00 0.00 ± 0.00 0.33 ± 0.17
Vertex Cover 0.56 ± 0.18 0.22 ± 0.15 0.11 ± 0.11 0.22 ± 0.15 0.00 ± 0.00 0.00 ± 0.00

[prompt for byzantine agents]

Your goal is to DISRUPT and SABOTAGE the other agents from
successfully completing their task. You should try to:
send misleading or false information, contradict what other
agents are saying, propose incorrect solutions, create
confusion and disagreement, prevent consensus from being
reached, and make it harder for honest agents to coordinate.

Following the standard in Byzantine fault-tolerant systems, we assess task completion success
exclusively based on the outputs of honest agents, treating Byzantine agent responses as extraneous
to the coordination objective (?). We maintain the classical theoretical assumption f < n/3, where f
is the number of byzantine agents and n the number of total agents (1 Byzantine agent out of 4, 2
out of 8, and 3 out of 16 total agents in our setup). We investigate two variations of the setup: (1)
Byzantine-aware, where honest agents receive explicit notification of potential adversarial presence,
and (2) Byzantine-unaware, where honest agents operate under standard AGENTSNET assumptions
without knowledge of adversarial behavior.

I.2 RESULTS AND ANALYSIS

The Byzantine fault tolerance evaluation reveals insights regarding the resilience characteristics of
contemporary LLM-based coordination mechanisms. Performance metrics are presented for both
Llama Maverick (Table 5) and Gemini 2.0 Flash (Table 6) across multiple network scales. The
results show a systematic performance disparity between global coordination primitives and local
combinatorial tasks under Byzantine adversarial pressure. Global coordination tasks (Consensus
and Leader Election) exhibit better fault tolerance characteristics and maintain non-trivial success
rates even under substantial adversarial presence. This phenomenon aligns with theoretical predic-
tions from distributed computing literature: local optimization problems suffer disproportionately
from Byzantine manipulation due to their dependency on immediate neighborhood integrity, while
global coordination can potentially leverage distributed verification mechanisms and majority-based
validation protocols.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Table 7: Prompt variation ablation results for Llama Maverick across all AGENTSNET tasks. Success
rates reported as mean± standard error for eleven prompt formulations, demonstrating task-dependent
sensitivity to linguistic framing and validating the robustness of our standard prompt design.

Prompt Variation Coloring Consensus Leader Election Matching Vertex Cover Average

Standard 0.33± 0.17 0.78± 0.15 0.78± 0.15 0.22± 0.15 0.11± 0.11 0.44± 0.07
Minimal 0.22± 0.15 0.33± 0.17 0.56± 0.18 0.00± 0.00 0.67± 0.33 0.31± 0.07
Step-by-step 0.22± 0.15 0.78± 0.15 0.56± 0.18 0.33± 0.17 0.14± 0.14 0.42± 0.08
Formal 0.00± 0.00 0.33± 0.17 0.56± 0.18 0.00± 0.00 0.44± 0.18 0.27± 0.07
Conversational 0.11± 0.11 0.78± 0.15 0.67± 0.17 0.33± 0.17 0.50± 0.50 0.47± 0.08
Imperative 0.33± 0.17 0.33± 0.17 0.44± 0.18 0.11± 0.11 0.00± 0.00 0.24± 0.07
Collaborative 0.00± 0.00 0.33± 0.17 0.11± 0.11 0.00± 0.00 0.44± 0.18 0.18± 0.06
Abstract 0.22± 0.15 1.00± 0.00 0.00± 0.00 0.00± 0.00 0.22± 0.15 0.29± 0.07
Real-World 0.00± 0.00 1.00± 0.00 0.00± 0.00 0.00± 0.00 0.22± 0.15 0.24± 0.07
Game-Theoretic 0.00± 0.00 0.44± 0.18 0.00± 0.00 0.00± 0.00 0.22± 0.15 0.13± 0.05
Resource-Constrained 0.00± 0.00 0.78± 0.15 0.33± 0.17 0.00± 0.00 0.33± 0.17 0.29± 0.07

Contrary to intuition, informing honest agents about the presence of Byzantine adversaries does not
produce systematic performance improvements under experimental conditions. In multiple task-
model configurations, Byzantine-aware protocols exhibit a decrease in coordination effectiveness
compared to uninformed baselines. This could suggest that current LLMs lack adversarial reasoning
capabilities and may suffer from over-conservative coordination strategies when explicitly primed for
adversarial scenarios, which leads to coordination failure through excessive suspicion rather than
enhanced robustness.

These results establish that while LLM agents demonstrate reasonable coordination capabilities in
benign environments, their robustness under adversarial conditions remains severely constrained. The
absence of effective Byzantine fault tolerance mechanisms represents a critical vulnerability for real-
world deployment of large-scale LLM-based multi-agent systems, particularly in security-sensitive
applications where adversarial behavior is anticipated. This evaluation demonstrates the necessity of
developing principled approaches to adversarial robustness in distributed LLM systems and highlights
Byzantine fault tolerance as a future direction for scalable multi-agent AI architectures.

J PROMPT ABLATION

To investigate the sensitivity of AGENTSNET performance to prompt formulation and to ensure that
our experimental design choices are well justified, we conduct a systematic ablation study examining
the impact of different prompt styles on coordination effectiveness.

J.1 EXPERIMENTAL DESIGN

We evaluated 11 distinct prompt variations on Gemini 2.0 Flash, selected to represent a diverse
range of communication styles and task-frameming approaches. The prompt variants are designed as
follows:

• Standard: The original prompt formulation used throughout our main experiments

• Minimal: Reduced to essential information only (“You are agent X. Communicate with
neighbors. Output JSON.”)

• Step-by-step: Explicit procedural guidance (“STEP 1: Analyze, STEP 2: Plan...”)

• Formal: Academic and technical language (“System specification”, “algorithmic con-
straints”)

• Conversational: Informal, friendly tone (“Hey there! Think of it like a group project...”)

• Imperative: Direct command structure (“EXECUTE role. SEND messages. COMPLETE
task.”)

• Collaborative: Emphasis on teamwork (“Our collective success depends...”)

• Abstract: Pure graph-theoretic framing (“Node X in graph G, adjacency set...”)

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Table 8: Prompt variation ablation results for Gemini 2.0 Flash across all AGENTSNET tasks. Success
rates reported as mean ± standard error, revealing model-specific sensitivity patterns to prompt
formulation and demonstrating that our standard prompt provides robust baseline performance for
fair model comparison.

Prompt Variation Coloring Consensus Leader Election Matching Vertex Cover Average

Standard 0.37± 0.10 0.89± 0.06 0.67± 0.09 0.33± 0.09 0.11± 0.06 0.47± 0.04
Minimal 0.33± 0.09 1.00± 0.00 0.44± 0.10 0.48± 0.10 0.11± 0.06 0.47± 0.04
Step-by-step 0.41± 0.10 0.96± 0.04 0.56± 0.10 0.56± 0.10 0.04± 0.04 0.50± 0.04
Formal 0.26± 0.09 0.93± 0.05 0.37± 0.10 0.11± 0.06 0.15± 0.07 0.36± 0.04
Conversational 0.37± 0.10 0.96± 0.04 0.44± 0.10 0.37± 0.10 0.04± 0.04 0.44± 0.04
Imperative 0.11± 0.06 0.89± 0.06 0.44± 0.10 0.11± 0.06 0.07± 0.05 0.33± 0.04
Collaborative 0.04± 0.04 0.48± 0.10 0.15± 0.07 0.04± 0.04 0.11± 0.06 0.16± 0.03
Abstract 0.15± 0.07 0.59± 0.10 0.11± 0.06 0.15± 0.07 0.00± 0.00 0.23± 0.04
Real-World 0.18± 0.08 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.26± 0.09 0.09± 0.03
Game-Theoretic 0.22± 0.08 0.15± 0.07 0.22± 0.08 0.00± 0.00 0.07± 0.05 0.13± 0.03

• Real-world: Concrete application context (“You are sensor X monitoring infrastructure...”)

• Game-theoretic: Strategic competition framing (“You are player X, maximize utility...”)

• Resource-constrained: Efficiency-focused language (“LIMITED bandwidth, minimize
overhead...”)

Each prompt variant maintains the core task specifications and communication protocol while varying
the linguistic style, motivational framing, and level of procedural guidance provided to agents.

J.2 RESULTS

Tables 7 and 8 present the performance results across all prompt variations for Llama Maverick and
Gemini 2.0 Flash, respectively.

Robustness of standard prompt design. The standard prompt formulation used throughout our
main experiments consistently ranks among the top performing configurations in both tested models.
For Gemini 2.0 Flash, the standard variant achieves This performance validates our original design
choices and demonstrates that our main experimental results are not artifacts of sub-optimal prompt
engineering.

Task-dependent vulnerability to prompt formulation. Different coordination primitives exhibit
varying robustness to prompt style changes. Consensus tasks demonstrate remarkable stability across
prompt variants for both models, maintaining high success rates regardless of framing. Conversely,
tasks such as Vertex Cover and Matching show substantial performance fluctuations, with success
rates varying depending on prompt formulation. This pattern suggests that some tasks are more
linguistically fragile than others.

Counter-productive effects of specialized framing. Several prompt variants designed to enhance
coordination actually degrade performance across both models. The collaborative variant consistently
underperforms, despite explicitly emphasizing teamwork. Similarly, game-theoretic framing yields
poor results for both models. These findings indicate that overly specialized prompt engineering can
interfere with emergent coordination strategies in LLM-based multi-agent systems.

These results demonstrate that, while prompt design significantly influences coordination performance,
our standard formulation provides a robust and well-balanced baseline for fair model comparison.
The systematic variation observed across prompt styles underscores the critical importance of stan-
dardized evaluation protocols in multi-agent benchmarking, as different linguistic formulations could
systematically bias results in favor of particular model architectures. Our ablation study validates the
methodological soundness of AGENTSNET, while revealing information on the linguistic factors that
modulate coordination effectiveness in contemporary LLM-based distributed systems.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Table 9: Results of classical (randomized) algorithm baselines on AGENTSNET. Success rates
reported as mean ± standard error.

Task 4 nodes 8 nodes 16 nodes

Coloring 0.67 ± 0.17 0.67 ± 0.17 0.78 ± 0.15
Consensus 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
Leader Election 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
Matching 0.89 ± 0.11 0.89 ± 0.11 0.78 ± 0.15
Vertex Cover 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

Table 10: Results of classical algorithm baselines on AGENTSNET up to 100 nodes. Success rates
reported as mean ± standard error.

Task 20 nodes 30 nodes 40 nodes 50 nodes 60 nodes 70 nodes 80 nodes 90 nodes 100 nodes

Coloring 0.89±0.11 0.78±0.15 0.78±0.15 0.67±0.17 1.00±0.00 1.00±0.00 0.56±0.17 0.89±0.11 0.56±0.17
Consensus 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00
Leader Election 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00
Matching 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00
Vertex Cover 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00

K CLASSICAL ALGORITHM BASELINES

To understand the performance gap between LLM-based systems and classical (randomized) algo-
rithms given the selected round budgets, we present results on AGENTSNET with classical algorithmic
baselines. Concretely, our algorithm implementations for Coloring, Vertex Cover, and Matching are
all based on Luby’s algorithm (Luby, 1985). Further, we solve Leader Election with a lexicographical
sort. For Consensus, each agent initially samples a value at random. At each message-passing
step, each agent receives the current value from its neighbors and updates its value according to the
minimum value seen so far. These algorithms are implemented in the same python framework as
AGENTSNET, meaning that the classical algorithms adhere to the same synchronous communication
protocol and have the same round budget.

The results are presented in Table 9. We find that our implementations are consistently better than
the results achieved by the agents tested in the paper, which means that there is significant room for
future agents to improve performance. Further, when increasing the number of rounds, we find that
the classical algorithms are able to perfectly solve AGENTSNET. As we apply the classical algorithms
to the larger graph instances, we see the gap between LLM-based agents and classical algorithms
increase; see Table 10. We find that the classical algorithms do not show a decrease in performance as
the number of agents increases. In contrast, our experiment in Section 5.2 revealed LLM performance
to sharply decline as the number of agents is increased.

Table 11: Token consumption statistics across models and network sizes. Values represent average
tokens per instance over all AGENTSNET tasks.

4 nodes 8 nodes 16 nodes
Model Input Output Total Input Output Total Input Output Total
Claude 3.5 Haiku 35.1K 7.9K 43.0K 128.4K 24.2K 152.6K 448.0K 68.3K 516.3K
Claude 3.7 Sonnet 43.5K 9.7K 53.2K 223.5K 37.4K 261.0K 917.9K 111.0K 1029K
GPT-4.1 mini 28.0K 5.1K 33.1K 101.4K 15.8K 117.3K 341.5K 42.8K 384.2K
Gemini 2.0 Flash 25.9K 4.1K 30.0K 95.9K 13.8K 109.7K 333.0K 39.2K 372.1K
Gemini 2.0 Flash Thinking 44.4K 10.4K 54.8K 190.7K 34.9K 225.6K 743.5K 99.5K 843.1K
Gemini 2.5 Flash 44.8K 14.2K 59.0K 206.7K 54.8K 261.5K 723.4K 133.4K 856.8K
Gemini 2.5 Flash Thinking 47.7K 11.6K 59.3K 213.8K 42.0K 255.8K 750.8K 112.5K 863.4K
Gemini 2.5 Pro 58.6K 17.9K 76.5K 266.3K 62.2K 328.5K 936.6K 157.6K 1094K
Llama 4 Maverick 32.0K 8.0K 40.0K 107.9K 22.0K 129.9K 356.8K 57.2K 414.0K
Llama 4 Scout 33.3K 7.2K 40.6K 111.4K 19.6K 131.1K 370.4K 51.4K 421.8K
o4-mini 26.6K 20.7K 47.3K 104.5K 64.3K 168.7K 367.8K 177.0K 544.8K

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

L TOKEN CONSUMPTION ANALYSIS

Token efficiency represents a critical practical consideration for deploying large-scale multi-agent
systems, as coordination complexity directly impacts inference costs. To quantify this relationship,
we measure token usage statistics across all models and network configurations in AGENTSNET.
Table 11 reports token consumption averaged per instance across all tasks, with usage statistics
formatted as input tokens / output tokens / total tokens.

33

	Introduction
	Related Work
	Tasks, Evaluation, and Graph Models
	Benchmarking Tasks
	Network Topologies

	Agent-to-Agent Communication via Message-Passing
	Experiments
	Setup
	Results on AgentsNet
	Scaling the Agent Network
	Qualitative Analysis

	Conclusion
	Implementation Details
	Benchmark Tasks
	Score Computation
	Graph Models
	Extended Qualitative Analysis
	K4 or Star?
	Things Change
	Helping Others
	Sharing Challenges
	Priority 42

	Extended Related Work
	Limitations
	Extended Results
	Adversarial Robustness: Byzantine Fault Tolerance
	Experimental Design
	Results and Analysis

	Prompt Ablation
	Experimental Design
	Results

	Classical Algorithm Baselines
	Token Consumption Analysis

