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ABSTRACT

Large language models (LLMs) have shown remarkable capability in natural lan-
guage tasks, yet debate persists on whether they truly comprehend deep structure
(i.e., core semantics) or merely rely on surface structure (e.g., presentation for-
mat). Prior studies observe that LLMs’ performance declines when intervening
on surface structure, arguing their success relies on surface structure recognition.
However, surface structure sensitivity does not prevent deep structure comprehen-
sion. Rigorously evaluating LLMs’ capability requires analyzing both, yet deep
structure is often overlooked. To this end, we assess LLMs’ comprehension ability
using causal mediation analysis, aiming to fully discover the capability of using
both deep and surface structures. Specifically, we formulate the comprehension of
deep structure as direct causal effect (DCE) and that of surface structure as indi-
rect causal effect (ICE), respectively. To address the non-estimability of original
DCE and ICE — stemming from the infeasibility of isolating mutual influences
of deep and surface structures, we develop the corresponding quantifiable surro-
gates, including approximated DCE (ADCE) and approximated ICE (AICE). We
further apply the ADCE to evaluate a series of mainstream LLMs (and the one
with random weights), showing that most of them exhibit deep structure com-
prehension ability, which grows along with the prediction accuracy. Comparing
ADCE and AICE demonstrates closed-source LLMs (e.g., GPT) rely more on
deep structure, while open-source LLMs (e.g., Llama) are more surface-sensitive,
which decreases with model scale. Theoretically, ADCE is a bidirectional evalua-
tion, which measures both the sufficiency and necessity of deep structure changes
in causing output variations, thus offering a more comprehensive assessment than
accuracy, a common evaluation in LLMs. Our work provides new insights into
LLMs’ deep structure comprehension and offers novel methods for LLMs evalu-
ation. The code for our project is available at https://anonymous.4open.science.

1 INTRODUCTION

Large language models (LLMs) have demonstrated unprecedented capability in various natural lan-
guage tasks (Achiam et al., 2023; Touvron et al., 2023a;b; Chowdhery et al., 2023; Anil et al., 2023;
Team et al., 2023). Despite these achievements, there remains a debate over whether LLMs truly
grasp the deep structure necessary for solving variations of the same problem, or if they simply learn
the surface structure present in data. The distinction between surface and deep structure, defined in
surface structure theory (Chomsky et al., 1971), differentiates between observable sentence forms
and the underlying semantic units that represent a question’s core meaning. This distinction is fur-
ther illustrated with examples in Table 1. Many studies evaluating LLMs based on task-specific
accuracy (Zeng et al., 2023; Wang et al., 2023; Chan et al., 2023) often neglect their capacity to
understand deep structures leading to correct solutions. This oversight may mislead model perfor-
mance, as high accuracy might stem from learning surface structures in training data instead of
deep structure. Such learning can lead spurious correlations between inputs and responses, limiting
generalization to novel and realistic scenarios (Guo et al., 2024; Jiang et al., 2024b).

Recent studies tend to understand surface structure beyond accuracy and indicate LLMs predom-
inantly rely on surface structure to generate responses (Stolfo et al., 2022; Hooda et al., 2024;
González & Nori, 2024; Guo et al., 2024; Jiang et al., 2024b). Interventions unrelated to answers,
like renaming entities (Jiang et al., 2024b) or swapping code blocks (Hooda et al., 2024), decrease
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Table 1: Examples of two-digit multiplication with interventions on deep and surface structures:
deep structure embodies core semantics (e.g., numbers and operators), while surface structure en-
compasses linguistic forms (e.g., question format). Among given intervention strategies, changes in
deep structure inherently alter surface structure. More examples on both structures in Appendix A.

Example Questions Deep & Surface Intervention Surface Intervention Only Strategy

What is 50
times 20 ?

A:1000

What is ⟨Mask⟩ times 20?
A:None

What is 50 times 20⟨Mask⟩
A:1000

Mask

How much is 10 multiplied
by 50? A:500

How much is 20 multiplied
by 50? A:1000

Rephrase

What is * times 20?
A:None

What * 50 times 20?
A:1000

Replace

50 is What times 20?
A:2.5

is What 50 times 20?
A:1000

Swap

performance. This sensitivity to minor input changes suggests LLMs’ task performance depends
more on surface structure recognition (Hooda et al., 2024; Jiang et al., 2024b).
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Figure 1: Surface structure interven-
tions cause subtle accuracy degradation
relative to the obvious accuracy decline
from deep structure changes.

However, prior work has primarily focused on LLMs’ sen-
sitivity to surface structure, without adequately examining
their comprehension of deep structure. While sensitivity
to surface-level interventions shows a lack of robustness to
superficial changes, it does not necessarily preclude an un-
derstanding of deep structure. To ascertain whether LLMs
are merely surface structure learners, a comparative anal-
ysis of their understanding of both deep and surface struc-
tures is essential, which has been largely overlooked in cur-
rent research. To validate this hypothesis, we conduct the
following experiment. Initially, LLMs reason on the com-
plete dataset to identify correctly answered samples. Sub-
sequently, using Mask strategy (Table 1), we create two in-
tervention groups from the identified correct samples: one
with interventions to both deep and surface structures, and
another with only surface interventions. We then evalu-
ate these intervened samples and compare the accuracy de-
clines (Figure 1). We observe that surface-only interventions cause slight accuracy decline, while
combined surface and deep modifications result in significant performance degradation. This chal-
lenges the prevailing assumption that LLM responses are predominantly based on surface structure
and suggests a more significant reliance on deep structure. Given above observation and the preva-
lent oversight of deep structure understanding, we propose a fundamental research question:

Do LLMs genuinely comprehend deep structure for problem-solving, or do they primarily rely on
learning surface structure?

To address the issue, corresponding metrics are required, which should: (1) Quantify LLMs’ under-
standing capabilities of deep and surface structures; (2) Be widely applicable across diverse tasks
and LLMs, overcoming limitations of previous methods restricted to specific tasks (e.g., data flow
problems in programming (Hooda et al., 2024), divisibility issues in mathematics (González & Nori,
2024)), specific data types (e.g., synthetic data with fixed textual templates (Jiang et al., 2024b)), or
specific models (e.g., small-sized transformers trained from scratch (Jin & Rinard)).

In this paper, we employ causal mediation analysis (Imai et al., 2010a;b; Hicks & Tingley, 2011)
to formulate LLMs’ deep structure comprehension as the direct causal effect (DCE) of deep struc-
ture on outputs, and surface structure comprehension as the indirect causal effect (ICE) of surface
structure on outputs. However, estimating DCE and ICE requires isolating the mutual influences
between deep and surface structures, which is infeasible, e.g., the impossibility of modifying deep
structure without altering surface structure. Consequently, we propose approximated DCE (ADCE)
and approximated ICE (AICE) as proxies for DCE and ICE. ADCE and AICE empirically quantify
LLMs’ deep and surface structure comprehension across diverse tasks, revealing that LLMs’ under-
standing beyond surface structures. Our method is widely applicable, independent of data or model
constraints, thus suitable for diverse tasks and models. We summarize our key contributions as:
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Step 1: Initial Inference on full Data

Step 2: Generating Intervention Data

Step 3: Inference on Intervention Data

Intervention:  T = 1, s(T = 1)
:What is <mask> times 20?

:None

: What is 50 times 20?

: 1000

: What is 20 times 19?

: 1200

= —

Intervention:  T = 0, s(T = 0)
:What <mask> 50 times 20?

:1000

Incorrectly Answered Questions

similar

Approximated ICE

s
d

x
Y

TE

s
d

x
Y

Approximated DCE

s
d

x
Y

Figure 2: Approximated DCE (ADCE) quantifies LLMs’ deep structure comprehension, while ap-
proximated ICE (AICE) measures surface structure understanding. Comparing them reveals LLMs’
reliance on deep or surface structures. Our method involves: initial inference, intervention on correct
samples, and secondary inference for ADCE and AICE calculation. More details are in Appendix D.

Methodologically, we formalize LLMs’ deep structure comprehension ability based on causal medi-
ation analysis and propose an estimable approximated direct causal effect (ADCE) to quantify this
ability. The proposed method also includes the approximated indirect causal effect (AICE) of sur-
face structure, enabling comparison of LLMs’ reliance on deep and surface structures (in Section 3).

Empirically, we evaluate deep structure comprehension in mainstream LLMs across tasks, revealing
widespread deep understanding that strongly correlates with accuracy (in Section 4.2). Further com-
parison between ADCE and AICE shows tested closed-source LLMs excel in deep comprehension,
while tested open-source LLMs shift from surface to deep understanding with scale (in Section 4.4).

Theoretically, we prove ADCE evaluates both sufficiency and necessity of deep structure changes
in output variations (in Section 3.4), which offers a bidirectional assessment of LLM performance
beyond output correctness, in contrast to the simple criteria like prediction accuracy. This theoretical
point is supported by subsequent spurious correlation experiments (in Section 4.5). This suggests
that ADCE can serve as a more comprehensive assessment criterion to evaluate and understand the
ability of LLMs (e.g., the dependence of LLM outputs on the core semantics of the inputs).

2 A CAUSAL PERSPECTIVE OF LLMS’ COMPREHENSION ABILITY

In this section, we define LLMs’ deep structure comprehension ability by formulating it as a prob-
lem of estimating causal effects. We first introduce important notations for subsequent analysis.
Consider a dataset D = {(xi, yi)}ni=1, where xi denotes the i-th question and yi represents the
corresponding answer. Each question xi := (di, si) can be split into two independent components
(Stolfo et al., 2022): the deep structure di and the surface structure si, with di ⊥⊥ si|xi. Given an
LLM parameterized by θ ∈ Θ, denoted as fθ, its output for xi is represented as Yi(xi) := fθ(xi).

Comprehension Ability. While high accuracy often indicates a high-performing model, our work
delves into whether LLMs achieve this accuracy through a genuine understanding of deep structure.
We propose that an LLM, fθ, acting as a “deep thinker”, should not only provide correct answers
but also fundamentally depend on deep structure for responses. Formally, let Dc ⊆ D be a subset of
questions correctly answered by fθ. An LLM fθ possesses deep structure comprehension satisfy

1Y (x′
i)=yi

=

{
0, ∀d′i ̸= di
1, ∀d′i = di

(1)

3
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x s

d Y

Figure 3: Causal graph with mediation: x →
d → Y shows deep structures’ direct causal ef-
fect, x → s → Y indicates surface structures’
indirect causal effect via mediator s.
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Figure 4: For the four intervention strategies,
LLM accuracy drops from 100% when surface
structures are altered while deep structures re-
main unchanged in initially correct samples.

where 1 means the indicator function, the modified x′
i = (d′i, s

′
i) and the original xi = (di, si).

Note that, the surface structures si and s′i may be identical or different. In other words, the output of
the model fθ should only be altered by changes in the deep structure di, underscoring the model’s
reliance on deep rather than surface structure for generating responses.

Equation 1 quantifies an LLM’s comprehension of deep structure by comparing outputs following
changes to corresponding structures. This inspires a causal effect estimation perspective, where
changes in outputs are viewed as different potential outcomes (Pearl, 2001; Rubin, 2005), resulting
from interventions on either deep or surface structures.

Causal Effect Estimation. We proceed by defining LLMs’ comprehension ability as a causal effect
estimation problem. Define the treatment assignment variable T on input xi as:

T =

{
0 intervention alters si, preserves di
1 intervention alters both si and di

(2)

Both di and si are unobservable, non-manipulable latent variables. Intervention T only manipulate
the observable input xi. The potential outcome for xi under T = t is Yi(t). The deep structure
comprehension ability is defined as the causal effect of deep structure on an LLM’s output, i.e.,
the expected change in the output when intervening on the deep structure while keeping surface
structure fixed. Analogously, the surface structure comprehension capability is defined.

By defining LLMs’ deep and surface structure comprehension as causal effects, we establish a causal
estimation framework. Leveraging this framework, we quantify abstract comprehension capabilities
via estimable causal effects, enabling objective assessment of LLMs’ understanding.

3 METHOD

This section focuses on the causal effect of deep structure on output, as defined in Section 2. Notably,
estimating this causal effect inherently requires quantifying the causal effect of surface structure.
Thus, by concentrating on deep structure, we also gain insights into the surface structure. Section 3.1
presents a causal graph linking inputs, structures, and outcomes, formulating comprehension as
direct (DCE) and indirect causal effects (ICE). Section 3.2 further addresses the non-estimability of
DCE and ICE by proposing their approximations: ADCE and AICE. To estimate these metric in
practice, Section 3.3 details the generation of intervention data necessary for estimating ADCE and
AICE. Finally, to demonstrate the value of our metric in LLMs evaluation, Section 3.4 shows how
ADCE outperforms the common metric, accuracy, in evaluating LLMs’ deep structure dependency.

3.1 FORMULATING DEEP STRUCTURE COMPREHENSION AS DIRECT CAUSAL EFFECT

Figure 3 presents a causal graph with mediation depicting relationships among inputs x, deep struc-
ture d, surface structure s, and outcome Y . It illustrates how x influences Y via d (x → d → Y )
and s (x → s → Y ).Deep structure, reflecting core semantics, logically correlates with output,
justifying the path x → d → Y . Surface structure’s impact on output is considered for the fol-
lowing reasons: Existing studies show surface structure changes affect LLMs outcomes even with
constant deep structure (Stolfo et al., 2022; Hooda et al., 2024; Jiang et al., 2024b; Guo et al., 2024).
Our two-digit multiplication experiment in Figure 4 confirms this, showing performance decline on
corrected answered samples when modifying only surface structure.
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Table 2: Examples of different intervention strategies on mathematics and common sense tasks.
More illustrations on multiple tasks are included in Appendix F.1.

Dataset Term Origin & Intervention Data

2-digit Multiplication
(Mask)

Origin What is 50 times 20? A: 1000

TE with T = 1, s(T = 1) What is <Mask> times 20? A: None

AICE with T = 0, s(T = 0) What <Mask> 50 times 20? A: 1000

CommonsenseQA
(Rephrase)

Origin Reading newspaper one of many ways to

practice your what? A: literacy

TE with T = 1, s(T = 1)
Using newspapers to wrap gifts is one way

to practice your what? A: money

AICE with T = 0, s(T = 0)
Using newspapers to read articles is one

way to practice your what? A: literacy

Figure 3 illustrates a causal mediation analysis, focusing on the direct causal effect (DCE) of deep
structure d on output Y via the path x → d → Y . The required assumptions for causal media-
tion analysis — positivity, consistency, and sequential ignorability (Rubin, 1974; VanderWeele &
Vansteelandt, 2009; Cole & Frangakis, 2009; Coffman et al., 2021; Nguyen et al., 2022) — are
satisfied, as detailed in Appendix B.1. This analytical setup allows us to rigorously examine the
influence of deep structure on model outputs, isolating it from the effects of surface structure.

As directly estimating DCE is intractable due to challenges in altering deep structure while main-
taining surface structure, an indirect method has been developed (Pearl, 2001; Imai et al., 2010a;b;
VanderWeele, 2013; Richiardi et al., 2013), estimating DCE as:

δDCE︸ ︷︷ ︸
DCE

= Exi
[Yi(T = 1, s(T = 1))− Y origin

i ]︸ ︷︷ ︸
TE

−Exi
[Yi(T = 0, s(T = 1))− Y origin

i ]︸ ︷︷ ︸
ICE

(3)

where s(T = t) is the mediator value at T = t. For xi, Yi(T = 1, s(T = 1)), Yi(T = 0, s(T = 1)),
and Y origin

i represent outcomes with both structures altered, only surface changed, and unintervened
original structures, respectively. Equation 3 specifically emphasizes the effect of deep structure on
the output while maintaining the surface structure constant at s(T = 1). ICE in Equation 3 via
x→ s→ Y quantifies the causal effect of surface structure on Y . ICE and DCE comprise the total
effect (TE) of x on Y . Appendix B.2 provide more details on DCE, ICE, and TE.

3.2 ESTIMATING DCE FROM DATA: CHALLENGES AND SOLUTIONS

Although Equation 3 can indirectly esitimate DCE, it still suffers the following issues:

• Unobservability: ICE in Equation 3 is unobservable due to a paradox: The surface structure in
ICE must maintain the value it would have under deep structure change (s(T = 1)), while the
deep structure in ICE should remain unchanged (T = 0). Consider 2-digit multiplication task in
Table 1, ICE should preserve the surface query format as What is <mask> times 20? (s(T = 1))
where the deep structure is altered (T = 1), thereby contravening the condition T = 0.

• Incomputability: Equation 3 requires differencing Yi and Y origin
i , but the outputs of LLMs typi-

cally lack numerical form, complicating the execution of such subtraction. For instance, in word
unscrambling tasks (bench authors, 2023), the string nature of outputs inherently prevents direct
arithmetic operations such as subtraction.

To address above issues in DCE, we propose the following solutions. Based on these solutions, we
derive the approximated direct causal effect (ADCE) as an estimable surrogate for DCE.

Addressing Unobservability. ICE in Equation 3 requires simultaneous T = 0 and s(T = 1), which
are unobservable in practice. Therefore, we propose approximated DCE (ADCE) to substitute origi-
nal ICE in Equation 3 with observable (T = 0, s(T = 0))as approximated ICE (AICE). The efficacy
of this approximation hinges on the similarity between the original ICE and AICE, specifically the
similarity between (T = 0, s(T = 1)) and (T = 0, s(T = 0)). To ensure approximation validity,
we meticulously design intervention strategies for generating data that minimize the discrepancy
between the original ICE and AICE. Detailed intervention strategies are discussed in Section 3.3.
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The AICE and corresponding approximated DCE (ADCE) can be represented as:

δADCE︸ ︷︷ ︸
approximated DCE (ADCE)

= Exi [Yi(T = 1, s(T = 1))− Y origin
i ]︸ ︷︷ ︸

TE

−Exi [Yi(T = 0, s(T = 0))− Y origin
i ]︸ ︷︷ ︸

approximated ICE (AICE)
(4)

Observable AICE in Equation 4 quantifies surface structure’s causal effect, i.e., LLMs’ surface struc-
ture comprehension ability while controlling deep structure. Strategies in Section 3.3, like minimally
modifying TE with (T = 1, s(T = 1)) to AICE with (T = 0, s(T = 0)), ensure Equation 4 maxi-
mizes surface similarity between TE and AICE, isolating deep structure impacts in ADCE.

Addressing Incomputability: To address incomputability, following (Stolfo et al., 2022; Chen
et al., 2024), we introduce indicator function 1 instead of numerical differencing. Indicator function
operations can capture output changes relative to the original output, making ADCE estimation
applicable across diverse model outputs. We then redefine

δ̂ADCE︸ ︷︷ ︸
approximated DCE (ADCE)

= Exi

[
1Yi(T=1,s(T=1)) ̸=Y origin

i

]
︸ ︷︷ ︸

TE

−Exi

[
1Yi(T=0,s(T=0)) ̸=Y origin

i

]
︸ ︷︷ ︸

approximated ICE (AICE)

(5)

Moreover, as detailed in Section 2, LLMs solely utilizing deep structure for answering satisfy:

Yi(T = 1, s(T = 1)) ̸= Y origin
i and Yi(T = 0, s(T = 0)) = Y origin

i . (6)

Combining Equation 5 and Equation 6 yields δ̂ADCE ∈ [−1, 1], where larger values indicate stronger
causal effects of deep structure on model output. It means higher δ̂ADCE suggests greater depen-
dence of LLMs’ outputs on deep structure, implying enhanced deep structure comprehension. Thus,
δ̂ADCE is interpretable and enables comparisons across both tasks and models.

3.3 GENERATING INTERVENTION DATA FOR APPROXIMATED DCE ESTIMATION

To indirectly estimate ADCE, we should detail the generation of intervention data required for TE
and AICE estimation in Equation 5. Specifically, we focus on constructing appropriate approxima-
tion to minimize the discrepancy between AICE in Equation 5 and oracle ICE in Equation 3.

Intervention Data for TE. TE requires intervention data with altered deep structure (T = 1) and
matched surface structure (s(T = 1)). To achieve this, we intervene on inputs x to alter core
semantics using Mask and Rephrase strategies in Table 1. For inputs with explicit core semantic
words, such as numbers and operators in two-digit multiplication tasks, we apply Mask; otherwise,
we use Rephrase . Table 2 shows examples with diverse intervention strategies for TE.

Intervention Data for AICE. To approximate the unobservable ICE in Equation 3, we minimally
modify the deep structure of TE with (T = 1, s(T = 1)) in Equation 5 to derive AICE with
(T = 0, s(T = 0)). Deriving AICE from TE yields an observable substitute for the original ICE and
ensures high similarity between s(T = 1) in TE and s(T = 0) in AICE. Thus, the key distinction
between TE and AICE lies in the deep structure difference, ensuring isolation of surface structure’s
effect on output. Specially, we employ two strategies: (1) Mask: masking k non-core semantic words
closest to the masked core semantic word in TE; (2) Rephrase: minimizing word-level modifications
to transform TE with (T = 1, s(T = 1)) to AICE with (T = 0, s(T = 0)) with prompts suck as
modify the keywords with minimal word changes . Table 2 provides detailed intervention examples.

For rephrasing, we use Claude-3.5-Sonnet (Anthropic, 2024) and design a self-checking mecha-
nism. Claude re-answers rephrased questions to verify deep structure alteration and preservation.
Algorithm 2 outlines the process, with detailed mask rules and rephrase prompts in Appendix F.1.

3.4 ADCE: BIDIRECTIONAL EVALUATION OF DEEP STRUCTURE COMPREHENSION

This section compares the proposed ADCE in equation 5 with accuracy metrics. Our analysis
demonstrates that ADCE better reflects the bidirectional relationship between deep structure and
model outputs, regardless of whether the outputs are depended on the deep structure or merely as-
sociated with surface structure due to spurious correlations.

LLMs’ Output Depends on Deep Structure. When outputs of LLMs mainly rely on deep structure,
accuracy measures the correctness linking deep structure to output. In contrast, ADCE assesses

6
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the bidirectional relationship between deep structure to outputs, offering a more comprehensive
evaluation. Specifically, we demonstrate that ADCE integrates the probability of sufficiency (PS)
and probability of necessity (PN) (Pearl et al., 2000). For two boolean X ∈ {0, 1} and Y ∈ {0, 1},
PS (δPS) and PN (δPN) measure how likely X = 1 causes Y = 1 given X = 0, Y = 0, and how
likely X = 0 prevented Y = 1 given X = 1, Y = 1, respectively. In other words, PS assesses if
X = 1 is sufficient to cause Y = 1, establishing a sufficient condition X ⇒ Y , while PN evaluates
if X = 1 is necessary for Y = 1 to occur, determining a necessary condition Y ⇒ X . Theorem
1 demonstrates ADCE is a weighted combination of PS and PN, thereby capturing the bidirectional
relationship between the sufficiency and necessity of deep structure changes on output variations.
Theorem 1. (ADCE as a Combination of PN and PS) Let T be the treatment variable in Equation 2
and Ŷ the outcome of the indicator function in Equation 5. Assume Ŷ is monotonic with respect to
T , for ADCE, it holds that:

δADCE =
α

2
· δPS +

β

2
· δPN (7)

where α := P(Ŷ = 1|T = 1, s(T = 1)), β := P(Ŷ = 0|T = 0, s(T = 0)).

Theorem 1 demonstrates that ADCE quantifies the probability that modifications in deep structure
are both necessary and sufficient for output variations. That is, ADCE measures the likelihood that
deep structure alterations are the sole pathway leading observed changes in output. More introduc-
tions on PS and PN, along with detailed proof of Theorem 1 are in Appendix C.2.

Output Depends on Surface Structure. When models’ outputs mainly depend on surface structure,
e.g., spurious correlations, conventional accuracy metrics can be misleading (Ribeiro et al., 2016;
Beery et al., 2018; Hashimoto et al., 2018; Duchi et al., 2019). For example, in sentiment classifica-
tion tasks (Borkan et al., 2019; Koh et al., 2021), spurious correlations between identity and toxicity
can lead models to misclassify texts containing identity information as toxic. While accuracy met-
rics based on these surface structure (e.g., identity information) might suggest high performance,
they tend to overestimate the actual efficacy of the model. ADCE mitigates this by considering both
sufficiency (identity information leading to toxicity) and necessity (toxicity not always implying
identity information). This approach mitigates overreliance on spurious high-correlation paths from
identity to toxicity, thus preventing performance overestimation. In Section 4.5, we empirically
demonstrate that as the level of spurious correlation increases, accuracy remains misleadingly high,
whereas ADCE declines. This demonstrates ADCE’s superior ability to reflect a model’s reliance
on deep structure, particularly in scenarios dominated by spurious correlations.

4 EXPERIMENTS

In this section, we experimentally explore three critical questions: (1) Deep structure compre-
hension in LLMs: Do LLMs process questions through an understanding of the deep structure of
problems? We analyze this using the proposed ADCE in Section 4.2. (2) Prerequisite of deep
structure comprehension: What prerequisite enables LLMs to utilize deep structure in their re-
sponses? Insights into this question are discussed in Section 4.3? (3) Comparative influence of
deep and surface structures: Which has a stronger causal effect on the outputs of LLMs – deep
or surface structures? These investigations detailed in Section 4.4 collectively address the queries
raised in Section 1, assessing whether LLMs are deep thinkers or merely surface structure learn-
ers. Additionally, to further support Section 3.4, we evaluate whether ADCE assesses core semantic
understanding more reliably than accuracy under spurious correlations (in Section 4.5).

4.1 SETUP

Dataset Evaluation and Intervention. We employ five popular benchmarks across mathemat-
ics, logic, and commonsense knowledge. For mathematics, we consider 2-Digit Multiplication task
(bench authors, 2023) and GSM8k (Cobbe et al., 2021) for multi-step mathematical problems. Logi-
cal reasoning tasks include Word Unscrambling (bench authors, 2023), which requires unscrambling
given letters to form an English word for implicit reasoning, and the binary Analytic Entailment
task (bench authors, 2023) for linguistic entailment. Commonsense knowledge benchmarks include
CommonsenseQA (Talmor et al., 2018), a multiple-choice task covering daily life knowledge.
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Figure 5: Deep structure understanding in LLMs via ADCE. Positive ADCE demonstrate the exis-
tence of direct causal effect of deep structure on outcomes, increasing with model scale and accuracy.
Accuracy-DCE slopes vary across tasks, with steeper slopes indicating higher task complexity and
greater reliance on various deep structure comprehension ability.

Considering the diversity of experimental data, we explore various intervention strategies. Specifi-
cally, we use the Mask strategy for 2-Digit Multiplication, GSM8k and Word Unscrambling, which
have key words representing core semantics. For Analytic Entailment and CommonsenseQA, with
diverse presentation formats and less evident deep structure, we apply the Rephrase strategy. Ap-
pendix F.1 includes intervention examples and sample sizes of evaluated datasets after intervention.

Models and Baselines. We test 12 leading models from four LLM families: Llama (Llama-2-
7b, Llama-2-13b, Llama-2-70b, Llama-3-8b, Llama-3-70b) (Touvron et al., 2023b; Dubey et al.,
2024), Mistral (Mistral-7b, Mixtral-8x7b, Mixtral-8x22b) (Jiang et al., 2023; 2024a), GPT (GPT-
3.5-Turbo, GPT-4o) (Achiam et al., 2023), and Claude (Claude-3-Sonnet, Claude-3.5-Sonnet) (An-
thropic, 2024). Among them, Llama and Mistral families are open-source, while GPT and Claude
are closed-source with inaccessible weights and architectures. A randomly weighted Llama-3-70b
serves as a baseline denoting no direct causal effect between deep structure and outputs. Comparing
its ADCE with other models evaluates our estimation method’s effectiveness.

4.2 DEEP STRUCTURE COMPREHENSION CAPABILITY OF LLMS

Figure 5 illustrates the relationship between accuracy and ADCE for 12 LLMs across five tasks. No-
tably, the ADCE for most models consistently remains positive, in stark contrast to the zero ADCE
observed in the random weight baseline1. Positive ADCE values suggest that intervening deep struc-
ture causes LLMs to deviate from correct answers on previously solved problems, highlighting the
models’ reliance on deep structure for accurate problem-solving. This finding underscores that most
LLMs possess deep structure understanding ability beyond surface structure.

Furthermore, comparing models within the same series (e.g., Llama-2, Llama-3, Mixtral), we ob-
serve that both accuracy and ADCE increase with model scale. A strong linear correlation emerges
between accuracy and ADCE, with high R2 > 0.7 indicating a good fit to the linear model. This
suggests that models with higher accuracy exhibit greater dependence on deep structure for outputs.

Finally, slope β of the accuracy-ADCE regression in Figure 5 quantifies the increase in deep struc-
ture understanding required per unit accuracy increase. Tasks like two-digit multiplication and
word unscrambling show smaller β, indicating less deep structure comprehension needed for accu-
racy gains. GSM8k, Analytic Entailment and CommonsenseQA have higher β, emphasizing deep
structure importance for accuracy. Variations in β across tasks reflects underlying task complexity.
Low-β tasks (e.g., 2-Digit Multiplication, Word Unscrambling) have fixed formats and single-skill
requirements, needing small deep structure understanding for improvement. High-β tasks (e.g.,
GSM8k, Analytic Entailment, CommonsenseQA) involve multi-step reasoning, diverse logical rela-
tionships and broad knowledge, demanding varied deep structure comprehension for accuracy gains.

1Both Accuracy and ADCE of the random weight baseline are zero, indicating that this model neither
comprehends problems nor makes random guesses. Outputs from the baseline are shown in Appendix F.2.
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Causal Effect Difference: ADCE AICE
Figure 7: Comparing deep vs. surface structure. δADCE represents ADCE of deep structure on
output, while δAICE denotes AICE of surface structure on output. Closed-source models exhibit
a greater reliance on deep structure for outputs. Open-source models (e.g. LLama-2) are more
sensitive to surface structure; however, as model scale increases, this sensitivity is mitigated.

4.3 THE PREREQUISITE OF DEEP STRUCTURE COMPREHENSION CAPABILITY

In Figure 5, certain LLMs, such as Llama-3-8b on Analytic Entailment, show minimal causal effects
of deep structures on model output characterized by negative ADCE. This anomaly, where twisting
deep structure improves accuracy, prompts an investigation into the specific conditions under which
LLMs fail to comprehend deep structure across different tasks.

Pre-trained 8b Fine-tuned 8b

0.1

0.0

0.1

0.2

0.3

0.4

A
D

C
E

Figure 6: ADCE pre- and post- SFT.
SFT activates entailment knowledge,
enabling the model to exhibit deep
structure causal effects on outcomes, as
captured by proposed ADCE.

To investigate LLMs’ failure, we explore the potential pre-
requisites for deep structure comprehension with positive
ADCE. Inspired by previous work (Zečević et al., 2023; Jin
et al., 2023), which proposes that the causality exhibited
in LLMs often mirrors task-relevant knowledge embeded
in their training data, we hypothesize that the absence of
deep structure comprehension might indicate either unac-
tivated or absent relevant knowledge in the training data.
This theory proposes that missing replicable facts could
hinder deep structure comprehension. To test this hypothe-
sis, we employ supervised fine-tuning (SFT) to potentially
activate task-specific knowledge (Gekhman et al., 2024;
Allen-Zhu & Li, 2023; Zhou et al., 2024)2. Specifically, we
fine-tune Llama-3-8b on Analytic Entailment and compare
its ADCE before and after SFT. Figure 6 clearly illustrates
an improvement in ADCE pre- and post-SFT, supporting
that the ability to comprehend deep structures may rely on activating task relevant facts within the
training data. Our findings also suggest that ADCE is effective for detecting such changes in compre-
hension pre- and post-activation. Further details on fine-tuning process are provided in Appendix G.

4.4 DEEP VS. SURFACE: A COMPARISON OF LLMS’ COMPREHENSION ABILITY

After analyzing LLMs’ deep structure comprehension and its potential sources, we extend our in-
vestigation to assess the reliance of LLMs on deep v.s. surface structures. This comparison aims to
determine whether LLMs are deep thinkers or merely surface structure learners. We utilize ADCE
in Equation 5 to measure the direct causal effect of deep structure, and an AICE, also specified
in Equation 5, to quantify the indirect causal effect of surface structure while keeping deep struc-
ture constant. Figure 7 shows these comparisons, presenting ADCE as δADCE and AICE as δAICE.
Our analysis reveals that closed-source models (e.g., GPT, Claude) primarily rely on deep struc-
ture, while open-source models (e.g., Llama) are more sensitive to surface structure. However, this
sensitivity gradually decreases as model size increases, suggesting larger LLMs is more dependent
on deep structure for answering. This analysis indicates that the tested closed-source models are
not surface structure learners, as their responses rely more on deep structure. For the evaluated
open-source LLMs, the dependency on surface structure tends to diminish as model scale increases.

2Given the diversity of LLMs’ training data (Dubey et al., 2024), we lean towards the view that relevant
knowledge is not activated rather than absent from the training data.
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Figure 8: Spurious correlation results in LLama-3. In majority groups with spurious correlations,
increasing correlation levels lead to high accuracy but declining ADCE. In minority groups without
spurious correlations, accuracy and ADCE trends align. ADCE better reflects the model’s reliance
on spurious attributes over core semantics in spurious conditions, compared to accuracy.

4.5 ADCE VS. ACCURACY: CASE STUDY ON SPURIOUS CORRELATION

This section highlights the superiority of ADCE over traditional accuracy in measuring model re-
liance on deep structure, particularly in scenarios involving spurious correlations. Leveraging Civil-
Comments (Borkan et al., 2019; Koh et al., 2021), a popular dataset for spurious correlation analysis,
we manipulate the proportions of majority (spurious) and minority (non-spurious) group represen-
tations to construct training sets with differing degrees of spurious correlations. We then fine-tune
Llama-3 using these specially prepared datasets. The subsequent evaluation involves comparing the
model’s accuracy and ADCE on the majority and minority group test sets, as depicted in Figure 8.

As the level of spurious correlations increases in the majority group, LLMs maintain high accu-
racy in the majority group, misleadingly predicting based on spurious attributes (i.e., identity in-
formation). Conversely, ADCE decreases, revealing the model’s shift towards surface (spurious)
structures over deep structure (i.e., core semantics). In contrast, in the minority group without spu-
rious correlations, both accuracy and ADCE show consistent trends. This supports the argument in
Section 3.4 that, in the presence of spurious correlations, ADCE provides a better measure of the
model’s reliance on deep structure compared to accuracy, without being artificially inflated by spu-
rious attributes. More details on dataset construction and fine-tuning are presented in Appendix H.

5 RELATED WORK

Our related work primarily addresses the ongoing debate regarding LLMs’ ability to comprehend
deep and surface structure. Existing research has predominantly focused on LLMs’ sensitivity to
surface structure by modifying superficial patterns, such as substituting celebrity names, introduc-
ing misleading contexts (Jiang et al., 2024b; González & Nori, 2024), or altering the order of inde-
pendent statements and options (Jiang et al., 2024b; Hooda et al., 2024; Turpin et al., 2024). These
studies observe LLMs’ lack of robustness through token-level and sentence-level interventions with-
out altering core semantics, suggesting that LLMs’ success relies heavily on recognizing surface
structure. More aligned with our work, bench authors (2023) attempted a systematic analysis of the
differences between in-context learning (ICL) and instruction-tuning (IT) in LLMs’ understanding
of domain knowledge in mathematical problems. They found that ICL better helps LLMs distinguish
between deep and surface structure. These works inspire our research, which is more comprehensive
and widely applicable to analyze LLMs’ capacity for understanding deep and surface structure.

6 CONCLUSION

This paper investigate LLMs’ comprehension abilities of deep and surface structures, proposing
ADCE and AICE for quantification based on causal mediation analysis. ADCE analyses reveal
LLMs’ deep structure understanding across multiple tasks, potentially from activated task-specific
knowledge in the training data. The comparison between ADCE and AICE reveals that closed-
source LLMs comprehend deep structure better, while open-source LLMs exhibit higher surface
sensitivity, which decreases as model scale increases. We demonstrate ADCE’s superiority over
accuracy in reflecting bidirectional deep structure-output relationships. This work hopes to provide
new insights into LLMs’ comprehension ability and offer novel methods for LLMs evaluation.
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A MORE EXAMPLES OF SURFACE AND DEEP STRUCTURE

In this section, we will provide more examples to illustrate the deep structure (core semantics) and
surface structure (surface forms) of different inputs. Table 1 lists examples of 2-digit multiplication
(bench authors, 2023). We then present the deep and surface semantics for the remaining four tasks
described in Section 4.1.

• Word Unscrambling (bench authors, 2023): both Word Unscrambling task and 2-Digit Multipli-
cation task have unified question templates and key tokens that reflect the core semantics. In Word
Unscrambling, the question template is typically The word X is a scrambled version of the English
word, where X is the scrambled word, such as ofr (a scrambled version of for). The key token
reflecting the core semantics is X. Changes in surface structure, such as rephrasing the question to
How can the scrambled letters ofr be rearranged to form a valid English word?, do not alter the
answer to the problem.

• GSM8k (Cobbe et al., 2021): GSM8k is a dataset of multi-step reasoning elementary math prob-
lems with diverse question formats. For example: A robe takes 2 bolts of blue fiber and half that
much white fiber. How many bolts in total does it take? The key tokens representing core seman-
tics are numbers, quantifiers, etc. (e.g., 2, half ). Changing the surface structure, such as using
symbolic notation, does not alter the problem’s essence:

X = 2, Y = X/2, X + Y =?

Where X is blue fiber amount, Y is white fiber amount, and ? is the total.
• Analytic Entailment (bench authors, 2023): Analytic Entailment is a task of determining log-

ical relationships between sentences. The question format varies, for example: Lina met two
nurses.Lina met at least one woman. The deep structure in Analytic Entailment is manifested
in logical relationships and semantic inference, lacking uniform key tokens for core semantics.
Altering the surface structure, such as: Lina met two female nurses. Lina did not meet at least one
woman. does not change the nature of the task.

• CommonsenseQA (Talmor et al., 2018): CommonsenseQA, like Analytic Entailment, lacks a
uniform question template. For example: A revolving door is convenient for two direction travel,
but it also serves as a security measure at a what?. Its deep structure stems from understanding
the question and context, without specific key tokens representing core semantics. Altering the
surface structure, such as:A revolving door is commonly used for easy entry and exit, but it also
serves as a secure barrier between the outside and inside at a what? does not change the answer,
as the core concept remains intact.

B THE CAUSAL MEDIATION ANALYSIS

Causal Mediation Analysis (CMA) is a statistical method used to explain how an independent vari-
able affects a dependent variable through one or more mediating variables (Baron & Kenny, 1986;
Imai et al., 2010a; Coffman et al., 2021). This analytical approach is widely applied in many fields,
such as psychology, sociology, and epidemiology (MacKinnon, 2012; Richiardi et al., 2013; Wal-
ters, 2018). Traditional mediation analysis is primarily quantifying mediation effects by comparing
total (TE), direct (DCE), and indirect (ICE) causal effects (Rubin, 1974; Bollen & Davis, 2009;
VanderWeele, 2009).

CMA places traditional mediation analysis within the potential outcomes framework (Rubin, 2005),
using counterfactual reasoning to define and estimate causal effects (Pearl, 2001). This approach
not only handles more complex mediation models but also better addresses confounding factors and
sensitivity analyses (Imai et al., 2010a). A typical CMA framework comprises a treatment (A), a
mediator (M ), and an outcome (Y ). Both A and M are observable variables that simultaneously
influence Y . The primary objective of causal mediation analysis is to assess the causal effect of A
on Y while isolating the influence of M as illustrated in Figure 9.

In recent years, causal mediation analysis has also been widely applied in machine learning and arti-
ficial intelligence, providing new perspectives for explaining model decision processes and fairness
assessments (Zhang & Bareinboim, 2018; Nabi & Shpitser, 2018).

It is important to emphasize that CMA is frequently applied to the traditional mediation model
(x → z → y and x → y). Instead, we employ a variant of the classic causal mediation model
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Figure 9: Typical mediation analysis graph
with treatment (A), mediator (M ) and out-
come (Y ).
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Figure 10: The Causal Graph of Synthetic Data
which shares an identical causal graph as the in-
terested intrested causal graph in Figure 3.

known as the Parallel Multiple Mediator Model (Preacher & Hayes, 2008; Bolin, 2014; VanderWeele
& Vansteelandt, 2014). In our model, the deep structure (d) and surface structure (s) serve as two
parallel mediators for the input x. The specific causal paths can be represented as x→ d→ Y and
x→ s→ Y .

Despite structural differences, our parallel multiple mediator model aligns with traditional mediation
models in key aspects. Like classic mediation models, we also can decompose the total causal effect
(TE: x → Y ) into two parallel pathways: a direct causal effect (DCE: x → d → Y ) through our
variable of interest (deep structure d), and an indirect causal effect (ICE: x → s → Y ) through
the mediator (surface structure s). This decomposition mirrors the x → y and x → z → y paths
in traditional models and ensures that the relationship between TE, ICE, and DCE in Equation 3
holds. Additionally, our model satisfies key assumptions of causal mediation analysis which will
be discussed in Appendix Appendix B.1. This fundamental consistency enables the application of
established causal mediation methods to our model.

B.1 ASSUMPTIONS IN CAUSAL MEDIATION ANALYSIS

To empoly thecausal mediation analysis, there are three positivity, consistency, and sequential ig-
norability need to be satisfied (Rubin, 1974; VanderWeele & Vansteelandt, 2009; Cole & Frangakis,
2009; Coffman et al., 2021; Nguyen et al., 2022; Qin, 2024).

Positivity Assumption. This assumption ensures that for all possible combinations of conditions,
we can observe samples with non-zero probability, thereby allowing reliable estimation of causal
effects. That is
Assumption 1. (Positivity Assumption) For treatment (A), mediator (M ), and an outcome (Y ) in
Figure 9, it holds that:

• For the treatment variable A:
P(A = a) > 0, ∀a ∈ A,

where A is the set of all possible values of A.
• For the mediator variable M :

P(M = m|A = a) > 0, ∀m ∈M, a ∈ A
whereM is the set of all possible values of M .

• For the outcome variable Y :

P(Y = y|A = a,M = m) > 0, ∀y ∈ Y, a ∈ A,m ∈M
where Y is the set of all possible values of Y .

The positivity assumption is satisfied in our causal model. While as depicted in Figure 3, the inter-
vention on the deep structure d invariably induces a change in the surface structure s, for any given d,
there exists a non-zero probability of observing each possible value of s within the set S(d), where
S(d) represents the range of s values consistent with d. Thus, the essence of the positivity assump-
tion—enabling causal inference for all structurally possible scenarios—is maintained, allowing for
valid causal analysis within the model’s defined constraints.

Consistency Assumption. The consistency assumption states that:When the treatment variable
matches the theory potential treatment, the observed outcome in experiments should equal the po-
tential outcome theoretically. Similarly, when the treatment variable matches, the observed mediator
value in experiments should equal the potential mediator value theoretically. That is
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Assumption 2. (Consistency Assumption) For treatment (A), mediator (M ), and an outcome (Y )
in Figure 9, for individual i, it holds that:

Yi(a,Mi(a)) = Yi when Ai = a,

where Yi(a,Mi(a)) is the potential outcome for individual i under treatment a and the correspond-
ing potential mediator value Mi(a), Yi is the observed outcome for individual i.

Mi(a) = Mi when Ai = a

where Mi(a) is the potential mediator value for individual i under treatment a, Mi is the observed
mediator value for individual i, Ai is the observed treatment for individual i.

In our study, all relevant variables are encompassed in Figure 3, thus precluding the existence of
unobserved factors that could influence the mediator or outcome variables. Consequently, the con-
sistency assumption is satisfied.

Sequential Ignorability Assumption Sequential ignorability involves two assumptions: (a) Con-
ditional on the observed pre-treatment covariates, the treatment is independent of all potential out-
comes and mediator values; (b) Conditional on the observed treatment and pre-treatment covariates,
the observed mediator is independent of all potential outcomes. That is
Assumption 3. For treatment (A), mediator (M ), and an outcome (Y ) in Figure 9, for individual i,
it holds that:

(a) {Yi(a
′,m),Mi(a)} ⊥⊥ Ai, ∀a, a′,m

(b) Yi(a
′,m) ⊥⊥Mi(a)|Ai = a, ∀a, a′,m

where ⊥⊥ denotes statistical independence. Yi(a
′,m) is the potential outcome for under treatment

a′ and mediator value m, Mi(a) is the potential mediator value for unit i under treatment a and Ai

is the treatment assignment for i.

Figure 3 presents a comprehensive causal graph encompassing all relevant variables and their causal
relationships in this study. This completeness ensures the absence of unmeasured confounders.
Furthermore, the independence between deep structure and surface variables structure is explicitly
established. The completeness and independence jointly facilitate the satisfaction of the Sequential
Ignorability Assumption (Imai et al., 2010a).

B.2 CAUSAL EFFECTS IN CAUSAL MEDIATION ANALYSIS

Then, we introduce important causal estimands in the CMA framework, which characterize the
causal effects between different variables. Consider the relationships between treatment (A), medi-
ator (M ), and an outcome (Y ), all of them binary variables with values 0 or 1. Depending on the
different values of the treatment and mediator variables, the causal effects between them primarily
include the following types (Robins & Greenland, 1992; Pearl, 2001; VanderWeele, 2013):

• Total Effect (TE):
TE = E[Y (A = 1,M(1))− Y (A = 0,M(0))] (8)

• Total Direct Effect (TDE):
TDE = E[Y (A = 1,M(1))− Y (A = 0,M(1))] (9)

• Pure Indirect Effect (PIE):
PIE = E[Y (A = 0,M(1))− Y (A = 0,M(0))] (10)

Here, Y (A = a,M(a)) represents the value of Y when A = a and M takes the value it would have
when A = a. The total effect (TE) can be decomposed into direct effect and indirect effect (Robins
& Greenland, 1992; Pearl, 2001; VanderWeele, 2013), i.e.,

TE = TDE+ PIE (11)
ADCE in Eq. (5) emphasizes deep structure’ direct effect on the outcome, controlling mediator s at
post-intervention state (i,e., s(T = 1)). This control is necessary as changes in d inevitably affect
s. Thus, with intervention T = 1, we can only fix s at s(T = 1) instead of s(T = 0). ADCE
characterized in Equation 5 is actually the Total Direct Effect (TDE), while ICE is in fact the Pure
Indirect Effect (PIE). Their relationship satisfy Equation 11. For a more understandable notation,
we use the simpler concepts of ADCE and ICE in the main text to replace TDE and PIE.
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C PROBABILITY OF SUFFICIENCY, NECESSITY AND PROOF

C.1 PROBABILITY OF SUFFICIENCY AND NECESSITY

For two variables X and Y , a sufficient condition is expressed as if X , then Y (X → Y ), implying
that the occurrence of X inevitably leads to Y . Conversely, a necessary condition is expressed as Y
only if X (Y → X), indicating that the occurrence of Y presupposes the prior existence of X .

We interpret above concepts from the probabilistic perspective, the Probability of Necessity (PN) and
the Probability of Sufficiency (PS) (Pearl et al., 2000). PN measures that quantifies the relationship
between two boolean variables X and Y , defined as PN(x, y) := P (y′x′ |x, y). Here, y′x′ represents
the counterfactual value of Y = y′ had X been set to a different value x′. By conditioning on both
X = x and Y = y, this measure reflects the likelihood of observing a different outcome in the
absence of the event X = x. On the other hand, PS is defined as PS(x, y) := P (yx|x′, y′), which
measures the probability that X = x results in Y = y.

Since PN and PS cannot be estimated through observational data unless Y is monotonic with respect
to X (Tian & Pearl, 2000). Therefore, we assume monotonicity of Y with respect to X and express
PN and PS in computable forms as follows (Tian & Pearl, 2000; González & Nori, 2024):

δPN =
P(Y = y)− P(Y = y|do(X = x′))

P(X = x, Y = y)
, (12)

δPS =
P(Y = y|do(X = x))− P(Y = y)

P(X = x′, Y = y′)
. (13)

The monotonicity assumptions and equations provide the foundation for the proof of Theorem 1.

C.2 THE PROOF DETAILS

In this section, we provide the proof details of Theorem 1.

Theorem 2. (Restatement of Theorem 1) Let T be the treatment variable in Equation 2 and Ŷ the
outcome of the indicator function in Equation 5. Assume Ŷ is monotonic with respect to T , for DCE,
it holds that:

δDCE =
α

2
· δPS +

β

2
· δPN (14)

where α := P(Ŷ = 1|T = 1, s(T = 1)), β := P(Ŷ = 0|T = 0, s(T = 0)).

Proof. We first define two binary variables as: Let T be the treatment variable in Equation 2

T =

{
0 intervention alters si, preserves di
1 intervention alters both si and di

and Ŷ the outcome of the indicator function in Equation 5.

Ŷ =

{
0 if Y post = Y pre

1 if Y post ̸= Y pre

where Y post is the potential outcome after intervention.

Following assumptions in (Tian & Pearl, 2000; González & Nori, 2024), if Ŷ is monotonic with
respect to T , then PN and PS can be computed and represented as follows:

δPN(T = 0, Ŷ = 0) =
P(Ŷ = 0)− P(Ŷ = 0|do(T = 1))

P(T = 0, Ŷ = 0)
=

P(Ŷ = 0)− P(Ŷ = 0|T = 1)

P(T = 0, Ŷ = 0)
,

δPS(T = 0, Ŷ = 0) =
P(Ŷ = 0|do(T = 0))− P(Ŷ = 0)

P(T = 1, Ŷ = 1)
=

P(Ŷ = 0|T = 0)− P(Ŷ = 0)

P(T = 1, Ŷ = 1)
.

Notably, since there is no confounders between T and Ŷ , P(Ŷ |do(T = t)) = P(Ŷ = 0|T = t)
(Pearl et al., 2000; Srihari, 2021).

According to the causal graph with mediation in Figure 3, the intervention T on inputs x directly
determines the state of the surface structure s, i.e.,
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• When T = 1, it necessarily leads to s(T = 1);
• When T = 0, it necessarily leads to s(T = 0).

Therefore, we have

P(Ŷ |T = t, s(T = t)) =
P(Ŷ , T = t, s(T = t))

P(T = t, s(T = t))

=
P(s(T = t)|Ŷ , T = t)

P(s(T = t)|T = t)

P(Ŷ , T = t)

P(T = t)

= P(Ŷ |T = t)

Therefore, we can simplify the ADCE expression without explicitly including s, e.g., simplify
P(Ŷ = 1|T = 1, s(T = 1)) as P(Ŷ = 1|T = 1)

Then, the ADCE in Equation 5 can be redefined as

δ̂ADCE = P(Ŷ = 1|T = 1, s(T = 1))− P(Ŷ = 1|T = 0, s(T = 0))

= P(Ŷ = 1|T = 1)− P(Ŷ = 1|T = 0)

= P(Ŷ = 0|T = 0)− P(Ŷ = 0|T = 1)

= δPS(T = 0, Ŷ = 0) · P(T = 1, Ŷ = 1) + δPN(T = 0, Ŷ = 0) · P(T = 0, Ŷ = 0).

With the experiment setup that P(T = 1) = P(T = 0) = 1
2 , we obtain

δ̂ADCE =
P(Ŷ = 1|T = 1)

2
· δPS +

P(Ŷ = 0|T = 0)

2
· δPN.

Here, we omit (T = 0, Ŷ = 0) in PS and PN terms for simplicity.

D THE ALGORITHM OF ADCE

Algorithm 1 provides the detailed algorithmic steps required to estimate ADCE, which includes
the following: First, we perform initial inference on the full dataset to select samples with correct
answers. Then, for these correctly answered samples, we apply interventions using two strategies:
Masking and Rephrasing. Finally, we conduct a second round of inference on the intervened samples
and calculate ADCE based on the inference results.
Algorithm 1: Approximated Direct Causal Effect (ADCE) Estimation in LLMs
Input: Dataset D = {xi, yi}ni=1, LLM fθ, intervention strategy I
Output: Estimated ADCE

1 Stage 1: Initial Inference on Full Data
2 Dc ← {xi ∈ D : fθ(xi) = yi} // Collect correctly answered samples
3 Ypre ← fθ(Dc) // Original Outcome

4 Stage 2: Generate Intervention Data (Alg. 2)
5 DT=1,DT=0 ←MI(Dc)

6 Stage 3: Re-Inference on Intervention Data
7 for i ∈ {0, 1} do
8 Y (T = i, s(T = i))← fθ(DT=i) // Potential Outcomes for TE and AICE
9 end

10 Stage 4: Estimate ADCE via Equation 5
11 return Estimated ADCE

E EXPERIMENTS ON SYNTHETIC DATA

In this section, we validate our proposed framework using synthetic data where true causal effects
can be calculated to evaluate the effectiveness of ADCE and AICE. We base our synthetic data on
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(a) Unnormalized Causal Effects
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(b) Normalized Causal Effects
Figure 11: Comparison of True Causal Effects (True CE of d and s) and Approximated Causal Ef-
fects (Approximated CE of d and s i.e., ADCE and AICE) on synthetic data. With known true causal
effects, both the true and approximated causal effects of d and s on the model’s output demonstrate
consistent trends. The differences in causal effects between d and s also show similar patterns. After
normalization, the true causal effects and approximated causal effects align more closely.

the simplified causal graph shown in Figure 3, which represents real scenarios. Our model considers
four key variables: input x, deep structure d, surface structure s and outputs y. The synthetic data
we generate adheres to the causal graph presented in Figure 10 and follows the Structural Causal
Models (SCM) (Pearl, 2009) described as follow.

x ∼ N (0, 1), d = x+ ϵd, s = x+ ϵs. (15)

y =

{
1, if σ(c1 · d+ c2 · s+ ϵy) > 0.5

0, otherwise
(16)

where we consider an independent small noise ϵd ∼ N (0, 0.25) and ϵs ∼ N (0, 0.25). And the
independent noise ϵy ∼ N (0, 1) and σ(·) is Sigmoid function. c1 and c2 are weight parameters
for d and s, respectively. Analogously, larger c1 (or c2) indicate more prominent deep (or surface)
structure signals in inputs. Equations 15 and 16 are simplification of the true causal graph shown in
Figure 3 which reduces d, s, and x to scalars and assumes they exhibit simple linear relationships.
Despite simplification, this SCM retains the key causal relationships in Figure 3, where x’s effect on
is mediated through two paths: x→ d→ y and x→ s→ y.

Then, we generate the training data and train a logistic regression f with explicit functions and
parameters, ensuring clear model’s dependencies on d and s for outputs. Explicit functions and pa-
rameters enable direct computation of true causal effects for ADCE and AICE validation. Specially,
we generate 100000 training samples for model f , defining true causal effects of f ’s dependence on
d and s as their respective average marginal effects (AMEs) (Schennach et al., 2007; Breen et al.,
2018; Aguirregabiria & Carro, 2024). AMEs represent average output changes when only d or s
increases by one unit. Via predictiong on 10000 test samples, we compute (1) TE in Equation 5 by
setting d = 0 and s′ = s + ϵs′ where ϵs′ ∼ N (0, 0.25), (2) AICE in Equation 5 by setting s = s′

where we use the same s′ in TE and (3) ADCE in Equation 5 by calculating ADCE = TE− AICE.

Figure 11(a) shows how true causal effects of s and d on model output change as d’s weight c1
increases. As c1 rises, the logistic model’s more dependent on deep structure for outputs with in-
creased d’s true causal effect and decreased s’s true causal effect. The estimated versions, ADCE
and AICE, follow similar trends, validating their effectiveness. Figure 11(a) also displays the dif-
ference between d and s causal effects. The estimated difference aligns with the true difference,
supporting our comparative results in Section 4.4. Furthermore, true causal effects range from 0 to
0.25, while ADCE spans [−1, 1], hindering direct comparisons. We normalize both causal effects to
[0, 1] for fair comparison in Figure 11(b). The normalized estimates align closely with true effects,
with difference curves align more closely, further validating ADCE and AICE.

F DATASETS AND MODELS

F.1 DETAILS OF GENERATING INTERVENTION DATASETS: METHOD AND DATA SIZE

F.1.1 INTERVENTION METHOD

In this section, we first outline the detailed process for generating the intervention data required for
computing TE and ICE in Algorithm 2.
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Algorithm 2: Intervention Data Generation MethodM
Input: Correctly answered samples Dc = {(xi, yi)}, LLM fθ, intervention strategy I, and

LLM agent C
Output: Intervention datasets DT=1, DT=0

1 for (x, y) ∈ Dc do
2 if I = Mask then // Generate (T = 1, s(T = 1)) data
3 xT=1 ← MaskCoreSemantics(x)
4 else
5 xT=1 ← RephraseByAgent(x, y, C, “Alter”)
6 DT=1 ← DT=1 ∪ {(xT=1, y)}
7 if I = Mask then // Generate (T = 0, s(T = 0)) data
8 tokens← GetNonCoreSemanticTokens(x)
9 nearestTokens← GetKNearestTokens(tokens,xT=1, k)

10 xT=0 ← MaskTokens(x, nearestTokens)
11 else
12 xT=0 ← RephraseByAgent(xT=1, y, C, “Preserve”)
13 DT=0 ← DT=0 ∪ {(xT=0, y)}
14 return DT=1,DT=0

We then provide more details on the intervention data generation according to different strategies.

The Mask Strategy. For 2-Digit Multiplication, GSM8k, and Word Unscrambling tasks, we employ
the Mask strategy to construct the corresponding intervention data. We establish specific intervention
word pool for each task, where intervening on words specified in these words results in disruption
of the core semantics (i.e., deep structure). The post-intervention samples are used to calculate TE
in Equation 5. Conversely, intervening on words outside these rules only causes surface structure
changes, and the resulting samples are used to compute AICE in Equation 5. Intervening on words
specified in the intervention word pool leads to changes in the deep structure of inputs. In our
experiments, we select one word at a time from the pool of candidate words and replace it with
<Mask>. For ICE, when masking words outside the intervention word pool, we consider the nearest
non-semantic word for masking based on the word masked in TE, i.e., k = 1.

• 2-Digit Multiplication: We apply the Mask strategy to all numerical digits and the multiplication
operator (times) to induce changes in the core semantic structure. Conversely, masking any tokens
other than digits and the multiplication operator is regarded as altering only the surface structure.

• GSM8k: For the GSM8k task, we define an intervention word pool that, when masked, alters
the core semantic structure. This pool encompasses all numerical digits and the following lexical
items representing mathematical operations and other numerical representations: {zero, one, two,
three, four, five, six, seven, eight, nine, ten, eleven, twelve, thirteen, fourteen, fifteen, sixteen,
seventeen, eighteen, nineteen, twenty, thirty, forty, fifty, sixty, seventy, eighty, ninety, hundred,
thousand, million, billion, times, minus, plus, divided, multiplied, dozen, twice}. The intervention
strategy is designed to guarantee that every instance in the dataset undergoes a significant semantic
transformation through the masking of one critical term from the given intervention word pool.

• Word Unscrambling: For the Word Unscrambling task, the question template is consistently struc-
tured as The word X is a scrambled version of the English word, where X represents the scrambled
word (e.g., X=hte for the, X=adn for and). We determine that masking the third position word
(i.e., X) alters the core semantic structure. Correspondingly, when k = 1, masking either word or
is only modifies the surface structure.

The Rephrase Strategy. We select claude-3-5-sonnet model as the LLM agent for para-
phrase generation and define a set of templates with different utilities. Note that these templates can
be customized for different tasks, which contribute to the versatility of the proposed intervention
framework in intervening natural language datasets. The detailed rephrasing framework is depicted
in Algorithm 3, which generally includes three steps: paraphrase generation, generation check, and
feedback saving. First, according to the rephrasing target T , the framework constructs prompt
based on the appropriate template from Table 4. The prompt will then be sent to the LLM agent for
rephrasing, with paraphrase x′ as the output. Next, we ask the agent to predict the label of x′. If the
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prediction matches the expectation, we break and return the generated text. Otherwise, we record
the generated text and send feedback to LLM for the next generation. The whole process will be
repeated until the agent generate the desired paraphrase.3 The examples of generated paraphrases
are listed in Table 3.
Table 3: Examples of generated paraphrases of CommonsenseQA and Analytic Entaiment datasets
using Claude-3.5-Sonnet API. We carefully design our intervention strategy to ensure that s(T = 1)
and s(T = 0) are as similar as possible, in order to satisfy the approximation.

Dataset State Text

CommonsenseQA

Origin What do people aim to do at work? A: complete job
T = 1, s(T = 1) What do people primarily aim to do during work breaks? A: talk to each other
T = 0, s(T = 0) What do people primarily aim to do during overtime hours? A: complete job
Origin What do people typically do while playing guitar? A: singing
T = 1, s(T = 1) What do people typically avoid doing while playing guitar? A: cry
T = 0, s(T = 0) What do people typically do simultaneously while playing guitar? A: singing
Origin After he got hired he hoped for success at his what? A: new job
T = 1, s(T = 1) After he got hired as a volunteer, he hoped for success at his what? A: vocation
T = 0, s(T = 0) After he got hired as an employee, he hoped for success at his what? A: new job
Origin Where would a person be doing when having to wait their turn? A: stand in line
T = 1, s(T = 1) Where would a person likely be if they didn’t have to wait their turn? A: sing
T = 0, s(T = 0) Where would a person likely be if they had to wait their turn? A: stand in line
Origin Where is a doormat likely to be in front of? A: front door
T = 1, s(T = 1) Where is a doormat least likely to be placed in front of? A: facade
T = 0, s(T = 0) Where is a doormat most likely to be placed in front of? A: front door

Analytic Entailment

Origin Sarah has a pet. So Sarah has a dog. A: no-entailment
T = 1, s(T = 1) Sarah has a dog. So Sarah has a pet. A: entailment
T = 0, s(T = 0) Sarah has a dog. Sarah has a car. A: no-entailment
Origin Wendy has zero kids. So Wendy has a number of kids. A: no-entailment
T = 1, s(T = 1) Wendy has zero kids. So Wendy is childless. A: entailment
T = 0, s(T = 0) Wendy has zero kids. So Wendy is not childless. A: no-entailment
Origin Richard yelled at Ethan. Therefore Richard yelled. A: entailment
T = 1, s(T = 1) Richard yelled at Ethan. Therefore, Ethan yelled. A: no-entailment
T = 0, s(T = 0) Richard yelled at Ethan. Therefore, Ethan was yelled at. A: entailment
Origin Tom is George’s grandfather. So, George is a descendant of Tom’s. A: entailment
T = 1, s(T = 1) Tom is George’s grandfather. So, George looks up to Tom. A: no-entailment
T = 0, s(T = 0) Tom is George’s grandfather. So, George is Tom’s grandson. A: entailment
Origin The tabletop is square. So, the tabletop is rectangular. A: entailment
T = 1, s(T = 1) The tabletop is square. So, the tabletop is large. A: no-entailment
T = 0, s(T = 0) The tabletop is square and large. So, the tabletop is large. A: entailment

F.1.2 INTERVENTION DATA SIZE

In this section, we introduce the sample sizes before and after intervention.

• 2-Digit Multiplication: For the two-digit multiplication problem, the original dataset comprised
1000 samples. Following Algorithm 2, we perform interventions on correctly answered samples
with accuracy α for each LLM fθ. For each sample, we generate two intervention groups with
Mask strategy: first synthesizing one sample with altered core semantics (deep structure), then
based on this, synthesizing another with only surface structure changes. This process is repeated
twice, resulting in 4 intervention samples per original sample: 2 with deep structure changes
and 2 corresponding samples with only surface structure changes. In total, for LLM fθ, 4000α
intervention samples are generated (4 per original sample).

• GSM8k: For GSM8k, the original dataset consisted of 1319 samples. Following Algorithm 2,
we conduct interventions on correctly answered samples for each LLM fθ with accuracy α. For
each sample, we also generate two intervention groups with Mask strategy: first synthesizing one
sample with altered core semantics (deep structure), then generating another with only surface
structure changes based on this. This process is repeated twice, yielding 4 intervention samples
3In practice, we set the maximal iteration number as 10 to avoid prohibitive long context.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Algorithm 3: RephraseByAgent
Input: Text x, label y, rephrasing target T , and LLM agent C
Output: x′

1 if T = “Alter” then // Generate prompt for paraphrase
2 prompt← Table 4.Template 1
3 else
4 prompt← Table 4.Template 2
5 chatHistory = prompt.format(x) // Insert questions, options and the

answer inside the placeholders
6 selfCheckFlag = False
7 repeat
8 x′ ← C(chatHistory); // Step 1: Generation
9 predictionPrompt← Table 4.Template 3

10 y′ ← C(predictionPrompt.format(x′)); // Step 2: Self-check
11 if (T = “Alter” and y′ ̸= y) or (T = “Preserve” and y′ = y) then
12 selfCheckFlag← True
13 else
14 chatHistory← chatHistory + x′

15 chatHistory← chatHistory + Table 4.Template 4 ; // Step 3: Feedback

16 until selfCheckFlag = True;
17 return x′

per original sample: 2 with deep structure changes and 2 corresponding samples with only surface
structure modifications. In total, for LLM fθ, 5276α intervention samples are generated (4 per
original sample).

• Word Unscrambling: For Word Unscrambling, we sample 1000 instances from the original full
dataset. Following Algorithm 2, we conduct interventions on correctly answered samples for
each LLM fθ with accuracy α. For each sample, we generate two intervention groups using the
Mask Strategy: first synthesizing one sample with altered core semantics (deep structure), then
generating another with only surface structure changes based on this. This process is performed
once, yielding 2 intervention samples per original sample: 1 with deep structure changes and
1 with corresponding surface structure modifications. In total, for LLM fθ, 2000α intervention
samples are generated (2 per original sample).

• Analytic Entailment: For Analytic Entailment, the original dataset comprise 70 samples. Fol-
lowing Algorithm 2 and Algorithm 3, we conduct interventions on correctly answered samples
for each LLM with accuracy α. For each sample, we apply two intervention groups using the
Rephrase Strategy: first synthesizing one sample with altered core semantics (deep structure),
then generating another with only surface structure changes based on this. This process is re-
peated twice, yielding 4 intervention samples per original sample: 2 with deep structure changes
and 2 with corresponding surface structure modifications. In total, for LLM fθ, 280α intervention
samples are generated (4 per original sample).

• CommonsenseQA: For CommonsenseQA, the original dataset contain 1221 samples. Following
Algorithm 2, we conduct interventions on correctly answered samples for each LLM with accu-
racy α. For each sample, we apply two intervention groups using the Rephrase Strategy: first
synthesizing one sample with altered core semantics (deep structure), then generating another
with only surface structure changes based on this. This process is repeated twice, yielding 4 in-
tervention samples per original sample: 2 with deep structure changes and 2 with corresponding
surface structure modifications. In total, for LLM fθ, 4884α intervention samples are generated
(4 per original sample).

F.2 RANDOM WEIGHTED BASELINE

We employ AutoModelForCausalLM.from_config to load a new model with an model
architecture identical to LLama-3-70b but with randomly initialized weights as our baseline. This
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Table 4: Prompts for automatic causal interventions, where the text in monospaced font can be
tailored to different tasks.

[Template 1] Rephrase & Alter
You are an expert in natural language processing and commonsense
reasoning. Your task is to rephrase the given commonsense question, and then modify
the paraphrase so that the modified question results in a different answer based on the
provided options. The input will be in the form of a dictionary: {‘Question’:‘question’,
‘Options’:[‘option1’, ‘option2’,...], ‘Answer’:‘ans’}, where ‘Question’ is the original
commonsense question, ‘Options’ are the candidate answers, and ‘Answer’ is the original
correct answer. Output only the modified Question without any introductory phrases.
Here is the input: {‘Question’: [QUESTION],‘Options’:[OPTIONS],‘Answer’:[ANSWER]}.
The modified question is:

[Template 2] Rephrase & Preserve
You are an expert in natural language processing and commonsense
reasoning. Modify the keywords with minimal word changes in the ‘Question’ to ensure
the given ‘Answer’ is the most fitting answer to the modified result among the ‘Options’. The
input is in the form of a dictionary: {‘Question’:‘question’, ‘Options’:[‘option1’, ‘option2’,
...], ‘Answer’:‘ans’}. Output only the modified Question without any introductory phrases.
Here is the input: {‘Question’: [QUESTION],‘Options’:[OPTIONS],‘Answer’:[ANSWER]}.
The modified question is:

[Template 3] Prediction
You are an expert in natural language processing and commonsense
reasoning. Below is a commonsense question along with some answer options. Choose
the correct answer from these options. Your output should only be the answer enclosed in
parenthesis, without any introductory phrases.
Question: [QUESTION][OPTIONS]
Among [INDEX_OF_FIRST_OPT] through [INDEX_OF_LAST_OPT], the answer is

[Template 4] Feedback
The answer to the modified question is different from the original question. Please mod-
ify the question again. Output only the modified Question.

random baseline model is incapable of comprehending the task, let alone making random guesses.
We provide examples of its output as follows:

G FINE-TUNING ON ANALYTIC ENTAILMENT DATASET

G.1 SUPERVISED FINE-TUNING ON ANALYTIC ENTAILMENT DATASET

To fine-tune the llama-based models, we utilize the llama-recipes library4 and train the models
on a cloud server with 2 NVIDIA Tesla A100 GPUs with 80G memory of each. We employ LoRA
(Hu et al., 2022) technique from the peft library5 for memory-efficient training.

For Analytic Entailment dataset, we include the generated paraphrases for training and evaluation.
For each question, we generate two sets of paraphrases as depicted in Appendix F.1, with each set
include one (T = 1, s(T = 1)) sample and (T = 0, s(T = 0)) sample. Based on this, we expanded
our dataset from 70 original samples to a total of 350 samples, with each set comprising one original
sample and four corresponding paraphrases. We then divided these 70 sets for training and testing
with a ratio of 6 : 4. Consequently, we obtained a training set consisting of 210 samples derived from
42 original samples and a test set comprising 140 samples, which were derived from the intervention
on 28 original samples.

We set the batch size to be 20 and set the learning rate to be 0.0003 for both llama-3-8b and
llama-3-70b. For other parameters, we use the default value as defined in the official code from

4https://github.com/meta-llama/llama-recipes
5https://huggingface.co/docs/peft

25

https://github.com/meta-llama/llama-recipes/blob/main/src/llama_recipes/finetuning.py
https://github.com/meta-llama/llama-recipes
https://huggingface.co/docs/peft


1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Table 5: The baseline with random weights maintains the same architecture as LLama-3-70b but
is incapable of comprehending specific problems, let alone making random guesses. Consequently,
both its accuracy and ADCE are zero.

[Task 1] 2-Digit Multiplication:
Input: You are a helpful assistant for arithmetic reasoning. You are required to answer the
following question and answer in the format of ’The answer is’. What is 50 times 20?
Output: MTatual novemberdxanime alqun =filestitutions Riveraixe Nga juego.Note

[Task 2] GSM8k
Input: You are a helpful assistant for arithmetic reasoning. You are required to answer the
following question and answer in the format ’The answer is’. Kyle bought last year’s best-
selling book for $19.50. This is with a 25% discount from the original price. What was the
original price of the book?
Output: ulseries/sys tab ArapDAMAGEestyIILISE Mayboruev ance Signatureappeno

[Task 3] Word Unscrambling
Input: As a linguistics expert, you will be provided with scrambled letters and identify the
correct English word that they can form. Answer in the format ’The unscrambled word is’. The
word hte is a scrambled version of the English word
Output: Sellertheseevilervadirs estruct mparator]]);=¿ maxugas

[Task 4] Analytic Entailment
Input: Determine whether the following pairs of sentences embody an entailment relation or
not. Some people ordered beverages. So no one ordered orange juice.
Output: shortly airline (bodyParservenue Rapids (slugotrab coeffvelocity

[Task 5] CommonsenseQA
Input:You are an expert in natural language processing and commonsense reasoning. Below
is a commonsense question along with some answer options. Choose the correct answer from
these options. Kyle bought last year’s best-selling book for $19.50. This is with a 25% discount
from the original price. What was the original price of the book?
Output: ROSS Residents.radfrom processesSi nouvel Full)[PIE()” DVD=centeryyy

llama-recipes library. We train the models until convergence, and both llama-3-8b and
llama-3-70b converge within 200 steps.

G.2 MORE POST TRAINING STRATEGIES

In this section, we have expanded our analysis to include two additional post-training approaches:
Instruction Fine-Tuning (IFT) (Wei et al., 2021) and Fine-Tuning with In-Context Learning (FTICL)
(Anil et al., 2022). We’ve also analyzed the In-Context Learning (ICL) (Brown, 2020) method,
due to its effectiveness in harnessing the models’ inherent abilities to comprehend and produce
responses, as well as its popularity within the NLP community. Following the experimental setting
in Section 4.3, we also consider Llama-3-8b on the Analytic Entailment task. Specifically, for IFT,
we augment each input text with the following template:
Table 6: The prompt for IFT. We consider the performance of LLama-3-8b on the Analytic Entail-
ment task.

Template for IFT
As an expert in linguistic entailment, you will be provided with two sentences and determine if
there is an entailment relationship between sentence 1 and sentence 2. An entailment relation-
ship exists when the truth of sentence 1 guarantees the truth of sentence 2.
Sentences: [INPUT]
Relation: (entailment or no-entailment):

Here, [INPUT] will be replaced by the input text. In addition to the instructions used in IFT, for
FTICL, we incorporate two examples with corresponding ground truth into the template:
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Table 7: The prompt for FTICL. We consider the performance of LLama-3-8b on the Analytic
Entailment task.

Template for FTICL.
As an expert in linguistic entailment, you will be provided with two sentences and determine if
there is an entailment relationship between sentence 1 and sentence 2. An entailment relation-
ship exists when the truth of sentence 1 guarantees the truth of sentence 2.
Sentences: [INPUT]
Relation: (entailment or no-entailment):
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Figure 12: SFT on LLama-3-8b
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Figure 13: SFT on LLama-3-70b

Figure 14: Introducing spurious correlations into the initially unbiased LLama-3 series through fine-
tuning, with spurious level nmajority = 100

For ICL, we utilize the same sample template as in FTICL. The key difference is that ICL does not
involve finetuning the models; instead, it employs this template solely for evaluation purposes. The
results are provided below:
Table 8: Comparison of different metrics across various training stages. We consider the perfor-
mance of LLama-3-8b on the Analytic Entailment task.

Metric Pre-training SFT IFT FTICL ICL

Accuracy 0.457 0.743 0.800 0.786 0.771
ADCE -0.071 0.318 0.478 0.533 0.455

We find that various post-training strategies and ICL all lead to improvements in both model accu-
racy and deep structure understanding ability (ADCE). Moreover, FTICL and IFT, which consider
both prompt engineering and parameter optimization, yield greater gains compared to SFT, which
only focuses on parameter optimization, or ICL, which only utilizes prompts.

H EXPERIMENTAL DETAILS ON SPURIOUS CORRELATION

Construction of Spurious Correlation Data. We initially sample from Civilcomments to construct
training datasets with varying degrees of spurious correlations. The sampling procedure selects 2500
extreme samples with toxicity probability > 0.8 and containing identity, assigning label 1 (toxic),
and 2500 extreme samples with toxicity probability < 0.2, assigning label 0 (non-toxic) for the
majority group with spurious correlations. For the minority group without spurious correlations, we
select samples with toxicity probability > 0.5 and no identity, assigning label 1, and samples with
toxicity probability < 0.5 and containing identity, assigning label 0. We adjust the proportion of the
majority group while maintaining a total sample size of 4526. For instance, a 50% majority group
implies 2263 samples each in the majority and minority groups. We consider four settings with
increasingly spurious correlations level, where nmajority accounts for 50%, 70%, 90%, and 100% of
the total samples. For the test data, after sampling the training set, we apply the same sampling rules
to the remaining population. We select 200 samples each from the majority and minority groups
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Table 9: Values of Accuracy, ADCE, and AICE for different noise levels η on data with text noise.

η Accuracy ADCE AICE

0 0.710 0.733 0.264
0.2 0.497 0.681 0.319
0.5 0.201 0.550 0.448
0.7 0.093 0.438 0.556
0.9 0.031 0.444 0.556

Table 10: Values of Accuracy, ADCE, and AICE for different noise levels η on data with label noise.

η Accuracy ADCE AICE

0 0.710 0.733 0.264
0.2 0.497 0.681 0.319
0.5 0.201 0.550 0.448
0.7 0.093 0.438 0.556
0.9 0.031 0.444 0.556

within this population. We then employ the rephrase method proposed in Algorithm 3 to construct
intervention data for accuracy and DCE.

Fine-tuning on Spurious Correlation Data. We set the batch size to be 50, and set the learning rate
to be 0.001 and 0.0003 for llama-3-8b and llama-3-70b, respectively. For other parameters,
we use the default value as defined in the official code from llama-recipes library. We train the
models until convergence. In all training cases, the models converge within 250 steps.

I EXPERIMENTS ON NOISY DATA

In this section, we extend our experiments to NLP tasks with noisy data. We consider two scenarios:
text noise (Belinkov & Bisk, 2017; Karpukhin et al., 2019; Wei & Zou, 2019) and label noise (Garg
et al., 2021; Wu et al., 2023). For demonstration, we use the 2-digit Multiplication dataset and
LLama-3-8b model as an example.

Text Noise. For each word in the input text, we randomly apply one of three noise-adding methods:
a) Typo: Replace a random character with a random lowercase letter. b) Extra: Insert a random
lowercase letter at a random position. c) Missing: Delete a random character. We gradually increase
the noise level η. For instance, η = 0.9 means each word has a 90% probability of modification,
indicating higher text corruption. Experimental results are as shown in Table 9.

We find that as η increases, both ADCE and accuracy decrease, while AICE increases. It possible
that noise likely disrupts deep structural information, forcing the model to depend on more accessi-
ble, surface-level information. This shift results in lower ADCE and higher AICE.

Label Noise. For the 2-digit Multiplication multiple-choice dataset, we randomly select an incorrect
answer as the new correct answer. And the noise level η = 0.9 means 90% of sample labels are
modified. Experimental results are as shown in Table 10.

We observe that ADCE and AICE are more robust to label noise than accuracy, showing no signifi-
cant changes as noise increases. Possible reasons are (1) ADCE and AICE evaluations are based on
correctly answered questions, potentially filtering out mislabeled samples before intervention. (2)
Crucially, ADCE and AICE measure relative changes in model outputs pre- and post-intervention,
not label accuracy as stated in Equation 5. Thus, they effectively reflect LLMs’ reliance on deep or
surface structures, even with label noise, provided the model shows consistent relative differences
pre- and post-intervention.
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https://github.com/meta-llama/llama-recipes/blob/main/src/llama_recipes/finetuning.py
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