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ABSTRACT

Bi-level optimization plays a key role in a lot of machine learning applications.
Existing state-of-the-art bi-level optimization methods are limited to smooth or
some specific non-smooth lower-level problems. Therefore, achieving an efficient
algorithm for the bi-level problems with a generalized non-smooth lower-level
objective is still an open problem. To address this problem, in this paper, we
propose a new bi-level optimization algorithm based on smoothing and penalty
techniques. Using the theory of generalized directional derivative, we derive new
conditions for the bilevel optimization problem with nonsmooth, perhaps non-
Lipschitz lower-level problem, and prove our method can converge to the points
satisfying these conditions. We also compare our method with existing state-of-
the-art bi-level optimization methods and demonstrate that our method is superior
to the others in terms of accuracy and efficiency.

1 INTRODUCTION

Bi-level optimization (BO) (Bard,|2013;|Colson et al., 2007) plays a central role in various machine
learning applications including hyper-parameter optimization (Pedregosal, 2016; Bergstra et al.|[2011
Bertsekas| [1976)), meta-learning (Feurer et al.| 2015} [Franceschi et al.,[2018; Rajeswaran et al., 2019),
reinforcement learning (Hong et al.l |2020; Konda & Tsitsiklis|, [2000). It involves a competition
between two parties or two objectives, and if one party makes its choice first it will affect the optimal
choice for the other party. Several approaches, such as Bayesian optimization (Klein et al.,[2017)),
random search (Bergstra & Bengiol 2012}, evolution strategy (Sinha et al., 2017)), gradient-based
methods (Pedregosa, 2016 Maclaurin et al., 2015} Swersky et al.l 2014), have bee proposed to solve
BO problems, among which gradient-based methods have become the mainstream for large-scale BO
problems.

The key idea of the gradient-based method is to approximate the gradient of upper-level variables,
called hypergradient. For example, the implicit differentiation methods (Pedregosa, |2016; Rajeswaran
et al.,[2019) use the first derivative of the lower-level problem to be O to derive the hypergradient.
The explicit differentiation methods calculate the gradient of the update rules of the lower-level based
on chain rule (Maclaurin et al., 2015} [Domke, [2012; [Franceschi et al., [2017; |Swersky et al., [2014)
to approximate the hypergradient. Mehra & Hamm| (2019) reformulate the bilevel problem as a
single-level constrained problem by replacing the lower level problem with its first-order necessary
conditions, and then solve the new problem by using the penalty method. Obviously, all these methods
need the lower-level problem to be smooth.

However, in many real-world applications, such as image restoration (Chen et al.; Nikolova et al.|
2008)), variable selection (Fan & Li,[2001;Huang et al.l 2008;|Zhang et al.,[2010) and signal processing
(Bruckstein et al., 2009), the objective may have a complicated non-smooth, perhaps non-Lipschitz
term (Bian & Chen, [2017). Traditional methods cannot be directly used to solve the bilevel problem
with such a lower-level problem. To solve the BO problems with some specific nonsmooth lower-level
problems, researchers have proposed several algorithms based on the above-mentioned methods.
Specifically, Bertrand et al.|(2020) searched the regularization parameters for LASSO-type problems
by approximating the hypergradient from the soft thresholding function (Donoho,|1995; Bredies &
Lorenz, 2008} [Beck & Teboullel [2009). [Frecon et al.| (2018)) proposed a primal-dual FMD-based
method, called FBBGLasso, to search the group structures of group-LASSO problems. |Okuno et al.
(2021)) used the smoothing method and constrained optimization method to search the regularization
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Table 1: Representative gradient-based bi-level optimization methods.

Method Reference Problem Method type
FMD Franceschi et al. (2017) Smooth Bi-level
RMD Franceschi et al.| (2017) Smooth Bi-level
Approx Pedregosal (2016) Smooth Bi-level
Penalty |Mehra & Hamm|(2019) Smooth Single-level
FBBGL Frecon et al.| (2018) | Group LASSO | Bi-level
SparseHO | |Bertrand et al.|(2020) | LASSO-type |Bi-level
SMNBP Okuno et al.| (2021) p-norm Single-level
SPNBO | Ours Generalized | Single-level

parameter of g-norm (0 < ¢ < 1) and provided the convergence analysis of their method. We
summarize several representative methods in Table[I] Obviously, all these methods and their theoretic
analysis only focus on some specific problem and can not be used to solve the bilevel problem with
a generalized nonsmoothed lower-level problem. Therefore, how to solve the BO problem with
a generalized non-smooth lower-level objective and obtain its convergence analysis are still open
problems.

To address this problem, in this paper, we propose a new algorithm, called SPNBO, based on
smoothing (Nesterov, [2005; [Chen et al.| |2013)) and penalty (Wright & Nocedal, |1999) techniques.
Specifically, we use the smoothing technique to approximate the original non-Lipschitz lower-level
problem and generate a sequence of smoothed bi-level problems. Then, a single-level constrained
problem is obtained by replacing the smoothed lower-level objective with its first-order necessary
condition. For each given smoothing parameter, we propose a stochastic constraint optimization
method to solve the single-level constrained problem to avoid calculating the Hessian matrix of
the lower-level problem. Theoretically, using the theory of generalized directional derivative, we
derive new conditions for the bilevel optimization problem with nonsmooth, perhaps non-Lipschitz
lower-level problem, and prove our method can converge to the points satisfying these conditions.
We also compare our method with several state-of-the-art bi-level optimization methods, and the
experimental results demonstrate that our method is superior to the others in terms of accuracy and
efficiency.

Contributions. We summarize the main contributions of this paper as follows:
1. We propose a new method to solve the non-Lipschitz bilevel optimization problem based on
the penalty method and smoothing method. By using the stochastic constraint method, our

method can avoid calculating the Hessian matrix of the lower-level problem, which makes
our method a lower time complexity.

2. Based on the Clarke generalized directional derivative, we propose new conditions for the
bilevel problem with a generalized non-smoothed lower-level problem. We prove that our
method can converge to the proposed conditions.

2 PRELIMINARIES

2.1 FORMULATION OF NON-SMOOTH BI-LEVEL OPTIMIZATION PROBLEM

In this paper, we consider the following non-smooth bi-level optimization problem:
m}in flw*, X)) s.t. w* € argming(w, ) + exp(A)(h(w)), (1)
where X := [A1, A2, -+, AT € R™, X = [Ag, -+, \]T and w € RY. f : RY x R™ — R and

g : RY x R™ R are twice continuously differentiable on w and A. ¢(-) : R™ + R is twice
continuously differentiable. h(-) : R? — R™ is continuous, not necessarily convex, not differentiable,

or even not Lipschitz at some points. Assume h(w) := (hy(DTw), ho(D¥w),--- , h,(DIw)),
where D; € R and h; : R — R (i = 1,2, --- ,n) is continuous. For a fixed point 10, assume
we have an index set Zg = {i € {1,2,--- ,n} : h; is not Lipschitz continuous at DI} and if

i & Tz, h; is twice continuously differentiable.
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2.2 EXAMPLES OF NON-SMOOTH NON-LIPSCHITZ LOWER-LEVEL PROBLEMS

The non-smooth non-Lipschitz optimization problems widely exist in image restoration (Chen et al.;
Nikolova et al., [2008)), variable selection (Fan & Li,2001; [Huang et al.,[2008; Zhang et al.l 2010) and
signal processing (Bruckstein et al.,|2009). Here, we give two examples as follows.

1. l,-norm (Chen et al.; 2013): min,, g(w, A) + exp(A1) Z?Zl |w; [P, where p € (0, 1].
2. OSCAR penalty (Bondell & Reich, 2008): miny g(w,A) + exp(\)||w|: +

exp(A) D, ; max{wg,, wg, }, where G; denotes the group index.

Note that/Okuno et al.|(2021) only considered the bilevel problem with the lower-level problem given
in Example 1. Their theoretical analysis is not suitable for the problem in Example 2 or even more
complicated formulation.

3 PROPOSED METHOD

In this section, we give a brief review of the smoothing method and then propose our stochastic
gradient algorithm based on the penalty method and single-level reduction method to solve the bilevel
problem.

3.1 SMOOTHING TECHNIQUE

Here, we give the definition of smoothing function (Nesterov, 2005} |Chen et al., [2013; Bian & Chen,
2017) which is widely used in nonsmooth non-Lipschitz problems.

Definition 1. Let ) : R? s R be a continuous nonsmooth, non-Lipschitz function. We call
¥ 1 R x [0, 4+00] = R a smoothing function of , if (-, i) is twice continuously differentiable for
any fixed (1 > 0 and Mg, 0 Y (W, 1) = (w) holds for any w € R<.

Here, we give two examples of smoothing functions. The smoothing function of ¢ (w) = Z?Zl |w;]
is by (w, ) = 2 (w? + p2)'/? and the smoothing function of 1 (w) = 3
~ 1

ba(w, 1) = 3 5 (V(wi - ws)? + 12 4/ (wi — wy)? + ).

According to Definition[T} the non-smooth lower level problem in problem (I)) could be approximated
by using a sequence of the following parameterized smoothing functions,

i<j max{w;, w;} is

w* = argngng(w X) + exp(A)e(h(w, u*)) @

where ¥ > 0 is the smoothing parameter and h(w, ) =
(hl(D{wv ,uk)7 hQ(Dgw7 ﬂk)7 Tt hn(‘Drj;w7 ﬂk))
For each given smoothing parameter z* > 0, we can replace the smoothed lower-level objective with

its first-order necessary condition and derive the following single-level problem:

mi§\1 fw,A)  s.t.c(w,\;pf) =0, 3)

where c(w, A; %) = Veg(w,A) + exp(A)Vewe(h(w,y*)) and Vee(h(w, y*)) =
w/(z)z:h(w,pk)vwh(wvﬂk)‘

3.2 STOCHASTIC CONSTRAINT GRADIENT METHOD

In this subsection, we discuss our method to solve the subproblem (E]) Obviously, we can use the
gradient method to solve its corresponding penalty function to solve the single-level constrained
problem. However, calculating the gradient of the penalty functions needs to calculate the Hessian
matrix. If the dimension of w, calculating the Hessian matrix is very time-consuming. To solve this
problem, we introduce a stochastic layer into the constraint such that we only need to calculate the
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Algorithm 1 Smoothing and Penalty Method for Non-Lipschitz Bi-level Optimization (SPNBO)

Input: K, pt, 8%, 6,,0. € (0,1).
Output: w*+! and A*+1,
1: fork=1,...,Kdo

2 Find (w*T!, AP pF ) i= ming, a max e pa L(w®, A7, p*, 1) using the SCG method.
3 prtt =4,k

4: et = §eep.

5: end for

gradient of the sampled element of the constraint. Specifically, we reformulate the subproblem (3)) as
the following minimax problem

d
. T
mip max £(w, A, p, i) = f(w, ) + 8> picd(w, X p) — Z|pll, 4)

w,A pEAd .
i=1

where 3 > 0, A > 0, p € A? := {p| Z?lei = 1&0 < p; < 1}, ci(w, A; *) denote the
i-th elements of c(w, \; u*). The last term is used to ensure £ is strongly-concave on p. Such a
reformulation is widely used in many methods (Cotter et al.l | 2016; Narasimhan et al.| 20205 Shi et al.|
2022) to solve the constrained problem.

In each iteration, we sample an element w; of w according to distribution p and calculate the
corresponding value of ¢; and its gradient w.r.t w. Then, we can obtain the stochastic gradient of £
w.r.t w as follows,

@wﬁ(’wm At, Pt Mk; ft) vaf(’wm )\t) + Qﬂci(wt, At; ,uk)Vwci(wt, A¢; Mk)~ )

Using the same method, we can obtain the stochastic gradient @Aﬁ(wt, i, Di, ¥ &), Then,

Algorithm 2 Stochastic constraint gradient (SCG)

Input: Y, O Mty At+1,1, At+1,2
Output: w and .
1: Initialize mai,1, M1,2, M1,3, T;'Lt’l, mmz, 'r’ht’g, 1.
2: while Not satisfy the conditions do
3: Wil = Wy — fyAlemtyl.
Wit1 = Wt + e (W41 — we).
At+1 = )\t — ’yAgémt,g.
At+1 = At + ne( A1 — o).
Di+1 = Pa (pt + OA,:;mt,s)-
Pet1 = Pt + Nt (De41 — D).
Sample a constraint according to distribution p.
10:  Calculate the stochastic gradient @wﬁ(wt, ¢, D, 15 &) and @Aﬁ(wt, e, D, 155 Er).
11:  Randomly sample a constraint.
12:  Calculate the stochastic gradient @pﬁ(wt, i, D, 155 Er).
13:  Update my,1, my,2, my 3.
14:  Update 171¢,1, 1i2t,2, 11,3 and clip to [p, b].
15:  Calculate A¢ 1, A2, At 3.
16: end while

Lo R0k

randomly sample another element w;, we can calculate the value of c¢; and obtain the stochastic
gradient of £ w.r.t. p as follows

@pﬁ(wtv)\tapta 1*; &) :dej(C?(wu s 1F) = Apj), (6)

where e; denotes a vector where its j-th element is 1 and other elements are 0. Since p is related to the
value of constraints, sampling constraint according to p helps us find the most violating conditions.

To achieve a better performance, the momentum-based variance reduction method and adaptive
method are also used. Specifically, we calculate the momentum-based gradient estimation w.r.t w, A
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and p as follows,
My = VapL(we, Ao, De, 1¥56) + (1 — agi11) (mt—l,l — Vo l(Wi—1, \i—1, pe—1, 1¥; ft))
myia = VaL(ws, A, pe, 15 6) + (1 — agg11) <mt71,2 — VaL(w;_1, At—hPt—lauk;ft))

m¢3 = @pﬁ(wta )\t,Pt’ﬂk§§t) +(1— at+1,2) (mt—1,3 - @pﬁ(wt—la At—1,Pt—1, #k§§t)>

Then, we calculate the adaptive matrix matrices A;;, A;2 and A, 3 for updating w, A and p,
respectively. Here, we present the calculation of adaptive matrix A; ; as an example. Specifically, we

calculate a second momentum-based estimation 17 1 = d@wﬁ(wt, i, P, 1P €)%+ (1— a)yme_q 1.
Then, we clip each element of 7, 1 into the range of [p, b] and obtain the adaptive matrix A; 1 =

diag (« /clip(thg 1, p, b)) . Note that we can use other method to calculate the adaptive matrices,

such as AdaGrad-Norm (Ward et al.,2020), AMSGrad (Reddi et al.,|[2019), Adam™ (Liu et al., 2020).
Then, we can obtain the update rules as follows,

Wy = wy — YA M1, Wi = Wy + (W1 — wy), (N
D . L TP VIRED VS HO WS W (®)
Prr1=Pa (pe+0A3me3), Pry1 =i+ n(Brir — pr), ©))

where ¥ > 0, ¢ > 0,1; > 0 and Pa(+) denotes the projection onto A9,
Once the following conditions are satisfied,

IVwl(w, X, p, )3 < €, VAL, X p,1")|3 < eh, le(w, X b5 <, (10)
where V,, £ and V5L denote the full gradients £ w.r.t w and A, we enlarge the penalty parameter 3,

and decrease the smooth parameter p*.

The whole algorithm is presented in Algorithm[T]and[2] Note that instead of checking the conditions
in each iteration of SCD, we check the conditions after several iterations to save time.

4 THEORETICAL ANALYSIS

In this section, we discuss the convergence performance of our proposed method (Detailed proofs are
given in our appendix). Here, we give several assumptions which are widely used in convergence
analysis.

Assumption 1. We have E[@zAﬁ(zt-‘rlaPt—‘rl,ﬂk)] = VoL(2041, Prs1, 1F).EVpL (241, Pri1, 1*))] =
vp[;(zt+1>pt+lauk)’ E[Hvzﬁ(thrhthrth) - Vzﬁ(zt+17pt+1aﬂk)H2] < Vg and
E[|VpL(Zt11, Prs1, 17)) = VpL(Zeg1, Pey1, 1F))]2] < V3.

Assumption 2. The function L(w, X, p, u¥) is T-strongly concave on p for any give ¥ > 0.

Assumption 3. The function L(w, \, p, u¥) has a Li-Lipschitz gradient on (w, X, p) for any give
k
w® > 0.

Assumption 4. The smoothing function B(w, ©*) is twice continuously differentiable on w for any
puk>0.
Assumption 5. f is Lipschitz continuous and g is twice Lipschitz continuous w.r.t. w and .

We prove our Algorithm [2]can converge to the points satisfying conditions [I0] Here, we give the
definitions of e-stationary of the constrained problem [3|and minimax problem 4] and then show the
relations between these definitions as follows,

Definition 2. (e-stationary point of the constrained optimization problem.) (w*, \*, a*) is said to
be the e-stationary point of the sub-problem (3)) if the following conditions hold, ||V  f (w*, X*; ) +

Yy @ Ve (w, A3 < &, [[Vaf(w*, X)) + XL, a; Vaci(w*, X5 pub)|3 < e and

Zidzl c2(w*, X*; k) < €2, where av denotes the lagrangian multipliers.

Remark 1. Ler o = p;2c; (w*, X*; u¥). The conditions in Deﬁntion@is equivalent to the tolerance
conditions
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Definition 3. (e-stationary point of the mini-max problem.) (w*, \*,p*) is said to be the e-
stationary point of the mini-max problem if it satisfies the conditions |V, L3 < €2, [|[VAL||3 < €2
and ||V, L3 < €%

Proposition 1. IfAssumptions[Z]and E] hold, (w*, \, p*) is the e-stationary point of the problem ,
then (w*, X\*) is the e-stationary point of the constrained problem

According to|Shi et al.|(2022)), the minimax problemis equivalent to the following minimization
problem:

min {H(w,)\) := max L(w,\,p) = C(w,)\,p*(w,)\)} , (11)

w, pEA™

where p*(w, A) = arg max, L(w, A, p). Here, we give stationary point the minimization problem
and its relationship with Definition [3]as follows,

Definition 4. We call w* an e-stationary point of a differentiable function H(w), if
(IVwH(w*, X*)||2 < eand |[VAH(w*, A*)|2 < e

Proposition 2. Under Assumptions[3|and[2] if (w’, X') is the e-stationary point of H(w, X), then
(w', X', p") is the e-stationary point of min,, x maxpepa L(w, X, p, u*) can be obtained. Cons-
versely, if (w', X', p') is the e-stationary point of miny, x maxpeaa L(w, X, p, u*), then a point
(w', X) is stationary point of H(w, X).

Remark 2. According to Proposition[I|and Proposition[2] we have that once we find the e-stationary

point in terms of Definition[d] then we can get the e-stationary point in terms of Definition[2] Therefore,
we can obtain the points satisfying the tolerance conditions (10).

Before, we give the convergence reuslt of our method, we present the lemma useful in our analysis.
We have

Lemma 1. Under assumptions, let z = [w; A, we have

IVH(2) = my,. |15 <2L3|p* (20) — poll3 + 21 V2L (20, 1, 1) — e,z 3 (12)

Then, we can define the following metric
2

b - *
My, :;Hztﬂ — z||3 + 2L3|1p"(20) — pell3 + 2[V2L(2e, e, 1) — my 2[5 (13)

)

We have
b2 _ 1
My, Zﬁllm — YA imu. — 2|3+ (IVH(2) = mez 3 > Ima:|l3 + IVH(2) — mez |3 > 5 VH(z)

If My, — 0, we have ||VH(z;)||3 — 0. Thus, we can bound M, to find the stationary point of
problem (TT). Then, we give the convergence theorem in the following theorem.

5 2
Theorem 1. Assume Assumptions hold, if a;11,1 = ClT}?,QtJrLQ = 027),52, c1 > 3 + 3—377t, 0<y<
e
3 15 1
V3rop and 0 < o < min{-—, —1}, we have
2¢/12L302K2 + 125 L3 K202 1247 6Ly
T « 22 22 1/3
v 1 (01— ") (m+T)2 (VI +cVy)(m+1T)
= < 1 T 14
4PT;Mt_ Te + pT n(m +T) 14

Remark 3. Theorem|[I|demonstrate that with suitable setting, our method can converge to the points
satisfying the conditions @) at the rate of O(T—2/3) if omitting log.

Then, we discuss the convergence performance of our whole algorithm. Define a new function

5 hi(Df'w) i¢Zg

w T . 7 i w0
hi (Dz w) T {hl(DzT'u_)) ic Iu‘; ) (15)
which is Lipschitz continuous at D¥w, i = 1,2,---,n. Then, we have hg(w) :=
(h®(DTw), h¥ (DT w),--- ,h®(DTw)), which has the same value as h(w) but opposite property.
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For convenience, we define ¢ (w) = ¢(hg(w)) and ¢p(w) = p(h(w)). Besides, we define a vector
set as follows,

Vo ={v:D/v=0,iclz}, (16)

which means that v is perpendicular to all column vectors in D;, i € Z,5. According to|Bian & Chen
(2017), the necessary condition of the non-Lipschitz lower level problem is

Vawg(w*, X)Tv + exp(A1)¢° (w*;v) > 0, (17)
t —
for all v € V,,«, where ¢°(w*;v) = limsup dChs Ut) G denotes the Clarke generalized
tL0

directional derivative of ¢(h(w)) at w*. Replacing the lower-level problem with above condition,
we can obtain the following single-level problem,

min fw,A) st c(w,A) = Veg(w, X)) v + exp(A)¢° (w;v) >0 (18)

for all v € V,,~. For this new problem, we have the following theorem.

Theorem 2. If (w*, \*) satisfy the following conditions, then they are the stationary points of the

problem (I8).

Vo f(w*, ) vy — (v V24, 9(w*, X ) vy + exp(A]) ™ (w*;v1,v2))E" >0,  (19)
>0,

Vaf(w*, X)) vg — (032 59(w*, X*)v1 + v} exp(A])¢° (w*; v1))E* (20)
Vwg(w*, X)) vy 4 exp(A])¢° (w*;v1) > 0, (1)
& (Vwg(w*, X)) vy + Aj¢°(w*;v1)) =0, (22)
& >0, (23)
for all vi € Vi, vo € R vz € R™, where vs = [v3, 9517, v = [v2,--- o7 and
¢°°(w*;v1,v2) = limsup 7w + vys; Usl) — ¢°(wiv1) ). In addition, (v1, va, v3) is direction
w — w*,
510

vector used in calculating the Clarke directional derivative.

Then, we show with decreasing the smoothing parameter and tolerance parameters, our method can
converge to stationary point defined in Theorem [2]in the following theorem.
Theorem 3. Suppose {e; }32, are positive and convergent (limy_; oo €, = 0) sequences, {u*}32 | is

a positive and convergent (limy_, o, 1F = 0) sequence. Then any limit point of the sequence points
generated by SPNBO satisfies the conditions (I9)-(23).

Then, we show the relations between the conditions[T9}23]and the original nonsmooth bilevel problem
(1.

Theorem 4. Assume the lower level problem in problem (1)) is strongly convex. If we have (w*, X*)
and £ > 0 satisfying the conditions —, then (w*, A*) is the stationary point of the original
nonsmooth bilevel problem.

5 EXPERIMENTS

In this section, we conduct experiments to demonstrate the superiority of our method in terms of
accuracy and efficiency.

5.1 EXPERIMENTAL SETUP
We summarize the baseline methods used in our experiments as follows.

1. Penalty. The method proposed in [Mehra & Hamm| (2019). It formulates the bi-level
optimization problem as a one-level optimization problem, and then use penalty method to
solve the new problem.
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Figure 1: Test MSE against training time of all the methods in data re-weight.

2. Approx. The method proposed in |Pedregosal (2016). It solves an additional linear problem
to find the hypergradient to update the hyper-parameters.

3. RMD. The reverse method proposed in |[Franceschi et al.|(2017). An additional loop is used
to approximate the hypergradient.

4. SMINBP. The method proposed in |Okuno et al.| (2021)). It uses the smoothing method to
produce a sequence of smoothing lower-level functions and replaces them with the necessary
condition. Then the penalty method is used to solve each single level problem.

We implement SMNBP, Penalty, Approx, RMD, and our method in Python. Since original Penalty,
Approx and RMD are used for the smoothing problems, we use the smoothing function to approximate
the lower-level problem. We fix the smoothing parameter at 4 = 0.0001 in these methods. In SMNBP,
for each given smoothing parameter, we solve the constrained problem using the Penalty method.
For all these method, we use ADAM to update w and A and choose the initial step size from
{0.1,0.01,0.001}. For our method, we set & = 0.9 and other parameters are set according to
Theorem We choose the penalty parameter from {0.1, 1,10, 100} for our method, SMNBP, and
Penalty. We fix the inner iteration number 7" in Penalty, Approx, and RMD at 10 according to Mehra
& Hamm)|(2019). We summarize the datasets used in our experiments in Table E] and we divide all
the datasets into three parts, i.e., 40% for training, 40% for validation and 20% for testing. All the
experiments are carried out 10 times on a PC with four 1080 Ti GPUs.

5.2 APPLICATIONS

Data re-weight: In this experiment, we evaluate
the performance of all the methods in the application

named data re-weight. In many real-world applica- Table 2: Datasets used in the experiments.

tions, the training set and testing set may have differ-

ent distributions. To reduce the discrepancy between Datasets Features Samples Classes
S . . . . SVHN 32 x32x3 73257 10
the two distributions, each data point will be given an .

" . . L Cifar10 84 x 84 x 3 50000 10
additional importance weight, which is called data re- MNIST 28 % 28 x 1 60000 10
weight. In this application, we search the weight \; FashionMNIST 28 % 28 x 1 60000 10
of each training data and the OSCAR regularization
parameters A and \. This problem can be formulated as

'ua.l
Z xlw*, y;) (24)
expN) g : .
s.t. w* € arg mlnz S exp() )é(mi w,y;) + exp(A)||lw]|1 + exp(N) Zmax{'wgﬁng},
i<j

where Ny, and N,,,; denote the sizes of training set and validation set respectively. {x;, y;} denotes
the data instance, G; denotes the group index. In this experiments, we set the group number equal to
10, and we use the mean squared loss ¢ = (xlw — y;)%.

Training data poisoning: In this experiment, we evaluate the performance of all the methods in

training data poisoning. Assume we have pure training data {wz} 7 with several poisoned points
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Table 3: The test mse of all the methods in data reweight. (Lower is better.)

Datasets SPNBO SMNBP Penalty Approx RMD
Cifar10 2.146 = 0.006  2.147£0.012 2.1474+0.011 2.171£0.004 2.203 £ 0.012
MNIST 1.338 £0.004 1.339+£0.006 1.340+0.007 1.345+0.010 1.412+0.076
FashionMNIST 1.091+£0.011 1.096 £0.020 1.100£0.001 1.104 £0.009 1.097 £ 0.013
SVHN 2138 +0.004 2.176 £0.002 2.184 £0.006 2.142+0.004 2.165 £ 0.002
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Figure 2: Validation loss versus training time of all the methods in training data poisoning.
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{A };V:”i’ assigned arbitrary labels. In this task, we search the poisoned data which can hurt the
performance of the model trained from the clean data. This problem can be formulated as

Nyal

1 *
meNval ;f(@(wi;w ), Yi) st

1
w* € argulgninﬁ Z £0(zi; w), yi) + [Jw]|P,
x, €D

where N = Ny, + Npo; and D denote the dataset containing all the clean training data and poisoned
data. In this experiment, we use Resnet18 as model. Besides, we add a p-norm (0 < p < 1)
regularization term in the lower-level problem to ensure that we can get a sparse model. In this
experiment, we set p = 0.5. After solving the bilevel problem, we retrain the model on the clean data
and poisoned data and then test the model.

Table 4: Test accuracy (%) of all the methods in training data poisoning (lower is better).

Data Approx RMD Penalty SMNBP SPNBO

SVHN 50.79 £0.39 50.67+£0.27 50.67 £0.27 50.62+0.29 48.85 £ 0.57
Cifar10 82.91+0.18 83.25+£0.11 82.29+£0.11 82.57+0.11 82.22+0.28
FashionMNIST  96.09 £0.07 95.89 £0.31 95.87+0.19 96.01 £0.22 95.80 + 0.20
MNIST 80.27£0.25 77.63+0.08 77.43£0.54 77.50+£0.30 77.22+£0.08

5.3 RESULTS AND DISCUSSION

All the results are presented in Tables 3] ] and Figure[T} 2] From Table[3]and Table[d] we can find that
our method has the similar results to other methods. From Figure [I|and Figure 2] we can find that our
method is faster than other methods in most cases. This is because Approx and RMD need to solve
the lower-level objective first and then need an additional loop to approximate the hypergradient
which makes these methods have higher time complexity. Penalty and SMNBP need to use all the
constraints in each updating step which is also time-consuming, when we use complex models (e.g.,
DNN5s), Penalty and SMNBP suffer from high time complexity. However, our method uses the
stochastic gradient method which makes it scalable to complicated models and does not need any
intermediate steps to approximate the hypergradient. From all these results, we can conclude that our
SPNBO is superior to other methods in terms of accuracy and efficiency.

6 CONCLUSION

In this paper, we proposed a new method, SPNBO, to solve the generalized non-smooth non-Lipschitz
bi-level optimization problems by using the smoothing method and the penalty method. We also
give the convergence analysis of our proposed method. The experimental results demonstrate the
superiority of our method in terms of training time and accuracy.
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