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Navigating Beyond Instructions: Vision-and-Language
Navigation in Obstructed Environments

Anonymous Authors

ABSTRACT
Real-world navigation often involves dealing with unexpected ob-
structions such as closed doors, moved objects, and unpredictable
entities. However, mainstream Vision-and-Language Navigation
(VLN) tasks typically assume instructions perfectly align with the
fixed and predefined navigation graphs without any obstructions.
This assumption overlooks potential discrepancies in actual naviga-
tion graphs and given instructions, which can cause major failures
for both indoor and outdoor agents. To address this issue, we in-
tegrate diverse obstructions into the R2R dataset by modifying
both the navigation graphs and visual observations, introducing
an innovative dataset and task, R2R with UNexpected Obstruc-
tions (R2R-UNO). R2R-UNO contains various types and numbers
of path obstructions to generate instruction-reality mismatches
for VLN research. Experiments on R2R-UNO reveal that state-of-
the-art VLN methods inevitably encounter significant challenges
when facing such mismatches, indicating that they rigidly follow
instructions rather than navigate adaptively. Therefore, we propose
a novel method called ObVLN (Obstructed VLN), which includes
a curriculum training strategy and virtual graph construction to
help agents effectively adapt to obstructed environments. Empirical
results show that ObVLN not only maintains robust performance in
unobstructed scenarios but also achieves a substantial performance
advantage with unexpected obstructions. The source code is avail-
able at https://anonymous.4open.science/r/ObstructedVLN-D579.

CCS CONCEPTS
• Computing methodologies→ Computer vision tasks; • In-
formation systems→Multimedia information systems.

KEYWORDS
vision-and-language navigation, embodied agents, object insertion

1 INTRODUCTION
Vision-and-Language Navigation (VLN) [5] requires agents to fol-
low natural language instructions to reach a specified destination.
Recently, there has been a growing interest in this area due to
its great potential for real-world applications such as household
robots, especially with the booming of Large Language Models
(LLMs) [9, 63]. However, current VLN tasks are limited by sev-
eral unrealistic assumptions, making their application remain in
simulators with few real-world robotic deployments [18, 70].

One significant constraint is what we call the “perfect instruc-
tion assumption”, which implies that instructions are always
perfectly aligned with the environment, neglecting real-time dy-
namics like unexpected obstructions. Agents trained under this
assumption excel in following instructions but lack adaptability for
actual navigation where discrepancies between instructions and
reality are commonly seen. For example, as shown in Fig. 1, the
human instructs the agent to “Walk straight down the hall” based on

Instruction: “Walk straight down the hall. Go up 

two steps. Wait at the top of the second step.”

In my memory,

the house is

Panoramic View
obstacle

Instruction Fails?!

Figure 1: Discrepancy between instructions and reality in
real-world navigation. The instructions from humans are
based on prior memory and often can not align with real-
time environments. Current VLN environments overlook
this mismatch, potentially causing navigation failure.

prior knowledge of the house. However, real-world environments
have changed, with unforeseen obstacles like a suitcase blocking
the hallway. While humans can quickly adapt and find detours, cur-
rent VLN agents struggle with these instruction-reality mismatches,
often leading to navigation failures.

To address this issue, it is essential to introduce these discrepan-
cies into VLN. While various factors can lead to such discrepancies,
this work focuses on one of the most representative and prevalent
causes: obstructions. We propose to integrate obstructions into
existing discrete VLN environments to block the path described
by the instruction, resulting in an instruction-reality mismatch.
Notably, although both approaches involve obstructions, our work
differs from previous work on obstacle avoidance [3, 71] in terms
of problem setup, navigation focus, and potential solutions (See
Sec. 2), leading us to choose the discrete setting.

Therefore, we make various modifications to the navigation
graphs and visual observations of the R2R dataset [5], proposing
the R2R with UNexpected Obstructions (R2R-UNO) dataset as the
first VLN task to emphasize the instruction-reality mismatches. At
the graph level, we selectively block edges whose removal does
not impact the overall graph connectivity in existing paths, en-
suring agents can still reach the destination. To keep visual co-
herence with graphs, we design an object insertion module that
leverages text-to-image inpainting techniques [58] to integrate di-
verse objects into different scenes seamlessly. Due to the instability
of inpainting results, a filtering module is employed to select the
high-quality ones from multiple candidates to ensure obstruction
generation. Our study using R2R-UNO reveals that state-of-the-art
VLN agents [13, 68] perform poorly in obstructed environments,
limiting their practical applications.
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Figure 2: The overall framework of our method. We first
generate obstructed environments based on existing datasets,
and then train agents with our proposed curriculum strategy
and graph construction mechanism on both data types.

Although we expect agents to perform well with mismatches, it
is crucial to maintain their performance in original environments
simultaneously, which represent most situations. However, directly
training with these two types of data poses challenges for agents
to learn beyond following instructions and to differentiate between
mismatched and aligned scenarios. Empirical results show that dis-
crepancies between these two environments can lead to imbalanced
optimization, favoring one type. To address this, we develop the
Obstructed VLN (ObVLN) method, including a curriculum training
strategy [7] to organize the training and a novel graph construction
mechanism to introduce virtual nodes for blocked edges to facil-
itate efficient exploration. The overall framework including data
generation and agent training is presented in Fig. 2.

We conduct comprehensive experiments on R2R, REVERIE [52],
and R2R-UNO datasets to demonstrate the significance of incorpo-
rating instruction-reality mismatches in VLN. Established methods,
such as DUET [12], struggle in obstructed settings, with a signifi-
cant 30% drop in Success Rate (SR). The proposed object insertion
and filtering modules provide crucial visual feedback aligned with
navigation graph changes, proved by the improved performance of
agents using inpainting images. By employing ObVLN, agents not
only maintain robust performance in original scenarios but also
effectively adapt to mismatches, achieving an impressive 67% SR,
marking a significant advancement.

We summarize our contributions in this paper as follows:

• We address the underexplored issue of instruction-reality
mismatches in VLN by proposing R2R-UNO, the first VLN
dataset that includes suchmismatches through graph changes
and diverse obstruction generation, offering a unique chal-
lenge that reflects real-world navigation complexities.

• We highlight the lack of adaptability in current VLN meth-
ods for obstructed environments and propose ObVLN as a
solution, which employs curriculum learning and virtual
graph construction to enhance agent adaptability.

• Through extensive experiments, we prove the significance
of introducing R2R-UNO in VLN research and show that Ob-
VLN performs well in both original and obstructed environ-
ments, achieving a significant 23% SR increase in R2R-UNO.

2 RELATEDWORK
Vision-and-Language Navigation. In VLN, agents need to nav-

igate within simulated environments like Matterport3D [10] fol-
lowing natural language instructions. Numerous methods [19, 47,
53, 61, 74] and datasets [33, 43, 52, 62, 73] have been developed to
address various challenges in this domain. Some works address the
data scarcity problem by introducing extra sources, including syn-
thesized instructions [66, 67], additional environments [29, 41], and
predicted scenes [31, 37]. Recently, ScaleVLN [68] synthesized enor-
mous high-quality instruction-trajectory pairs for HM3D [55] and
Gibson [69] environments to make agent performance approach
human results. Other works [24, 40, 46] apply diverse network
structures such as LSTM [23], Transformer [64], and Graph Neural
Networks [21] to enhance cross-model alignment and decision-
making ability. For example, HAMT [11] encodes the full history in-
formation through transformers and integrates it with instructions
and observations for better action prediction. DUET [12] further
maintains a topological map to enable agents aware of global visual
representations to make global decisions instead of adjacent view-
points. We adopt HAMT and DUET as the evaluation models due to
their superior performance and difference in whether map-based.

Environment Changes in VLN. Many works [16, 34, 51] have pro-
posed to modify VLN environments for different purposes, which
can generally be categorized based on the changing level. One cate-
gory involves changing the visual observations to augment data for
improving agent generalization. For example, Li et al. [17] utilized
image captioning to obtain language descriptions of panoramas
and employed generative models to produce novel views based on
these descriptions. Conversely, another category focuses on graph-
level adjustments rather than the visual level to go beyond the
established navigation graphs by mixing up different graphs [42]
or substituting a fixed viewpoint with proximate locations [31]. No-
tably, VLN-CE [32] abandons the graph-based navigation paradigm
and allows agents to traverse continuous environments freely to
enhance task realism. Differently, our task makes changes at both
visual and graph levels to block edges in the graph and generate
obstacles in the views to generate instruction-reality mismatches.

Obstacle Avoidance. Obstacle avoidance has been a long-standing
research challenge in visual navigation [1, 8, 49, 59]. In VLN, ETP-
Nav [3] applies an obstacle-avoiding controller with a trial-and-
error heuristic to explicitly escape from deadlocks. SafeVLN [71]
employs a LiDAR-based waypoint predictor and a re-selection strat-
egy to avoid non-navigable waypoints and obstacles. However, our
work diverges from these works under the continual setting [32]
in three aspects, leading us to choose the discrete setting. Firstly,
we target a broader range of situations with instruction-reality mis-
matches, including avoidable obstacles, closed doors, rearranged
furniture, instruction errors, etc. These scenarios can be effectively
captured by graph changes but are hard to model as continuous
signals. Secondly, while obstruction avoidance focuses on assessing
the properties of obstructions to avoid them, our work emphasizes
changes in navigation graphs that render the instructions temporar-
ily invalid, ignoring the nature of the obstructions. The discrete
setting decouples path planning from technicalities, such as the
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shape and size of obstacles, thereby focusing on high-level adapt-
ability when instructions fail and enhancing its generality. Finally,
addressing instruction-reality mismatches involves more than just
navigating around obstructions. It requires a complex strategy to
find detours and the ability to navigate without instruction guid-
ance, posing a significant adaptability challenge which is too hard
for current continuous agents.

Object Insertion. Inserting novel objects into target images has al-
ways been a research challenge in Computer Vision. Earlyworks [28,
30, 35] employ the cut-and-paste strategy to merge two pictures,
which is straightforward but lacks photorealism. With the devel-
opment of neural networks, object insertion can be achieved in
various ways and higher quality, including image synthesis [36],
neural radiance fields editing [65], image generation [6], etc. In
navigation, THDA [48] inserts 3D scans of household objects into
random locations as navigation goals to augment the training data
for ObjectGoal Navigation [4]. In VLN, Envedit [16] leverages se-
mantic image synthesis [50] to create objects based on modified
environment semantics as augmented environments. In this work,
we uniquely take advantage of the text-to-image inpainting mod-
els [58] to seamlessly embed desired objects within specific view
locations without influencing visual surroundings.

3 OBSTRUCTED ENVIRONMENTS
In this section, we first introduce the problem formulation of VLN
on vanilla and obstructed environments, and then describe our
proposed R2R-UNO dataset for introducing instruction-reality mis-
matches into VLN.

3.1 Problem Setup
In VLN, the agent must follow a natural language instruction
𝑥 = (𝑥1, 𝑥2, ..., 𝑥𝐿) with 𝐿 words to navigate a simulated envi-
ronment. This environment is usually discrete with a predefined
undirected navigation graph G = {V, E} with navigable nodes V
and connectivity edges E. At each timestep 𝑡 , the agent perceives a
panoramic representation, comprised of𝑁 = 36 views𝑂𝑡 =

{
𝑜𝑖𝑡

}𝑁
𝑖=1

and an orientation feature that encodes heading 𝜃 and elevation 𝜙
information of its current node 𝑣𝑡 . It then determines an action 𝑎𝑡
to transition to one of the neighboring nodes N(𝑣𝑡 ) by selecting
the view that aligns best with the target node from the current
panorama𝑂𝑡 . An additional “STOP” action is available to conclude
the navigation process. For each instruction 𝑥 , there exists a corre-
sponding ground truth path 𝑃 =< 𝑣1, 𝑒1, 𝑣2, 𝑒2, · · · , 𝑣𝑛 > represent-
ing the intended trajectory with 𝑛 nodes for the agent. However,
previous work presumes perfect alignment between instruction and
reality, assuming that all edges < 𝑒1, 𝑒2, · · · , 𝑒𝑛−1 > are consistently
accessible. This assumption overlooks the dynamics of real-world
navigation, where the graph G may have changed. Among various
reasons for graph changes, we focus on the most representative
one: obstructions. In our obstructed environments, some specific
edges 𝐸𝑠 ⊆ 𝑃 might be obstructed, making parts of the instruction
inapplicable to the current scenario. This obstruction also leads to
corresponding visual changes in the panoramic views 𝑂𝑡 of nodes
linked by these edges. Whenmeeting obstructed edges 𝐸𝑠 , the agent
must find a substitute path 𝑃 ′ to reach the final destination 𝑣𝑛 .

Table 1: Statistics for the paths in R2R and R2R-UNO dataset.

Dataset Set Num Mean Min Max

R2R - 5798 6.00 4 7
R2R-UNO Block-1 22982 8.15 5 15
R2R-UNO Block-2 37900 9.67 6 20
R2R-UNO Block-3 33599 11.13 7 25

3.2 R2R-UNO
In this section, we introduce the proposed R2R-UNO dataset in
detail, including the graph changes and visual modifications.

3.2.1 Graph Changes. For a path 𝑃 =< 𝑣1, 𝑒1, 𝑣2, 𝑒2, · · · , 𝑣𝑛 > in
R2R, we first identify all redundant edges within this path, denoted
as 𝐸𝑟 ⊆ 𝑃 . A redundant edge 𝑒𝑖 = (𝑣𝑖 , 𝑣𝑖+1) ∈ 𝐸𝑟 is defined by the
property that its removal does not affect the overall connectivity
of the graph, ensuring an alternate path 𝑃 ′ between 𝑣𝑖 and 𝑣𝑖+1.
To account for scenarios where multiple edges are concurrently
obstructed, we assess the collective redundancy of combinations
of these redundant edges 𝐸𝑟 and categorize these combinations
by the number of obstructed edges 𝑥 into Block-𝑥 set. Since R2R
paths have 4 to 7 nodes in length, we set 𝑁𝑚𝑎𝑥 = 3 as the maximum
number of obstructed edges, generating three sets Block-1, 2, 3, each
containing individual training and evaluation splits.

With a Block-𝑥 set, consider a combination of redundant edges
𝐶 =< 𝑒𝑖1 , 𝑒𝑖2 , · · · , 𝑒𝑖𝑥 >. For each edge, we identify the shortest
path < 𝑃 ′1, 𝑃

′
2, · · · , 𝑃

′
𝑥 > between the corresponding nodes in the

modified graph G = {V, E −𝐶} to replace𝐶 in the original path 𝑃 ,
generating the path 𝑃 as the new intended path for agents:

𝑃 = ⟨𝑣1, . . . , 𝑣𝑖 𝑗 , 𝑃
′
𝑗 , 𝑣𝑖 𝑗+1, . . . , 𝑣𝑛⟩, ∀𝑗 ∈ 1, 2, . . . , 𝑥 (1)

We refer to 𝑃 as the “real path” to be traversed by agents, in contrast
to the “instructional path” 𝑃 based on the navigation instructions
𝑥 . Therefore, the instruction-reality mismatch is defined as 𝑃 ≠ 𝑃 ,
which demands agents actively seek alternate paths. To exclude
excessively lengthy and impractical new routes, each Block-𝑥 set
possesses a “real path” length restriction as 𝐿(𝑃) ≤ 10 + 5 · 𝑥 . As a
result, 98.8% R2R paths are modified to be one or more new paths
in R2R-UNO. As indicated in Tab. 1, the R2R-UNO sets contain a
greater number and length of paths than R2R, with the average path
length increasing with 𝑥 , denoting greater navigation difficulty.

Notably, when constructing 𝑃 , we deliberately avoid shortening
the path when 𝑃 ′ contains future viewpoints from 𝑃 , even if this
leads to the loop formation in 𝑃 . This design aligns with practical
navigation scenarios since when deviating from the instruction, it
is challenging for agents to align the current viewpoint with the
described path due to the absence of contextual clues. Therefore,
it is logical and efficient for agents to seek a detour around the
obstruction before attempting to re-align with the instructions.

3.2.2 Visual Changes. To align with the graph changes, we intro-
duce two novel modules to infuse various objects into panoramic
views of nodes along redundant edges, as shown in Fig. 3.

The first one is the object insertion module, which employs a
stable diffusion inpainting model [58] to approach the issue from an
inpainting perspective. Consider a redundant edge 𝑒 linking nodes
𝑣𝑎 and 𝑣𝑏 . We elaborate the process of modifying the panoramic

3
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Figure 3: The object insertion (left) and filtering module (right) in generating R2R-UNO. The red dot •marks the position of
node B in the view of node A; the ◦ operator represents pixel-wise multiplication, while the ∗ symbol indicates pixel-wise
matrix multiplication applied to image coordinates. The notation 𝑗1:8 covers eight adjacent views ( 𝑗1 to 𝑗8). The final images are
highlighted in red. The dotted line from the score buffer illustrates the training process with all compatibility scores.

view𝑂𝑎 =
{
𝑜𝑖𝑎

}36
𝑖=1 at node 𝑣𝑎 as follows, which is similarly applied

to 𝑂𝑏 . First, we localize the other node 𝑣𝑏 within 𝑂𝑎 to find the
corresponding discrete view 𝑜𝑏𝑎 and calculate the pixel coordinates
(𝑥𝑏 , 𝑦𝑏 ) in 𝑜𝑏𝑎 as follows:

𝑓 = 𝐻/(2 · tan(𝛿/2)) (2)
𝑥𝑏 = tan(𝜃𝑟 ) · 𝑓 +𝑊 /2 (3)
𝑦𝑏 = tan(𝜙𝑟 ) · 𝑓 + 𝐻/2 (4)

𝑊,𝐻 is the width and height of 𝑜𝑏𝑎 , while 𝜃𝑟 and 𝜙𝑟 is the relative
heading and elevation from 𝑣𝑎 to 𝑣𝑏 , and 𝛿 is the vertical Field
of View (FoV) to calculate the focal length 𝑓 . A right trapezoid
mask 𝑀𝑏

𝑎 is then generated, expanding from the bottom edge to
around the point 𝑣𝑏 with a specified width to cover potential areas
of paths from 𝑣𝑎 to 𝑣𝑏 . This is based on the observation that paths
in these views either stretch from the bottom middle to the target
point (𝑥𝑏 , 𝑦𝑏 ) or form a vertical line from the bottom to the target.
Finally, we combine an object name 𝑜𝑏 𝑗 with a predefined prompt
template to formulate the final prompts 𝑝𝑟 , which, along with the
view image 𝑜𝑏𝑎 and mask𝑀𝑏

𝑎 , serve as the input to the inpainting
model to generate the inpainted view 𝑜𝑏𝑎 :

𝑜𝑏𝑎 = Inpainting(𝑜𝑏𝑎 , 𝑀𝑏
𝑎 , 𝑝𝑟 ) (5)

While inpainting models can generate visually coherent and
photo-realistic images, their instability is notable, with a certain
probability of failing to incorporate the desired object. This insta-
bility often arises when the area outside the mask already contains
elements similar to the intended object, such as a “chair” or “ta-
ble”, which can mislead the inpainting model even with intricate
prompts. Therefore, we propose a filtering module to improve the
quality of inpainted images, which evaluates multiple generated
candidates with different objects to filter out higher-quality ones.
Specifically, to enrich the generated scenarios, we first carefully
select ten object categories as obstructions based on their frequen-
cies in both the Matterport3D dataset and real-world environments,
including chair, table, sofa, potted plant, basket, exercise equipment,

vacuum cleaner, suitcase, toy, and dog. We then utilize the object
insertion module to produce a set of novel views as candidates, each
with a different kind of object. To reflect the inpainting quality, we
employ the CLIP [54] model to assess the compatibility score 𝑠𝑐 of
each view-object pair. Note that this assessment considers only the
modified part of the view by combining the mask𝑀𝑏

𝑎 :

𝑠𝑐 = CLIP(𝑜𝑏𝑎 ◦𝑀𝑏
𝑎 , 𝑜𝑏 𝑗) (6)

The ◦ operator represents pixel-wise multiplication. These scores
are aggregated to form a dataset including all redundant edges
within R2R. Visual analyses of this dataset indicate that the score
distribution for each object category often takes the shape of a
bimodal Gaussian distribution, with one peak N(𝑠𝑐 |𝜇1, 𝜎2

1 ) for suc-
cessful incorporation and another N(𝑠𝑐 |𝜇2, 𝜎2

2 ) for failure:

𝑃 (𝑠𝑐 ) = 𝜋1N(𝑠𝑐 |𝜇1, 𝜎
2
1 ) + 𝜋2N(𝑠𝑐 |𝜇2, 𝜎

2
2 ) (7)

𝜋 is the mixing coefficient, N(·|𝜇, 𝜎2) represents a Gaussian distri-
bution with mean 𝜇 and variance 𝜎 . Based on this insight, we train
a bimodal Gaussian Mixture Model (GMM) [57] for each category
and use them to decide which images are qualified:

𝑞 =

{
1 if N(𝑠𝑐 |𝜇1, 𝜎2

1 ) > N(𝑠𝑐 |𝜇2, 𝜎2
2 )

0 otherwise
(8)

Finally, we randomly select one of those qualified candidates as the
modified view, or, in the absence of suitable options, the choice is
narrowed to the top three scorers. This module not only largely
enhances the probability of incorporating visible obstructions but
also ensures the selection of contextually fitting objects. We present
the distributions of object categories and their compatibility scores
in the appendix to prove the diversity of R2R-UNO.

All steps above only concern one discrete view 𝑜𝑏𝑎 . The final
step is propagating the updated view 𝑜𝑏𝑎 to adjacent views 𝑜 𝑗1:8

𝑎

containing overlapped areas with 𝑜𝑏𝑎 to maintain consistency across
the panorama. We first calculate the transformation matrix 𝐾𝑖 for
view 𝑜 𝑗𝑖𝑎 based on SIFT features [45] matching. We then apply 𝐾𝑖 to
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project the inpainted part of 𝑜𝑏𝑎 onto the adjacent view and merge
it with the original view to construct a coherent novel panorama:

𝐾𝑖 = MATCH(SIFT(𝑜𝑏𝑎 ), SIFT(𝑜
𝑗𝑖
𝑎 )) (9)

𝑜
𝑗𝑖
𝑎 = 𝑜

𝑗𝑖
𝑎 · (1 − 𝐾𝑖 ∗𝑀𝑏

𝑎 ) + 𝐾𝑖 ∗ 𝑜𝑏𝑎 · (𝐾𝑖 ∗𝑀𝑏
𝑎 ) (10)

Here, ∗ denotes the projection operation by pixel-wise matrix mul-
tiplication applied to image coordinates.

It is important to note that we only perform 2D inpainting
for nodes linked by redundant edges, which may lead to multi-
view inconsistency. Although 3D object insertion can alleviate this
problem, we stick to the 2D method for two reasons. Firstly, cur-
rent 3D techniques [20, 56] mainly rely on limited pre-built object
datasets [14, 39], which lack diversity and can cause visual inconsis-
tencies in aspects like lighting and style. Other generative 3D meth-
ods [38, 60] struggle to generate high-resolution photo-realistic
images and often produce noticeable artifacts. Secondly, the impact
of multi-view inconsistency is minimal in our task, as instruction-
reality mismatches are primarily defined by graph changes. Agents
can only detect graph changes when moving to nodes alongside
redundant edges, making visual modifications at other nodes irrele-
vant since agents should still follow instructions without detecting
the mismatch. Moreover, various environment augmentation meth-
ods [16, 17] have proved that this inconsistency would not affect
agent performance in real-world scenarios.

4 INSTRUCTION-REALITY MISMATCHES
AND SOLUTION

In this section, we show that current VLN methods perform poorly
when encountering instruction-reality mismatches and thus pro-
pose the ObVLN method to solve this problem.

4.1 Current VLN Methods Struggle in R2R-UNO
To assess the impact of instruction-reality mismatches, we conduct
zero-shot evaluations on the R2R-UNO validation unseen splits
using five advanced VLNmethods, known for their excellent perfor-
mance under the perfect instruction assumption: 1. RecBERT [25]
employs a recurrent BERT [15] model to preserve cross-modal infor-
mation throughout navigation. 2.HAMT [11] utilizes a transformer-
based model to encode instructions, observations, and historical
context. 3. DUET [12] constructs a real-time topological map to
enable global action decisions with a graph transformer. 4. GELA
[13] enhances the cross-modal alignment between visual landmarks
and corresponding phrases with new annotations and pretraining
objectives. 5. ScaleVLN [68] integrates extensive high-quality en-
vironments and instruction-trajectory pairs from diverse datasets
to enhance performance. Fig. 4 illustrates how their success rates
vary with different numbers of blocked edges. While most methods
achieve a 60%–70% success rate in original environments, the curves
sharply decline to around 40% when a single edge is obstructed,
with further deterioration observed in the Block-2 and Block-3 sce-
narios. ScaleVLN outperforms other methods in R2R-UNO owing
to its strong generalization ability brought by extensive training
data, but it still suffers from a nearly 20% performance reduction in
the block-1 set of R2R-UNO. We conclude that current VLN models
are overly focused on instruction-following capabilities and lack
essential basic navigation functionality to adapt to graph changes.
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Figure 4: The large performance drop of current VLN meth-
ods in the validation unseen splits of R2R-UNO.

These findings emphasize the severity of using the perfect instruc-
tion assumption in VLN research and the urgency for its resolution.

4.2 ObVLN
With R2R-UNO, agents can be trained in obstructed environments
to better adapt to instruction-reality mismatches. However, signifi-
cant gaps exist between original and obstructed environments, such
as navigation requirements, reliance on instructions, and trajec-
tory numbers, making direct training on these two types of data
compromise the performance in both environments (See Tab. 2).

Therefore, we propose Obstructed VLN (ObVLN), including a
novel training strategy and a graph construction mechanism to or-
ganize the training of these two environments and help agents deal
with obstructions. We advocate a curriculum learning strategy to
treat original and obstructed environments as distinct yet comple-
mentary tasks to facilitate the training. This strategy leverages the
instruction-following skills gained in original environments as a
foundation to tackle obstructed settings. Initially, agents are trained
in purely unobstructed environments. As training progresses, the
sample ratio of obstructed environments 𝛼 on the training data
gradually increases until it reaches a predefined maximum 𝛼𝑚𝑎𝑥 at
step 𝑐 , defined as follows:

𝛼 (𝑡) = min
(
𝛼max,

𝑡

𝑐
· 𝛼max

)
(11)

where 𝑡 is the current training step. All training batches include
instances from both settings to ensure smooth optimization.

To facilitate exploration for detours, we introduce a graph con-
struction mechanism for graph-based methods to incorporate “vir-
tual nodes” to represent currently inaccessible nodes due to obstruc-
tions. This mechanism consists of three steps, with the pseudo-code
in the appendix. Firstly, when encountering an obstacle at node
𝑣𝑎 , we estimate the location of the obstructed node 𝑣𝑏 based on
the direction of the obstructed view and a predefined distance 𝑑 (3
meters in R2R-UNO). This estimation allows us to conceptualize
a virtual node 𝑣∗

𝑏
within the topological graph as a placeholder

for 𝑣𝑏 . Next, as the agent moves, it consistently computes its dis-
tances to 𝑣∗

𝑏
and 𝑣𝑎 , denoted as 𝐷 (𝑣∗

𝑏
) and 𝐷 (𝑣𝑎), respectively. This

distance computation is crucial for determining the proximity of
the agent to the virtual and obstructed nodes. Finally, if the dis-
tances satisfy 𝐷 (𝑣∗

𝑏
) < 𝜃 and 𝐷 (𝑣𝑎) < 𝜃 for a given threshold 𝜃 ,

and the current view indicates obstruction, we infer that the agent
5
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Table 2: Navigation performance of different models on the val seen and unseen splits of R2R and R2R-UNO datasets. “+OE”
indicates adding obstructed environments for training.

Model Split Setting
R2R-UNO-Block-1 R2R-UNO-Block-2 R2R-UNO-Block-3 R2R

TL↓ NE↓ SR↑ SPL↑ TL↓ NE↓ SR↑ SPL↑ TL↓ NE↓ SR↑ SPL↑ TL↓ NE↓ SR↑ SPL↑

HAMT

Val Basic 22.50 6.01 41 36 28.31 7.94 28 24 32.29 9.16 21 19 12.53 2.68 76 72
+OE 18.86 4.00 64 59 21.08 4.86 59 54 23.09 5.42 55 51 13.77 2.89 70 66Seen +ObVLN 18.90 3.70 66 60 21.13 4.46 61 56 23.02 5.02 57 53 12.13 2.61 75 72

Val Basic 23.05 6.84 34 30 28.03 8.71 22 19 31.25 10.08 16 14 15.21 3.67 65 59
+OE 23.85 5.47 49 42 27.43 6.70 42 36 29.98 7.80 35 31 14.92 3.73 64 58Unseen +ObVLN 23.83 5.44 51 43 27.53 6.62 43 37 30.70 7.65 38 33 14.27 3.47 67 61

DUET

Val Basic 18.03 6.02 50 44 20.90 8.08 34 30 22.95 9.47 25 22 14.30 2.19 80 75
+OE 18.66 2.87 75 68 19.54 2.95 74 69 20.63 3.01 73 69 20.19 3.13 74 63Seen +ObVLN 18.39 2.48 77 71 19.25 2.59 75 71 20.31 2.66 74 70 14.40 2.32 80 72

Val Basic 19.00 6.45 44 36 21.00 8.23 31 25 22.15 9.51 23 20 16.74 3.15 72 60
+OE 25.04 4.01 65 51 25.64 4.32 63 52 26.78 4.73 60 51 25.02 4.02 65 49Unseen +ObVLN 25.13 3.54 67 53 25.44 3.78 65 54 26.12 4.07 63 54 17.12 3.42 72 57

has arrived or moved close to 𝑣𝑏 . So we connect the virtual node
𝑣∗
𝑏
and current node 𝑣𝑐 with a zero-weight edge, indicating their

alignment. This mechanism helps agents to seek alternative routes
more purposefully and increase exploration efficiency.

5 EXPERIMENTS
5.1 Datasets and Evaluation Metrics
We mainly evaluate our methods on the widely used VLN bench-
mark R2R [5] with step-by-step instructions and our proposed R2R-
UNO to focus on the challenge of instruction-reality mismatches.
We present results on the goal-oriented benchmark REVERIE [52]
without such mismatches in the appendix. R2R is built on the Mat-
terport3D dataset [10], including 10,800 panoramic views from 90
building-scale scenes. Each R2R path has three or four natural lan-
guage instructions from human annotators. R2R has four splits:
train, validation seen (val seen), validation unseen (val unseen), and
test unseen. We utilize the train split for training and the val seen
and val unseen splits for evaluation to align with R2R-UNO.

For evaluation, we follow previous works [2, 72] to use four
primary metrics in VLN: (1) Trajectory Length (TL): the total nav-
igation length in meters; (2) Navigation Error (NE): the distance
between the stop location and the target; (3) Success Rate (SR): the
ratio of agents stopping within 3 meters of the target; (4) Success
rate weighted by Path Length (SPL) [4]: SR normalized by the ratio
between the length of the shortest path and the predicted path.
Metrics related to instruction fidelity like CLS [27] or nDTW [26]
are not included due to the modified trajectory with obstacles.

5.2 Implementation Details
For R2R-UNO creation, we use the stable-diffusion-v1.5-inpainting
model for object insertion and the CLIP ViT-L/14 to evaluate text-
image pairs. We use brute force and K-Nearest Neighbors matching
to align the SIFT features of two adjacent views. For methods in
Fig. 4, we use their best models on the validation unseen split and
extract the features of the obstructed environments according to
their settings. We employ HAMT [11] and DUET [12] for naviga-
tion training and follow the implementation details in their official
repositories. The obstructed environments are only used in the

fine-tuning stage. The maximum sample ratio 𝛼𝑚𝑎𝑥 is set to 0.5
with the increasing step 𝑐 as 20,000. We increase the maximum
action length to 30 for longer ground truth paths. PREVALENT [22]
is used as the augmented data to stabilize the training. We utilize
the AdamW optimizer [44] and select the best model based on the
average SPL in the val unseen splits of R2R and R2R-UNO. All mod-
els are fine-tuned for 100K iterations with a learning rate of 1e-5
and a batch size of 8 on a single NVIDIA A6000 GPU.

5.3 Main Results
We first demonstrate that our proposed obstructed environments
and ObVLN can facilitate agent adaptation to instruction-reality
mismatches. Therefore, we apply HAMT and DUET to three distinct
training settings: (1) Basic: training with R2R; (2) +OE: incorporat-
ing data from both the R2R and R2R-UNO; (3) +ObVLN: using the
ObVLNmethod on R2R and R2R-UNO. Note that both settings 2 and
3 include all three sets of R2R-UNO. Tab. 2 presents the navigation
performance of different models on the val seen and unseen splits
of R2R and R2R-UNO. The results show that models trained with
two types of data significantly outperform those trained only on
R2R in navigating obstructed scenes within the R2R-UNO dataset.
However, this improvement is accompanied by a noticeable degra-
dation in R2R performance, like the 6% and 7% SR drop of DUET in
the seen and unseen splits, respectively. This phenomenon can be
explained by the considerable TL increase in R2R, suggesting that
agents are over-optimized for obstructed environments and tend
to take detours even without obstructions. Our ObVLN method
effectively addresses this issue. For HAMT, ObVLN surpasses the
basic setting in R2R, achieving the best results across all four sets
of R2R and R2R-UNO. For DUET, the topological map and global
action space lead agents to return to the node with the blocked
edge which aligns best with the instruction. This results in a slight
loss of efficiency in terms of SPL in R2R for ObVLN. However, it
still achieves a comparable SR to the basic setting and significantly
outperforms setting 2 in R2R. Additionally, it achieves state-of-the-
art results in all three sets of R2R-UNO. The advantage of HAMT
with ObVLN is less significant because HAMT is not a map-based
approach, making our graph construction mechanism inapplicable.
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Table 3: Ablation study on the Object insertion Module (OM)
and the Filtering Module (FM) for the val unseen splits.

Model OM FM
R2R R2R-UNO

SR↑ SPL↑ SR↑ SPL↑

HAMT
× × 66.2 60.4 46.7 43.0
✓ × 65.3 59.9 48.9 44.2
✓ ✓ 67.1 60.8 51.7 45.6

DUET
× × 69.1 57.1 60.5 51.1
✓ × 71.4 58.0 64.8 53.5
✓ ✓ 72.3 58.3 68.5 54.9

Table 4: Ablation study of different training strategies on the
val unseen splits of R2R and the Block-1 set of R2R-UNO.

Sample 𝑐
R2R R2R-UNO

SR↑ SPL↑ SR↑ SPL↑
Path-wise - 66.8 51.2 65.7 52.3
Task-wise - 70.9 58.1 67.0 54.5

Instruction-wise - 69.4 54.9 67.7 54.3

Ours
10K 71.5 59.1 66.4 56.1
20K 72.3 58.3 68.5 54.9
30K 71.6 58.0 67.0 55.4

While DUET outperforms HAMT by a 7% SR increment on R2R,
this superiority becomes much more significant in obstructed en-
vironments, in which DUET achieves around 25% SR lead in the
most challenging Block-3 set. We attribute this to the topological
map design in DUET, which significantly enhances exploration effi-
ciency and serves as a critical component in finding detours. This
advantage is consistent with the large lead of DUET on exploration-
intensive, object-oriented datasets like REVERIE [52].

5.4 Ablation Study
In this section, we conduct an ablation study on several important
components to show their effectiveness.

5.4.1 Two Modules for R2R-UNO. We first evaluate the impact of
the Object insertion Module (OM) and the Filtering Module (FM)
by generating different Block-1 sets for training and evaluation.
Without these two modules, the obstructed environments only
contain graph changes without visual modifications. Tab. 3 presents
the performance of HAMT and DUET on the val unseen splits using
different modules. The R2R performance is consistent across all
experiments due to ObVLN. For obstructed environments, using the
object insertionmodule tomodify the panoramic views can enhance
agent navigation by providing critical visual feedback on graph
changes, evidenced by performance gains. Moreover, including the
filtering module further improves the inpainting quality, leading to
more successful obstruction generations and the best performance.

5.4.2 Sampling Strategy. We explore four sampling strategies for
DUET to utilize both original and obstructed environments: (1)
Path-wise, where a path is randomly selected from the combined

Table 5: Ablation study of different graph construction meth-
ods on the val unseen splits of R2R-UNO.

Graph
Block-1 Block-2 Block-3

SR↑ SPL↑ SR↑ SPL↑ SR↑ SPL↑
Vanilla 63.9 49.0 60.0 48.0 56.3 46.8
Ours 67.4 53.0 65.4 54.1 63.1 54.0
Oracle 69.8 55.0 68.0 57.1 66.2 57.0

Table 6: Ablation study of different obstructions on the val
unseen splits of R2R-UNO.

Split Version
R2R R2R-UNO

SR↑ SPL↑ SR↑ SPL↑

Val
Seen

1 78.06 71.27 77.95 71.78
2 78.45 70.23 78.44 70.57
3 79.14 72.68 77.56 70.05
4 78.94 70.37 76.30 70.56
5 79.72 73.11 77.34 69.71

𝜎2 0.33 1.38 0.51 0.49

Val
Unseen

1 72.37 57.97 68.37 54.96
2 71.95 57.69 68.25 53.97
3 71.52 58.60 68.66 54.52
4 72.29 57.38 67.98 56.21
5 71.82 58.50 67.93 53.24

𝜎2 0.10 0.22 0.07 0.99

pool of R2R and R2R-UNO paths; (2) Task-wise, where data is sam-
pled from original and obstructed environments in a Bernoulli mix-
ture distribution with probabilities 1 − 𝛼𝑡 and 𝛼𝑡 , respectively; (3)
Instruction-wise, where for each instruction, one path is randomly
chosen from all possible paths. (4) Curriculum sample (Ours), which
gradually increases the sampling ratio 𝛼 up to 𝛼𝑚𝑎𝑥 by step 𝑐 . Tab. 4
shows their performances on the the val unseen splits of R2R and
R2R-UNO. We set 𝛼𝑡 = 0.5 to match 𝛼𝑚𝑎𝑥 and provide experiments
on different 𝛼𝑡 and 𝛼𝑚𝑎𝑥 in the appendix. Among all strategies, our
curriculum sampling achieves dual superiority, achieving the best
performance in both R2R and R2R-UNO. Other methods experience
performance drops on R2R due to the over-optimization problem.
Path-wise sampling obtains the worst performance due to path im-
balance, with more training on paths with many redundant edges
while ignoring those with none or less.

5.4.3 Graph Construction Mechanism. We compare our graph con-
struction mechanism with two baselines: the Vanilla setting that
overlooks the obstruction in the graph and an idealized Oracle
setting that receives the ground truth information about nodes
occluded by obstructions as a performance ceiling. Tab. 5 shows the
performance of DUET with different graph construction methods
on the val unseen splits of R2R-UNO. Our approach, incorporating
virtual nodes into the graph, significantly outperforms the vanilla
setting on all three sets, especially in more challenging scenarios
with three obstructed edges. As expected, the Oracle graph achieves
the highest performance due to its access to accurate, unobstructed
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Figure 5: Qualitative analysis of inpainting results. Left: Original Matterport3D views. Middle: Results without filtering module.
Right: R2R-UNO results. The red dash line denotes the mask contour.
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Figure 6: The comparison of the CLIP score for each category
when w/ and w/o the filtering module.

node information. These findings emphasize the necessity of equip-
ping agents with obstruction-aware capabilities and the benefits of
integrating obstructions into the topological map.
5.4.4 Different obstructions. To evaluate the generalization ability
of our agents to various obstructions, we generate five distinct sets
of obstructions for each modified node in R2R-UNO using random
objects and seeds through the proposed two modules. We use them
to replace the obstructions in R2R-UNO, making five new versions
of R2R-UNO that share the same modified graphs and differ only
in the obstructions, denoted as R2R-UNO-𝑖 for 𝑖 ∈ [1, 2, 3, 4, 5]. We
train our ObVLN model in each version and evaluate the agents
across the val unseen splits of all five versions. Due to the low
variance in results (±0.1), we present the average performance for
all versions. As shown in Tab. 6, our agents achieve consistent nav-
igation performance across different datasets, regardless of their
training environments. This consistency suggests that our agents
can effectively generalize across different obstructions, which is ex-
pected since the obstructions are only used for visual feedback and

are irrelevant to subsequent actions. These results further support
our claims for addressing the multi-view inconsistency in Sec. 3.2.2.

5.5 Qualitative Analysis
We present some obstructed environments from R2R-UNO in Fig. 5
comparing with corresponding original views and those generated
without the filtering module. Our method successfully integrates
various objects into specific locations within the original views,
creating realistic and contextually harmonious obstructions. In
contrast, results without the filteringmodule often fail to include the
objects, demonstrating the critical role of this module in enhancing
the inpainting reliability. Additionally, we evaluate the generation
quality using the CLIP [54] score and present the scores for each
category in Fig. 6. The filtering module consistently improves and
stabilizes the generation quality, achieving higher scores and lower
variance across all categories, aligned with the examples.

6 CONCLUSION
This work introduces obstructed environments into VLN to address
the prevalent issue of instruction-reality mismatches in real-world
navigation. We present R2R-UNO, the first VLN dataset to incorpo-
rate such mismatches by integrating diverse obstructions into R2R
at both the graph and visual levels through a novel object insertion
and filtering module. Using R2R-UNO, we demonstrate that current
VLN methods struggle in obstructed settings and further propose
the ObVLNmethod to help agents effectively adapt to obstructed en-
vironments. Through these innovations, our agents achieve state-of-
the-art results in R2R-UNO while maintaining robust performance
in R2R. We believe addressing the perfect instruction assumption
is crucial for the practical application of VLN agents and for assess-
ing their adaptive capabilities to navigate beyond only following
instructions. Future work should improve the agent performance in
both settings and extend this work to continuous 3D environments.
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