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Abstract: Designing reward functions for tasks with high-dimensional motion
sequences, such as controlling humanoid robots, is difficult. A more intuitive
approach is to use video demonstrations to specify the desired behavior. Re-
cently, optimal transport (OT) has become popular for learning rewards by align-
ing learner and demonstration trajectories. However, OT faces two key challenges.
First, it lacks temporal constraints, which are crucial for tasks where subgoals
must be completed in a specific order. Second, poorly designed reward functions
can lead to local minima, allowing the agent to exploit undesired behaviors. Our
key insight is to structure the reward function to enforce temporal consistency.
We propose a novel class of reward functions SDTW+, which uses Soft Dynamic
Time Warping (SDTW) to align trajectories in the correct order and adds a cu-
mulative reward bonus to encourage continuous progress. In experiments, agents
trained with SDTW+ achieve a 91.7% success rate on six sequence-following tasks
in the Mujoco Humanoid-v4 environment, significantly outperforming OT-based
methods.

1 Introduction

Designing reward functions for reinforcement learning (RL) agents is a tedious process, especially
when controlling humanoid robots with high degrees of freedom. For example, training a humanoid
to perform specific motion sequences, such as coordinated hand and arm signals, requires explicitly
defining high-dimensional subgoals and the conditions for transitioning between them. A more
natural and efficient alternative is to provide a video demonstration, which directly conveys the
desired behaviors without the need for manually crafted task specifications.

Inverse reinforcement learning (IRL) [1, 2] provides a foundational framework for learning reward
functions from expert demonstrations. At its core, IRL can be viewed as a distribution matching
problem between the learner and the demonstrator, often formulated as optimizing Integral Prob-
ability Metrics (IPMs) [3, 4]. Recent works have leveraged optimal transport (OT) [5] to do such
matching in high-dimensional feature space [6–12]. However, current approaches face two signif-
icant challenges: First, certain tasks require completing subgoals in a specific order. OT fails to
enforce this ordering because its formulation lacks temporal constraints, allowing it to ignore the
order of subgoals when matching distributions between the learner and the demonstration. Second,
the reward function must avoid local minima that may lead to reward hacking, where the agent learns
to exploit undesired loopholes [13–15]. A naive reward function that only enforces temporal con-
straints can lead to an agent that lingers at subgoals and collects immediate rewards without making
meaningful progress.

Our key insight is to structure the reward function to enforce temporal consistency. Instead of us-
ing OT, which matches trajectories without considering temporal order, we build on Soft Dynamic
Time Warping (SDTW) [16] to constrain alignment paths, ensuring that the agent follows the correct
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sequence of actions. However, we find that SDTW alone does not sufficiently drive task comple-
tion. To address this, we introduce a cumulative reward bonus that encourages the agent to make
continuous progress, preventing it from stalling at intermediate subgoals.

We propose a method, Soft-DTW Plus (SDTW+), that (1) uses a visual encoder to compute the dis-
tance for all pairs of frames between the learner and demonstration trajectories, (2) based on the
distances, solves for the optimal alignment path using SDTW and accumulates reward bonuses to
calculate the per-timestep reward. We show that agents trained with the SDTW+ rewards outperform
OT by 56.2%, achieving 91.7% success rate in the Mujoco Humanoid-v4 environment.

Our key contributions are:

1. A novel sequence-matching reward function class SDTW+ that enforces the agent to follow the
demonstration in the correct order and encourages it to continuously make meaningful progress.

2. A robust visual encoder, finetuned on privileged robot state, that estimates its uncertainty to
calculate reliable visual distance between two frames.

3. Experiments showing that the SDTW+ reward can effectively and efficiently train RL agents to
achieve 100.0% success rate in the 2D-Navigation environments and 91.7% success rate in the
MujoCo Humanoid-v4 environment.

Figure 1: Approach overview. The goal is to define a per-timestep sequence-matching reward for a visual
learner trajectory ξL = {oLt }Tt=0 given a visual demonstration trajectory ξD = {oDt′ }T

′
t′=0. (1) Each frame is

passed through the visual encoder to predict the robot state and estimate uncertainty. (2) Given the uncertainty-
scaled visual distance matrix, SDTW computes the optimal alignment matrix. (3) This matrix is used to com-
pute per-timestep rewards and apply reward bonuses, resulting in the final sequence-matching reward.

2 Preliminaries

2.1 Problem Formulation

We model the problem as a Markov Decision Process (MDP) defined by the tuple (S,A, P, r, γ),
where S is the state space and A is the action space. At each timestep t, the agent occupies a state
st ∈ S and receives a visual observation ot ∈ O, which is an image of the agent’s state and the
environment. Upon taking action at ∈ A, the environment transitions to a new state st+1 ∈ S
according to the transition dynamics P (st+1|st, at), and produces a new observation ot+1 ∈ O.
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However, the reward function for this task is unknown. Instead, we assume access to a single visual
demonstration of the task, ξD = {oDt′ }

T ′−1
t′=0 , which the robot policy must imitate. Importantly, this

demonstration may be temporally unaligned with the learner’s trajectory. Additionally, the demon-
stration lacks state and action labels, rendering classical imitation learning inapplicable. Instead,
we approach this as an inverse reinforcement learning (IRL) problem, where the reward function
R(oLt , ξD) is defined as a function of the visual demonstration ξD and the learner’s observations.
The goal is to learn a policy π∗(a|s) that maximizes the expected discounted sum of rewards:

π∗ = argmax
π

EξL∼p(ξL|π)

[
T−1∑
t=0

γtR(oLt , ξD)

]

where ξL = {oLt }T−1
t=0 is the visual learner trajectory, and γ the discount factor.

2.2 Reward Function Candidates and Failure Modes

To construct the reward functionR(oLt , ξD), we examine the failure cases of optimal transport (OT)
and consider other sequence-matching algorithms similar to OT as potential candidates.
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Figure 2: Failure cases for OT reward in the 2D-
Navigation environment. The suboptimal learner
trajectory ξL moves in the counter-clockwise direc-
tion while optimal one ξL∗ moves clockwise. Unlike
the learner, the agent in the demonstration trajectory
can move multiple cells per timestep.

Optimal Transport fails to enforce temporal
constraints. Optimal Transport (OT) [5] finds
the optimal coupling to transport one distribu-
tion to another distribution. Prior works in im-
itation learning specifically leverage the Wasser-
stein distance to measure how closely a learner
trajectory matches a demonstration trajectory [6–
12]. Given a learner trajectory ξL = {oLt }T−1

t=0

and a demonstration trajectory ξD = {oDt′ }
T ′−1
t′=0 ,

the corresponding learner distribution is defined
as ρL = 1

T

∑T−1
t=0 δoLt , where δoLt is a Dirac dis-

tribution centered on oLt , and the demonstration
trajectory’s distribution is ρD = 1

T ′

∑T ′−1
t′=0 δoD

t′
.

Given a distance metric d(oLt , o
D
t′ ), OT solves for

the optimal µ∗ within the set of coupling matrices
M = {µ ∈ RT×T ′

: µ1 = ρL, µT1 = ρH}:
µ∗ = argminµ∈M

∑T−1
t=0

∑T ′−1
t′=0 d(oLt , o

D
t′ )µt,t′ .

Then, the reward function is defined as

ROT (o
L
t , ξ

D) = −
T ′−1∑
t′=0

d(oLt , o
D
t′ )µ

∗
t,t′ . (1)

However, OT fails to penalize violation of tem-
poral constraints. Fig. 2 shows that OT fails for
tasks that require completing subgoals in specific
orders. A suboptimal trajectory that visits the sub-
goals in the reversed order has the same OT re-
ward as the optimal trajectory. Appendix A.1 generalizes this observation.

Soft Dynamic Time Warping enforces temporal constraints. Soft Dynamic Time Warping
(SDTW) overcomes OT’s limitation by temporally aligning the learner and demonstration trajec-
tories. Specifically, it imposes the time consistency constraints on alignment paths A ∈ Ω such
that a path A ∈ RT×T ′

must align the beginning and the end of two trajectories (i.e., A0,0 = 1
and AT−1,T ′−1 = 1), and its alignment indices must be monotonically non-decreasing in time.
Given two trajectories ξL and ξD, and a distance metric d(oLt , o

D
t′ ), SDTW solves for the optimal

probability distribution p∗ over all alignment paths A ∈ Ω. Mensch and Blondel [17] shows that
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the SDTW objective function can be written in an entropy regularized formulation controlled by
a temperature term λ ≥ 0: p∗ = argmaxp

∑
A∈Ω

∑T−1
t=0

∑T ′−1
t′=0 [p(A)A]t,t′d(o

L
t , o

D
t′ ) − λH(p).

Because of its time consistency constraints, SDTW can be solved in polynomial time via dynamic
programming [16] using the soft-min operator: minλ{x1, . . . , xn} = −λ log

∑n
i=1 e

−xi/λ. Note
that Dynamic Time Warping (DTW), which uses the minimum operator instead, is a special case of
SDTW when λ = 0 [16].

Given the optimal probability distribution p∗ over all paths, the SDTW reward function is:

RSDTW (oLt , ξ
D) = −

T ′∑
t′=0

d(oLt , o
D
j )A∗

t,t′ where A∗ =
∑
A∈A

p∗(A)A (2)

where A∗ is the optimal soft alignment path defined based on the optimal distribution p∗.
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Figure 3: Failure cases of soft dynamic time
warping (SDTW). The worse learner trajectory is
stuck at the first demonstration state, while the better
learner trajectory makes more progress towards the
second demonstration state.

SDTW’s time consistency constraints allow it to
avoid the example failure case of OT (shown in
Fig. 9). However, Fig. 3 demonstrates SDTW’s
limitation: it fails to incentivize progress along
the demonstrated trajectory. Consider a trajec-
tory that makes one move of progress past the
first demonstration state and another trajectory
that just gets stuck in the first demonstration state.
Even if the first trajectory does not reach the next
demonstration state yet, it should have a higher
reward because it makes more progress. Instead,
the second trajectory has a higher SDTW reward.
This is an example of a local minimum that could
cause the agent to stall at intermediate states in-
stead of making meaningful progress during RL
training. Appendix A.2 proves that, when SDTW
has temperature 0, there will always exist an un-
successful trajectory with the same total DTW
reward as the successful trajectory in the 2D-
Navigation environment.

This investigation reveals two key desiderata for
the reward function: (1) It must enforce temporal
constraints, and (2) It must assign higher reward
to trajectories that make more progress.

3 Approach

We propose SDTW+, a sequence-matching reward function that enforces temporal constraints while
encouraging continuous progress in Section 3.1, and we introduce a finetuning framework to train
a robust visual encoder that allows SDTW+ to take videos as input and measure the visual distance
dv(o

L
t , o

D
t′ ) between the learner and demonstration video frames in Section 3.2.

3.1 SDTW+: Sequence-Matching Reward with SDTW and Reward Bonus

We introduce the SDTW+ reward function, which augments the SDTW reward (2) with a reward
bonus to mitigate SDTW’s issues in encouraging progress. After the SDTW reward is calculated
and converted to non-negative values by computing the exponential of it, SDTW+ accumulates a
per-timestep reward bonus based on how far the learner makes progress along the demonstration
trajectory in the SDTW alignment path. Given the SDTW reward RSDTW (oLt , ξ

D), the SDTW+
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reward function is:

RSDTW+(o
L
t , ξ

D) =

{
RSDTW (oL0 , ξ

D) if t = 0,

RSDTW (oLt , ξ
D) + B(oLt , ξD) if t > 0.

(3)

where B(oLt , ξD) is the cumulative reward bonus at each timestep t calculated via Algorithm 1.

Algorithm 1 SDTW+ Reward Bonus B(oLt , ξD) Calculation

1: Input: SDTW per-timestep rewards {RSDTW (oLt , ξ
D)}T−1

t=0 , the SDTW optimal assignment
path A∗, the timestep t to calculate the bonus for.

2: Output: Accumulated reward bonus at timestep t: B(oLt , ξD)
3: B(oLt , ξD) = 0 // Initialize the reward bonus

4: // At learner’s step 0, it is matched to the demo step 0 by temporal constraint

5: prev best match = 0
6: for i← 1 to t− 1 do
7: // At step i, the demo step that the learner is primarily matched to

8: curr best match = argmaxt′ A
∗
i,t′

9: if curr best match > prev best match then
10: // Made progress by matching to a later demo step, so adding reward from

the previous step i− 1
11: B(oLt , ξD)← B(oLt , ξD) +RSDTW (oLi−1, ξ

D)

12: prev best match← curr best match
13: Return B(oLt , ξD)

Figure 4: Two learner trajectories
that have identical observations from
timestep 0 to t − 1. At timestep t,
the more optimal trajectory ξL+ makes
progress, while the suboptimal trajec-
tory’s frame oL−

t just stays close to the
previous timestep’s frame.

We formalize the SDTW failure cases and show how SDTW+,
which accumulates the SDTW reward from the previous
timestep when the learner makes progress, mitigates this issue.

Problem Setup. Let ξL− = {oL0 , . . . , oLt−1, o
L−
t , . . . } and

ξL+ = {oL0 , . . . , oLt−1, o
L+
t , . . . } be two learner trajectories

where observations from 0 to t − 1 are identical but differ
at oL−

t and oL+
t . We define ξL− to be a suboptimal trajec-

tory, where, at timestep t, the learner stays close to the pre-
vious timestep’s frame oLt−1 instead of making progress, so
RSDTW (oL−

t , ξD) ≤ RSDTW (oLt−1, ξ
D). In contrast, we de-

fine ξL+ to be a more optimal trajectory, where at timestep
t, it makes progress as its frame oL+

t matches to the next
demonstration frame compared to the previous timestep. Fig. 4
conceptually illustrates these two trajectories. Appendix A.3
shows that, depending on the visual distance between the more
optimal frame oL+

t and demonstration frames, oL+
t can have a

lower SDTW reward compared to the suboptimal frame oL−
t .

However, SDTW+ can solve this problem:

Proposition 1. Under the problem setup stated above, the SDTW+ cumulative reward bonus guaran-
tees that the more optimal frame oL+

t has a higher SDTW+ reward than the suboptimal frame oL−
t ,

i.e.,RSDTW+(o
L+
t , ξD) > RSDTW+(o

L−
t , ξD).

The proof of Proposition 1 is deferred to Appendix A.3. In conclusion, the SDTW+ reward function
enforces temporal constraints because of its SDTW formulation and also encourages the agent to
make progress, thereby satisfying the two key desiderata for sequence-matching reward functions.

3.2 Visual Distance Metric

The sequence-matching reward (Section 3.1) requires a function dv(o
L
t , o

D
t′ ) that computes the dis-

tance between two images oLt and oDt′ . Empirically, we find that the representations of pretrained
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Figure 5: (Left) Rewards of two pretrained models and (right) our joint prediction model on an example
learner trajectory for the left arm out task. To emphasize their shape, all rewards are normalized along the
trajectory dimension. Rewards using the pretrained SigLIP-ViT-B-16 and DINOv2-ViT-B-14-reg models are
based on the cosine similarity between the learner and demonstration embeddings. The fine-tuned joint predic-
tion model (Section 3.2) provides a smoother reward curve. The trajectories are in the MuJoCo Humanoid-v4
environment [18, 19], which is visually modified to mimic the setup of [20].

visual encoders produce noisy rewards. Fig. 5 shows that the reward signals sometimes are the oppo-
site of the ground-truth reward (e.g., at around timestep 20). Even at timesteps when these rewards
roughly follow the shape of the ground-truth, there is a significant amount of noise, matching the
observations of [21] in the Meta-world environment.

We hypothesize that the pretrained encoders struggle because the environment is out of their training
distribution. To address the domain gap, we collect a set of robot play data D = {(oi, ji)}Ni=1

containing images oi of various poses and corresponding joint positions ji. We attach a joint position
prediction head f to an existing visual encoder ϕ , which we train using regression. Additionally,
we train an autoencoder gdec ◦ genc that minimizes the reconstruction loss Lreco(zi) given a visual
embedding ϕ(oi) = zi. The reconstruction loss is defined as the squared Euclidean distance between
the original and reconstructed embedding: Lreco(zi) = ||gdec(genc(zi))− zi||22.

Because out-of-distribution images are common during RL training, we utilize the reconstruction
loss to estimate the model’s uncertainty. First, we compute the mean µreco and standard deviation
σreco of the loss on the offline dataset. Then, we use a formulation inspired by Frey et al. [22] to
compute an uncertainty score u(zi):

u(zi) =

{
ϵ, ifLreco(zi) < µreco

1− exp
(

(Lreco(zi)−µreco)
2

2(σrecokσ)2

)
+ ϵ, otherwise

(4)

where kσ is a hyperparameter that controls the spread of the uncertainty function and ϵ ensures that
the uncertainty is greater than 0. In our experiments, we set kσ = 2 and ϵ = 1.

Finally, let dj(oLt , o
D
t′ ) be the Euclidean distance between the predicted joint positions for both im-

ages. We use an uncertainty-scaled visual distance dv(o
L
i , o

D
j ) for the sequence matching function:

dv(o
L
t , o

D
t′ ) = u(ϕ(oLt ))u(ϕ(o

D
t′ ))dj(o

L
t , o

D
t′ ) (5)

See Appendix B for more details on the visual dataset, model, training, and uncertainty scaling.
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4 Experiments

4.1 Experimental Setup

Environments. We evaluate our approach across two environments (details in Appendix C.1):

• 2D-Navigation. This discrete environment tests the sequence-matching reward function on
demonstrations with different pacing from the learner (shown in Fig. 6). At each timestep, the
learner can move one cell in a cardinal direction or stay at the current cell.

• Humanoid. The MuJoCo Humanoid-v4 environment [18, 19] examines how well the sequence-
matching reward function works with the visual distance metric. We define 6 tasks (shown in
Fig. 8), and the goal is to follow the demonstration motion within the maximum 120 timesteps.

RL Policy. For the 2D-Navigation environment, we train PPO [23] for 100k steps and evaluate
the policy’s performance every 2000 steps on one environment (because the environment does not
change). For the Humanoid environment, we train SAC [24] for 2M steps and evaluate the policy
every 20k steps on 8 environments. Appendix C.2 contains RL training details and hyperparameters.

Baselines. We compare SDTW+ (with the temperature parameter λ = 5) against baselines that use
other sequence-matching algorithms: OT [25], DTW (SDTW with λ = 0), SDTW (λ = 5), and DTW+

(which augments the DTW rewards by adding bonuses). For the 2D-Navigation environment, all
approaches use a shortest-path distance metric based on the agent location. For the Humanoid
environment, they use the visual distance metric in Section 3.2. We also include RoboCLIP [26], a
transformer-based approach that uses a pretrained video-and-language model [27] to directly encode
the video. It defines the reward for the last timestep as the cosine similarity between the learner
video’s and the demonstration video’s embeddings, while all previous timesteps have 0 as the reward.

Metrics. We define the success rate as the percentage of a demonstration trajectory that the learner
trajectory matches in the same order as the demonstration. This metric is calculated using the
privileged state information that all reward functions do not have access to. For the 2D-Navigation
environment, a learner state matches a demonstration state if the agent locations are identical. For
the Humanoid environment, a learner trajectory has successfully matched a demonstration state if
the agent can remain standing (torso height above 1.1) and its arm joint position sLt is close to the
demonstration’s arm joint position sDt (e−||sLt −sDt ||2 > 0.50) for N = 3 consecutive frames.

4.2 How well does SDTW+ perform when demonstrations are faster than the learner?

Figure 6: Learning curves on 2D-Navigation envi-
ronment tasks with a shortest-path based distance
metric. The policy and environment are deterministic,
so confidence intervals are not shown.

In Fig. 6, the learner trained with SDTW+ reward
is the only one that converges to 1.0 success rate
for both tasks, as it reaches all the demonstra-
tion states and follows the right order. We visu-
alize the learner trajectories after being trained
on each reward function in Fig. 12 in the Ap-
pendix. With the constant speed demonstra-
tion (where the demonstrator moves an equal
amount of cells to reach each state), the OT

learner nearly reaches all the states that the
demonstration visits, but it travels in the oppo-
site direction, thereby supporting the hypothe-
sis that OT fails to enforce temporal constraints.
Only the DTW+ and SDTW+ learners are able to
reach the first state in the demonstration, but the
DTW+ learner gets stuck at this point. With the
variable speed demonstration, similar behaviors
occurred (i.e., the OT, DTW+, and SDTW learners
all get stuck at one of the intermediate states in
the demonstration).
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4.3 How well does SDTW+ perform with demonstration videos in the humanoid domain?

Fig. 7 shows that, across all tasks, the learner trained with the SDTW+ reward achieves the highest
IQM success rate compared to other baselines. Fig. 8 shows the average success rates over training
for SDTW+ and three baselines. SDTW+ performs better than all baselines on 4/6 tasks (Both Arms
Out, Both Arms Down, Left/Right Arm Out) and performs slightly worse than DTW+ on 2/6 tasks
(Left/Right Arm Up). Meanwhile, RoboCLIP has the worst performance, suggesting that a sparse
reward based on video embeddings is insufficient for sequence-following tasks.

Figure 8: Per-task learning curves on Humanoid Tasks with visual distance metrics. SDTW+ performs the
best on 4/6 tasks. Results are averaged across 8 seeds and shown with 95% confidence intervals.

Figure 7: IQM success rate for all approaches af-
ter training. The SDTW+ reward function successfully
trains the RL agent to achieve the highest success rate.
Error bars show the 95% confidence intervals.

Empirically, the DTW+ approach matches a large
portion of the learner’s trajectory to the fi-
nal frame in the demonstration (see Fig. 14),
thereby also training an agent to achieve a rela-
tively high success rate. We hypothesize that
this leads to especially good performance on
tasks like Left/Right Arm Up, where the final
frame is much further from the initial frame.
However, this unbalanced matching also causes
training instability (where the performance de-
grades in 4/6 tasks) because the DTW+ agent fo-
cuses mainly on reaching the final joint posi-
tions and ignores the need to match the previous
positions in the demonstrations well. In con-
trast, the SDTW+ reward with a more distributed
matching trains the agent more stably.

The results also validate our hypothesis about
the failure case of OT. We observe that the OT

coupling matrix is not temporally consistent,
leading to a poorly shaped reward that causes worse training. For example, when the agent ex-
plores, it is temporarily closest to later frames in the demonstration, causing OT to match the agent’s
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frame to these later frames. Then, when the agent loses its progress and moves closer to the earlier
demonstration frames due to instability, OT matches the agent frame to earlier frames, leading to no
reduction in the episode return. Appendix C.4 shows visualizations of this phenomenon.

Overall, with the SDTW+ reward, the agent achieves a better success rate than the baselines and
trains more stably.

5 Related Works

5.1 Sequence-Matching Algorithms Used in Robotics

Prior works use optimal transport [5], a sequence-matching algorithm, to define rewards for robotic
tasks. In the imitation learning setting, given a teleoperated demonstration dataset, the reward or the
loss function is defined as the optimal coupling between the learner trajectories’ and the demonstra-
tions’ state or action distributions [6–8, 10, 28]. Without access to privileged states, recent works
exploring using optimal transport to match the visual embedding between the learner and the demon-
stration trajectory [9, 11, 12, 29]. Similar to our work, they use a visual encoder (e.g. pretrained
ResNet [30]) to embed the images in the trajectories. However, none of these focus on the sequence-
following task that requires the agent to closely follow all steps of the demonstration. Meanwhile,
Dynamic Time Warping (DTW) has mostly been used as an evaluation metric to quantify how well
a robot trajectory can be matched to demonstration trajectories [31, 32] or a filtering metric to create
a higher quality imitation learning demonstration dataset [33]. To the best of our knowledge, our
work is the first to systematically explore how effectively each sequence-matching algorithm can
function as a reward function for sequence-following tasks, and we are the first to effectively utilize
soft dynamic time warping in reward functions.

5.2 Visual Rewards

Recent advancements in pretrained vision and multimodal models have raised interest in leveraging
their features as reward sources for RL, especially when traditional reward functions are challenging
to define. Prior works use reward functions derived from these models to directly specify tasks
[20, 34, 35] or to provide supplementary reward signals [36, 37]. Similar to our goal, Sontakke
et al. [26] learn a policy for manipulation tasks from a demonstration video using a pretrained video
model [27] to generate trajectory-level sparse rewards. However, embeddings derived from these
models can produce noisy rewards that hinder RL training [21, 38], and sparse rewards can fail to
effectively train a policy in more complex environments.

6 Discussion

We investigate how to define the reward function for tasks that require an RL agent, such as a hu-
manoid robot, to follow the sequence specified in a video demonstration. We present the SDTW+

reward function, which utilizes SDTW to enforce time constraints so that the learner must follow
the order in the demonstration and accumulates a reward bonus to encourage the learner to make
meaningful progress. From eight tasks across two distinct domains, our approach outperforms base-
lines that use other sequence-matching algorithms in two distinct domains. With the SDTW+ reward
function, the RL agent is able to learn how to follow the video demonstration effectively.

In future directions, we are looking to (1) apply the SDTW+ reward function to longer-horizon, more
difficult tasks, such as those requiring periodic motions. Solving these tasks would require incor-
porating a memory module into the RL policy or a temporal encoding into the state representation
because the action at a state will differ depending on the history of states visited. We also plan to (2)
relax the dataset assumption needed to finetune the visual encoder. Currently, we rely on the offline
robot play dataset to finetune the encoder and estimate the model’s uncertainty. Future work would
explore using online finetuning during RL training, inspired by [21], to improve performance.
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A Sequence Matching Reward Function

A.1 Proof: Limitation of Optimal Transport (OT)

Detailed Problem Setup. Let ξL∗ and ξL be trajectories with the same embedded occupancy distri-
bution. One such example is if ξ and ξL have the same length and reach the same states, such as the
left of Fig. 9. Assume that ξL∗ reaches the demonstration states in the correct order, and ξL reaches
them in the incorrect order.
Proposition 2. The cumulative OT reward is the same for ξL∗ and ξL.

Proof. Chen and Wang [39] show that the Wasserstein distance is a function of the embedded occu-
pancy distribution of its point sets, so it is invariant to permutations in the ordering of these points.
Thus, for the trajectories ξL∗ and ξL, the Wasserstein distance is the same. Consequently, the cu-
mulative OT rewards are also the same, even though ξL is not a successful rollout.

Note that SDTW can overcome this limitation because of its time consistency constraints, as shown
in the right figure of Fig. 9. It aligns the two trajectories in a time-consistent way, ensuring that ξL∗

(the trajectory in the correct order) is rewarded more than ξL (the trajectory in the incorrect order),
thereby overcoming the failure case of OT.

A.2 Proof: Limitation of Dynamic Time Warping (SDTW with λ = 0)

Detailed Problem Setup. Assume S is a finite discrete state space: S ⊂ ZN and S is bounded in
all dimensions. Let (S, d) be a metric space, where d is the Manhattan distance. Assume A is an
action space that allows the agent to move 1 space in any cardinal direction. 2D-Navigation is an
example of such an environment.

Let the learner trajectory be ξL = {sLt }T−1
t=0 of length T and ξD = {sDt }T

′−1
t′=0 of length T ′. Let the

sequence matching cost function be SDTW with temperature 0 (this is equivalent to DTW):

cdtw(ξ
L, ξD) =

1

T ′T
||Adtw

∗(ξL, ξD)⊙D(ξL, ξD)||
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Figure 9: Failure cases for OT reward in the 2D-Navigation environment. SDTW overcomes OT’s limi-
tation. The suboptimal learner trajectory ξL moves in the counter-clockwise direction while optimal one ξL∗

moves clockwise. Unlike the learner, the agent in the demonstration trajectory can move multiple cells per
timestep.

where Adtw
∗(ξL, ξD) is the optimal assignment matrix between ξL and ξD, and D(ξL, ξD) is the

distance matrix between ξ and ξD such that Dt,t′ = d(ξLt , ξ
D
t′ ).

Let Ξ∗(ξD) denote the set of all learner trajectories with minimum total sequence matching cost
given ξD: Ξ∗(ξD) = {argminξL cdtw(ξ

L, ξD)}. Finally, we assume that there exists ξL∗ ∈ Ξ∗(ξD)
such that ξL∗ visits every state in ξD (i.e., ∀sDt′ ∈ ξD ∃sLt ∈ ξL∗ s.t. d(sDt′ , s

L
t ) = 0).

Proposition 3. There exists ξL− ∈ Ξ∗(ξD) such that ξL− does not reach every state in ξD.

Proof. An adversarial learner trajectory ξL− is constructed by visiting all the same states as ξL∗ ex-
cept that it gets stuck in the second-to-last state of the demonstration trajectory, sDT ′−2, and it moves
one state towards the the final demonstration state sDT ′−1 in its last timestep. Formally, partition the
optimal learner trajectory ξL∗ into ξL∗

≤ and ξL∗
> , where ξL∗

≤ = {sL∗
0 , . . . , sL∗

i } s.t. d(sL∗
i , sDT ′−2) =

0, and ξL∗
> = {sL∗

i+1, . . . , s
L∗
T−1} is the set of all states afterwards. Then, the adversarial trajectory

is ξL− = ξL∗
≤ + {sDT ′−2}

|ξL∗
> |−1

i=1 + {sL−
T−1}, where sL−

T−1 is the state such that d(sL−
T−1, s

D
T ′−1) =

d(sL−
T−2, s

D
T ′−1)− 1.

It follows from the dynamic programming formulation of DTW that cdtw(ξL∗
≤ , ξD) is only a function

of ξL∗
≤ and ξD, and not any states that occur after ξL∗

≤ . In other words, the DTW assignment matrix
is equal for ξL− and ξL∗ up to and including timestep i.

Let drem = d(sDT ′−2, s
D
T ′−1). Then, a temporally consistent assignment matrix A− for the remain-

ing entries in ξL− can be constructed by matching sL−
T−1 to sDT ′−1 and the learner states after i and be-

fore the last timestep to the second-to-last demonstration state sDT ′−2. Because d(ξDT ′−1, ξ
D
T ′−1) = 0

and d(sL−
T−1, s

D
T ′−1) = d(sDT ′−2, s

D
T ′−1) − 1 = drem − 1, the assignment and distance matrices are

as follows:
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A−(ξL−, ξD) =


Adtw(ξL∗

≤ , ξD) 0 0
0 1 0
...

...
...

0 1 0
0 0 1

 D(ξL−, ξD) =


D(ξL∗

≤ , ξD) 0 0
0 0 0
...

...
...

0 0 0
0 0 drem − 1


This results in the following upper bound on the cost of the adversarial trajectory:

cdtw(ξ
L−, ξD) ≤ cdtw(ξ

L∗
≤ , ξD) + drem − 1 (6)

To establish a lower bound on the optimal trajectory, observe that drem moves are necessary to
reach ξDT ′ from ξDT ′−1. Each of these moves incurs at least 1 additional cost for ξL∗ except for the
last move, which incurs 0 cost, resulting in:

cdtw(ξ
L∗, ξD) ≥ cdtw(ξ

L∗
≤ , ξD) + drem − 1 (7)

It follows from equations 6 and 7 that c(ξL−, ξD) ≤ cdtw(ξ
L∗, ξD). Thus, ξL− ∈ Ξ∗(ξD), despite

ξL− failing to reach the final state ξDT ′ .

A.3 Proof: the Effect of Reward Bonus in SDTW+

We formalize how SDTW+ (Section 3.1), which accumulates the SDTW reward from the previous
timestep when the learner makes progress, mitigates this failure mode of SDTW.

Detailed Problem Setup. Let ξL− = {oL0 , . . . , oLt−1, o
L−
t , . . . } and ξL+ =

{oL0 , . . . , oLt−1, o
L+
t , . . . } be two learner trajectories where observations from 0 to t − 1 are

identical but differ at oL−
t and oL+

t . Let A∗− and A∗+ be the optimal alignment matrix for
ξL− and ξL+ respectively. Let the learner frame oLt−1 be primarily matched to oDt′−1 (i.e.,
t′ − 1 = argmaxj A

∗−
t−1,j = argmaxj A

∗+
t−1,j ).

We define ξL− as a suboptimal trajectory, where, at timestep t, the agent stays close to the previous
timestep’s frame oLt−1 instead of making progress. Thus,

t′ − 1 = argmax
j

A∗−
t,j︸ ︷︷ ︸

oL−
t+1primarily matches to the same demonstration frame oD

t′−1
as the previous timestep

(8)

RSDTW (oL−
t , ξD) ≤ RSDTW (oLt−1, ξ

D) (9)

In contrast, we define ξL+ to be a more optimal trajectory, where at timestep t, it makes progress as
its frame oL+

t matches to the next demonstration frame compared to the previous timestep. Thus,

t′ = argmax
j

A∗+
t,j︸ ︷︷ ︸

oL+
t+1primarily matches to the next demonstration frame oD

t′

(10)

Under the visual distance metric, when dv(o
L−
t , oDt′−1) < dv(o

L+
t , oDt′ ), the suboptimal frame oL−

t

has higher SDTW reward than the optimal frame because oL−
t is primarily matched to oDt′−1, oL+

t is
primarily matched to oDt′ , and lower distance implies higher reward.

We restate Proposition 1 below:

Proposition 1. Under assumptions (8) and (9) about oL−
t and (10) about oL+

t , the SDTW+’s cumu-
lative reward bonus guarantees that the more optimal frame oL+

t has a higher SDTW+ reward than
the suboptimal frame oL−

t , i.e.,RSDTW+(o
L+
t , ξD) > RSDTW+(o

L−
t , ξD).

Proof. By (10) and Algorithm 1, the more optimal learner trajectory ξL+ accumulates an additional
reward bonus ofRSDTW (oLt−1, ξ

D) at timestep t because it makes progress by matching oL+
t to the
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next demonstration frame oDt′ . Then, the difference between the SDTW+ reward of the more optimal
frameRSDTW+(o

L+
t , ξD) and the less optimal frameRSDTW+(o

L−
t , ξD) is

= (RSDTW (oL+
t , ξD) +RSDTW (oLt−1, ξ

D))−RSDTW (oL−
t , ξD) > 0 (11)

where the equality follows by (8) and Algorithm 1 that the less optimal learner trajectory ξL− does
not accumulate new reward bonus at timestep t; the inequality follows by (9) and positive rewards
RSDTW (oL+

t , ξD) > 0. Thus, the more optimal frame oL−
t has a higher SDTW+ reward than the less

optimal frameRSDTW+(o
L+
t , ξD) > RSDTW+(o

L−
t , ξD)

B Visual Distance Metric

We hypothesize that the pretrained encoders fail to pick up fine grained differences between simu-
lated images because the environment is out of their training distribution. Thus, we choose to train
a model that can predict the ground truth states (which corresponds to joint positions in the Mujoco
environment).

B.1 Dataset Details.

To train the model for visual rewards, we collected a new dataset of MuJoCo images paired with
corresponding joint states for each image. The dataset includes in total 9,038 samples.

To build the dataset, we utilized a set of rollout trajectories covering a set of goal reaching tasks
(such as different hand poses, doing splits, etc.), We included both successful and unsuccessful
trajectories. To ensure diversity among samples representing different stages of a trajectory, we
selected one frame every k frames (here k = 5), encouraging the network to differentiate between
similar images. Given the similarity of initial trajectories, we retained the first four frames only 25%
of the time, and in those cases, selected a random frame from a five-frame interval.

B.2 Joint Predictor Training Details.

Figure 10: The distribution of uncertainty predic-
tions on the offline training dataset and over an RL
training run for the right arm extend wave task.

To train our joint predictor f ◦ ϕ, we fully fine-
tune a ResNet50 backbone [30] pre-trained on
ImageNet-1K [40] with a 3-layer MLP head
that projects to the joint dimension. The MLP
head has layers of shape (2048, 1024), (1024,
1024), and (1024, 54), where 54 represents the
number of joints (18) multiplied by the dimen-
sion per joint (3). Optimization is performed
over 100 epochs using SGD with learning rate
.008, batch size 16, and momentum 0.875. Af-
ter training the joint predictor, we freeze the
backbone weights, and train a shallow autoen-
coder architecture with two linear layers of
shapes (dϕ, 32) and (32, dϕ) using the same
parameters, where dϕ is the dimension of the
backbone (2048 in this case). This provides the
reconstruction loss that is used for confidence
estimation. For the fine-tuning, we also experi-
mented with Dinov2 on the task of interest and
didn’t observe, thus we chose to use ResNet.

B.3 Epistemic Uncertainty Estimate as Reward Scaling

The use of a joint-position predictor results in an additional challenge: in an environment with
unstable dynamics, there is a large space of image observations with very different joint positions,
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many of which are difficult to reach through robot play. During RL training, a policy can reach a
state outside of D, resulting in noisy joint predictions and rewards. To solve this problem, prior
work has estimated the epistemic uncertainty of the visual model using an autoencoder architecture
[22, 41]. Given that the training converges, if an embedding z is in the domain, then the autoencoder
will be able to achieve low reconstruction loss. Contrapositively, if it has high reconstruction loss
on an embedding z’, then z’ must not be in domain.

We observe that the reconstruction losses over a set of trajectories sampled from partially trained
policies are skewed towards high uncertainties. In-domain images tend to have low loss that is tightly
clustered around the average offline loss, while out-of-domain images tend to have higher and more
spread out loss. Figure 10 shows that uncertainties increase during RL training, indicating that there
is distribution shift. We additionally visualize the confidence function c(z), which we define as
1− (u(z)+ ϵ). The confidence uses the mean and standard deviation of the offline uncertainties and
k = 2. This demonstrates that the confidence function (and thus uncertainty function) is appropriate
for the uncertainty distribution encountered during RL.

Figure 11 shows a qualitative example of how uncertainty scaling fixes incorrect reward predictions
on out-of-distribution images. The shape of the uncertainty scaled reward curve better matches the
ground truth.

Figure 11: The impact of confidence scaling on rewards for a trajectory where the robot falls
down. The ground truth trajectory is shown on top and renders of the model’s joint predictions
given the top frames are shown on the bottom. The rewards are computed with respect to the final
reference image of the left arm wave task. Once the robot starts falling, there is a distribution shift
in the images, and the model predicts that the robot is upright. This leads to high reward predictions,
but also high uncertainty estimates. When corrected using the confidence function, the reward shape
improves significantly.

C Experiments

C.1 Environment Details.

• 2D-Navigation. The discrete environment has a 3 × 5 grid with the agent starting at (1, 0) and
obstacles spanning from (1, 1) to (1, 3). The state space is the current position of the agent. At
each timestep, the agent can move to one cell in a direction (up, down, left, or right) or remain in
its current cell.
The agent’s goal is to follow the reference sequence within a maximum of 8 timesteps. We design
two demonstration trajectories (shown in Fig. 6) to test how well the sequence matching reward
function handles a demonstration trajectory with varying pacing (i.e. the demonstrator can move
multiple cells per timestep). The first demonstration sequence has 2 timesteps, with the number
of cells between each timestep in the demonstration trajectory remaining the same. The second
sequence has 3 timesteps, but the number of cells between timesteps varies.
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• Humanoid. We use the MuJoCo Humanoid-v4 environment [18, 19]. At the beginning of an
episode, the humanoid is spawned upright, slightly above the ground, with its arms curled towards
its chest.
The humanoid’s goal is to follow the motion of a demonstration trajectory within a maximum of
120 timesteps. We define 6 motions, corresponding to 6 demonstration trajectories:

1. left arm up
2. right arm up
3. left arm out
4. right arm out
5. both arms out
6. both arms down

These demonstration trajectories each have a length of 10 and are generated by interpolating be-
tween the initial and final poses. Fig. 8 shows snapshots of these trajectories. We assume access
to a stability reward function, which includes a control cost and a reward for remaining standing.

C.2 RL Policy Details.

Table 1: Training hyperparameters used for experiments on both environments.

Parameter 2D Navigation Env. (PPO) Humanoid Env. (SAC)
Total environment steps 100,000 2,000,000
Learning rate 0.00025 0.001
Batch size 64 256
Gamma (γ) 0.99 0.99
Entropy coefficient 0.25 -
Value function coefficient 1 -
Actor/Critic architecture - (256, 256)
Episode length 5 120
Seed 9 9

C.3 Toy Environment Experiments

Figure 12 shows example trajectories for each method on the two 2D-Navigation environment tasks.
In both cases, SDTW+ is the only method that reaches every reference state in the correct order.

C.4 OT Failure in the Humanoid Environment

Figure 13 shows an example of failure case for OT reward in the Mujoco Humanoid-v4 environ-
ment.

C.5 Unbalanced Matching in DTW+

Figure 14 shows an example of trajectory, where the DTW+ coupling matrix assigns most of the
learner timesteps to the frames towards the end of the reference trajectory.
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Figure 12: Final trajectories of PPO-trained agents on the two 2D-Navigation sequence follow-
ing tasks.

Figure 13: Failure case for OT reward in the Humanoid environment. The OT optimal coupling matrix
(left matrix) shows that when the learner’s arms are moving downward (around timestep 60, denoted by oL60
on the left), the corresponding assignments in the matrix also progress forward along the demonstration trajec-
tory. However, the OT reward increases from approximately 0.2 to 0.6, suggesting a higher reward when the
humanoid’s movements do not accurately match the intended complex motions.
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Figure 14: Example of trajectory with unbalanced matching with DTW+.
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