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Abstract

Cooperatively utilizing both ego-vehicle and infrastructure sensor data can signifi-
cantly enhance autonomous driving perception abilities. However, the uncertain
temporal asynchrony and limited communication conditions can lead to fusion
misalignment and constrain the exploitation of infrastructure data. To address
these issues in vehicle-infrastructure cooperative 3D (VIC3D) object detection, we
propose the Feature Flow Net (FFNet), a novel cooperative detection framework.
FFNet is a flow-based feature fusion framework that uses a feature flow predic-
tion module to predict future features and compensate for asynchrony. Instead of
transmitting feature maps extracted from still-images, FFNet transmits feature flow,
leveraging the temporal coherence of sequential infrastructure frames. Furthermore,
we introduce a self-supervised training approach that enables FFNet to generate
feature flow with feature prediction ability from raw infrastructure sequences. Ex-
perimental results demonstrate that our proposed method outperforms existing
cooperative detection methods while only requiring about 1/100 of the transmission
cost of raw data and covers all latency in one model on the DAIR-V2X dataset.
The code is available at https://github.com/haibao-yu/FFNet-VIC3D.

1 Introduction
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Figure 1: Performance vs. Transmission Cost on DAIR-V2X
Dataset. All results are reported with 200ms latency. FFNet
achieves a new state-of-the-art 62.87% mAP@BEV while only
requiring about 1/100 of the transmission cost of early fusion.

Accurate 3D object detection is a critical task in
autonomous driving as it provides crucial informa-
tion about the location and classification of surround-
ing obstacles. Traditional 3D object detection meth-
ods rely on onboard sensor data from the ego ve-
hicle, which has a limited perception field and of-
ten fails in blind or long-range zones, resulting in
safety concerns. To address these challenges, vehicle-
infrastructure cooperative autonomous driving has
gained much attention, particularly using infrastruc-
ture sensors like cameras and LiDARs, which are
usually installed higher than ego vehicles, providing
a broader field of view (40; 42; 25; 24). By utilizing
additional infrastructure sensor data, it is possible
to obtain more meaningful information and improve
autonomous driving perception ability. In this paper,
we focus on solving the vehicle-infrastructure cooperative 3D (VIC3D) object detection problem to
enhance the safety and performance of autonomous driving systems in challenging traffic scenarios.
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Figure 2: Vehicle-Infrastructure Cooperative 3D Object Detection. (a) Infrastructure vs Vehicle Sensor Data.
Infrastructure sensor data can provide abundant information for autonomous driving with a broader perception
field compared to vehicle sensor data. (b) Vehicle-Infrastructure Cooperative System. There are three potential
data forms for transmission: raw data for early fusion, intermediate-level data for middle fusion, and detection
outputs for late fusion. Due to limited communication conditions, the infrastructure information may be received
by any vehicle with an uncertain latency, resulting in uncertain temporal asynchrony. (c-d) Aligned and Non-
aligned Point Clouds and Features. Non-aligned point clouds and features can cause fusion misalignment and
affect the exploitation of infrastructure data, potentially impacting the performance of the cooperative detection.

The VIC3D problem can be formulated as a multi-sensor detection problem under constrained
communication bandwidth, presenting two main challenges. First, infrastructure data can be received
by any vehicle, and the data captured by ego-vehicle sensors and received from infrastructure devices
have asynchronous timestamps with uncertain differences. Second, the communication bandwidth
between the two-side devices is limited. Recent studies (40; 14; 33) have attempted to address this
problem and proposed three major fusion frameworks for cooperative detection: early fusion, late
fusion, and middle fusion. Early fusion involves transmitting raw data like raw point clouds, while late
fusion uses detection outputs for object-level fusion. Middle fusion utilizes intermediate-level features
for feature fusion, striking a balance between preserving valuable information and reducing redundant
transmission. However, existing middle-fusion solutions (15; 14; 33) overlook the challenge of
temporal asynchrony explicitly, leading to fusion misalignment that affects detection results, as
depicted in Figure 2. This paper aims to address these challenges in a simple and unified manner.
Specifically, we propose the Feature Flow Net (FFNet), a novel cooperative detection framework
that simultaneously overcomes the issues of uncertain temporal asynchrony and communication
bandwidth limitations in VIC3D object detection.

As depicted in Figure 3, FFNet comprises several steps, including generating feature flow from
sequential infrastructure frames, transmitting the compressed feature flow, and fusing it with ego-
vehicle features to obtain detection output. The feature flow is a critical component of FFNet, serving
as a feature prediction function that enables alignment with ego-vehicle features and eliminates
fusion errors arising from temporal asynchrony. To reduce transmission costs while preserving
valuable information and temporal prediction ability, we employ attention masks and quantization
methods to further compress the feature flow before transmission. Furthermore, we introduce a
self-supervised approach to train the feature flow generator. This approach involves constructing
ground truth features using raw infrastructure sequences, eliminating the need for manual labeling.
The feature flow captures rich temporal correlations extracted from the raw infrastructure sequence
and exhibits the ability to predict infrastructure features at any future time, making it well-suited for
addressing the challenge of uncertain temporal asynchrony in VIC3D object detection. To the best of
our knowledge, this is the first time feature flow has been utilized in multi-sensor object detection to
address the issue of temporal misalignment in intermediate levels.

We implemented the proposed FFNet framework on the DAIR-V2X dataset (40), which consists of
real-world driving scenarios in challenging traffic intersections. To demonstrate the effectiveness
of FFNet, we conducted performance comparisons with several existing cooperative detection
methods, including V2VNet (30) and DiscoNet (19). The experimental results reveal that FFNet
surpasses all other cooperative methods while utilizing only about 1/100 of the transmission cost
required for transmitting raw data. Furthermore, our method effectively addresses the challenge of
temporal asynchrony and overcoming latency variations ranging from 100ms to 500ms in one model.
Experiments encompassing additional V2V (vehicle-to-vehicle) scenarios will soon be public.
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The main contributions of this work are as follows:

• We propose Feature Flow Net (FFNet), a flow-based feature fusion framework for VIC3D object
detection. FFNet transmits feature flow to generate aligned features for data fusion, providing
a simple and unified manner to transmit valuable information for fusion while addressing the
challenges of uncertain temporal asynchrony and transmission cost.

• We introduce a self-supervised approach to train the feature flow generator, enabling FFNet with
feature prediction ability to mitigate temporal fusion errors across various latencies. This training is
independent of cooperative view and labeling, allowing full utilization of infrastructure sequences.

• We evaluate the proposed FFNet on the DAIR-V2X dataset, demonstrating superior performance
compared to all cooperative methods while requiring only about 1/100 of the transmission cost of
raw data. Furthermore, FFNet is robust across various latencies, requiring only one model.

2 Related Work

Egocentric 3D Object Detection. Perceiving objects, especially 3D obstacles in the road environ-
ment, is a fundamental task in egocentric autonomous driving. Egocentric 3D object detection can be
classified into three categories based on sensor types: Camera-based methods, LiDAR-based methods,
and multi-sensor-based methods. Camera-based methods, such as FCOS3D (29), directly detect 3D
bounding boxes from a single image. BEVformer (21) and M2BEV (31), project 2D images onto
a bird’s-eye view (BEV) to conduct multi-camera joint 3D detection. LiDAR-based methods, such
as VoxelNet (43), SECOND (37), and PointPillars (16), divide the LiDAR point cloud into voxels
or pillars and extract features from them. Multi-sensor-based methods (28; 23) utilize both Camera
and LiDAR data. In contrast to these methods for single-vehicle view object detection, our proposed
method focuses on cooperative detection with point clouds as inputs. It utilizes both infrastructure
and vehicle sensor data to overcome the perception limitations of single-vehicle view detection.

VIC3D Object Detection. With the development of V2X communication (12), utilizing information
from the road environment has attracted much attention. Several works, such as V2VNet (30),
DiscoNet (19), StarNet (20) and SyncNet (17), utilize information from other vehicles to expand
the perception field. V2X-Sim (18), OPV2V (34) and V2V4Real (32) are datasets for multi-vehicle
cooperative perception research. ControllingNet (27) and Coopernaut (6) integrate infrastructure
data for end-to-end autonomous driving. Some works like Rope3D (38), BEVHeight (36), and
A9-Dataset (5) that focus on utilizing roadside sensor data for 3D object detection. DAIR-V2X (40)
is a pioneering work in vehicle-infrastructure cooperative 3D object detection, which introduces the
VIC3D object detection task and provides early and late fusion baselines. Then V2X-Seq (42) extends
the tasks into cooperative tracking and motion forecasting. Existing approaches such as (14; 2; 15; 8)
focus on transmitting feature maps or queries for cooperative detection, without considering the
challenges of temporal asynchrony. In this paper, we propose a flow-based feature fusion framework
to address the issue of temporal asynchrony and reduce transmission costs in a simple and unified
manner. It is important to note that our method is fundamentally different from SyncNet (17), which
transmits common features and integrates per-frame features to compensate for latency.

Feature Flow. Flow is a concept originating from mathematics, which formalizes the idea of the
motion of points over time (7). It has been successfully applied to many computer vision tasks, such
as optical flow (3), scene flow (26), and video recognition (45). As a concept extended from optical
flow (13), feature flow describes the changing of feature maps over time, and it has been widely used
in various video understanding tasks. Zhu et al.(44) propose a flow-guided feature aggregation to
improve video detection accuracy. In this paper, we introduce the feature flow for feature prediction
to overcome the challenge of temporal asynchrony in VIC3D object detection.

3 Method

In this section, we present the proposed FFNet (Feature Flow Net) to solve vehicle-infrastructure
cooperative 3D (VIC3D) object detection. We begin by introducing the VIC3D problem in Section 3.1,
then explaining the inference process in Section 3.2, and explaining the training methodology of
FFNet, including the incorporation of self-supervised learning, in Section 3.3. In the Appendix, we
provide a comprehensive comparison of various potential solutions for reference.
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Figure 3: FFNet Overview. In the infrastructure system, we represent the feature flow using linear forms
by extracting both the feature and the first-order derivative, as shown in Equation 2. To further reduce the
transmission cost, we employ attention masks and quantization techniques in addition to a common compressor
to compress the feature flow. In the vehicle system, we utilize the feature flow to generate temporally and
spatially aligned features. These aligned features are then fused with the vehicle feature to obtain 3D outputs.

3.1 VIC3D Object Detection

Problem Definition. The VIC3D object detection aims to improve the performance of localizing
and recognizing the surrounding objects by utilizing both the infrastructure and vehicle sensor data
under limited wireless communication conditions. This paper focuses on point clouds captured from
LiDAR as inputs. The input of VIC3D consists of two parts:

• Point cloud Pv(tv) captured by the ego-vehicle sensor with timestamp tv as well as its relative
pose Mv(tv), where Pv(·) denotes the capturing function of ego-vehicle LiDAR.

• Point cloud Pi(ti) captured by the infrastructure sensor with timestamp ti as well as its relative
pose Mi(ti), where Pi(·) denotes the capturing function of infrastructure LiDAR. Previous frames
captured by the infrastructure sensor can also be utilized in cooperative detection.

Note that the timestamp ti should be earlier than timestamp tv since receiving the data through long-
range communication from infrastructure devices to vehicle devices requires a significant amount of
transmission time. Moreover, the latency (tv − ti) should be uncertain before receiving the data, as
the transmitted data could be obtained by various autonomous driving vehicles in different locations
after data broadcasting. The illustration of the uncertain latency is also provided in Figure 2.

Challenges. Compared to 3D object detection in single-vehicle autonomous driving scenarios,
VIC3D object detection encounters additional challenges related to temporal asynchrony and trans-
mission cost. Directly fusing infrastructure data can lead to significant fusion errors and negatively
impact detection performance due to scene changes and the movement of dynamic objects. This
asynchronous behavior is show in Figure 2 and evident in the experimental results presented in
Section 4.3. Moreover, reducing the amount of transmitted data can effectively decrease the overall
latency, as the transmission time is directly influenced by the volume of data being transmitted (9).

Evaluation Metrics. We evaluate the 3D object detection performance using mean Average Preci-
sion (mAP) with cooperative annotations as the ground truth, as outlined in (10). To focus on the
egocentric surroundings, objects outside the designated evaluation area are excluded. For measuring
the transmission cost, we adopt the Average Byte (AB) metric, as suggested in (40). The detailed
explanations of these two metrics and the computation of AB are provided in the Appendix.
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3.2 Feature Flow Net

As depicted in Figure 3, Feature Flow Net (FFNet) consists of three main modules: (1) generating the
feature flow, (2) compressing, transmitting, and decompressing the feature flow, and (3) fusing the
feature flow with vehicle feature to generate the detection results.

Feature Flow Generation. We adopt the feature flow as a prediction function to describe the
infrastructure feature changes over time in the future. Given the current point cloud frame Pi(ti) and
the infrastructure feature extractor Fi(·), the feature flow over the future time t after ti is defined as:

F̃i(t) = Fi(Pi(t)), t ≥ ti. (1)

Compared with the previous approaches of transmitting per-frame feature Fi(Pi(ti)) produced from
per frames (30), which lacks temporal and predictive information, feature flow enables the direct
prediction of the aligned feature at the timestamp tv of the vehicle sensor data.

Two issues need to be addressed in order to apply the feature flow to transmission and cooperative
detection: expressing and transmitting the continuous feature flow changes over time, and enabling
the feature flow with prediction ability. Considering that the time interval tv → ti is generally short,
we address the expressing issue by using the simplest first-order expansion to represent the continuous
feature flow over time, which takes the form of Equation (2),

F̃i(ti +∆t) ≈ Fi(Pi(ti)) + ∆t ∗ F̃
′

i (ti), (2)

where F̃
′

i (ti) denotes the first-order derivative of the feature flow and ∆t denotes a short time period
in the future. Thus, we only need to obtain the feature Fi(Pi(ti)) and the first-order derivative of the
feature flow F̃

′

i (ti) to approximate the feature flow. When an autonomous driving vehicle receives
Fi(Pi(ti)) and F̃

′

i (ti) after an uncertain latency, we can generate the infrastructure feature aligned
with the vehicle sensor data with minor computation because it only needs linear calculation. To en-
able the feature flow with prediction ability, we use a network to extract the first-order derivative of the
feature flow F̃

′

i (ti) from the historical infrastructure frames Ii(ti −N + 1), · · · , Ii(ti − 1), Ii(ti).
Generally, the larger N will generate more accurate estimations. In this paper, we take N as two and
use two consecutive infrastructure frames Pi(ti − 1) and Pi(ti).

Specifically, we first use the Pillar Feature Net (16) to convert the two consecutive point clouds
into two pseudo-images with a bird-eye view (BEV) and with the size of [384, 288, 288]. Then, we
concatenate the two BEV pseudo-images into the size of [768, 288, 288], and input the concatenated
pseudo-images into a 13-layer Backbone and a 3-layer FPN (Feature Pyramid Network), as in
SECOND (35), to generate the estimated first-order derivative F̃

′

i (ti) with the size of [364, 288, 288].
The detailed network configuration is provided in the Appendix.

Compression, Transmission and Decompression. In order to eliminate redundant information and
reduce the transmission cost, we apply two compressors to the feature Fi(Pi(ti)) and the derivative
F̃

′

i (ti), compressing them from size [384, 288, 288] to [12, 36, 36] using three Conv-Bn-ReLU blocks
in each compressor. We broadcast the compressed feature flow along with the corresponding
timestamp and calibration file on the infrastructure side. Upon receiving the compressed feature flow,
the vehicle uses two decompressors, each composed of three Deconv-Bn-ReLU blocks, to decompress
the compressed feature and compressed first-order derivatives to the original size [384, 288, 288].

We incorporate optional attention masks and quantization techniques to further compress the feature
flow. Firstly, we use an attention mask to identify regions of interest and transmit the complete
feature along with only the first-order derivative of the feature flow within these regions. Since the
infrastructure sensors have fixed positions, the correspondence between elements in the infrastructure
feature and real physical space remains constant. The most significant changes in the feature flow
over time occur in regions where dynamic instances are moving. To capture these regions, we employ
a binary attention mask M that predicts potential dynamic instance locations in the near future. We
transmit the feature flow multiplied element-wise by the attention mask, denoted as M ⊙ F̃

′

i (ti),
where ⊙ represents the element-wise product. Secondly, we apply quantization to both the feature and
the first-order derivative, reducing them to b-bit representations using a linear quantization approach.
The quantization is performed according to the following equation:

Q(x;α) = [
clamp(x, α)

s(α)
] · s(α), (3)
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where clamp(·, α) truncates values to the range [−α, α], [·] denotes rounding, and α is the clipping
value. We set α as the maximum value of the input tensor, as larger values tend to contain more
valuable information (39; 41; 11). We determine s(α) as α

2b−1−1
. By transmitting b-bit numbers

instead of the original 32-bit floating-point values and transmitting data only within the regions of
interest, we achieve more compression in the data transmission process.

Vehicle-Infrastructure Feature Fusion. We use the feature flow to predict the infrastructure
feature at timestamp tv , aligned with the vehicle feature, as follows:

F̃i(tv) ≈ Fi(Pi(ti)) + (tv − ti) ∗ F̃
′

i (ti). (4)

This linear prediction operation effectively compensates for uncertain latency and requires minimal
computation. The predicted feature F̃i(tv) is then transformed into the vehicle coordinate system
using the corresponding calibration files. The bird’s-eye view of the infrastructure and vehicle
features are obtained, both at the vehicle coordinate system, while preserving spatial alignment. The
feature located outside the vehicle’s interest area is discarded for the infrastructure feature, and empty
locations are padded with zero elements.

Subsequently, we concatenate the infrastructure and vehicle feature and employ a Conv-Bn-Relu
block to fuse the concatenated features. Finally, we input the fused feature into a 3D detection head,
utilizing the Single Shot Detector (SSD) (22) setup as the 3D object detection head, to generate 3D
outputs for more accurate localization and recognition. The experimental results indicate that the
infrastructure feature flow significantly enhances the detection ability.

3.3 Training Feature Flow Net

The FFNet training consists of two stages: training a basic fusion framework in an end-to-end way
and then using a self-supervised learning to train the feature flow generator.

In the first stage, we train a basic fusion framework in an end-to-end manner without considering
latency. This stage aims at enabling FFNet fusing the infrastructure feature with the vehicle feature
to enhance detection performance. Specifically, we train FFNet using cooperative data and annota-
tions obtained from both the vehicle and the infrastructure. The localization regression and object
classification loss functions used in SECOND (35) are applied in this stage.

In the second stage, we use self-supervised learning to train the feature flow generator by exploiting
the temporal correlations in infrastructure sequences, as shown in Figure 4. The idea is to construct the
ground truth features by using nearby infrastructure frames that do not require any manual annotations.
Specifically, we generate training frame pairs D = {dti,k = (Pi(ti − 1), Pi(ti), Pi(ti + k))}, where
Pi(ti − 1) and Pi(ti) are two consecutive infrastructure point cloud frames, and Pi(ti + k) is the
(k + 1)-th frame after Pi(ti).
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Figure 4: Illustration of training a feature flow generator using self-
supervised learning and similarity loss. The upper red circle represents
the first-order derivative generator, while the lower purple circles with
solid and dashed lines share the same infrastructure feature extractor.

We construct the loss function to optimize the
feature flow generator. The objective is to gener-
ate the feature flow to predict F̃i(ti + k) as close
as possible to Fi(Pi(ti + k)). We use the cosine
similarity to measure the similarity between the
predicted feature and the ground truth feature as

similarity =
F̃i(ti + k)⊙ Fi(Pi(ti + k))

||F̃i(ti + k)||2 ∗ ||Fi(Pi(ti + k))||2
,

(5)
where ⊙ denotes the inner product, ∗ denotes the
scalar multiplication, and || · ||2 denotes the L2
norm. We use this similarity as the loss function
to train the feature flow generator as

L(D, θ) =
∑

dti,k
∈D

(1− F̃i(ti + k)⊙ Fi(Pi(ti + k))

||F̃i(ti + k)||2 ∗ ||Fi(Pi(ti + k))||2
), (6)

where θ is the parameter of the feature flow generator, and we only update the parameters in first-order
derivative generator F̃

′

i (·) and frozen other parameters.
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4 Experiments

In this section, we implement FFNet on the DAIR-V2X dataset (40), comparing it with existing
cooperative detection methods on different latencies. Our proposed FFNet outperforms all other
methods, including early fusion, V2VNet (30), and DiscoNet (19), at 200ms latency, while only
requiring about 1/100 of the transmission cost of raw point clouds. We demonstrate how FFNet
overcomes the challenge of temporal asynchrony with feature flow prediction. Our results show that
temporal asynchrony significantly reduces the performance of the cooperative detection model, but
feature flow can effectively compensate for this drop. We evaluate FFNet on different latencies and
show that it can robustly solve uncertain latency challenges with just one model. Furthermore, we
show that self-supervised training can utilize extra infrastructure sequences. In the Appendix, we
compare the performance of feature flow extraction on the infrastructure and ego vehicle sides.

4.1 Experiment Settings

Dataset. We used public and real-world DAIR-V2X dataset (40), which comprises over 100 scenes
and 18,000 data pairs captured from infrastructure and vehicle sensors (Cameras and LiDARs) at
28 challenging traffic intersections. The dataset includes cooperative 3D annotations with vehicle-
infrastructure cooperative view for 9,311 pairs, where each object is labeled with its corresponding
category (Car, Bus, Truck, or Van). The dataset is divided into train/val/test sets in a 5:2:3 ratio, with
all models evaluated on the val set. Additionally, raw sensor data is only released for the test set.

Note that the timestamps of the data from infrastructure and vehicle sensors in each pair are not
precisely synchronized. The time difference of each pair in 9,311 pairs, is within the range of [-30,
30]ms. As the actual data cannot be altered after collection, we simulate a latency of k ∗ 100ms by
replacing the first k frames of the infrastructure frame with current infrastructure frame for each pair.

Implementation details. We utilized MMDetection3D (1) as our codebase and trained the feature
fusion base model on the DAIR-V2X training set for 40 epochs, with a learning rate of 0.001 and
weight decay of 0.01. To form D for training the feature flow generator, we select each pair from
training part and randomly set k from the range [1, 2]. More information on k and D can be found in
Sec.3.3. The pretraining of FFNet was done using the trained feature fusion base model. We trained
the feature flow generator on Du for 10 epochs with a learning rate of 0.001 and weight decay of 0.01.
All training and evaluation were performed on an NVIDIA GeForce RTX 3090 GPU. The detection
performance was measured using KITTI(10) evaluation detection metrics, which include bird-eye
view (BEV) mAP and 3D mAP with 0.5 IoU and 0.7 IoU, respectively. Only the Car class was taken
into account for objects located in the rectangular area [0, -39.12, 100, 39.12]. More implementation
details regarding FFNet and the fusion methods are provided in the Appendix.

4.2 Comparison to Different Fusion and State of the Art Methods

We compare FFNet with four categories of fusion methods: non-fusion (e.g., PointPillars (16) and
AutoAlignV2 (4)), early fusion, late fusion, middle fusion (e.g., DiscoNet (19)), and V2VNet (18).

Result Analysis. Table 1 presents a summary of our experimental results. The table is divided
into three parts: the top section displays the evaluation results for non-fusion methods, the middle
section shows the results for 200ms latency, and the bottom section presents the results for 300ms
latency. Our proposed FFNet achieves new SOTA on DAIR-V2X. Notably, FFNet-C1 surpasses
early fusion while it only requires about 1/100 of the transmission cost. Firstly, our proposed
FFNet outperforms the non-fusion method PointPillars by 9.32% mAP@BEV (IoU=0.5) and 7.32%
mAP@BEV (IoU=0.5) in 200ms and 300ms latency, respectively. This result indicates that utilizing
infrastructure data can improve 3D detection performance. Secondly, although late fusion requires
little transmission cost, the mAP@BEV (IoU=0.5) of late fusion is much lower than that of FFNet,
up to 5.10% in 200ms latency. Thirdly, compared with early fusion methods, FFNet achieves similar
detection performance in 200ms latency and outperforms 2.92% mAP in 300ms latency, while it
only requires no more than 1/10 of the transmission cost. Moreover, FFNet-C1 outperforms early
fusion more than 2% mAP in 300ms latency while only requiring 1/100 of the transmission cost.
Fourthly, our FFNet achieves the best detection performance with the exact transmission cost as the
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Table 1: Comparison to Different Fusion Methods. FFNet significantly outperforms all other fusion methods.

Model FusionType Latency (ms) mAP@3D ↑ mAP@BEV ↑ AB (Byte) ↓IoU=0.5 IoU=0.7 IoU=0.5 IoU=0.7
PointPillars (16) non-fusion / 48.06 - 52.24 - 0
AutoAlignV2 (4) non-fusion / 50.32 - 53.88 - 0

Early Fusion early 200 54.63 38.23 61.08 50.06 1.4×106

Late Fusion late 200 52.43 36.54 58.10 49.25 5.1×102

DiscoNet (19) middle 200 50.76 28.57 58.20 48.90 1.2×105

V2VNet (30) middle 200 49.67 26.96 56.02 46.32 1.2×105

FFNet (Ours) middle 200 55.37 31.66 63.20 (+9.32) 54.69 1.2×105

FFNet-C1 (Ours) middle 200 55.17 31.20 62.87 (+8.99) 54.28 1.7×104

Early Fusion early 300 51.37 37.25 58.28 49.81 1.4×106

Late Fusion late 300 51.35 36.24 56.89 48.79 5.1×102

DiscoNet (19) middle 300 49.03 27.39 55.81 47.28 1.2×105

V2VNet (30) middle 300 48.51 27.00 55.81 46.32 1.2×105

FFNet (Ours) middle 300 53.46 30.42 61.20 (+7.32) 52.44 1.2×105

FFNet-C1 (Ours) middle 300 54.10 29..87 60.76 (+6.88) 53.28 1.7×104

Table 2: Comparison between with and without Feature Prediction. Compared with no prediction models,
FFNet with feature prediction has a significantly lower performance drop when there is communication latency.

Model Latency (ms) mAP@3D ↑ mAP@BEV ↑ AB (Byte) ↓IoU=0.5 IoU=0.7 IoU=0.5 IoU=0.7
FFNet 0 55.81 30.23 63.54 54.16 1.2×105

FFNet (without prediction) 0 55.81 30.23 63.54 54.16 6.2×104

FFNet-V2 (without prediction) 0 55.78 30.22 64.23 55.00 1.2×105

FFNet 200 55.37 31.66 63.20 (-0.34) 54.69 1.2×105

FFNet (without prediction) 200 50.27 27.57 57.93 (-5.61) 48.16 6.2×104

FFNet-V2 (without prediction) 200 49.90 27.33 58.00 (-6.23) 48.22 1.2×105

middle fusion methods. For example, FFNet surpasses DiscoNet by 5.0% mAP@BEV (IoU=0.5)
and 5.39% mAP@BEV (IoU=0.5) in 200ms and 300ms latency, respectively.

4.3 Ablation Study

We conducted a series of experiments to demonstrate the effectiveness of the feature flow module in
overcoming the temporal asynchrony challenge and to show that FFNet performs robustly under vari-
ous latencies. Additionally, we studied how self-supervised learning can fully exploit infrastructure
sequences that are independent of cooperative view and labeling.

Feature prediction can well solve temporal asynchrony. We conducted a series of experiments
to evaluate the effectiveness of the feature flow module in overcoming the temporal asynchrony
challenge. We evaluated FFNet under two different latency conditions: 0ms and 200ms, where
0ms indicates temporal asynchrony between infrastructure data and vehicle data within [-30, 30]ms.
To investigate the impact of temporal asynchrony on FFNet’s performance, we also removed the
prediction module from FFNet and directly fused the infrastructure feature. We refer to this version
as FFNet (without prediction), abbreviated as FFNet-O, and evaluated it under both 0ms and 200ms
latency. Since FFNet-O does not require the transmission of the first-order derivative of the feature
flow, it only requires half the transmission cost of FFNet. To ensure a fair comparison, we trained
another version of FFNet called FFNet-V2, which compressed the feature flow from (384, 288, 288)
to (384/16, 288/8, 288/8). FFNet-V2-O has the same transmission cost as FFNet, and we evaluated it
under both 0ms and 200ms latency as well.

The evaluation results, presented in Table 2, demonstrate that FFNet-O and FFNet-V2-O exhibit
a significant performance drop under 200ms latency. For example, FFNet-O experiences a 5.61%
mAP@BEV (IoU=0.5) drop in 200ms latency compared to 0ms latency. Although FFNet-V2-O
performs slightly better than FFNet and FFNet-O in 0ms latency, FFNet significantly outperforms
FFNet-V2-O in 200ms latency. These results show that temporal asynchrony can significantly impact
performance when we directly fuse the infrastructure feature, and that our feature prediction module
can effectively compensate for the performance drop caused by temporal asynchrony.
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Figure 5: Ablation study of FFNet robustness.
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Figure 6: Ablation study of FFNet training.

FFNet is robust to uncertain latency. We conducted additional experiments to assess the perfor-
mance of FFNet, FFNet-O, and FFNet-V2-O under varying latency cases, ranging from 100ms to
500ms. The experiment results are presented in Figure 5. As depicted in the figure, both FFNet-O
and FFNet-V2-O exhibit continuous performance degradation as the latency increases from 100ms
to 500ms. Specifically, in 500ms latency, FFNet-O and FFNet-V2-O show a significant 9.38%
mAP@BEV (IoU=0.5) drop and 9.76% mAP@BEV (IoU=0.5) drop, respectively. Conversely, FFNet
demonstrates minimal performance degradation within 200ms latency and only experiences a 4.39%
mAP@BEV (IoU=0.5) drop. These results suggest that FFNet is resilient to varying latencies and
can effectively handle uncertain latency in VIC3D problem. The ability of our feature flow to make
predictions at an arbitrary future time before transmission is crucial since it could be received by
different vehicles with different latencies.

FFNet training can fully utilize infrastructure sequences. We additionally trained the feature
flow generator using the extra test portion of the DAIR-V2X dataset. For each frame in the test part,
we randomly set k from the range [1, 2] to form Dtest. We first pretrained FFNet with the trained
feature fusion base model and trained the feature flow generator solely with Dtest without D. We
refer to this trained FFNet as FFNet-V3. Subsequently, we pretrained FFNet with the trained feature
fusion base model and trained the feature flow generator using Dtest ∪ D. We denote this trained
FFNet as FFNet-V4. We evaluated FFNet-V3 and FFNet-V4 under latency from 100ms to 500ms.
In Figure 5, we present the mAP@BEV (IoU=0.5) results. FFNet-V3 demonstrates significantly
better performance than FFNet-O, indicating that the training of the feature flow generator can be
independent of cooperative-view data. FFNet-V4 performs slightly better than FFNet, suggesting
that incorporating more infrastructure sequences enhances the feature flow prediction ability.

5 Conclusion

This paper introduces FFNet, an innovative intermediate-level cooperative framework designed for
VIC3D object detection. FFNet effectively addresses challenges related to temporal asynchrony and
transmission cost by utilizing compressed feature flow for cooperative detection. Through exten-
sive experiments conducted on the DAIR-V2X dataset, FFNet demonstrates superior performance
compared to existing state-of-the-art methods. Furthermore, FFNet can be extended to various
modalities, including image and multi-modality data, making it a versatile solution. Moreover, FFNet
holds promise in the domain of multi-vehicle cooperative perception and leverages the utilization
of additional frames to enhance feature prediction capabilities. The proposed FFNet framework,
incorporating feature prediction and self-supervised learning, presents a promising avenue for VIC3D
object detection and holds potential for addressing diverse cooperative perception tasks in the future.
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