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Abstract

Transferability estimation has been attached to
great attention in the computer vision fields.
Researchers try to estimate with low computa-
tional cost the performance of a model when
transferred from a source task to a given tar-
get task. Considering the effectiveness of such
estimations, the communities of natural lan-
guage processing also began to study similar
problems for the selection of pre-trained lan-
guage models. However, there is a lack of a
comprehensive comparison between these es-
timation methods yet. Also, the differences
between vision and language scenarios make it
doubtful whether previous conclusions can be
established across fields. In this paper, we first
conduct a thorough survey of existing transfer-
ability estimation methods being able to find
the most suitable model, then we conduct a de-
tailed empirical study for the surveyed methods
based on the GLUE benchmark. From qual-
itative and quantitative analyses, we demon-
strate the strengths and weaknesses of existing
methods and show that H-Score generally per-
forms well with superiorities in effectiveness
and efficiency. We also outline the difficulties
of consideration of training details, applicabil-
ity to text generation, and consistency to certain
metrics which shed light on future directions.

1 Introduction

Recent advances in the community of Natural
Language Processing (NLP) are heavily built on
the effectiveness of Pre-trained Language Models
(PLMs), especially on large ones (LLMs) (Zeng
et al., 2023; OpenAI, 2022; Touvron et al., 2023;
Wang et al., 2023). As the number of available
PLMs continually grows, a critical question arises:
"Which PLM can make the performance of a down-
stream task best?". The fine-tuning result on a task
usually varies across different PLMs, and this vari-
ation becomes more pronounced in low-resource
scenarios (Bassignana et al., 2022).
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Figure 1: Diagram of transferability estimation meth-
ods. Based on the pre-trained features of target samples
output from candidate PLM, model similarity-based
methods and training-free methods estimate the transfer-
ability by inter-model similarity and the compatibility
between pre-trained features and target labels.

Basically, the key to such model selection is to
figure out the transferability between the model and
the target task. Pioneering works conducted fine-
tuning on every candidate model in a brute-force
manner (Phang et al., 2018; Zamir et al., 2019).
Though the true fine-tuning performance can be
obtained in this way, expensive parameter optimiza-
tion is practically prohibitive (Wolf et al., 2020).
Thus, there is an urgent need to quantify the trans-
ferability at a low cost of computation. To this
end, Transferability Estimation (TE), as an essen-
tial task of Transfer Learning (TL), has emerged as
a key challenge with several solutions proposed in
Computer Vision (CV) fields initially (Agostinelli
et al., 2022). Recently, some of these remarkable
approaches have also been applied to NLP tasks
which show promising results on PLM selection
(Bassignana et al., 2022; Vu et al., 2022).

Despite a great number of surveys established
for TL and PLMs (Niu et al., 2020; Plested and
Gedeon, 2022; Guo et al., 2022), there is no com-
prehensive survey on TE yet, especially with the
purpose of PLM selection. Therefore, this paper
aims to fill this gap by providing a comprehensive
and well-structured summary of recent progress.
To ensure comprehensive coverage, a multi-stage
approach is employed to identify and select the



studies included in this review. Firstly, an exten-
sive literature search was carried out using online
databases, such as Google Scholar and DBLP. The
search terms used were carefully chosen to cap-
ture the key concepts and themes related to TE and
PLMs. After retrieving an initial pool of nearly 100
articles, a thorough screening of titles, abstracts,
and keywords was conducted to exclude irrelevant
studies, leading to a final selection of 20 studies
that met the predetermined criteria for inclusion.

Based on these research, we present a method
taxonomy. As shown in Fig. 1, according to the
need for training on target task, we divide TE meth-
ods into: (1) Model Similarity-based Methods that
assume the inter-model similarity reflects the trans-
ferability which require the model trained on target
task (Dwivedi and Roig, 2019). (2) Training-free
Methods that accelerate the estimation process by
computing metrics free of target model training
to examine the compatibility of the PLM’s fea-
ture space on the target dataset (Ding et al., 2022).
Then we conduct qualitative analysis for the appli-
cability and provide empirical results on the GLUE
benchmark (Wang et al., 2019) to manifest specific
strengths and weaknesses in existing methods. We
show that model similarity-based methods have
the superiority of applicability to different target
tasks, and training-free methods have the advantage
over fast estimation. And for the methods simu-
lating the dynamics of fine-tuning, they generally
perform better. Besides, we analyze some factors
that can affect the estimation effectiveness and ef-
ficiency including task type, sample size, feature
dimension, target model as well as sample affinity
function. The empirical observations demonstrate
that H-Score (Bao et al., 2019) generally shows
desired usability. Based on these investigations,
we further exhibit some under-explored aspects to
shed light on the future directions 1.

2 Related Work

Transfer Learning. Training robust supervised
models from scratch is non-trivial, especially in
low-resource scenarios (Jin et al., 2023). Aiming
at transferring knowledge from a source task to a
target task, TL can achieve superior performances
on the target dataset by spending far less time and
using far fewer data (Niu et al., 2020). Despite a
good number of surveys available for TL (Ruder

1The code is available at https://github.com/ba1jun/
model-selection-nlp.

et al., 2019; Niu et al., 2020; Alyafeai et al., 2020;
Iman et al., 2022), these works mainly focus on
“what to transfer?” and “how to transfer?” that
describe specific transfer approaches. To the best of
our knowledge, there is no comprehensive survey
on TE yet, which seeks to answer the question of
“when to transfer?”. This work is expected to fill
this gap by shedding light on how to appropriately
choose TE methods for PLMs practitioners.
Transferability Estimation. To avoid exhaus-
tive attempts on all pairs of source tasks and tar-
get tasks, TE provides efficient heuristics to ex-
hibit the best-performing source task at a minor
cost (Agostinelli et al., 2022). Originated in the
field of CV, a great number of TE approaches, in-
cluding model-similarity-based methods (Dwivedi
and Roig, 2019), label-comparison-based methods
(Tran et al., 2019) and source features-based meth-
ods (Ding et al., 2022), etc., have been proposed
in the past few years. To adapt such techniques
to PLM selection for NLP tasks, Bassignana et al.
(2022) found the predictions of LogME can posi-
tively correlate with the true performances of can-
didate PLMs, and Vu et al. (2022) exhibited the
model similarity computed by soft prompts reflects
the transfer performance across different models.
Built on these remarkable researches, we further re-
view the TE methods and provide a comprehensive
empirical study of them for PLM selection.
Pre-trained Language Models. From BERT (De-
vlin et al., 2019) to LLaMA (Touvron et al., 2023),
significant efforts have been put into scaling PLMs
into LLMs and some abilities such as performing
arithmetic, answering questions are emerging si-
multaneously (Schaeffer et al., 2023). Neverthe-
less, training and fine-tuning LLMs or even small
ones require substantial computational resources
which can limit accessibility to these models for
researchers and developers with limited resources
even with the help of parameter-efficient tuning
(Hu et al., 2022). Based on these considerations,
the efficient utilization of PLMs is still a problem
worth studying. Thus we focus on the selection of
PLMs in this work which aims at releasing the com-
puting resources needed for exhaustive fine-tuning.

3 Transferability Estimation Taxonomy

3.1 Problem Formalization

Formally, given a pool of L candidate PLMs
{ϕi}Li=1 and a target dataset D = {(xi, yi)|xi ∈
X , yi ∈ Y}Ni=1 containing N samples where each

https://github.com/ba1jun/model-selection-nlp
https://github.com/ba1jun/model-selection-nlp


ϕi can encode the sample to pre-trained feature
ϕi(xi) (usually the [CLS] embedding), the true per-
formance Ti(D) can be measured by certain eval-
uation metrics after fine-tuning ϕi on D with care-
ful tuning of hyper-parameters. The TE approach
should produce a score Si(D) for each ϕi to ap-
proximate the true fine-tuning performance Ti(D).
Intuitively, a well-designed method should return
{Si(D)}Li=1 that correlates well with {Ti(D)}Li=1

under an acceptable burden, such that the top-
performing PLM can be determined rapidly.

3.2 Model Similarity-based Methods
To avoid brute force fine-tuning, the model
similarity-based methods are designed based on
the assumption that a high similarity between two
models correlates with a high degree of transfer-
ability between the tasks bonded to the models. To
this end, one model ψ fine-tuned on the target task,
i.e., the target model, is required to compute its sim-
ilarity to each candidate PLM. Therefore, the time
consumption of fine-tuning can be significantly re-
duced to 1/L of brute force approach extra with a
minor cost of model similarity computation.

Currently, the sample features output from mod-
els are mainly used to measure the inter-model sim-
ilarity. Therefore, the target is to design a similarity
function to maximize the correlation between fine-
tuning performances and similarities between the
pre-trained features {ϕ(xi)}Ni=1 and target features
{ψ(xi)}Ni=1. In terms of the similarity computation
mechanism, existing functions can fall into sample-
wise similarity functions and graph-wise similarity
functions:

Sample-wise Similarity Functions The main
idea is to directly compute the similarity between
features across models. Under the Direct Simi-
larity Estimation (DSE) (Luo et al., 2022) frame-
work, Vu et al. (2020) compute the affinity be-
tween the mean features as the model similarity,
i.e., A(

∑
i ϕ(xi)/N,

∑
i ψ(xi)/N) where A is the

sample affinity function such as Euclidean and co-
sine distances, while Luo et al. (2022) utilize aver-
aged sample affinities

∑
iA(ϕ(xi), ψ(xi))/N .

Graph-wise Similarity Functions In the form
of Duality Diagram Similarity (DDS) (Dwivedi
et al., 2020) framework, the graph-wise functions
first measure the affinities for every sample pair
in each model feature space separately, then com-
pute the similarity between the resulting affinity
graphs Gϕ = (Vϕ, Eϕ) and Gψ = (Vψ, Eψ) with the

sample features as vertices, e.g., Vϕ = {ϕi}Ni=1,
and the inter-sample affinities as edges, e.g., Eϕ =
{A(ϕi, ϕj)|ϕi, ϕj ∈ Vϕ}. For instance, Repre-
sentation Similarity Analysis (RSA) (Dwivedi and
Roig, 2019), Graph-Based Similarity (GBS) (Chen
et al., 2021), Kernel Alignment (KA) (Huang et al.,
2021) and Centered Kernel Alignment (CKA) (Ko-
rnblith et al., 2019) which are only slightly different
in the ways to compute inter-sample affinities and
inter-graph similarities.

3.3 Training-free Methods

Although model similarity-based methods only
need to fine-tune on the target task once, they still
require a large load of computational cost. There-
fore, the training-free methods try to directly com-
pare the pre-trained features {ϕ(xi)}Ni=1 with the
true target labels {yi}Ni=1 by cheap metrics to fur-
ther save the estimation time. According to whether
directly measure the fine-tuning loss, the metrics
can be divided into class separability metrics and
loss approximation metrics.

Class Separability Metrics These metrics intu-
itively examine whether pre-trained features are
easy to separate according to their target labels,
and assume that well-separated pre-trained fea-
tures results in desired fine-tuning performance.
Some of these metrics directly measure the sepa-
rability of static pre-trained features. For exam-
ple, MSC (Meiseles and Rokach, 2020) uses the
mean intra-cluster distance and the mean nearest-
cluster distance to quantify the clustering quality
of pre-trained features over target classes. Simi-
larly, Puigcerver et al. (2021) rank the candidate
PLMs by the test accuracy of kNN on pre-trained
features via the leave-one-out cross-validation.
PARC (Bolya et al., 2021) first computes the pair-
wise affinities between the pre-trained features of
each pair of target samples, which is then compared
with the pairwise label affinities of each pair of tar-
get samples to quantify the source feature space’s
fitness on target dataset. And GBC (Pándy et al.,
2022) uses the Bhattacharyya coefficient to mea-
sure the inter-class overlap of pre-trained features,
where higher overlap means poorer separability. To
further consider the fine-tuning dynamics by as-
suming the pre-trained features can be adjusted by
an extra linear transformation, Kumari et al. (2022)
train a cheap Logistic Regression (LR) model on
pre-trained features to estimate how fitting the lin-
early transformed pre-trained features are for their



Methods Input
Task

Agnostic
Dynamic

Consideration
Free of

Training
Model Similarity-based Methods

DSE (Vu et al., 2020) ϕ(x), ψ(x) ✓ ✗ ✗

DDS (Dwivedi et al., 2020) ϕ(x), ψ(x) ✓ ✗ ✗

Training-free Methods
MSC (Meiseles and Rokach, 2020) ϕ(x), y ✗ ✗ ✓

kNN (Puigcerver et al., 2021) ϕ(x), y ✗ ✗ ✓

PARC (Bolya et al., 2021) ϕ(x), y ✗ ✗ ✓

GBC (Pándy et al., 2022) ϕ(x), y ✗ ✗ ✓

Logistic (Kumari et al., 2022) ϕ(x), y ✗ ✓ ✓

H-score (Bao et al., 2019) ϕ(x), y ✗ ✗ ✓

Reg. H-score (Ibrahim et al., 2022) ϕ(x), y ✗ ✗ ✓

NLEEP (Li et al., 2021) ϕ(x), y ✗ ✗ ✓

TransRate (Huang et al., 2022) ϕ(x), y ✗ ✗ ✓

LogME (You et al., 2021) ϕ(x), y ✗ ✓ ✓

SFDA (Shao et al., 2022) ϕ(x), y ✗ ✓ ✓

PACTran (Ding et al., 2022) ϕ(x), y ✗ ✓ ✓

Table 1: The comparison of the surveyed approaches, where ϕ(x), ψ(x) and y denote the feature from candidate
PLM, feature from target model and target label; ✓ and ✗ represent whether the method fulfill the property or not.

target classes by LR’s test accuracy.

Loss Approximation Metrics Based on solid
theoretical proof, these metrics try to directly ap-
proximate the fine-tuning loss that correlates with
the fine-tuning performance well. Inspired by Eu-
clidean information geometry, H-Score (Bao et al.,
2019) approximates the optimal log-loss by inter-
class variance and feature redundancy that char-
acterize the asymptotic error probability of us-
ing pre-trained features to estimate target labels.
Ibrahim et al. (2022) then propose regularized H-
score which further shrinks the error that occurred
when inverting the high-dimensional features using
a pseudo-inverse. NLEEP (Li et al., 2021) first
uses a Gaussian mixture model to attach a poste-
rior distribution on Gaussian components to each
pre-trained feature, then computes the likelihood
from posterior distribution to target label to approx-
imate that from pre-trained feature to target label.
TransRate (Huang et al., 2022) approximates the
correlation between pre-trained features and tar-
get labels by Mutual Information (MI) which has
been proven an upper bound and a lower bound
to the log-likelihood. There are also some metrics
that involve fine-tuning dynamics. SFDA (Shao
et al., 2022) simulates the dynamics by projecting
the pre-trained features using Fisher Discriminant
Analysis (FDA) to increase the class separability.
Then, it approximates the log-likelihood by Bayes

classification over projected features and also adds
a self-challenging module to further measure the
ability of the pre-trained models on hard samples.
To avoid over-fitting problem of maximum likeli-
hood estimation, LogME (You et al., 2021) turns to
approximate the marginalized likelihood of label
given pre-trained features over all possible linear
transformation. More recently, motivated by learn-
ing theory, PACTran (Ding et al., 2022) minimizes
the PAC-Bayesian upper bound over the log-loss.

4 Qualitative Analysis

To examine the applicability of each method, we
qualitatively compare them as shown in Table 1
from the following perspectives: (1) Task Agnostic:
the method does not require certain target task type;
(2) Dynamic Consideration: the fine-tuning dynam-
ics of pre-trained features are considered; (3) Free
of Training: the method does not need fine-tuning
on target task.

Task Agnostic A widely applicable method
should be able to deal with multiple task types
such as classification, regression, and generation.
Currently, only model similarity-based methods
satisfy this property. However, the inter-model sim-
ilarity is only aware of sample features and does
not consider the output space of the task.



Dataset |Train| |Dev| Task Metric
Sentence Classification Tasks

CoLA 8.5k 1k Acceptability Mcc.
SST-2 67k 872 Sentiment Acc.

Paraphrase Tasks
MRPC 3.7k 408 Paraphrase Acc.
QQP 364k 40.4k Paraphrase Acc.

Inference Tasks
MNLI 393k 9.8k NLI Acc.
QNLI 105k 5.5k QA/NLI Acc.
RTE 2.5k 277 NLI Acc.
WNLI 635 71 Coref./NLI Acc.

Table 2: Statistic, task type and metric of GLUE tasks.

Dynamic Consideration Since fine-tuning ap-
propriately adjust the representation of pre-trained
features to adapt to the target task, the training
dynamics are also a key factor. To date, only Lo-
gistic, LogME, SFDA, and PACTran assume that
the pre-trained features can be adjusted by a linear
transformation, while the fine-tuning process can
be more diverse, e.g., adapter tuning (Houlsby et al.,
2019) and prompt tuning (Lester et al., 2021), how
to simulate different dynamics is under-explored.

Free of Training The trained target model is
mainly needed by model similarity-based meth-
ods. Although this is not a serious problem since
the target model can be reused when estimating for
different PLMs, it still takes a training time and
whether model similarity-based methods perform
stably on different target models is also doubtful.

5 Experimental Setup

Datasets Following You et al. (2021), we vali-
date TE methods on the GLUE benchmark (Wang
et al., 2019) that is a collection of diverse Natural
Language Understanding (NLU) tasks. Note, we
remove the STS-B task since it is a regression task
that is not suitable to most TE methods, the details
of others are reported in Table 2.

Candidate PLMs Since the HuggingFace Model
Hub (Wolf et al., 2020) has already provided care-
fully tuned results on GLUE tasks for some mod-
els, we select 6 PLMs that have all the GLUE
tasks’ results following You et al. (2021): namely
bert-base-uncased, bert-base-cased (Devlin et al.,
2019), roberta-base (Liu et al., 2019) and their dis-
tilled versions which are distilbert-base-uncased,
distilbert-base-cased and distilroberta-base (Sanh

et al., 2019) whose fine-tuning performances are as
shown in Appendix A.

Methods Setups Each candidate PLM to be fine-
tuned is followed by a classification layer which
takes the output embedding of BOS (Beginning
of Sequence, e.g., [CLS] for BERT and <s> for
RoBERTa) token as input, and all the TE methods
utilize the same BOS embeddings as pre-trained
features. Before estimating by certain methods,
we also conduct dimensionality reduction on the
sample features by Principal Component Analysis
(PCA) (Roweis, 1997) since some methods’ perfor-
mances heavily depend on the number of feature
dimensions. For model similarity-based methods,
we also try different PLMs to train the target model
(i.e., ALBERT: albert-base-v2, DeBERTa: deberta-
base and ELECTRA: electra-base-discriminator).
Moreover, since some methods need to compute
affinity graph which can be very time-consuming
when there are too many samples, i.e., DDS, kNN,
MSC, PARC, LFC, we limit the maximum number
of samples that can be used by them to 10k. We run
each method 5 times with different random seeds
and report the mean results. For the implementa-
tion details, please refer to Appendix B.

Evaluation To measure the deviation of TE meth-
ods’ predictions to true fine-tuning performances,
we use MRR and mean Spearman’s rank correla-
tion (µρ) on all GLUE tasks. Among them, MRR
reveals the average ranking of the best-performing
PLM, and µρ evaluates the overall correlation be-
tween predicted score list {Si(D)}Li=1 and true per-
formance list {Ti(D)}Li=1. Besides, the time con-
sumption is measured by mean training time (µtt)
that records the time of target model training and
mean estimating time (µet) that tells the wall clock
time of estimation value computing, which are both
averaged over all GLUE tasks. Note that we omit
the time of sample features encoding since this is
the same across all methods.

6 Quantitative Analysis

Effectiveness and Efficiency The overall metric
scores of all methods are reported in Table 3. For
estimation effectiveness, although model similarity-
based methods excel at adapting to different target
tasks, they generally perform worse than training-
free methods. Notably, DSE and PARC achieve the
best MRR and µρ respectively, while they need to
carefully select sample affinity function to produce



Method
MRR(↑) µρ(↑)

µtt(↓) µet(↓)
Sen. Para. Infer. Overall Sen. Para. Infer. Overall

Model Similarity-based Methods
DSEALBERT 1.00 1.00 0.88 0.94 0.49 0.54 0.40 0.45 2.4h 10.1s
DSEDeBERTa 1.00 1.00 1.00 1.00 0.46 0.43 0.48 0.46 1.8h 7.2s
DSEELECTRA 1.00 1.00 1.00 1.00 0.40 0.43 0.49 0.45 1.2h 9.5s
DDSALBERT 0.20 0.50 0.58 0.47 -0.34 0.09 0.42 0.14 2.4h 131.7s
DDSDeBERTa 0.42 0.50 0.56 0.51 0.20 0.40 0.31 0.32 1.8h 132.8s
DDSELECTRA 0.42 0.75 0.83 0.71 0.20 0.20 0.29 0.25 1.2h 133.5s

Training-free Methods
MSC 0.58 0.33 0.55 0.50 0.03 0.03 0.42 0.22 - 4.5s
kNN 0.33 0.67 0.79 0.65 0.26 0.40 0.49 0.41 - 21.0s
PARC 0.60 1.00 1.00 0.90 0.69 0.69 0.66 0.67 - 87.5s
GBC 0.33 0.67 0.38 0.44 -0.14 0.54 0.24 0.22 - 0.6s
Logistic 0.25 1.00 1.00 0.81 0.31 0.46 0.67 0.53 - 5.1s
H-Score 0.60 1.00 0.79 0.80 0.46 0.57 0.64 0.57 - 37.5s
Reg. H-Score 0.60 1.00 1.00 0.90 0.49 0.71 0.61 0.60 - 33.4s
NLEEP 0.33 0.67 1.00 0.75 -0.11 0.46 0.61 0.39 - 17.0s
TransRate 0.17 0.75 0.25 0.35 -0.69 0.57 0.12 0.03 - 0.7s
LogME 0.58 1.00 1.00 0.90 0.34 0.66 0.74 0.62 - 10.9s
SFDA 0.50 0.75 0.81 0.72 0.71 0.54 0.54 0.59 - 116.5s
PACTran 0.58 1.00 0.75 0.77 0.29 0.63 0.56 0.51 - 7.2s

Table 3: The performance of TE methods on GLUE benchmark, where MRR, mean Spearman coefficient µρ on
each type of task (Sen. for single sentence classification, Para. for paraphrase, and Infer. for inference) and all
tasks (Overall) are reported. Moreover, mean training time µtt and mean estimating time µet are listed to show the
method efficiency where "-" means not applicable. For model similarity-based methods, the subscript indicates the
type of its target model, e.g., DSEALBERT means DSE implemented with ALBERT as target model.

such desired results. Another obvious observation
is that Logistic, LogME, SFDA, and PACTran all
result in a remarkable performance, which empir-
ically validates the importance of fine-tuning dy-
namics. For estimation efficiency, model similarity-
based methods all need considerable time consump-
tion on target model training. Unless the target
model training time is negligible compared to the
whole PLM selection time, this kind of method
has no advantage over the training-free method in
terms of speed. Generally, the training-free meth-
ods run pretty fast, only the methods need to com-
pute affinity graph will consume a lot of time (kNN,
MSC, LFC, PARC), which have to limit the amount
of data samples when they are employed on huge
datasets. For detailed results on each task, please
refer to Appendix C.
Sensitivity to Task Type More detailed perfor-
mances on three different types of tasks are also
reported in Table 3. Generally, TE methods per-
form better on sentence pair tasks (paraphrase and
inference) than on single sentence tasks (sentence
classification), where 11 out of 14 TE methods re-

sult in µρ of sentence pair tasks superior to that of
single sentence tasks. We speculate the reason is
that most candidate PLMs used in this work are
from the BERT family and the corresponding Next
Sentence Prediction (NSP) (Devlin et al., 2019) pre-
training task makes the [CLS] embedding more
suitable for encoding a sentence pair, such that
TE methods cannot fully understand the samples
through the pre-trained features when meeting sen-
tence classification task.

Robustness to Fewer Samples The key strength
of training-free methods lies in no need to target
model training, while the total time consumption
can be further reduced if the method also performs
well when using only a small amount of data sam-
ples, such that the encoding time of ignored sam-
ples can be saved (Encoding for all GLUE datasets
takes 1.73 hours in our case). To examine the data
efficiency, we select 8 top-performing training-free
methods and conduct PLM selection when different
percentages of data are conditioned. Figure 2 illus-
trates the overall performance variation on GLUE



Method
Euclidean Cosine Correlation

MRR(↑) µρ(↑) µet(↑) MRR(↑) µρ(↑) µet(↓) MRR(↑) µρ(↑) µet(↓)
DSE 1.00 0.46 7.2s 0.46 0.26 7.3s 0.44 0.20 9.2s
DDS 0.50 -0.10 129.4s 0.51 0.31 133.1s 0.51 0.32 135.9s
kNN 0.50 0.22 1.7s 0.59 0.34 8.4s 0.65 0.41 21.0s
LFC 0.41 -0.01 6.7s 0.45 0.09 8.6s 0.39 0.08 8.7s
PARC 0.69 0.35 83.6s 0.90 0.64 83.8s 0.90 0.67 87.5s
MSC 0.61 0.08 4.5s 0.50 0.22 4.6s 0.50 0.22 37.8s

Table 4: The performance comparison of methods on GLUE benchmark when different affinity functions (Euclidean
distance, cosine distance, and correlation distance) are employed, where the MRR score, mean Spearman coefficient
µρ and mean estimating time µet are reported.
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Figure 2: The performance variation on GLUE tasks of
training-free methods when different percentages of tar-
get data samples are used to conduct the transferability
estimation, in which the original class proportion will
be kept when the sub-dataset is sampled.

of training-free methods as the data percentage
changed. By employing a shrinkage-based estima-
tor of covariance, regularized H-Score exhibits sta-
ble performance compared to the original H-score.
And LogME also shows similar stability on both
MRR and µρ since it is based on the marginalized
likelihood which can alleviate the over-fitting prob-
lem on a small dataset. We can observe that kNN
also performs stable on µρ while it needs careful
selections of k and sample affinity function. How-
ever, a significant decrease in MRR occurred on
almost all methods, indicating more advanced ap-
proaches are required to achieve accurate selection
in low-resource scenarios.

Effect of Feature Dimensions If a method per-
forms best when conducted on the pre-trained fea-
tures with the original dimension, then there is no
need to employ dimensionality reduction and tune
the reduced dimensions, which can further save the
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Figure 3: The performance variation on GLUE tasks of
training-free methods when pre-trained features’ dimen-
sions are reduced to different lengths by PCA.

estimating time. As shown in Figure 3, we list the
performance variation of top-8 performing training-
free methods on different feature dimensions. It
is observed that H-Score and regularized H-Score
preferably enjoy original dimensions because the
original feature space helps them to approximate
the feature redundancy better, while the others all
achieve the best results on smaller dimensions. For
kNN, PARC, they need to measure sample affinity
which may encounter the curse of dimensional-
ity in high-dimensional scenes, thus performing
better when the feature dimension is small mean-
while dimensionality reduction will not lose too
much original information. For Logistic, LogME,
SFDA, and PACTran which assume the pre-trained
features can be linearly transformed, eliminating
redundant feature dimensions can results in better
estimation results.

Sensitivity to Different Target Models Al-
though model similarity-based methods only need



to train one target model, we actually have rich
choices of PLM to train target models. An ideal
method should produce similar results when differ-
ent target models are implemented such that we can
save the time required to try different target models.
To examine the sensitivity to the target model, we
conduct model similarity-based methods with dif-
ferent target models and show the results in Table 3.
We can observe different behaviors in which DSE
performs stably while DDS is very sensitive to the
type of target model. Since the main difference
between DSE and DDS is that the former computes
inter-sample affinities across models while the lat-
ter compares the affinity graph across models, this
observation reflects that the affinity graph from the
target model may not well reflect the target task
mechanism and directly measuring the affinity be-
tween features across models is preferable.

Effect of Sample Affinity Function As intro-
duced in Section 3, the implementation of DSE,
DDS, kNN, MSC, LFC, and PARC require certain
sample affinity functions. We try Euclidean, cosine,
and correlation distances for the above methods to
examine whether different functions will affect the
methods and report the results in Table 4. Com-
pared to Euclidean distance, cosine distance and
correlation distance conduct extra normalization
operations and thus results in more estimating time.
However, except when applied to DSE, cosine and
correlation distances generally exhibit superior per-
formance than Euclidean distance. This observa-
tion reveals that the norm of the feature vector may
result in anisotropic feature space and should not
be taken into account to measure the sample affin-
ity, which is also supported by (Su et al., 2021) that
suggests the normalization operation can alleviate
the anisotropy problem of PLMs.

7 Conclusion and Future Directions

This paper reviews the recent advances in TE that
can be applied to PLM selection and presents a
method taxonomy based on a thorough analysis.
Moreover, comprehensive qualitative and quantita-
tive comparisons between different approaches are
provided to help understand their applicability in a
number of aspects. We hope this survey can help
people for the purpose of research or industry to
choose desired PLM by appropriate TE methods.

Although lots of efforts have been made as sur-
veyed, there still remain some directions that de-
serve further investigation:

(1) How to make the estimation approach
aware of fine-tuning strategies and experimental
hyper-parameters? The fine-tuning strategy usu-
ally needs to be determined under the acceptable
computation burden, i.e. fully fine-tuning (optimiz-
ing all model parameters) or parameter-efficient
tuning (optimizing part of model parameters). The
actual fine-tuning strategy not only affects the train-
ing time and computation consumption but also the
loss landscape of PLM which results in different
target task performance (Bassignana et al., 2022).
However, current approaches usually consider the
situation of one strategy whose effectiveness can
not be guaranteed in other situations. Therefore,
making the estimation able to adapt to different
fine-tuning strategies is worth further exploring.
Besides, even if the best PLM can be accurately
selected, one still needs exhaustive searching of
training hyper-parameters to produce desired fine-
tuning performance. It is also interesting to con-
sider other important hyper-parameters such as
learning rate and temperature when estimating the
transferability.

(2) How to adapt TE methods to text genera-
tion task? Although model similarity-based meth-
ods do not assume the type of target task since
these methods only rely on the sample features,
they neglect the information of the target label and
thus the mapping from input space to output space
is not well captured and the corresponding task
can not be fully understood. However, taking label
information into consideration for the text genera-
tion task is challenging since the length of output
text changes and the one-to-many issue exists (Bao
et al., 2020; Zheng et al., 2021; Zhao et al., 2023).
Since currently LLMs conduct all tasks in the way
of text generation and the number of LLMs is con-
tinually increasing, the TE method tailored for text
generation is urgently needed.

(3) How to make estimation results consistent
with specific evaluation metrics? In our experi-
ments, the TE methods are asked to correlate just
one evaluation metric for GLUE datasets, e.g., Acc
for QNLI. However, some tasks may have diverse
metrics, e.g., NDCG, R@1 for ranking tasks, and
sometimes one may focus on one of the metrics and
the variations of these metrics are not necessarily
consistent, such that the TE method’s predictions
can be confusing in these cases. Therefore, how to
make TE methods aware of our interested metric is
another direction worth exploring.



Limitations

This work provides a comprehensive summary of
existing TE methods. However, limited by our
experimental conditions, we have to examine sur-
veyed methods on a toy experimental setting where
the following problems need to be improved: (1)
Only small-scale PLMs form the candidate pool,
the effectiveness of TE methods to select the best-
performing LLM is needed to be verified given
the current popularity of LLMs. (2) Since most
of existing TE methods only support target task of
classification type, we determine the GLUE bench-
mark as the evaluation datasets, while the TE per-
formances on regression task, structure prediction
task and generation task are still under-explored.
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A Fine-tuning Results on GLUE

PLM Candidates CoLA SST-2 MRPC QQP MNLI QNLI RTE WNLI
bert-base-uncased 56.3 92.7 88.6 89.6 84.7 91.8 69.3 53.5
distilbert-base-uncased 51.3 91.3 87.5 88.5 82.2 89.2 59.9 56.3
bert-base-cased 58.2 91.7 87.8 89.2 83.9 91.0 66.1 46.5
distilbert-base-cased 47.2 90.4 85.6 87.8 81.5 88.2 60.6 56.3
roberta-base 63.6 94.8 90.2 91.9 87.6 92.8 78.7 57.7
distilroberta-base 59.3 92.5 86.6 89.4 84.0 90.8 67.9 52.1

Table 5: The best fine-tuning performances of candidate PLMs on GLUE dev datasets reported from HuggingFace,
where the metrics are Matthews Correlation Coefficient (MCC) for CoLA and Accuracy for the other datasets.

B Implementation Details

Our experimental machine contains an Intel(R) Xeon(R) Silver 4110 CPU @ 2.10GHz and a NVIDIA
GeForce RTX 3090 24G GPU. For the implementation of TE methods, since some methods’ performance
heavily depend on the number of feature dimensions, we reduce the feature dimension to [16, 32, 64,
128, 256, 512, 768] by PCA for each method to find their most suitable dimensions. For DSE, RSA,
kNN, MSC, LFC, PARC that need to compute the affinities between sample features, we also try different
sample affinity functions including cosine, euclidean and correlation distances. The implementation
details of surveyed methods are as follows:

DSE Among the averaged sample affinities (Luo et al., 2022) and the affinity between the mean features
(Vu et al., 2020), we found that the former performs better. And DSE achieves the best results when
DeBERTa is taken as target model, Euclidean distance is used to measure the sample affinity and the
number of feature dimensions is 768. The corresponding computation is as Eq. 1.

S(D) = − 1

N

N∑
i=1

∥(ϕ(xi)− ψ(xi)∥2 (1)

DDS Among a number of instances of DDS framework (Dwivedi et al., 2020), RSA (Dwivedi and Roig,
2019) shows the best performance when DeBERTa is trained as target model, correlation distance is used
and the number of feature dimensions is 512. Specifically, the pre-trained features and target features
are first processed by z-score normalization. Then the pre-trained affinity graph and target affinity graph
are computed by correlation distance. Finally, the lower triangular adjacent matrices of two graphs are
compared by Spearman correlation coefficient as transferability score.

MSC We use the code of silhouette_score from scikit-learn to implement MSC, which exhibits the best
performance when cosine distance is used and the number of feature dimensions is 256.

kNN We use the code of KNeighborsClassifier from scikit-learn and use the test accuracy of leave-one-
out cross-validation to quantify the transferability. We tune the k in [1, 3, 5, 7], the method exhibits the
best performance when k = 5, correlation distance is used and the number of feature dimensions is 64.

PARC The computation process of PARC is similar to that of RSA except that the target affinity graph
is replaced by affinity graph derived from samples’ one-hot labels. We use the code from here and the best
performance is achieved when correlation distance is used and the number of feature dimensions is 512.

GBC It first uses Gaussian distribution to model each target class of samples which is parameterized by
the in-class pre-trained features vectors. Then the averaged Bhattacharyya distance between every pair of
different classes are used to measure the inter-class overlap as Eqs. 2 and 3:

BC(pvi , pvj ) =

∫ √
pvi(ϕ(x))pvj (ϕ(x))dx (2)

https://scikit-learn.org
https://scikit-learn.org
https://github.com/TencentARC/SFDA/blob/main/metrics.py


S(D) = −
∑
i ̸=j

BC(pvi , pvj ) (3)

where v is a specific value of target classes. We use the code from here and the most suitable number of
feature dimensions is 64.

Logistic We use the code of LogisticRegression from scikit-learn with the default hyper-parameters to
classify the pre-trained features. The test accuracy of leave-one-out cross-validation is used to quantify
the transferability and the most suitable number of feature dimensions is 64.

H-Score As Eq. 4 shows, it first computes the covariance matrix over the feature dimensions of pre-
trained features and that over the feature dimensions of each target class’s mean feature, then the trace of
the dot-product between the inverse matrix of former and the latter is used to approximate the optimal
log-loss. We use the code from here and the most suitable number of feature dimensions is 768.

S(D) = tr(cov(ϕ(X ))−1cov(EP (X|Y)[ϕ(X )|Y])) (4)

Regularized H-Score Compared to H-Score, it further solve the statistical problem of covariance
estimation by shrinkage-based estimator (Ibrahim et al., 2022). The most suitable number of feature
dimensions is 768.

NLEEP It first uses Gaussian mixture model to fit the pre-trained features, then computes the Log
Expected Empirical Prediction (LEEP) score between posterior distribution derived from fitted Gaussian
mixture model and the target labels as Eq. 5:

S(D) =
1

N

N∑
i=1

log(
∑
c∈C

P (y|c)P (c|ϕ(x))) (5)

where c is the specific Gaussian component and C is the space of all components. We use the code from
here where the number of Gaussian components is five times that of target classes and the most suitable
number of feature dimensions is 64.

TransRate It argues that the mutual information I(ϕ(X ),Y) = H(ϕ(X )) − H(ϕ(X )|Y) between
the pre-trained features and the target labels serves as a strong indicator for the performance of model.
Since the mutual information is notoriously difficult to compute especially for continuous variables in
high-dimensional settings, the authors turn to utilize rate distortion that is closely related to Shannon
entropy. The code can be found in (Huang et al., 2022) and the most suitable number of feature dimensions
before computing the mutual information is 64.

LogME It uses marginal evidence of the target task P (y|ϕ(x)) =
∫
P (w)P (y|ϕ(x), w)dw where w

is the weight of linear classifier. The prior P (w) is defined as Gaussian and P (y|ϕ(x), w) is a Gaussian
likelihood, then P (y|ϕ(x)) can be analytically estimated. We use the code from here, and the most
suitable number of feature dimensions is 512.

SFDA It first projects the pre-trained features by regularized Fisher Discriminant Analysis such that
the projected features can have better separability of target classes which can simulate the fine-tuning
dynamics. Based on Bayes classification, the projecting weights can be used to compute the prediction
probability of each sample on target label which is further used to compute the log-likelihood as the
transferability. Moreover, confidential mix noise is further added to examine the model’s ability to classify
hard samples. We use the code from here and the most suitable number of feature dimensions is 512.

PACTran It has three instances using the Dirichlet, Gamma and Gaussian as prior distributions respec-
tively. Since the first two priors require the pre-training task head layer or non-negative features which are
not the case in PLM selection, we implement PACTran with the more general Gaussian prior by the code
from here, and tune the λ and σ20 in [0.1, 1, 10] and [1, 10, 100, 1000]. The PACTran performs best when
λ = 1, σ20 = 10 and the number of feature dimensions is 64.

https://github.com/google-research/google-research/blob/32d7e53a1bfedb36d659bc44cb03d93f2aef2c9b/stable_transfer/transferability/gbc.py
https://scikit-learn.org
https://github.com/thuml/Transfer-Learning-Library/blob/d950c3115557423cd5dcec3fdeee2c3ffb2cae5a/tllib/ranking/hscore.py#L13
https://github.com/TencentARC/SFDA/blob/main/metrics.py
https://github.com/thuml/LogME
https://github.com/TencentARC/SFDA
https://github.com/google-research/pactran_metrics


C TE Methods Performances on GLUE Tasks

Method CoLA SST-2 MRPC QQP MNLI QNLI RTE WNLI
Reciprocal Rank

DSE 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
DDS 0.50 0.33 0.50 0.50 0.50 1.00 0.50 0.25
MSC 1.00 0.17 0.50 0.17 1.00 0.50 0.50 0.20
kNN 0.33 0.33 0.33 1.00 1.00 1.00 0.17 1.00
PARC 1.00 0.20 1.00 1.00 1.00 1.00 1.00 1.00
GBC 0.50 0.17 0.33 1.00 0.50 0.33 0.50 0.20
Logistic 0.33 0.17 1.00 1.00 1.00 1.00 1.00 1.00
H-Score 1.00 0.20 1.00 1.00 1.00 1.00 1.00 0.17
Reg. H-Score 1.00 0.20 1.00 1.00 1.00 1.00 1.00 1.00
NLEEP 0.50 0.17 0.33 1.00 1.00 1.00 1.00 1.00
TransRate 0.17 0.17 0.50 1.00 0.25 0.25 0.25 0.25
LogME 1.00 0.17 1.00 1.00 1.00 1.00 1.00 1.00
SFDA 0.50 0.50 0.50 1.00 1.00 1.00 1.00 0.25
PACTran 1.00 0.17 1.00 1.00 1.00 0.50 1.00 0.50

Spearman correlation coefficient
DSE 0.43 0.49 0.37 0.49 0.49 0.31 0.37 0.75
RSA 0.49 -0.09 0.20 0.60 0.26 0.71 0.43 -0.06
MSC 0.94 -0.89 0.31 -0.26 0.60 0.71 0.77 -0.41
kNN 0.60 -0.09 0.37 0.43 0.71 0.94 -0.26 0.57
PARC 0.94 0.43 0.54 0.83 0.77 0.60 0.89 0.38
GBC 0.60 -0.89 0.37 0.71 0.37 0.49 0.77 -0.67
Logistic 0.49 0.14 0.14 0.77 0.71 0.71 0.60 0.64
H-Score 0.77 0.14 0.49 0.66 0.83 0.83 0.94 -0.06
Reg. H-Score 0.83 0.14 0.77 0.66 0.83 0.83 0.71 0.06
NLEEP 0.66 -0.89 0.37 0.54 0.60 0.83 0.20 0.81
TransRate -0.89 -0.49 0.77 0.37 0.09 0.43 -0.31 0.26
LogME 0.83 -0.14 0.66 0.66 0.77 0.83 0.83 0.52
SFDA 0.94 0.49 0.37 0.71 0.83 0.89 0.60 -0.14
PACTran 0.77 -0.20 0.66 0.60 0.71 0.77 0.66 0.09

Estimating Time
DSE 0.38s 2.90s 0.16s 17.86s 31.86s 4.48s 0.09s 0.03s
RSA 157.62s 221.01s 25.11s 224.61s 226.94s 220.50s 10.58s 0.63s
MSC 4.94s 7.30s 0.98s 7.32s 7.22s 7.35s 0.48s 0.06s
kNN 2.59s 2.52s 0.51s 117.75s 28.28s 15.99s 0.26s 0.04s
PARC 104.13s 145.10s 17.32s 141.21s 142.70s 142.18s 7.31s 0.45s
GBC 0.07s 0.34s 0.02s 1.70s 1.85s 0.50s 0.01s 0.01s
Logistic 0.55s 3.28s 0.31s 13.35s 20.02s 3.19s 0.19s 0.09s
H-Score 3.04s 11.78s 2.03s 125.86s 136.40s 17.47s 1.84s 1.32s
Reg. H-Score 3.84s 17.15s 2.55s 95.83s 118.07s 25.83s 2.30s 1.74s
NLEEP 18.49s 27.26s 4.83s 26.96s 32.49s 22.80s 3.22s 0.27s
TransRate 0.09s 0.42s 0.02s 2.16s 2.33s 0.69s 0.02s 0.01s
LogME 1.23s 5.07s 0.69s 37.80s 33.36s 7.55s 0.62s 0.55s
SFDA 9.37s 67.36s 4.22s 356.30s 385.94s 104.57s 3.07s 1.38s
PACTran 0.68s 4.37s 0.36s 19.52s 27.23s 4.82s 0.20s 0.09s

Table 6: The reciprocal rank scores, Spearman correlation coefficients and estimating time of TE methods on each
GLUE dataset.


