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Abstract

Transparent models, which are machine learning models that produce inherently1

interpretable predictions, are receiving significant attention in high-stakes domains.2

However, despite much real-world data being collected as time series, there is a lack3

of studies on transparent time series models. To address this gap, we propose a novel4

transparent neural network model for time series called Generalized Additive Time5

Series Model (GATSM). GATSM consists of two parts: 1) independent feature6

networks to learn feature representations, and 2) a transparent temporal module to7

learn temporal patterns across different time steps using the feature representations.8

This structure allows GATSM to effectively capture temporal patterns and handle9

dynamic-length time series while preserving transparency. Empirical experiments10

show that GATSM significantly outperforms existing generalized additive models11

and achieves comparable performance to black-box time series models, such as12

recurrent neural networks and Transformer. In addition, we demonstrate that13

GATSM finds interesting patterns in time series. The source code is available at14

https://anonymous.4open.science/r/GATSM-78F4/.15

1 Introduction16

Artificial neural networks excel at learning complex representations and demonstrate remarkable17

predictive performance across various fields. However, their complexity makes interpreting the18

decision-making processes of neural network models challenging. Consequently, post-hoc explainable19

artificial intelligence (XAI) methods, which explain the predictions of trained black-box models,20

have been widely studied in recent years [1, 2, 3, 4]. XAI methods are generally effective at21

providing humans with understandable explanations of model predictions. However, they may22

produce incorrect and unfaithful explanations of the underlying black-box model and cannot provide23

actual contributions of input features to model predictions [5, 6]. Therefore, their applicability to24

high-stakes domains-such as healthcare and fraud detection, where faithfulness to the underlying25

model and actual contributions of features are important-is limited.26

Due to these limitations, transparent (i.e., inherently interpretable) models are attracting attention as27

alternatives to XAI in high-stakes domains [7, 8, 9]. Modern transparent models typically adhere to28

the generalized additive model (GAM) framework [10]. A GAM consists of independent functions,29

each corresponding to an input feature, and makes predictions as a linear combination of these30

functions (e.g., the sum of all functions). Therefore, each function reflects the contribution of its31

respective feature. For this reason, interpreting GAMs is straightforward, making them widely used in32

various fields, such as healthcare [11, 12], survival analysis [13], and model bias discovery [7, 14, 15].33

However, despite much real-world data being collected as time series, research on GAMs for time34

series remains scarce. Consequently, the applicability of GAMs in real-world scenarios is still limited.35

To overcome this limitation, we propose a novel transparent model for multivariate time series36

called Generalized Additive Time Series Model (GATSM). GATSM consists of independent feature37

networks to learn feature representations and a transparent temporal module to learn temporal patterns.38
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Since employing distinct networks across different time steps requires a massive amount of learnable39

parameters, the feature networks in GATSM share the weights across all time steps, while the40

temporal module independently learns temporal patterns. GATSM then generates final predictions by41

integrating the feature representations with the temporal information from the temporal module. This42

strategy allows GATSM to effectively capture temporal patterns and handle dynamic-length time43

series while preserving transparency. Additionally, this approach facilitates the separate extraction of44

time-independent feature contributions, the importance of individual time steps, and time-dependent45

feature contributions through the feature functions, temporal module, and final prediction. To46

demonstrate the effectiveness of GATSM, we conducted empirical experiments on various time series47

datasets. The experimental results show that GATSM significantly outperforms existing GAMs48

and achieves comparable performances to black-box time series models, such as recurrent neural49

networks and Transformer [16]. In addition, we provide visualizations of GATSM’s predictions to50

demonstrate that GATSM finds interesting patterns in time series.51

2 Related Works52

Various XAI studies have been conducted over the past decade [7, 8, 9, 17, 18]; however, they are53

less relevant to the transparent model that is the subject of this study. Therefore, we refer readers to54

[19, 20] for more detailed information on recent XAI research. In this section, we review existing55

transparent models closely related to our GATSM and discuss their limitations.56

Table 1: Advantages of GATSM.
Time series input Temporal pattern Dynamic time series

existing GAMs
NATM ✓

GATSM (our) ✓ ✓ ✓

The simple linear model is designed to fit the conditional expectation g (E (y | x)) =
∑M

i=1 xiwi,57

where g(·) is a link function, M indicates the number of input features, y is the target value for the58

given input features x ∈ RM , and wi ∈ R is the learnable weight for xi. This model captures only59

linear relationships between the target y and the inputs x. To address this limitation, GAM [10]60

extends the simple linear model to the generalized form as follows:61

g (E (y | x)) =
M∑
i=1

fi (xi) , (1)

where each fi(·) is a function that models the effect of a single feature, referred as a feature function.62

Typically, fi (·) becomes a non-linear function such as a decision tree or neural network to capture63

non-linear relationships.64

Originally, GAMs were fitted via the backfitting algorithm using smooth splines [10, 21]. Later, Yin65

Lou et al. [22] and Harsha Nori et al. [23] have proposed boosted decision tree-based GAMs, which66

use boosted decision trees as feature functions. Spline- and tree-based GAMs have less flexibility67

and scalability. Thus, extending them to transfer or multi-task learning is challenging. To overcome68

this problem, various neural network-based GAMs have been proposed in recent years. Potts [24]69

introduced generalized additive neural network, which employs 2-layer neural networks as feature70

functions. Similarly, Rishabh Agarwal et al. [7] proposed neural additive model (NAM) that employs71

multi-layer neural networks. To improve the scalability of NAM, Chun-Hao Chang et al. [8] and72

Filip Radenovic et al. [9] proposed the neural oblivious tree-based GAM and the basis network-based73

GAM, respectively. Xu et al. [25] introduced a sparse version of NAM using the group LASSO. One74

disadvantage of GAMs is their limited predictive power, which stems from the fact that they only75

learn first-order feature interactions-i.e., relationships between the target value and individual features.76

To address this, various studies have been conducted to enhance the predictive powers of GAMs by77

incorporating higher-order feature interactions, while still maintaining transparency. GA2M [26]78

simply takes pairwise features as inputs to learn pairwise interactions. GAMI-Net [27], a neural79

network-based GAM, consists of networks for main effects (i.e., first-order interactions) and pairwise80

interactions. To enhance the interpretability of GAMI-Net, the sparsity and heredity constraints are81

added, and trivial features are pruned in the training process. Sparse interaction additive network [28]82
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Figure 1: Architecture of GATSM.

is a 3-phase method for exploiting higher-order interactions. Initially, a black-box neural network is83

trained; subsequently, the top-k important features are identified using explainable feature attribution84

methods like LIME [1] and SHAP [2], and finally, NAM is trained with these extracted features.85

Dubey et al. [29] introduced scalable polynomial additive model, an end-to-end model that learns86

higher-order interactions via polynomials. Similarly, Kim et al. [15] proposed higher-order NAM that87

utilizes the feature crossing technique to capture higher-order interactions. Despite their capabilities,88

the aforementioned GAMs cannot process time series data, which limits their applicability in real-89

world scenarios. Recently, neural additive time series Model (NATM) [30], a time-series adaptation90

of NAM, has been proposed. However, NATM handles each time step independently with separate91

feature networks. This approach cannot capture effective temporal patterns and only takes fixed-length92

time series as input. Our GATSM not only captures temporal patterns but also handles dynamic-length93

time series. Table 1 shows the advantages of our GATSM compared to existing GAMs.94

3 Problem Statement95

We tackle the problem of the existing GAMs on time series. Equation (1) outlines the GAM framework96

for tabular data, which fails to capture the interactions between current and previous observations in97

time series. A straightforward method to extend GAM to time series, adopted in NATM, is applying98

distinct feature functions to each time step and summing them to produce predictions:99

g (E (yt | X:t)) =

t∑
i=1

M∑
j=1

fi,j (xi,j) , (2)

where X ∈ RT×M is a time series with T time steps and M features, and t is the current time step.100

This method can handle time series data as input but fails to capture effective temporal patterns101

because the function fi,j (·) still does not interact with previous time steps. To overcome this problem,102
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we suggest a new form of GAM for time series defined as follows:103

g (E (yt | X:t)) =

t∑
i=1

M∑
j=1

fi,j (xi,j ,X:t) . (3)

Definition 3.1 GAMs for time series, which capture temporal patterns hold the form of Equation 3.104

In Equation (3), the function f (·, ·) can capture interactions between current and previous time steps.105

Therefore, GAMs adhering to Definition 3.1 are capable of capturing temporal patterns. However,106

implementing such a model while maintaining transparency poses challenges. In the following107

section, we will describe our approach to implementing a GAM that holds Definition 3.1. To the best108

of our knowledge, no existing literature addresses Definition 3.1.109

4 Our Method: Generalized Additive Time Series Model110

4.1 Architecture111

Figure 1 shows the overall architecture of GATSM. Our model has two modules: 1) feature networks,112

called time-sharing neural basis model, for learning feature representations, and 2) masked multi-head113

attention for learning temporal patterns.114

Time-Sharing NBM: Assume a time series with T time steps and M features. Applying GAMs115

to this time series necessitates T ×M feature functions, which becomes problematic when dealing116

with large T or M due to increased model size. This limits the applicability of GAMs to real-world117

datasets. To overcome this problem, we extend neural basis model (NBM) [9] to time series as:118

x̃i,j = fj (xi,j) =

B∑
k=1

hk (xi,j)w
nbm
j,k . (4)

We refer to this extended version of NBM as time-sharing NBM. Time-sharing NBM has B basis119

functions, with each basis hk(·) taking a feature xi,j as input. The feature-specific weight wnbm
j,k120

then projects the basis to the transformed feature x̃i,j . As depicted in Equation 4, the basis functions121

are shared across all features and time steps, drastically reducing the number of required feature122

functions T ×M to B. We use B = 100 and implement hk (·) using multi-layer perceptron (MLP).123

Masked MHA: GATSM employs multi-head attention (MHA) to learn temporal patterns. Although124

the dot product attention [16] is popular, simple dot operation has low expressive power [31].125

Therefore, we adopt the 2-layer attention mechanism proposed by [31] to GATSM. We first transform126

x̃i = [x̃i,1, x̃i,2, · · · , x̃i,M ] ∈ RM produced by Equation 4 as follows:127

vi = x̃⊺i Z + pei, (5)

where Z ∈ RM×D is a learnable weight, pei = [pei,1, pei,2, · · · , pei,D] ∈ RD is the positional128

encoding for i-th step, and D indicates the hidden size. The positional encoding is defined as follows:129

pei,j =

{
sin

(
i

100002j/D

)
if j mod 2 = 1,

cos
(

i
100002j/D

)
otherwise.

(6)

The positional encoding helps GATSM effectively capture temporal patterns. While learnable position130

embedding also works in GATSM, we recommend positional encoding because position embedding131

requires knowledge of the maximum number of time steps, which is often unknown in real-world132

settings. After computing vi, we calculate the attention scores as follows:133

ek,i,j = σ
(
[vi | vj ]

⊺ wattn
k

)
mi,j , (7)

ak,i,j =
exp (ek,i,j)∑T
t=1 exp (ek,i,t)

, (8)

where k is attention head index, σ (·) is an activation function, wattn
k ∈ R2D, and mi,j ∈ R is the134

mask value used to block future information. The time mask is defined as follows:135

mi,j =

{
1 if i ≤ j,

−∞ otherwise.
(9)
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Inference: The prediction of GATSM is produced by combining the transformed features from136

time-sharing NBM with the attention scores from masked MHA.137

ŷt =

K∑
k=1

a⊺k,tX̃wout
k , (10)

where K is the number of attention heads, ak,t = [ak,i,1, ak,i,2, · · · , ak,i,T ] ∈ RT is the attention138

map in Equation 8, X̃ = [x̃1, x̃2, · · · , x̃T ] ∈ RT×M is the transformed features in Equation 4, and139

wout
k ∈ RM is the learnable output weight.140

Interpretability: We can rewrite Equation 10 as the following scalar form:141

K∑
k=1

a⊺k,tX̃wout
k =

t∑
u=1

M∑
m=1

K∑
k=1

B∑
b=1

ak,t,uhb (xt,m)wnbm
m,b w

out
k,m

=

t∑
u=1

M∑
m=1

fu,m (xu,m,X:t)

(11)

Equation 11 shows that GATSM satisfying Definition 3.1. We can derive three types of interpretations142

from GATSM: 1) ak,t,u indicates the importance of time step u at time step t, 2) hb (xt,m)wnbm
m,b w

out
k,m143

represents the time-independent contribution of feature m, and 3) ak,t,uhb (xt,m)wnbm
m,b w

out
k,m repre-144

sents the time-dependent contribution of feature m at time step t.145

5 Experiments146

5.1 Experimental Setup147

Datasets: We conducted our experiments using eight publicly available real-world time series148

datasets. From the Monash repository [32], we sourced three datasets: Energy, Rainfall, and149

AirQuality. Another three datasets, Heartbeat, LSST, and NATOPS, were downloaded from the150

UCR repository [33]. The remaining two datasets, Mortality and Sepsis, were downloaded from151

the PhysioNet [34]. We perform ordinal encoding for categorical features and standardize features152

to have zero-mean and unit-variance. For forecasting tasks, target value y is also standardized to153

zero-mean and unit-variance. If the dataset contains missing values, we impute categorical features154

with their modes and numerical features with their means. The dataset is split into a 60%/20%/20%155

ratio for training, validation, and testing, respectively. Table 2 shows the statistics of the experimental156

datasets. Further details of the experimental datasets can be found in Appendix B.157

Table 2: Dataset statistics.
Dataset Task Variable length # of time series Avg. length # of features # of classes

Energy 1-step FCST No 137 24 24 -
Rainfall 1-step FCST No 160,267 24 3 -

AirQuality 1-step FCST No 16,966 24 9 -
Heartbeat Binary No 409 405 61 2
Mortality Binary Yes 12,000 49.861 41 2

Sepsis Binary Yes 40,336 38.482 40 2
LSST Multi-class No 4,925 36 6 14

NATOPS Multi-class No 360 51 24 6
FCST: forecasting

Baselines: We compare our GATSM with 12 baselines, which can be categorized into four groups: 1)158

Black-box tabular models include extreme gradient boosting (XGBoost) [35] and MLP. 2) Black-box159

time series models include simple recurrent neural network (RNN), gated recurrent unit (GRU), long160

short-term memory (LSTM), and Transformer [16]. 3) Transparent tabular models are simple linear161

model (Linear), explainable boosting machine (EBM) [23], NAM [7], NodeGAM [8], and NBM [9].162

4) NATM [30] is a transparent time series model.163

Implementation: We implement XGBoost and EBM models using the xgboost and interpretml164

libraries, respectively. For NodeGAM, we employ the official implementation provided by its authors165

[8]. The remaining models are developed using PyTorch [36]. All models undergo hyperparameter166
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Table 3: Predictive performance comparison of various models.
Model Type Model Energy Rainfall AirQuality Heartbeat Mortality Sepsis LSST NATOPS Avg. Rank

Black-box
Tabular Model

XGBoost 0.094 0.002 0.532 0.679 0.707 0.816 0.424 0.200 8.500
(±0.137) (±0.002) (±0.019) (±0.094) (±0.015) (±0.007) (±0.012) (±0.049) (±4.000)

MLP 0.459 0.011 0.423 0.654 0.842 0.786 0.417 0.211 7.375
(±0.101) (±0.004) (±0.031) (±0.082) (±0.014) (±0.007) (±0.008) (±0.065) (±2.134)

Black-box
Time Series Model

RNN 0.320 0.068 0.644 0.661 0.581 0.782 0.422 0.592 7.750
(±0.122) (±0.020) (±0.032) (±0.078) (±0.040) (±0.009) (±0.029) (±0.110) (±2.712)

GRU 0.435 0.089 0.701 0.694 0.818 0.785 0.629 0.931 4.375
(±0.107) (±0.034) (±0.018) (±0.052) (±0.014) (±0.010) (±0.013) (±0.045) (±2.669)

LSTM 0.359 0.090 0.683 0.648 0.790 0.779 0.491 0.908 6.375
(±0.112) (±0.031) (±0.026) (±0.042) (±0.020) (±0.008) (±0.082) (±0.035) (±3.623)

Transformer 0.263 0.098 0.711 0.690 0.844 0.789 0.679 0.967 4.000
(±0.263) (±0.035) (±0.027) (±0.040) (±0.019) (±0.010) (±0.019) (±0.029) (±3.703)

Transparent
Tabular Model

Linear 0.482 0.004 0.241 0.637 0.838 0.723 0.311 0.206 10.125
(±0.112) (±0.001) (±0.019) (±0.070) (±0.017) (±0.011) (±0.010) (±0.045) (±3.871)

EBM -0.200 0.004 0.324 0.666 0.729 0.802 0.408 0.164 9.750
(±0.409) (±0.001) (±0.014) (±0.056) (±0.017) (±0.011) (±0.016) (±0.053) (±3.284)

NAM 0.363 0.006 0.300 0.645 0.853 0.800 0.400 0.242 7.875
(±0.218) (±0.002) (±0.013) (±0.026) (±0.014) (±0.006) (±0.011) (±0.040) (±3.643)

NodeGAM 0.398 0.006 0.380 0.681 0.854 0.802 0.400 0.247 6.375
(±0.195) (±0.002) (±0.032) (±0.046) (±0.013) (±0.007) (±0.028) (±0.012) (±3.623)

NBM 0.330 0.007 0.301 0.716 0.852 0.799 0.388 0.189 7.875
(±0.251) (±0.003) (±0.012) (±0.039) (±0.014) (±0.006) (±0.014) (±0.029) (±3.603)

Transparent
Time Series Model

NATM 0.304 0.038 0.548 0.724 N/A N/A 0.452 0.878 5.667
(±0.122) (±0.011) (±0.028) (±0.043) (±0.010) (±0.058) (±2.582)

GATSM (ours) 0.493 0.073 0.583 0.843 0.853 0.797 0.570 0.956 3.125
(±0.173) (±0.027) (±0.026) (±0.025) (±0.015) (±0.007) (±0.024) (±0.027) (±1.808)

tuning via Optuna [37]. The pytorch-based models are optimized with the Adam with decoupled167

weight decay (AdamW) [38] optimizer on an NVIDIA A100 GPU. Model training is halted if the168

validation loss does not decrease over 20 epochs. We use mean squared error for the forecasting tasks,169

and for classification tasks, we use cross-entropy loss. Further details of the model implementations170

and hyper-parameters are provided in Appendix C.171

5.2 Comparison with baselines172

Table 3 shows the predictive performances of the experimental models. We report mean scores173

and standard deviations over five different random seeds. For the forecasting datasets, we evaluate174

R2 scores. For the binary classification datasets, we assess the area under the receiver operating175

characteristic curve (AUROC). For the multi-class classification datasets, we measure accuracy. We176

highlight the best-performing model in bold and underline the second-best model. Since the tabular177

models cannot handle time series, they only take xt to produce yt.178

On the Energy and Heartbeat datasets, which are small in size, our GATSM demonstrates the best179

performance, indicating strong generalization ability. EBM, XGBoost, and Transformer struggle180

with overfitting on the Energy dataset. For the Mortality and Sepsis datasets, there is no significant181

performance difference between tabular and time series models, nor between black-box and trans-182

parent models. This suggests that these two healthcare datasets lack significant temporal patterns183

and feature interactions. It is likely that seasonal patterns are hard to detect in medical data, and184

the patient’s current condition already encapsulates previous conditions, making historical data less185

crucial. Since these datasets contain variable-length time series, the performance of NATM, which186

can only handle fixed-length time series, is not available. On the Rainfall, AirQuality, LSST, and187

NATOPS datasets, the time series models significantly outperform the tabular models, indicating188

that these datasets contain important temporal patterns that tabular models cannot capture. Addition-189

ally, the black-box models outperform the transparent models, suggesting that these datasets have190

higher-order feature interactions that transparent models cannot capture. Nevertheless, GATSM is the191

best model within the transparent model group and performs comparably to Transformer. Overall,192

GATSM achieved the best average rank in the experiments, followed by the Transformer, indicating193

GATSM’s superiority. Additional experiments on model throughput and an ablation study on the194

basis functions are presented in Appendix D.195
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Table 4: Ablation study on different feature functions.
Feature Function Energy Rainfall AirQuality Heartbeat Mortality Sepsis LSST NATOPS

Linear 0.283(±0.277) 0.071(±0.024) 0.563(±0.019) 0.766(±0.024) 0.832(±0.015) 0.735(±0.012) 0.398(±0.030) 0.972(±0.020)
NAM 0.304(±0.229) 0.068(±0.021) 0.564(±0.019) 0.838(±0.032) 0.851(±0.013) 0.801(±0.005) 0.553(±0.023) 0.933(±0.039)
NBM 0.493(±0.173) 0.073(±0.027) 0.583(±0.026) 0.843(±0.025) 0.853(±0.015) 0.797(±0.007) 0.570(±0.024) 0.956(±0.027)

Table 5: Ablation study on the temporal module.
Temporal Module Energy Rainfall AirQuality Heartbeat Mortality Sepsis LSST NATOPS

Base 0.452(±0.087) 0.007(±0.002) 0.299(±0.012) 0.661(±0.043) 0.854(±0.013) 0.798(±0.008) 0.392(±0.006) 0.192(±0.027)
Base + PE 0.397(±0.054) 0.007(±0.003) 0.299(±0.012) 0.681(±0.068) 0.852(±0.013) 0.799(±0.007) 0.385(±0.027) 0.228(±0.029)

Base + MHA 0.368(±0.230) 0.048(±0.017) 0.555(±0.020) 0.821(±0.044) 0.847(±0.020) 0.779(±0.033) 0.595(±0.013) 0.856(±0.059)
Base + PE + MHA 0.493(±0.173) 0.073(±0.027) 0.583(±0.026) 0.843(±0.025) 0.853(±0.015) 0.797(±0.007) 0.570(±0.024) 0.956(±0.027)

5.3 Ablation study196

Choice of feature function: We evaluate the performance of GATSM by changing the feature197

functions using three models: Linear, NAM, and NBM. Table 4 presents the results of this experiment.198

The simple linear function performs poorly because it lacks the capability to capture non-linear199

relationships. In contrast, NAM, which can capture non-linearity, shows improved performance over200

the linear function. However, NBM stands out by achieving the best performance in six out of eight201

datasets. This indicates that the basis strategy of NBM is highly effective for time series data.202

Design of temporal module: We evaluate the performance of GATSM by modifying the design of203

the temporal module. The results are presented in Table 5. GATSM without the temporal module204

(Base) fails to learn temporal patterns and shows poor performance in the experiment. GATSM with205

only positional encoding (Base + PE) also shows similar performance to the Base, indicating that206

positional encoding alone is insufficient for capturing effective temporal patterns. GATSM with only207

multi-head attention (Base + MHA) outperforms the previous two methods, demonstrating that the208

MHA mechanism is beneficial for capturing temporal patterns. Finally, our full GATSM (Base + PE +209

MHA) significantly outperforms the other methods, suggesting that the combination of PE and MHA210

creates a synergistic effect. Consistent with our previous findings in section 5.2, all four methods211

show similar performances on the Mortality and Sepsis datasets, which lack significant temporal212

patterns.213

5.4 Interpretation214

In this section, we visualize four interpretations of GATSM’s predictions on the AirQuality dataset.215

In addition, interpretations for the Rainfall dataset can be found in Appendix E.216
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Figure 4: Local time-independent feature contributions.
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Figure 5: Local time-dependent feature contributions.
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Time-step importance: We plot the average attention scores at the last time step T in Figure 2.217

The process for extracting the average attention score of time step u at time step t is formalized as218 ∑K
k=1 ak,t,u. This process is repeated over all data samples, and the results are averaged. Based219

on Figure 2, it seems that GATSM pays more attention to the initial and last states than to the220

intermediate states. This indicates that the current concentration of particulate matter depends on the221

initial state.222

Global feature contribution: Figure 3 illustrates the global behavior of features in the223

AirQuality dataset, with red bars indicating the density of training samples. We extract224 ∑K
k=1 hb (xt,m)wnbm

m,b w
out
k,m from GATSM and repeat this process over the range of minimum to225

maximum feature values to plot the line. We found that the behavior of SO2, O3, and windspeed is226

inconsistent with prior human knowledge. Typically, high levels of SO2 and O3 are associated with227

poor air quality. However, GATSM learned that particulate matter concentration starts to decrease228

when SO2 exceeds 10 and O3 exceeds 5. This discrepancy may be due to sparse training samples in229

these regions, leading to insufficient training, or there may be interactions with other features. Another230

known fact is that high windspeed decreases particulate matter concentration. This is consistent when231

windspeed is below 0.7 in our observation. However, particulate matter concentration drastically232

increases when windspeed exceeds 0.7, likely due to the wind causing yellow dust.233

Local time-independent feature contribution: To interpret the prediction of a data sample, we234

plot the local time-independent feature contributions,
∑K

k=1 hb (xt,m)wnbm
m,b w

out
k,m, in Figure 4. The235

main x-axis (blue) represents feature contribution, the sub x-axis (red) represents feature value, and236

the y-axis represents time steps. We found that SO2, NO2, CO, and O3 have positive correlations.237

In contrast, temperature, pressure, dew point, and windspeed have negative correlations. These are238

consistent with the global interpretations shown in Figure 3. Rainfall has the same values across all239

time steps.240

Local time-dependent feature contribution: We also visualize the local time-dependent feature con-241

tributions,
∑K

k=1 ak,t,uhb (xt,m)wnbm
m,b w

out
k,m. Figure 5 illustrates the interpretation of the same data242

sample as in Figure 4. The time-dependent interpretation differs slightly from the time-independent243

interpretation. We found that there are time lags in SO2, NO2, CO, and O3, meaning previous feature244

values affect current feature contributions. For example, in the case of SO2, low feature values around245

time step 5 lead to low feature contributions around time step 13.246

6 Future Works & Conclusion247

Although GATSM achieved state-of-the-art performance within the transparent model category,248

it has several limitations. This section discusses these limitations and suggests future work to249

address them. GAMs have relatively slower computational times and larger model sizes compared to250

black-box models because they require the same number of feature functions as input features. To251

address this problem, methods such as the basis strategy can be proposed to reduce the number of252

feature functions, or entirely new methods for transparent models can be developed. The attention253

mechanism in GATSM may be a bottleneck. Fast attention mechanisms proposed in the literature254

[39, 40, 41, 42, 43], or the recently proposed Mamba [44], can help overcome this limitation. Existing255

time series models, including GATSM, only handle discrete time series and have limited length256

generalization ability, resulting in significantly reduced performance when very long sequences,257

unseen during training, are input. Extending GATSM to continuous models using NeuralODE [45]258

or HiPPO [46] could address this issue. GATSM still cannot learn higher-order feature interactions259

internally and shows low performance on complex datasets. Feature interaction methods proposed260

for transparent models may help address this problem [29, 15].261

In this papre, we proposed a novel transparent model for time series named GATSM. GATSM262

consists of time-sharing NBM and the temporal module to effectively learn feature representations263

and temporal patterns while maintaining transparency. The experimental results demonstrated that264

GATSM has superior generalization ability and is the only transparent model with performance265

comparable to Transformer. We provided various visual interpretations of GATSM, demonstrated that266

GATSM capture interesting patterns in time series data. We anticipate that GATSM will be widely267

adopted in various fields and demonstrate strong performance. The broader impacts of GATSM268

across various fields can be found in Appendix A.269
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one good way to accomplish this, but reproducibility can also be provided via detailed511

instructions for how to replicate the results, access to a hosted model (e.g., in the case512

of a large language model), releasing of a model checkpoint, or other means that are513

appropriate to the research performed.514

• While NeurIPS does not require releasing code, the conference does require all submis-515

sions to provide some reasonable avenue for reproducibility, which may depend on the516

nature of the contribution. For example517

(a) If the contribution is primarily a new algorithm, the paper should make it clear how518

to reproduce that algorithm.519

(b) If the contribution is primarily a new model architecture, the paper should describe520

the architecture clearly and fully.521

(c) If the contribution is a new model (e.g., a large language model), then there should522

either be a way to access this model for reproducing the results or a way to reproduce523

the model (e.g., with an open-source dataset or instructions for how to construct524

the dataset).525

(d) We recognize that reproducibility may be tricky in some cases, in which case526

authors are welcome to describe the particular way they provide for reproducibility.527

In the case of closed-source models, it may be that access to the model is limited in528

some way (e.g., to registered users), but it should be possible for other researchers529

to have some path to reproducing or verifying the results.530

5. Open access to data and code531

Question: Does the paper provide open access to the data and code, with sufficient instruc-532

tions to faithfully reproduce the main experimental results, as described in supplemental533

material?534
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Answer: [Yes]535

Justification: We used public datasets and opened our code.536

Guidelines:537

• The answer NA means that paper does not include experiments requiring code.538

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/539

public/guides/CodeSubmissionPolicy) for more details.540

• While we encourage the release of code and data, we understand that this might not be541

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not542

including code, unless this is central to the contribution (e.g., for a new open-source543

benchmark).544

• The instructions should contain the exact command and environment needed to run to545

reproduce the results. See the NeurIPS code and data submission guidelines (https:546

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.547

• The authors should provide instructions on data access and preparation, including how548

to access the raw data, preprocessed data, intermediate data, and generated data, etc.549

• The authors should provide scripts to reproduce all experimental results for the new550

proposed method and baselines. If only a subset of experiments are reproducible, they551

should state which ones are omitted from the script and why.552

• At submission time, to preserve anonymity, the authors should release anonymized553

versions (if applicable).554

• Providing as much information as possible in supplemental material (appended to the555

paper) is recommended, but including URLs to data and code is permitted.556

6. Experimental Setting/Details557

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-558

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the559

results?560

Answer: [Yes]561

Justification: We described the experimental setting in section 5.1.562

Guidelines:563

• The answer NA means that the paper does not include experiments.564

• The experimental setting should be presented in the core of the paper to a level of detail565

that is necessary to appreciate the results and make sense of them.566

• The full details can be provided either with the code, in appendix, or as supplemental567

material.568

7. Experiment Statistical Significance569

Question: Does the paper report error bars suitably and correctly defined or other appropriate570

information about the statistical significance of the experiments?571

Answer: [Yes]572

Justification: We provided standard deviations with experimental results.573

Guidelines:574

• The answer NA means that the paper does not include experiments.575

• The authors should answer "Yes" if the results are accompanied by error bars, confi-576

dence intervals, or statistical significance tests, at least for the experiments that support577

the main claims of the paper.578

• The factors of variability that the error bars are capturing should be clearly stated (for579

example, train/test split, initialization, random drawing of some parameter, or overall580

run with given experimental conditions).581

• The method for calculating the error bars should be explained (closed form formula,582

call to a library function, bootstrap, etc.)583

• The assumptions made should be given (e.g., Normally distributed errors).584

• It should be clear whether the error bar is the standard deviation or the standard error585

of the mean.586
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• It is OK to report 1-sigma error bars, but one should state it. The authors should587

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis588

of Normality of errors is not verified.589

• For asymmetric distributions, the authors should be careful not to show in tables or590

figures symmetric error bars that would yield results that are out of range (e.g. negative591

error rates).592

• If error bars are reported in tables or plots, The authors should explain in the text how593

they were calculated and reference the corresponding figures or tables in the text.594

8. Experiments Compute Resources595

Question: For each experiment, does the paper provide sufficient information on the com-596

puter resources (type of compute workers, memory, time of execution) needed to reproduce597

the experiments?598

Answer: [Yes]599

Justification: We provided information on the computational resource used in the experi-600

ments.601

Guidelines:602

• The answer NA means that the paper does not include experiments.603

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,604

or cloud provider, including relevant memory and storage.605

• The paper should provide the amount of compute required for each of the individual606

experimental runs as well as estimate the total compute.607

• The paper should disclose whether the full research project required more compute608

than the experiments reported in the paper (e.g., preliminary or failed experiments that609

didn’t make it into the paper).610

9. Code Of Ethics611

Question: Does the research conducted in the paper conform, in every respect, with the612

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?613

Answer: [Yes]614

Justification: Our work conform with the NeurIPS Code of Ethics.615

Guidelines:616

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.617

• If the authors answer No, they should explain the special circumstances that require a618

deviation from the Code of Ethics.619

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-620

eration due to laws or regulations in their jurisdiction).621

10. Broader Impacts622

Question: Does the paper discuss both potential positive societal impacts and negative623

societal impacts of the work performed?624

Answer: [Yes]625

Justification: We discussed the potential impacts of GATSM in Appendix A.626

Guidelines:627

• The answer NA means that there is no societal impact of the work performed.628

• If the authors answer NA or No, they should explain why their work has no societal629

impact or why the paper does not address societal impact.630

• Examples of negative societal impacts include potential malicious or unintended uses631

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations632

(e.g., deployment of technologies that could make decisions that unfairly impact specific633

groups), privacy considerations, and security considerations.634
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• The conference expects that many papers will be foundational research and not tied635

to particular applications, let alone deployments. However, if there is a direct path to636

any negative applications, the authors should point it out. For example, it is legitimate637

to point out that an improvement in the quality of generative models could be used to638

generate deepfakes for disinformation. On the other hand, it is not needed to point out639

that a generic algorithm for optimizing neural networks could enable people to train640

models that generate Deepfakes faster.641

• The authors should consider possible harms that could arise when the technology is642

being used as intended and functioning correctly, harms that could arise when the643

technology is being used as intended but gives incorrect results, and harms following644

from (intentional or unintentional) misuse of the technology.645

• If there are negative societal impacts, the authors could also discuss possible mitigation646

strategies (e.g., gated release of models, providing defenses in addition to attacks,647

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from648

feedback over time, improving the efficiency and accessibility of ML).649

11. Safeguards650

Question: Does the paper describe safeguards that have been put in place for responsible651

release of data or models that have a high risk for misuse (e.g., pretrained language models,652

image generators, or scraped datasets)?653

Answer: [NA]654

Justification: Our work poses no such risks.655

Guidelines:656

• The answer NA means that the paper poses no such risks.657

• Released models that have a high risk for misuse or dual-use should be released with658

necessary safeguards to allow for controlled use of the model, for example by requiring659

that users adhere to usage guidelines or restrictions to access the model or implementing660

safety filters.661

• Datasets that have been scraped from the Internet could pose safety risks. The authors662

should describe how they avoided releasing unsafe images.663

• We recognize that providing effective safeguards is challenging, and many papers do664

not require this, but we encourage authors to take this into account and make a best665

faith effort.666

12. Licenses for existing assets667

Question: Are the creators or original owners of assets (e.g., code, data, models), used in668

the paper, properly credited and are the license and terms of use explicitly mentioned and669

properly respected?670

Answer: [Yes]671

Justification: We properly cited the used codes and data.672

Guidelines:673

• The answer NA means that the paper does not use existing assets.674

• The authors should cite the original paper that produced the code package or dataset.675

• The authors should state which version of the asset is used and, if possible, include a676

URL.677

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.678

• For scraped data from a particular source (e.g., website), the copyright and terms of679

service of that source should be provided.680

• If assets are released, the license, copyright information, and terms of use in the681

package should be provided. For popular datasets, paperswithcode.com/datasets682

has curated licenses for some datasets. Their licensing guide can help determine the683

license of a dataset.684

• For existing datasets that are re-packaged, both the original license and the license of685

the derived asset (if it has changed) should be provided.686
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• If this information is not available online, the authors are encouraged to reach out to687

the asset’s creators.688

13. New Assets689

Question: Are new assets introduced in the paper well documented and is the documentation690

provided alongside the assets?691

Answer: [Yes]692

Justification: We opened the source code of GATSM, and the document to run the code is693

provided along with the code.694

Guidelines:695

• The answer NA means that the paper does not release new assets.696

• Researchers should communicate the details of the dataset/code/model as part of their697

submissions via structured templates. This includes details about training, license,698

limitations, etc.699

• The paper should discuss whether and how consent was obtained from people whose700

asset is used.701

• At submission time, remember to anonymize your assets (if applicable). You can either702

create an anonymized URL or include an anonymized zip file.703

14. Crowdsourcing and Research with Human Subjects704

Question: For crowdsourcing experiments and research with human subjects, does the paper705

include the full text of instructions given to participants and screenshots, if applicable, as706

well as details about compensation (if any)?707

Answer: [NA]708

Justification: Our work does not involve crowdsourcing nor research with human subjects.709

Guidelines:710

• The answer NA means that the paper does not involve crowdsourcing nor research with711

human subjects.712

• Including this information in the supplemental material is fine, but if the main contribu-713

tion of the paper involves human subjects, then as much detail as possible should be714

included in the main paper.715

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,716

or other labor should be paid at least the minimum wage in the country of the data717

collector.718

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human719

Subjects720

Question: Does the paper describe potential risks incurred by study participants, whether721

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)722

approvals (or an equivalent approval/review based on the requirements of your country or723

institution) were obtained?724

Answer: [NA]725

Justification: Our work does not involve crowdsourcing nor research with human subjects.726

Guidelines:727

• The answer NA means that the paper does not involve crowdsourcing nor research with728

human subjects.729

• Depending on the country in which research is conducted, IRB approval (or equivalent)730

may be required for any human subjects research. If you obtained IRB approval, you731

should clearly state this in the paper.732

• We recognize that the procedures for this may vary significantly between institutions733

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the734

guidelines for their institution.735

• For initial submissions, do not include any information that would break anonymity (if736

applicable), such as the institution conducting the review.737
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A Broader impact738

We discuss the expected impacts of GATSM across various fields.739

• Time series adaptation: GATSM extends existing GAMs to time series, enabling tasks that740

traditional GAMs could not perform in this context - e.g., better performance on time series and741

finding temporal patterns.742

• Improved decision-making system: GATSM can show users their exact decision-making process,743

providing trust and confidence in its predictions to users. This enables decision-makers to make744

more informed choices, crucial in high-stakes domains such as healthcare.745

• Ethical AI: GATSM can examine that their outcomes are biased or discriminatory by displaying746

the shape of feature functions. This is particularly important in ethically sensitive domains, such as747

recidivism prediction.748

• Scientific discovery: Transparent models have already been used in various research fields for749

scientific discovery [47, 48]. GATSM also can be applied to these domains to obtain novel scientific750

insights.751

Despite these advantages, it is important to remember that the interpretations of transparent models752

do not necessarily reflect exact causal relationships. While transparent models provide clear and753

faithful interpretations, they are still not capable of identifying causal relationships. Causal discovery754

is a complex task that requires further research.755

B Dataset details756

We use eight publicly available datasets for our experiments. Three datasets - Energy, Rainfall, and757

AirQuality - can be downloaded from the Monash repository [32]. Another three datasets - Heartbeat,758

LSST, and NATOPS - are available from the UCR repository [33]. The remaining two datasets can759

be downloaded from the PhysioNet [34]. Details of the datasets are provided below:760

• Energy [49]: This dataset consists of 24 features related to temperature and humidity from sensors761

and weather conditions. These features are measured every 10 minutes. The goal of this dataset is762

to predict total energy usage.763

• Rainfall [50]: This dataset consists of temperatures measured hourly. The goal of this dataset is to764

predict total daily rainfall in Australia.765

• AirQuality [51]: This dataset consists of features related to air pollutants and meteorological data.766

The goal of this dataset is to predict the PM10 level in Beijing.767

• Heartbeat [52]: This dataset consists of heart sounds collected from various locations on the body.768

Each sound was truncated to five seconds, and a spectrogram of each instance was created with a769

window size of 0.061 seconds with a 70% overlap. The goal of this dataset is to classify the sounds770

as either normal or abnormal.771

• Mortality [53] This dataset consists of records of adult patients admitted to the ICU. The input772

features include the patient demographics, vital signs, and lab results. The goal of this dataset is to773

predict the in-hospital death of patients.774

• Sepsis [54]: This dataset consists of records of ICU patients. The input features include patient775

demographics, vital signs, and lab results. The goal of this dataset is to predict sepsis six hours in776

advance at every time step.777

• LSST [55]: This challenge dataset aims to classify astronomical time series. These time series778

consist of six different light curves, simulated based on the data expected from the Large Synoptic779

Survey Telescope (LSST).780

• NATOPS [56]: This dataset aims to classify the Naval Air Training and Operating Procedures781

Standardization (NATOPS) motions used to control aircraft movements. It consists of 24 features782

representing the x, y, and z coordinates for each of the eight sensor locations attached to the body.783

We used get_UCR_data() and get_Monash_regression_data() functions in the tsai library784

[57] to load the UCR and Monash datasets.785
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Table 6: Optimal hyper-parameters for GATSM.
GATSM: [256, 256, 128] hidden dims, 100 basis functions

Dataset Batch Size NBM Batch Norm. NBM Dropout Attn. Embedding Size Attn. Heads Attn. Dropout Learning Rate Weight Decay

Energy 32 False 2.315e-1 110 8 6.924e-2 4.950e-3 1.679e-3
Rainfall 32,768 False 5.936e-3 44 7 1.215e-3 9.225e-3 2.204e-6

AirQuality 4,096 False 2.340e-2 81 8 1.169e-1 6.076e-3 5.047e-6
Heartbeat 64 True 1.749e-1 92 2 1.653e-1 8.061e-3 4.787e-6
Mortality 512 False 7.151e-2 125 8 7.324e-1 7.304e-3 2.181e-4

Sepsis 512 True 6.523e-2 90 6 8.992e-1 4.509e-3 2.259e-2
LSST 1,024 False 2.500e-2 59 7 2.063e-1 5.561e-2 5.957e-3

NATOPS 64 True 4.827e-3 49 8 7.920e-1 8.156e-3 2.748e-2

C Implementation details786

We use 13 models, including GATSM, for our experiments. We implement XGBoost and EBM787

using the xgboost [35] and interpretml [23] libraries, respectively. For NodeGAM, we employ788

the official implementation provided by its authors [8]. The remaining models are developed using789

PyTorch [36]. In addition, we implement the feature functions in NAM and NBM using grouped790

convolutions [58, 59] to enhance their efficiency. XGBoost and EBM are trained on two AMD EPYC791

7513 CPUs, while the other models are trained on an NVIDIA A100 GPU with 80GB VRAM. All792

models undergo hyperparameter tuning via Optuna [37] with the Tree-structured Parzen Estimator793

(TPE) algorithm [60] in 100 trials. The hyperparameter search space and the optimal hyperparameters794

for the models are provided below:795

• XGBoost: We tune the n_estimators in the integer interval [1, 1000], max_depth in the integer796

interval [0, 2000], learning rate in the continuous interval [1e-6, 1], subsample in the continuous797

interval [0, 1], and colsample_bytree in the continuous interval [0, 1].798

• MLP, NAM, NBM and NATM: We tune the batchnorm in the descret set {False, True}, dropout799

in the continuous interval [0, 0.9], learning_rate in the continuous interval [1e-3, 1e-2], and800

weight_decay in the continuous interval [1e-6, 1e-1] on a log scale.801

• RNN, GRU and LSTM: We tune the hidden_size in the integer interval [8, 128], dropout802

in the continuous interval [0, 0.9], learning_rate in the continuous interval [1e-3, 1e-2], and803

weight_decay in the continuous interval [1e-6, 1e-1] on a log scale.804

• Transformer: We tune the n_layers in the integer interval [1, 4], emb_size in the integer805

interval [8, 32], hidden_size in the integer interval [8, 128], n_heads in the integer interval [1,806

8], dropout in the continuous interval [0, 0.9], learning_rate in the continuous interval [1e-3,807

1e-2], and weight_decay in the continuous interval [1e-6, 1e-1] on a log scale.808

• Linear: We tune the learning_rate in the continuous interval [1e-3, 1e-2], and weight_decay809

in the continuous interval [1e-6, 1e-1] on a log scale.810

• EBM: We tune max_bins in the integer interval [8, 512], min_samples_leaf and max_leaves811

in the integer interval [1, 50], inner_bags and outer_bags in the integer interval [1, 128],812

learning_rate in the continuous interval [1e-6, 100] on a log scale, and max_rounds in the813

integer interval [1000, 10000].814

• NodeGAM: We tune n_trees in the integer interval [1, 256], n_layers and depth in the integer815

intervals [1, 4], dropout in the continuous interval [0, 0.9], learning_rate in the continuous816

interval [1e-3, 1e-2], and weight_decay in the continuous interval [1e-6, 1e-1] on a log scale.817

• GATSM: We tune nbm_batchnorm in the descret set {False, True}, nbm_dropout in the con-818

tinuous interval [0, 0.9], attn_emb_size in the integer interval [8, 128], attn_n_heads in the819

integer interval [1, 8], attn_dropout in the continuous interval [0, 0.9], learning_rate in the820

continuous interval [1e-3, 1e-2], and weight_decay in the continuous interval [1e-6, 1e-1] on a821

log scale. The optimal hyper-parameters for GATSM across all experimental datasets are provided822

in Table 6.823

20



D Additional experiments824

D.1 Inference speed825

The inference speed of machine learning models is a crucial metric for real-world systems. We826

evaluate the throughput of various models. The results are presented in Table 7. Since the datasets827

have fewer features than the number of basis functions in NBM, NAM achieves higher throughput828

than NBM. Transparent tabular models typically exhibit fast speeds. However, their throughput829

significantly decreases in datasets with many features, such as Heartbeat, Mortality, and Sepsis,830

because they require the same number of feature functions as the number of input features. Trans-831

former shows higher throughput than the transparent time series models because it does not require832

feature functions, which are the main bottleneck of transparent models. Additionally, the PyTorch833

implementation of Transformer uses the flash attention mechanism [61] to enhance its efficiency.834

NATM has slightly higher throughput than GATSM, as it does not require the attention mechanism835

and has fewer feature functions compared to the number of basis functions in GATSM.836

Table 7: Inference throughput of different models.
Energy Rainfall AirQuality Heartbeat Mortality Sepsis LSST NATOPS

NAM 65.3K 1.8M 5.1M 139.1K 772.2K 23.9K 2.3M 147.9K
NBM 45.5K 1.1M 1.0M 55.9K 375.8K 6.5K 1.6M 85.6K

Transformer 30.9K 240.5K 174.2K 15.7K 161.9K 134.6K 214.4K 68.3K
NATM 5.3K 699.3K 241.3K 1.3K N/A N/A 28.6K 19.2K

GATSM 6.1K 350.6K 192.8K 1.2K 4.9K 3.8K 126.5K 12.5K

D.2 Number of basis functions837

We evaluate GATSM by varying the number of basis functions in the time-sharing NBM. The results838

for forecasting, binary classification, and multi-class classification datasets are presented in Figure 6.839

For the Sepsis dataset, using 200 and 300 basis functions causes the out-of-memory error. For the840

Energy and Heartbeat datasets, performance improves up to 100 basis functions but shows no further841

benefit when the number of bases exceeds 100. In other datasets, performance changes are not842

significant with different numbers of basis functions. In addition, there is a trade-off between the843

number of basis functions and computational speed. Therefore, we recommend generally setting the844

number of basis functions to 100. Note that the performance of GATSM with this hyper-parameter845

depends on the dataset size and complexity. Hence, a larger number of basis functions may benefit846

more complex datasets.847
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Figure 6: Performances of GATSM on the different number of basis functions.

E Additional visualizations848

In addition to the interpretations on the AirQuality dataset in section 5.4, we present another interesting849

interpretations of GATSM on the Rainfall dataset.850

Time-step importance: Figure 7 illustrates the average importance of all time steps at the final time851

step. The importance exhibit a cyclical pattern of rising and falling at regular intervals, indicating852

that GATSM effectively captures seasonal patterns in the Rainfall dataset.853
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Global feature contribution: Figure 8 illustrates the global behavior of features in the Rainfall854

dataset, with red bars indicating the density of training samples. Our findings indicate that low Max855

Temperature and high Min Temperature contribute to an increase in rainfall.856

Local time-independent feature contribution: Figure 9 shows the local time-independent feature857

contributions. Consistent with the global interpretation, Avg. Temperature and Min Temperature have858

positive correlations with rainfall, while Max Temperature has a negative correlation with rainfall.859

Local time-dependent feature contribution: Figure 10 shows the local time-dependent feature860

contributions. All features exhibit patterns similar to the local time-independent contributions.861

However, we found that Avg. Temperature and Min Temperature have time lags between feature862

values and contributions.863
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Figure 7: Average attention scores of time steps on the Rainfall dataset.
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Figure 8: Global interpretations of features in the Rainfall dataset.
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Figure 9: Local time-independent contributions of features in the Rainfall dataset.
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Figure 10: Local time-dependent contributions of features in the Rainfall dataset.
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