Pretraining the Vision Transformer using
self-supervised methods for vision based Deep
Reinforcement Learning

Manuel Goulao Arlindo L. Oliveira

Instituto Superior Técnico / INESC-ID
{manuel.silva.goulao,arlindo.oliveira}@tecnico.ulisboa.pt

Abstract

The Vision Transformer architecture has shown to be competitive in the computer
vision (CV) space where it has dethroned convolution-based networks in several
benchmarks. Nevertheless, Convolutional Neural Networks (CNN) remain the pref-
erential architecture for the representation module in Reinforcement Learning. In
this work, we study pretraining a Vision Transformer using several state-of-the-art
self-supervised methods and assess data-efficiency gains from this training frame-
work. We propose a new self-supervised learning method called TOV-VICReg
that extends VICReg to better capture temporal relations between observations by
adding a temporal order verification task. Furthermore, we evaluate the resultant
encoders with Atari games in a sample-efficiency regime. Our results show that
the vision transformer, when pretrained with TOV-VICReg, outperforms the other
self-supervised methods but still struggles to overcome a CNN. Nevertheless, we
were able to outperform a CNN in two of the ten games where we perform a 100k
steps evaluation. Ultimately, we believe that such approaches in Deep Reinforce-
ment Learning (DRL) might be the key to achieving new levels of performance as
seen in natural language processing and computer vision.

1 Introduction

Despite the successes of deep reinforcement learning agents in the last decade, these still require
a large amount of data or interactions to learn good policies. This data inefficiency makes current
methods difficult to apply to environments where interactions are more expensive or data is scarce,
which is the case in many real-world applications. In environments where the agent doesn’t have
full access to the current state (partially observable environments), this problem becomes even
more prominent, since the agent not only needs to learn the state-to-action mapping but also a state
representation function that tries to be informative about a state given an observation. In contrast,
humans, when learning a new task, already have a well-developed visual system and a good model
of the world which are components that allows us to easily learn new tasks. Previous works have
tried to tackle the sample inefficiency problem by using auxiliary learning tasks (Schwarzer et al.,
2021b; |Stooke et al.| 2021} |Guo et al.| 2020), that try to help the network’s encoder to learn good
representations of the observations given by the environments. These tasks can be supervised or
unsupervised and can happen during a pretraining phase or a reinforcement learning (RL) phase in a
joint-learning or decoupled-learning scheme.
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In recent years, self-supervised learning has shown to be very useful in computer vision, the increasing
interest in this area has resulted in the appearance of new and improved methods that train a network
to learn important features from the data using only the data itself as supervision. A common
approach to evaluating such methods is to train a network composed of the pretrained encoder,
with the parameters frozen, paired with a linear layer in popular datasets, like ImageNet. These
evaluations have shown that these methods can achieve high scores in different benchmarks, which
shows how well the current state-of-the-art methods are able to encode useful information from the
given images without being task-specific. Additionally, it has been shown that pretraining a network
using self-supervised learning (or unsupervised) adds robustness to the network and gives better
generalization capabilities (Erhan et al., 2010).

Also recently, a new architecture for vision-based tasks called the Vision Transformer (ViT) (Dosovit;
skiy et al.,[2020) has shown impressive results in several benchmarks without using any convolutions.
This architecture presents much weaker inductive biases when compared to a CNN, which can result
in lower data efficiency. But the Vision Transformer, unlike the CNNs, can capture relations between
parts of an image (patches) that are far apart from each other, thus deriving global information that
can help the model perform better in certain tasks. Furthermore, when the model is pretrained, using
supervised or self-supervised learning, it manages to surpass the best convolution-based models in
terms of task performance. Nonetheless, and despite these successes in computer vision these results
are yet to be seen in reinforcement learning.

Motivated by the potential of the Vision Transformer, in particular when paired with a pretraining
phase, and the increasing interest in self-supervised tasks for DRL, we study pretraining ViT using
state-of-the-art (SOTA) self-supervised learning methods. Consequently, we propose TOV-VICReg
(Temporal Order Verification-VICReg) which is an extension of VICReg (Variance Invariance
Covariance Regularization) (Bardes et al., [2022) that adds a temporal order verification task (Misra
et al., 2016)) to help the model better capture the temporal relations between consecutive observations.
While we could have adapted any of the other methods, we opted for VICReg due to its computational
performance, simplicity, and good results in early experiments and metrics such as the ones presented
in Section /] After our empirical results in the Atari games, we present a small study of the pretrained
encoders using several metrics to understand if they suffer from any representational collapse and
also analyse the learned representations using similarity matrices and attention maps.

Our main contributions are:

* We propose a new self-supervised learning method which extends VICReg to capture the
temporal relations between consecutive frames through a temporal order verification task, in
Section

* We pretrain a Vision Transformer using several SOTA self-supervised methods and our
proposed method, and study them through metrics (Section[7)), visualizations (Section 8] and
fine-tuning in reinforcement learning ( Section[6)), where we show that temporal relations
learned by the model pretrained with our method contribute to a great increase in data
efficiency.

2 Related Work

Pretraining representations Previous work, similarly to our approach, has explored pretraining
representations using self-supervised methods which led to great data-efficiency improvements in the
fine-tuning phase (Schwarzer et al.,|[2021b; Zhan et al.,[2020) or superior results in evaluation tasks,
like AtariARI (Anand et al.| [2020). Others have pretrained representations using RL algorithms, like
DQN, and transfer those learned representations to a new learning task (Wang et al.| 2022).

Temporal Relations Other works have explored learning representations that have temporal in-
formation encoded. ATC (Augmented Temporal Contrast) (Stooke et al., [2021) trains an encoder
to compute temporally consistent representations using contrastive learning, and the ST-DIM (Spa-
tioTemporal DeepInfoMax) (Anand et al., 2020) captures spatial-temporal information by maximizing
the mutual information between features of two consecutive observations.

Joint learning In recent years, adding an auxiliary loss to the RL loss, usually called joint learning,
has become a common approach by many proposed methods. Curl (Srinivas et al.l [2020) adds a



contrastive loss using a siamese network with a momentum encoder. Another work studies different
joint-learning frameworks using different self-supervised methods (L1 et al.,|2022). SPR (Schwarzer
et al.| |2021a)) uses an auxiliary task that consists of training the encoder followed by an RNN to
predict the encoder representation k steps into the future. PSEs (Agarwal et al.,|2021a)) combines a
policy similarity metric (PSM), that measures the similarity of states in terms of the behaviour of
the policy in those states, and a contrastive task for the embeddings (CME) that helps to learn more
robust representations. PBL (Guo et al., [2020) learns representations through an interdependence
between an encoder, that is trained to be informative about the history that led to that observation,
and an RNN that is trained to predict the representations of future observations. Proto-RL (Yarats
et al.,2021) uses an auxiliary self-supervised objective to learn representations and prototypes (Caron
et al.| |2020), and uses the learned prototypes to compute intrinsic rewards which will push the agent
to explore the environment.

Augmentations While we only use augmentations in the pre-training phase, their use during
reinforcement learning has also been studied. Methods like DrQ (Kostrikov et al.}|2021)) and RAD
(Laskin et al., |2020) pair an RL algorithm, like SAC, with image augmentations to improve data
efficiency and generalization of the algorithms.

Vision Transformer for vision-based Deep RL Recent works, also compare the Vision Trans-
former to convolution-based architectures with a similar number of parameters and show that ViT is
very data inefficient even when paired with an auxiliary task (Tao et al.,[2022).

3 Background

3.1 Vision Transformer

ViT (Dosovitskiy et al.,2020) is a model, for image classification tasks, that doesn’t rely on CNNs
using only attention. The model wraps the encoder of a Transformer, uses patches of the input
image as tokens and adds a classification token which after the computation will serve as the image
representation. When compared to CNNSs, ViT presents weaker image-specific inductive biases which
allow the CNNs for much sample-efficient learning (d’ Ascoli et al.| [2021), although it has been
shown that with enough data the image-specific inductive biases become less important (Dosovitskiy
et al.,[2020).

3.2 Reinforcement Learning

The problem of an agent learning to solve a task in a certain environment can be defined as a Markov
Decision Process (MDP). A MDP M is defined by the tuple (S, .4, R, T), where S is the set of
states, A the set of actions, R the reward function, and 7 the transition function. At each timestep
the agent is in a state s € S and takes an action @ € A. Upon performing the action the agent
receives from the environment a reward r € R and a new state s’ € S which is determined by the
transition function 7 (s’, s, a). The MDP assumes that the Markov property holds in the environment,
i.e. the state transitions are independent and the agent only needs to know the current state to perform
an action P(a;|xo, x1...x¢) = P(a¢|z:).For the agent to decide what action to take it uses a policy
function 7, which gives a distribution over actions given a state, 7(a¢|s;). This policy is evaluated
using the function V™ (s), which estimates the expected total discounted reward of an agent in a state
s and which follows a policy 7.

3.2.1 DQN and Rainbow

DQN (Mnih et al., 2013) is a value-based method and uses a network with parameters ¢ that
given a state s outputs a prediction of the distribution of Q values over actions, Q4(s,a). The
network learns the Q function by minimizing the mean squared error: (y — Qy(s,a))?, where
Yy =71+ ymazyQs(s’,a’). The algorithm has the following structure:

1. Start episode = 1 and repeat

(a) Start t=1 and repeat T time:
i. With probability e: a; = random(), otherwise: a; = argmazx, Q(s,a’)
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i. Execute a; and observe s} and 7y
iii. Store transition {s;, at, r¢, s} } in the replay buffer D
iv. Sample a mini-batch of transitions {s;, a;, r;, s’} from D

V. yj =r1j+ Y mazy Qys(s J, ay)
. d S;,a;)
VL. ¢F¢_0‘Z Q¢ 3 (Qo(sj,a5) — y;)

Several works followed the DQN algorithm which introduced changes to improve performance.
Rainbow (Hessel et al.,|2017)) combines six improvements, Double Q-Learning (van Hasselt et al.,
2016)), Prioritized Replay |[Schaul et al.| (2016)), Dueling Networks (Wang et al.| [2016), Multi-step
Learning (Sutton & Bartol [2018), Distributional RL (Bellemare et al.l [2017), and Noisy Nets
(Fortunato et al.| 2018) resulting in a more stable and sample efficient algorithm.

3.3 Self-Supervised methods

Recent self-supervised methods for vision tasks can be put in two main categories: contrastive and
non-contrastive.

In contrastive learning, methods like MoCo (He et al.,|2020) or SimCLR (Chen et al.| 2020a)) learn
using a loss function that pulls the positive samples together and pushes the negative samples apart.
These methods usually require very large batch sizes or auxiliary structures that allow for more
negative samples. MoCo, in particular, has three iterations v1 (He et al.,[2020)), v2 (Chen et al.| | 2020b)),
and v3(Chen et al., 2021)). In this work, we consider the more recent version (v3). This version uses a
siamese network, where in one path the augmented samples (queries) are computed by an encoder fy
(backbone) and a projector gy, and in the other the samples (keys) by a momentum-encoder fp" and
a projector g4. The loss function is the InfoNCE loss, with temperature, of the dot product of the
queries with the keys.

On the other hand, non-contrastive methods don’t rely on the notion of positive and negative samples
which results in a vast number of different approaches. DINO (Caron et al.,[2021)) consists of a siamese
network where each path is fed with a random augmentation of the input and where the encoders learn
to minimize the cross-entropy between their normalized output probability distributions, computed
using a softmax with temperature scaling. The teacher encoder is updated using an exponential
moving average of the student encoder parameters and in its computation path is used an additional
centring operation that contributes to an asymmetry that helps the method avoid collapse. Unlike,
most methods, DINO creates more than 2 augmentations of the same source. More precisely it creates
a set of views composed of two global views and several local views. All views are computed by the
student network while only the global views are computed by the teacher network, which pushes the
student to create a local-to-global correspondence.

VICReg, on the other hand, tries to learn representations invariant to augmentations by minimizing
the L2 distance while maintaining some variance in the representation features and decorrelating
features. A more detailed explanation of the method will be presented in Section

For this study we selected DINO, MoCo, and VICReg since they are currently considered state-of-
the-art, their official implementations are available in PyTorch, and each represents a different type of
approach.

4 TOV-VICReg

VICReg is a non-contrastive method that trains a network to be invariant to augmentations applied to
the inputs while avoiding a trivial solution with the help of two additional losses, called variance and
covariance, that act as regularizers over the embeddings. While VICReg is agnostic concerning the
architectures used and even the weight sharing, in this work we consider the version where paths are
symmetric, the weights are shared, and each path is composed of an encoder (also called backbone)
and an expander.

VICReg uses three loss functions: invariance is the mean of square distance between each pair of
embeddings from the same original image, as shown in Equation where Z, and Z' are two sets of
embeddings, of size IV, that result from computing two different augmentations of N sources, and
z; denotes the j-th embedding in the set; variance is a hinge loss that computes, over the batch, the



standard deviation of the variables in the embedding vector and pushes that value to be above a certain
threshold, as shown in Equation [2] where d denotes the number of dimensions of the embedding
vector, and Z7 is the set of the j-th variables in the set of embedding Z; covariance is a function
that computes the sum of the squared off-diagonal coefficients of a covariance matrix computed
over a batch of embeddings, as shown in Equation [3] While the invariance loss function tries to
make the model invariant to augmentations, i.e. output the same representation vector, the other two
functions regularize the method by pushing the variables of the embedding vector to vary above a
certain threshold and decorrelating the variables in each embedding vector.
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TOV-VICReg or Temporal-Order- Verification-VICREG extends VICReg to better capture the tem-
poral relations between consecutive observations and consequently encode extra information that
can be useful in the deep reinforcement learning phase. To achieve that we add a new temporal
order verification task, as seen in Shuffle-and-Learn (Misra et al.| 2016)), that consists of a binary
classification task where a linear layer learns to predict if three given representation vectors are in the
correct order or not. Like the other losses, we also employ a coefficient for the temporal loss and in
most of our experiments, the value is 0.1. Figure [T] visually illustrates TOV-VICReg.

Temporal loss
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Figure 1: TOV-VICReg architecture

At each step we sample 3 consecutive observations, {x;_1, Z+, Zt11}, the a4 is processed by two
different augmentations, and like VICReg these are the augmentations used in BYOL (Grill et al.|
2020), while z;_; and x4 are processed by two simple augmentations composed of a color jitter
and a random grayscale. The x; augmentations are computed by the VICReg computation path and
the resultant embeddings are used for the loss functions, i.e. variance, invariance, and covariance. In
the temporal order verification task we encode the augmentation of x;_; and x4, and concatenate
those two representations with one of the representations of x;, in our case we used the one that was
augmented without solarize, obtaining the vector {y;_1, ¥, Yr+1}- At last, we randomly permute the
order of the representations in the vector and feed the resultant concatenated vector to a linear layer
with a single output node that predicts if the given concatenated vector has the representations in the
right order or not.



5 Pre-Training Methodology

We pretrained four encoders, one using our proposed method TOV-VICReg and three using state-of-
the-art self-supervised methods: MoCov3 (Chen et al.} 2021), DINO (Caron et al.,2021) and VICReg
(Bardes et al., |2022). For this study, the encoder used is a Vision Transformer, more precisely the
ViT tiny with a patch size of 8. We chose this patch size based on experiments that show that this
value performed well in terms of data-efficiency when compared to 6, 10, and 12 without being too
computationally intensive (Appendix [B). The dataset used is a set of observations from 10 of the 26
games in the Atari 100k benchmark, all available in the DQN Replay Dataset (Agarwal et al.| 2020)).
For each game, we use three checkpoints with a size of 100 thousand data points (observations), which
makes up a total of 3 million data points (~55 hours). The pretraining phase is 10 epochs with two
warmup epochs. We used the official code bases of all the self-supervised methods and tried to change
the least amount of hyperparameters. Appendix [G]contains the tables with the hyperparameters used
for each method.

6 Data-Efficiency

To test the pretrained Vision Transformers in reinforcement learning and compare data-efficiency
gains, we trained in the 10 games used for pre-training for 100k steps using the Rainbow algorithm
(Hessel et al.l 2017)), with the DER (van Hasselt et al.,|2019) hyperparameters. The only difference
between the agents at the start is the representation module. We chose two networks to compare
against, the Nature CNN (Mnih et al.| 2015)), and the SGI ResNet Large which is a larger version
of the ResNet used in the SGI method (Schwarzer et al., [2021b) that has a size roughly similar to
the ViT tiny. Moreover, we use a learning rate two orders of magnitude smaller for the encoder
(1 x 10~9), which previous works and experiments performed by us show to be beneficial (Schwarzer
et al.,[2021b).

In this section, to report our results we follow the rliable (Agarwal et al., 202 1b) evaluation framework,
where the scores of all games are normalized and treated as one single task.

6.1 Results

Figure[2]shows the aggregate metrics on 10 Atari games with training runs of 100k steps. Starting with
the non-pretrained models (ViT, Nature CNN, and SGI-ResNet Large) we can assess that, observing
the mean, Nature CNN is the most sample efficient model followed by SGI-ResNet Large, and ViT,
respectively. Regarding the pretrained models, ViT, when pretrained with our method, performs better
than the other models and the non-pretrained ViT in all metrics. It is worth noting that we report a
higher variance in the results of our proposed method when compared to the remaining methods and
non-pretrained models. ViT+TOV-VICReg when compared to Nature CNN, which has far fewer
parameters, and SGI ResNet Large, with a similar number of parameters seems to closely match their
sample-efficiency performance (Appendix Table[7). Furthermore, the difference between the non-
pretrained ViT and ViT pretrained with TOV-VICReg shows that a good self-supervised method that
explores temporal relations and 3 million data points can help close the sample-efficiency gap while
remaining a more complex and capable model. Regarding the remaining self-supervised methods,
MoCo seems to perform considerably well obtaining even a median very similar to TOV-VICReg
and is then followed by DINO and VICReg, respectively. All pretrained ViTs show an improvement
in comparison to the non-pretrained ViT.

7 Metrics

A significant phenomenon when doing self-supervised training is the collapse of the representations,
which can be seen in three forms: representational collapse, dimensional collapse, and informational
collapse. Representational collapse refers to the features of the representation vector collapsing
to a single value for every input, meaning the variance of the features is zero, or close to zero. In
dimensional collapse, the representations don’t use the full representation space, which can be mea-
sured by calculating the singular values of the covariance matrix calculated over the representations.
Informational collapse defines the case where the features of the representation vector are correlated
and therefore are representing the same information.
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Figure 2: The eval runs across the different games are normalized and treated as a single task. The
IQM corresponds to the Inter-Quartile Mean among all the runs, where the top and bottom 25% are
discarded and the mean is calculated over the remaining 50%. The Optimality Gap refers to the
number of runs that fail to surpass the human average score, i.e. 1.0.

Dimensional Collapse All methods seem to avoid dimensional collapse, i.e. most dimensions have
a singular value larger than zero, as observed in Figure 8] However, we notice that some methods
make better use of the space available since they present higher singular values. TOV-VICReg, in
particular, seems to excel in this metric, even improving the results obtained by VICReg. It is worth
noting that both VICReg and TOV-VICReg employ a covariance loss that helps decorrelate the
embedding variables which may be contributing positively to these results. Furthermore, we used
a covariance coefficient of 10 for TOV-VICReg and 1 for VICReg a change that according to our
experiments culminates in the increase here observed.
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Figure 3: Logarithm of the singular values of the representation vector’s covariance matrix sorted by
value.

Representational Collapse Results in Table [I] show the computed standard deviation of the
representation vector over a batch of thousands of data points. DINO, VICReg and TOV-VICReg
show a value well above zero, meaning that none of the methods suffered from representation collapse
during training. On the other hand, MoCo shows a much smaller value of 0.178, which, is far from a
complete collapse. Both VICReg and TOV-VICReg use a hinge loss that pushes the representation
vector to have a standard deviation of 1 or above, while VICReg slowly converges to this value our
method converges to roughly 1.65, which might be the result of adding a temporal order verification
task.

DINO MoCo VICReg TOV-VICReg

0979 0.178  1.003 1.648
Table 1: Average standard deviation of the representation vector

Informational Collapse We report in Table[2] the comparison of the average correlation coefficients
of the representation vectors. TOV-VICReg performs better than the other methods, including
VICReg, which present very similar coefficients. Like in the dimensional collapse, this result is in
part due to the higher covariance coefficient used in TOV-VICReg which by design helps the model



to decorrelate the representation’s features. Increasing the coefficient in VICReg results in a lower
correlation coefficient as well, but is still higher than TOV-VICReg.

DINO MoCo VICReg TOV-VICReg

0.1764 0.1538 0.1531  0.0780
Table 2: Average correlation coefficient

8 Representations

In this section, we present different visualizations to better understand the representations learned by
each of the methods. Our goal with the following visualizations is to help us better understand the
learned representations and give some intuitions about their properties.

Cosine similarity Figure [ presents a similarity matrix of the representations where we can
observe that TOV-VICReg can better distinguish between observations of different games but also
observations from the same game, Figure El MoCo, on the other hand, seems to make a good
distinction between observations from the same game. However, we can observe in the colour bar
that all the representations are very similar to each other, which corroborates the results obtained in
Section[7] Oppositely, VICReg and DINO manage to spread representations more, as we can see
in the colour bars, but, the yellow squares in the diagonal show that the representations from the
same game are more similar to each other which is corroborated by Figure 5] Given the empirical
results, we believe that this capacity to distinguish observations from the same game might be a good
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Figure 4: Similarity matrices of the representations computed by MoCo, DINO, VICReg, and TOV-
VICReg respectively. There are a total of 64 data points, from 4 different games: Alien, Breakout,
MsPacman, and Pong, where from 0-15 are from Alien, 16-31 are from Breakout and so forth.
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Figure 5: Similarity matrices of the representations computed by MoCo, DINO, VICReg, and TOV-
VICReg respectively, of observations from MsPacman.

Attention visualisation The research work that proposes DINO shows that the Vision Transformer
is able to attend to important parts of the input after training using DINO. Inspired by these results,
we try to make the same evaluation for the several self-supervised methods we are studying, including
TOV-VICReg, and try to understand if any of the encoders can attend to interesting parts of the input.
In Figure[6] we can see the results of all methods for an observation from the game of Pong, where
each method produces three attention maps, one for each self-attention head of the last block of the



Vision Transformer. All pretrained ViT seem to attend at some level to important game features like
the ball and the paddles. However, TOV-VICReg is the only method that doesn’t spread the attention
to other parts of the frame that we don’t consider important to describe the current state of the
game. When comparing to VICReg’s attention maps we believe that the temporal order verification
task greatly helped the attention of the model. In more visually complex games, e.g. Freeway or
MsPacman, these attention maps start to be more difficult to analyse but it is still possible to discern
some important features.

Observation
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head 0
head 0
head 0
head 0

head 2
head 2
head 2
head 2

head 1
[ SN |
head 1
LI
head 1
N
head 1
| AN

Figure 6: Attention maps produced by the pretrained ViTs. We fed a pretrained ViT with an
observation from the game Pong and obtained the attention maps from the three heads in the last
block.

9 Discussion & Conclusion

In this work, we presented a study of ViT for vision-based deep reinforcement learning using
self-supervised pretraining, and proposed a self-supervised method that extends VICReg to better
capture temporal relations between consecutive observations. Our results showed that the agent
using a Vision Transformer that was pretrained with our method manages to surpass all other Vision
Transformers, pretrained and non-pretrained, in sample efficiency and also achieves results very close
to convolution-based models with far fewer parameters. These results reinforce the importance of
encoding temporal relations between observations in the representation model, as shown by previous
works, and also show that even vision models with weaker inductive biases and more parameters,
when well pretrained, can achieve similar results in sample efficiency.

The ability to use larger models, with millions of parameters, that are as sample efficient as some of the
most popular CNN-based models (like Nature CNN or Impala ResNet), with thousands of parameters,
is very important since it opens the door to using Deep RL in even more complex problems where
smaller models tend to struggle to perform, without losing sample-efficiency. Moreover, recent work
in natural language processing (Devlin et al.,[2019; |Brown et al., 2020), and computer vision (Radford
et al., [2021), shows great benefits from pre-training large models, and similar approaches in RL have
the potential to unlock new levels of performance never achieved before (Baker et al., 2022).
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