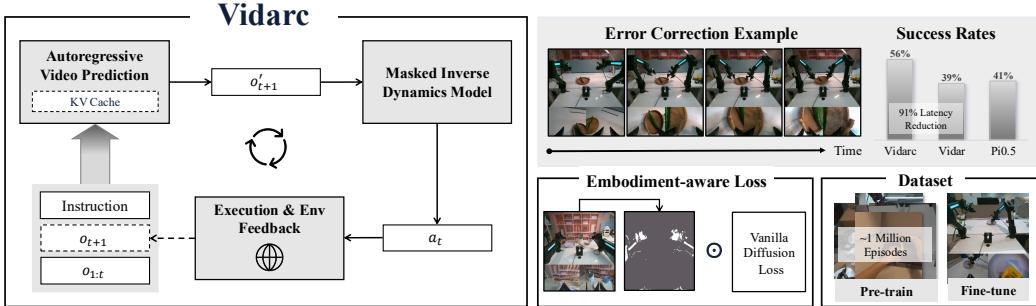

VIDARC: EMBODIED VIDEO DIFFUSION MODEL FOR CLOSED-LOOP CONTROL

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

011 Robotic arm manipulation in data-scarce settings is a highly challenging task due
012 to the complex embodiment dynamics and diverse contexts. Recent video-based
013 approaches have shown great promise in capturing and transferring the temporal
014 and physical interactions by pre-training on Internet-scale video data. However,
015 such methods are often not optimized for the embodiment-specific closed-loop
016 control, typically suffering from high latency and insufficient grounding. In this
017 paper, we present Vidarc (Video Diffusion for Action Reasoning and Closed-loop
018 Control), a novel autoregressive embodied video diffusion approach augmented by
019 a masked inverse dynamics model. By grounding video predictions with action-
020 relevant masks and incorporating real-time feedback through cached autoregres-
021 sive generation, Vidarc achieves fast, accurate closed-loop control. Pre-trained on
022 one million cross-embodiment episodes, **Vidarc surpasses state-of-the-art base-**
023 **lines, achieving at least a 15% higher success rate in real-world deployment and a 91% reduction in latency.** We also highlight its robust generalization and error
024 correction capabilities across previously unseen robotic platforms.



038 **Figure 1: Left:** Vidarc consists of an embodied autoregressive video diffusion model and a masked
039 **inference pipeline** re-prefills environment feedback into the autoregressive video generation. **Right:** After being pre-trained on approx-
040 imately one million bimanual demonstration episodes, Vidarc is fine-tuned on an unseen platform
041 using calibration with embodiment-specific masks; it achieves state-of-the-art performance and ex-
042 hibits robust error correction capabilities.

1 INTRODUCTION

048 Robotic arm manipulation is a fundamental yet highly complex task, requiring precise coordination
049 across multiple degrees of freedom to execute intricate movements in dynamic environments. In
050 many real-world applications, such as autonomous assembly lines, medical surgery, or hazardous
051 material handling, collecting large, high-quality datasets is prohibitively expensive or impractical,
052 especially when adapting robotic control to new platforms, tasks, or environments. As a result,
053 achieving robust and generalizable manipulation skills from limited data is a crucial goal, enabling
widespread and scalable deployment of robotic systems (Kroemer et al., 2021; Yang et al., 2025).

054 Inspired by the success of large language models, one effective approach in data-scarce settings is to
055 leverage a pre-trained foundation model plus a fine-tuning step for knowledge transfer. Representative
056 progress includes meta-learning (Finn et al., 2017), vision-language-action models which typ-
057 ically add action heads to pre-trained vision-language models (Kim et al., 2024; Intelligence et al.,
058 2025; Liu et al., 2024a; Song et al., 2025), as well as video generation models with lightweight
059 embodied-specific controllers or inverse dynamics models (Feng et al., 2025; Liao et al., 2025).
060 Among these approaches, video generation models have shown great promise by fully exploring
061 the Internet-scale video data, while the others often have to collect a large set of human demon-
062 stration data. Videos, unlike static images or discrete trajectory representations, capture the full
063 temporal dynamics and interaction cues essential for manipulation tasks. Trained on massive video
064 datasets (Wang et al., 2025; Liu et al., 2024b; Kong et al., 2024), video generation models create
065 transferable priors that enforce physical consistency, support counterfactual reasoning, and can be
066 efficiently fine-tuned with very few demonstrations (Feng et al., 2025).
067

068 This progress notwithstanding, little progress has been made so far on the real-time, embodiment-
069 specific requirements of robotic control. Closed-loop control is highly desired and especially im-
070 portant in robotics (Ye et al., 2025; Xue et al., 2025; Sun et al., 2024; Black et al., 2025) because it
071 enables the system to constantly refine its actions based on new sensory feedback, greatly increasing
072 robustness to unexpected environmental changes, errors, or perturbations. Achieving this with video
073 foundation models poses unique challenges: it requires low-latency generation, seamless integration
074 of real-time feedback, and quick adaptation to embodiment-specific cues within the video stream.
075 Previous approaches often focused on open-loop prediction or required slow, sequential inference,
076 making them impractical for real-world, interactive robot tasks (Du et al., 2023). Moreover, pure
077 video generative models typically lack grounding in embodiment-relevant dynamics and visual fea-
078 tures; subtle visual or physical deviations—such as minor changes in the robot arm’s appearance or
079 pose—can cause dramatic task failures if not properly accounted for (Zhao et al., 2022).
080

081 To address these limitations, we propose **Vidarc** (Video Diffusion for Action Reasoning and Closed-
082 loop Control), which consists of an autoregressive embodied video diffusion model and a masked
083 inverse dynamics model. By incorporating environmental feedback in the autoregressive generation
084 process with key-value (KV) caching, Vidarc enables robust closed-loop control with low latency
085 during inference. To further ground the video diffusion model in the specific dynamics of a robot,
086 we use learned action-relevant masks from the masked inverse dynamics model to construct an
087 embodiment-aware diffusion loss, ensuring the generated videos are actionable. We illustrate our
088 method in Figure 1.
089

090 With large-scale cross-embodiment pre-training on approximately one million episodes, Vidarc
091 adapts to an unseen real-world platform with superior success rates than strong baselines: 17%
092 higher than Vidar (Feng et al., 2025) and 15% higher than Pi0.5 (Intelligence et al., 2025). Fur-
093 thermore, Vidarc only incurs 8.8% of Vidar’s latency, with remarkable generalization and error
094 correction capabilities.
095

096 2 PREREQUISITE

097 We start by briefly summarizing the preliminary knowledge.
098

099 2.1 DIFFUSION MODEL

100 Diffusion model designs a noise injection and denoise process to generate high-quality images or
101 videos. Modern video diffusion models (Wang et al., 2025; Xie et al., 2025) adopt the flow matching
102 framework (Lipman et al., 2023; Liu et al., 2023), which enables stable training with the ordinary
103 differential equation (ODE) formulation. Given a video x_1 , a random Gaussian noise x_0 with the
104 same size, and a timestep $t \in [0, 1]$, we define the noised video x_t as $tx_1 + (1 - t)x_0$. Let \mathcal{V}
105 be the video space, and \mathcal{C} be the condition space. The diffusion model learns a flow function $v_\theta : \mathcal{V} \times \mathbb{R} \times \mathcal{C} \rightarrow \mathcal{V}$, which parameterizes the vector field that transforms x_1 to x_0 given the intermediate
106 x_t and t and condition c . The training objective is:
107

$$\mathcal{L}_{\text{diffusion}} = \mathbb{E}_{x_0, x_1, t, c} [\|v_\theta(x_t, t, c) - (x_0 - x_1)\|_2^2]. \quad (1)$$

108 During inference, we can sample from the learned distribution by solving the following ODE from
109 $t = 0$ to $t = 1$ by using efficient training-free solvers Lu et al. (2022); Song et al. (2021):
110

$$\frac{dx_t}{dt} = v_\theta(x_t, t, c), t \in [0, 1]. \quad (2)$$

113 Thanks to their strong ability to model complex spatial-temporal dynamics, video diffusion models
114 can serve not only as generative models but also as world models that simulate the evolution of
115 visual environments. Recent works have demonstrated their potential for interactive prediction and
116 control, such as physical simulation (Ball et al., 2025; He et al., 2025a) and robotic manipulation
117 planning (Feng et al., 2025; Du et al., 2023). As both model capacity and training data scale up,
118 video diffusion models exhibit emerging properties including zero-shot generalization and chain-of-
119 frames reasoning (Wiedemer et al., 2025), suggesting promising applicability to complex real-world
120 manipulation and reasoning tasks.
121

2.2 VIDEO-BASED ACTION PREDICTION

123 In video-based approaches, video diffusion models form the backbone, with actions derived either
124 from an action head, which takes latent vectors as input (Hu et al., 2024), or from an Inverse Dynam-
125 ics Model (IDM) (Tan et al., 2025), typically predicting actions \hat{a} from images x . However, only the
126 robotic arm’s key regions are necessary for action prediction in these images, while other areas may
127 introduce noise that interferes with model performance. To address this, Vidar (Feng et al., 2025)
128 introduces a masked inverse dynamics model (MIDM) approach, which employs a mask predictor U
129 to predict a mask $m \in [0, 1]$ that highlights action-relevant pixels, together with an action regressor
130 R for action regression:

$$m = U(x), \quad \hat{a} = R(\text{Round}(m) \odot x), \quad (3)$$

131 where “Round” is the rounding function. This masking mechanism preserves critical motion-related
132 regions and suppresses irrelevant visual information, thereby enhancing the accuracy and robustness
133 of action prediction in the IDM. Since the mask is closely tied to the robot’s dynamics, it offers a
134 more effective prior than general segmentation models. In the training process, Vidar regularizes the
135 area of m with a weight of λ :
136

$$\mathcal{L}_{\text{action}} = \mathbb{E}_{x,a} [l(\hat{a} - a) + \lambda \|m\|_1], \quad (4)$$

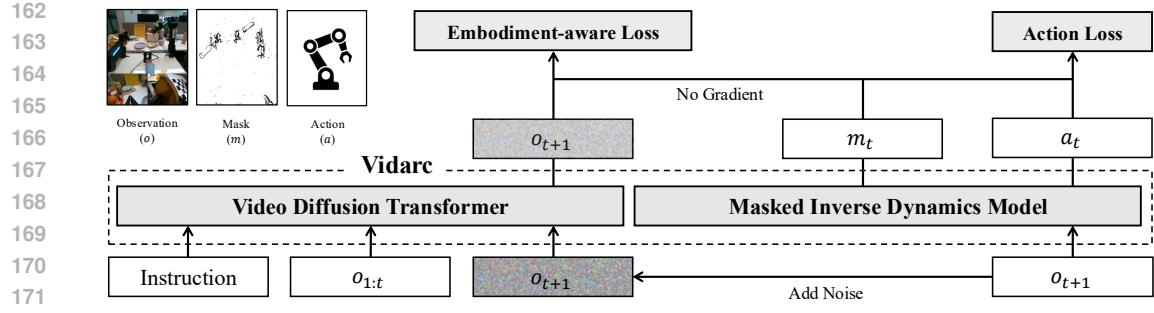
137 where $l(\cdot)$ is the Huber loss. Generally, the IDM handles robot-specific action spaces and control
138 signals, while video diffusion models focus on unified video generation tasks, where abundant prior
139 knowledge is transferred from pre-training.
140

3 METHOD

141 Although recent video world models have shown remarkable generalization across visual domains,
142 their architectures are inherently not optimized for embodied control. Most of these methods rely
143 on bidirectional diffusion mechanisms, which lack causality and suffer from high per-frame lat-
144 tency (Wang et al., 2024), global dependencies, and cumulative prediction errors in long-horizon
145 sequences (Deng et al., 2025; Gao et al., 2025a; Huang et al., 2024; Yin et al., 2025). Moreover, the
146 conventional diffusion training paradigm treats all visual features equally, ignoring the asymmetric,
147 motion-dependent structure of physical interaction—a property essential for stable and efficient
148 action generation.
149

150 In contrast, a robot-native policy must process environmental feedback in a causal and low-latency
151 manner, enabling rapid perception-action cycles and continuous adaptation to dynamic surround-
152 ings. It should exhibit strong inductive biases for motion and kinematics, ensuring physically con-
153 sistent trajectories, while maintaining computational efficiency to support real-time inference and
154 robust generalization across diverse scenarios.
155

156 To meet these requirements, Vidarc builds upon causal autoregressive frame prediction with re-
157 prefilling to enable closed-loop interaction with minimal latency. By re-prefilling observations from
158 the environment, we can bridge the inherent training-inference gap in autoregressive models, pre-
159 venting error accumulation and accounting for environmental changes. Further enhanced with an
160 embodiment-aware loss, our model explicitly emphasizes motion dynamics during training, leading
161 to more stable, efficient, and adaptive embodied behavior.
162



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
Figure 2: Vidarc comprises a video diffusion transformer and a masked inverse dynamics model. The video diffusion transformer is trained via teacher-forcing to predict the next observation based on previous observations and language instructions, while the masked inverse dynamics model is trained to infer actions from observations using a learnable masking mechanism that focuses attention on action-relevant regions. The learned mask is also used to reweight the diffusion loss, enhancing the video model’s focus on regions important for action prediction.

3.1 MODEL DESIGN

Figure 3 presents an overview of our method. Specifically, let \mathcal{L} be the language instruction space, \mathcal{O} be the chunked visual observation space (a sequence of images with a chunk size ≥ 1), and \mathcal{A} be the chunked action space (a sequence of actions with a chunk size ≥ 1). We target to learn a conditional robot manipulation policy $\pi : \mathcal{L} \times \mathcal{O} \rightarrow \mathbb{P}(\mathcal{A})$. Similar to previous video-based methods (Du et al., 2023), we decompose it into two models: $\pi = G \circ I$, where $G : \mathcal{L} \times \mathcal{O} \rightarrow \mathbb{P}(\mathcal{O})$ is a video generation model and $I : \mathcal{O} \rightarrow \mathcal{A}$ is an inverse dynamics model. The inverse dynamics model is typically modeled as a mapping from image to action; with a slight abuse of notation, we also use the term “inverse dynamics model” to refer to the batch application of image chunks as input.

To adopt closed-loop control, we propose to take the feedback from the environment into the pipeline. Assuming the transition function is $\mathcal{T} : \mathcal{O} \times \mathcal{A} \rightarrow \mathcal{O}$ and the observation aggregation function is $\mathcal{C} : \bigsqcup_{n=1}^{\infty} \mathcal{O}^n \rightarrow \mathcal{O}$, we can unroll the policy for timestep t as follows:

$$\begin{cases} \hat{o}_{t+1} \sim G(l, \mathcal{C}(o_1, \dots, o_t)) & \text{\# Autoregressive Generation} \\ a_t = I(\hat{o}_{t+1}) & \text{\# Inverse Dynamics Decoding} \\ o_{t+1} = \mathcal{T}(o_t, a_t) & \text{\# Execution and Collection,} \end{cases} \quad (5)$$

where o_1 is the initial observation. Specifically, we first generate the next observation \hat{o}_t based on the instruction l and the aggregation of previous observations. Then we decode the action a_t from the generated observation \hat{o}_t . Finally, we execute the action a_t in the environment and collect the new observation o_{t+1} .

3.2 TRAINING

We outline the training of the video diffusion transformer.

Causal Training To enable causal generation, we utilize the CausVid (Yin et al., 2025) method, transfer the text-image to video model to a frame-by-frame generation model. During the generation of each frame, all previous frames of this frame (x_{prev}) are noise-free (i.e., already denoised) and can be attended to in the attention operation. The causal training objective is:

$$\mathcal{L}_{causal} = \mathbb{E}_{x_0, x_1, t, c} [\|v_{\theta}(x_t, t, c, x_{prev}) - (x_0 - x_1)\|_2^2]. \quad (6)$$

Embodiment-aware Loss As shown in Figure 3.2, Video diffusion models suffer from inaccurate modeling of robot-relevant features, which are crucial for precise control. To address this issue, we propose an embodiment-aware loss that enhances the video diffusion model’s focus on action-relevant regions. In this way, the model is adapted to the specific embodiment, enabling the generation of more actionable videos.

216 **Algorithm 1** Inference Algorithm of Vidarc

217 1: **Input:** Environment E , Instruction l , Autoregressive model G , Inverse Dynamics Model I

218 2: **Hyperparameters:** Chunk size n_c , Maximum KV length n_k

219 3: **while** task not complete **and** not timeout **do**

220 4: $o_1 \leftarrow E.get_obs()$

221 5: $C = \{c_1\} \leftarrow G.prefill(o_1)$ # Initialize the KV cache with the first observation

222 6: **for** $i = 1$ **to** n_k **step** n_c **do**

223 7: $gen_obs \leftarrow []$

224 8: **for** $j = i + 1$ **to** $i + n_c$ **do**

225 9: $o'_j, c'_j \leftarrow G.generate(l, C)$ # Generate with KV cache

226 10: $gen_obs.append(o'_j); C.append(c'_j)$

227 11: **end for**

228 12: $a \leftarrow I(gen_obs)$

229 13: $E.execute(a)$

230 14: $C.pop_back(n_c)$ # Remove the last chunk of the KV cache

231 15: $gt_obs = \{o_{i+1}, \dots, o_{i+n_c}\} \leftarrow E.get_obs()$ # Get ground truth observations

232 16: $C \leftarrow G.chunk_prefill(C, gt_obs)$ # Re-prefill with ground truth observations

233 17: **end for**

234 18: $C.clean()$ # Reset the KV cache

235 19: **end while**

236 Inspired by the masked inverse dynamic model, the mask m highlights regions relevant to the robot's
 237 actions, such as the robot arm. We use the learned mask to reweight the diffusion loss, encouraging
 238 the video model to pay more attention to these critical areas. The final training objective is

239
$$\mathcal{L}_{\text{embodiment-aware}} = \mathbb{E}_{x_0, x_1, t, c} [\|(1 + \eta \cdot U(x_1)) \odot (v_\theta(x_t, t, c, x_{\text{prev}}) - (x_0 - x_1))\|_2^2], \quad (7)$$

240

241 where η is a hyperparameter controlling the strength of the reweighting.

242

243 In this way, the video diffusion model is guided to focus on action-relevant regions, also matching
 244 the masked prediction of the inverse dynamics model (details in Section 2.2), leading to improved
 245 performance in precise control tasks.

246
 247
 248
 249
 250
 251
 252
 253
 254
 255 **Figure 3:** Video predictions often get artifacts around the robot arm, which affects the task success.

256
 257
 258
 259 **3.3 INFERENCE**

260 The general inference pipeline is described by equation 5, with our detailed implementation pro-
 261 vided in Algorithm 1. In particular, we generate the next observation based on previous real-world
 262 observations, rather than generated ones, enabling closed-loop control. This paradigm aligns with
 263 teacher forcing training, incorporating inference to prevent error accumulation.

264 To accelerate the generation process, we employ KV caching and cache instruction embeddings,
 265 thereby avoiding redundant recomputation across decoding steps. To further reduce inference lat-
 266 ency, we introduce a re-prefill mechanism that optimizes the prefill phase: rather than recomputing
 267 KV caches for the entire sequence of prior observations, we only pop the latest generated KV cache,
 268 and then perform chunk prefill with the latest observations. In this way, the step sequence length for
 269 prefilling is significantly reduced, saving the computation cost and reducing the latency.

270 4 EXPERIMENTS
271

272 We now present experimental results with the goal to verify the following claims:
273

274 **C1:** Vidarc achieves superior success rates on both simulated and real domains;
275

276 **C2:** Vidarc generalizes effectively to unseen tasks and environments;
277

278 **C3:** Vidarc achieves low-latency closed-loop control with error correction abilities;
279

280 **C4:** The embodiment-aware diffusion loss enhances Vidarc’s ability.
281

282 4.1 EXPERIMENTAL SETUP
283

284 **Hardware.** We choose the widely used Aloha robot (Fu et al., 2024; Liu et al., 2024a) as our
285 target platform, with three cameras providing multi-view observations. The action for the robot is
286 the target absolute joint position, and does not depend on history. Detailed hardware configurations
287 are in Appendix D.
288

289 **Datasets.** For pretraining, we use a curated dataset of one million video clips, sampled from four
290 diverse sources: Egodex (Hoque et al., 2025), Agibot (AgiBot-World-Contributors et al., 2025),
291 RDT (Liu et al., 2024a), and RoboMind (Wu et al., 2024). This large-scale, multi-domain pre-
292 training enables the model to learn rich visual and temporal representations of robotic and human
293 interactions. For finetuning data, finetuning is performed in two domain-specific datasets, including
294 simulation and real-world:
295

- 296 • RoboTwin: We collect 20 episodes for each task on the agilex Aloha platform, resulting in a total
297 of 1,000 episodes.
- 298 • Vidarc: We collected 2,307 episodes of high-quality, real-world robot operation data on our Aloha
299 robot platform.

300 More details of the datasets are shown in Appendix A.
301

302 **Baselines.** To ensure fair and meaningful comparisons, we implement two competitive baselines:
303

- 304 • Vidar (Feng et al., 2025): We replicate the Vidar approach using Wan2.2 (Wang et al., 2025)
305 backbone. This baseline undergoes 10k steps of continued pretraining on our pretraining dataset,
306 followed by 14k steps of fine-tuning on each downstream task (RoboTwin and Vidarc), matching
307 our model’s fine-tuning budget and origin paper settings.
- 308 • Pi0.5 (Intelligence et al., 2025): A strong VLA baseline. Due to architectural and optimization
309 differences, Pi0.5 requires more steps to converge on the relatively scarce data for each task and
310 on extensive tasks. To ensure a fair comparison under the multi-task setting, we fine-tune it over
311 the whole dataset instead.

312 Our model is built upon the Vidar model that was fine-tuned on the downstream task as a weight
313 warm-up initial, augmented with a teacher-forcing mechanism during training, as detailed in Sec-
314 tion 2.1. We fine-tune the model with 4k steps separately on each of the two downstream datasets
315 to adjust the model to capture the ability of causal generation. More training details are listed in
316 Appendix B. All models are evaluated on both the RoboTwin benchmark and our real-world deploy-
317 ment.
318

319 4.2 MAIN EXPERIMENTS
320

321 4.2.1 SIMULATION
322

323 Average success rates across 14 tasks and success rates for selected tasks are shown in Table 1,
324 where Vidarc achieves high success rates (**C1**). Vidarc is capable of performing complex tasks with
325 remarkable precision, such as grasping a roller using both arms and opening the articulated laptop.
326 Especially for tasks requiring precise bimanual collaborations, such as handing over the microphone,
327 Vidarc achieves higher success rates than Vidar, demonstrating the benefits of closed-loop control.
328 Detailed success rates are provided in Table 6, Appendix C.
329

324
 325 Table 1: Success rates of different methods and configurations over 14 tasks on the RoboTwin
 326 benchmark, tested over 20 episodes. “Average*” means the average of all 14 tasks.

Method	Average*	Handover Mic	Open Laptop	Place Can Basket	Place Cans Plasticbox
Pi0.5	52.9%	20.0%	30.0%	35.0%	15.0%
Vidar	71.1%	0.0%	50.0%	50.0%	0.0%
Vidarc	80.7%	65.0%	55.0%	45.0%	85.0%
w/o Embodiment-aware	74.6%	50.0%	65.0%	20.0%	70.0%
w/o Closed-loop	66.8%	25.0%	40.0%	35.0%	50.0%

335
 336 4.2.2 REAL-WORLD
 337

338 Real-world experimental results are summarized in Table 2, where Vidarc achieves superior perfor-
 339 mance over Vidar and Pi0.5 (**C1**). Across three scenarios, Vidarc achieves good generation ability
 340 (**C2**) as well as adaptation to environmental changes (the dynamic case) with error correction abili-
 341 ties (**C3**). Visualizations of error correction cases are shown in Figure 4, demonstrating the advan-
 342 tages of our closed-loop control and acceleration methods. Detailed success rates are provided in
 343 Table 7, Appendix C.

344
 345 Table 2: Success rates of different methods over real-world scenarios. “Dynamic” means we man-
 346 ually change the position of the targeted object during execution. Vidarc achieves consistently high
 347 success rates across all these scenarios.

Method	Average	Seen	Unseen	Dynamic
Pi0.5	41.0%	48.0%	28.0%	48.0%
Vidar	39.0%	72.0%	44.0%	0.0%
Vidarc (Ours)	56.0%	72.0%	56.0%	40.0%

353
 354 4.2.3 SPEED EVALUATION
 355

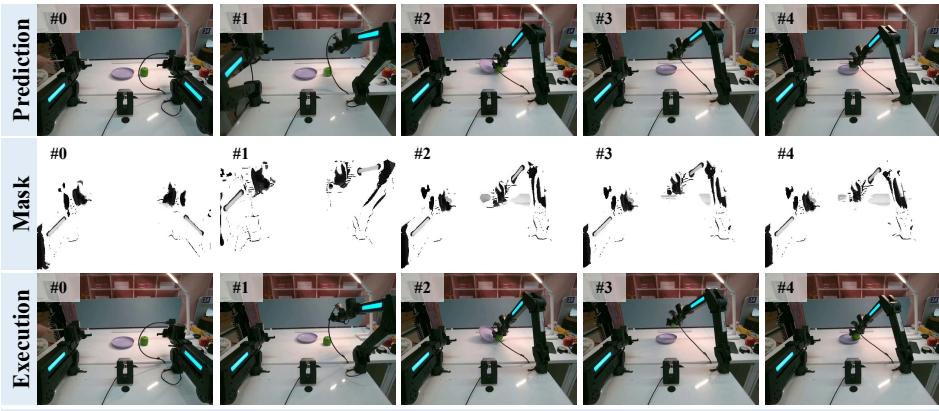
356 We also conduct a study on the inference speed of various approaches. All experiments are per-
 357 formed under a unified task duration of 6.4 seconds of real-world execution time. We generate 64
 358 frames for video models, as the video fps is 10. For Pi0.5, we generate 16 actions per chunk, 192
 359 actions in total, as the control frequency of Pi0.5 is 30 Hz. All experiments run on a single NVIDIA
 360 A100 GPU.

361 We evaluate performance mainly using two metrics: latency (measured by time to next chunk ex-
 362 ecution) and end-to-end generation cost (total chunk generation time). As is shown in Table 3,
 363 Vidar suffers from high latency due to its large chunk size and the quadratic complexity of its at-
 364 tention operations; consequently, its latency equals its end-to-end cost, which is substantially high.
 365 In contrast, Vidarc reduces latency by 91%, mainly benefiting from its causal generation mecha-
 366 nism. With ongoing hardware advances and further model optimizations—such as quantization and
 367 distillation—real-time video generation appears increasingly feasible.

368
 369 Table 3: Inference speed of different methods (in seconds). Vidarc achieves a lower end-to-end cost
 370 and a significantly lower latency than Vidar, making great achievements towards the traditionally
 371 fast VLA method Pi0.5.

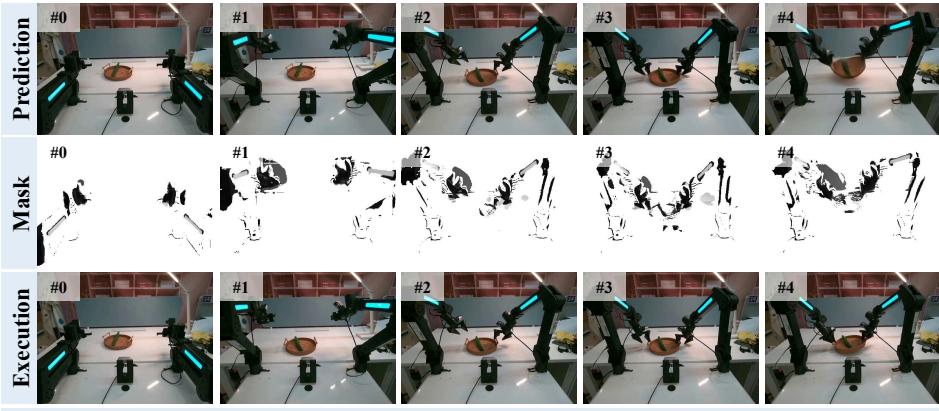
Method	Latency	Prefill Cost	VAE Cost	Diffusion Cost	End-to-end Cost
Pi0.5	0.482	-	-	-	5.76
Vidar	34.3	-	6.25	26.9	34.3
Vidarc	3.03	0.896	6.45	10.3	24.2

378
379
380
381
382



Place The Apple On The Plate: The robot is instructed to pick up the apple and place it on the plate. **During movement, the position of the plate was changed (#0 → #1).** The robot needs to: (1) pick up the green apple, (2) try to place the apple, (3) identify the moved plate, (4) retry and place the apple as required.

393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415



Lift The Basket: The robot is instructed to lift the basket with **both arms**. **During movement, the position of the basket was changed (#0 → #1).** The robot needs to: (1) align the grippers with the basket, (2) try to grasp the basket, (3) realign the grippers with the moved basket, (4) retry and lift the basket as required.

Figure 4: Video predictions, corresponding masks, and executions of Vidarc for dynamic tasks, where its error correction ability is observed.

4.3 ABLATION STUDY

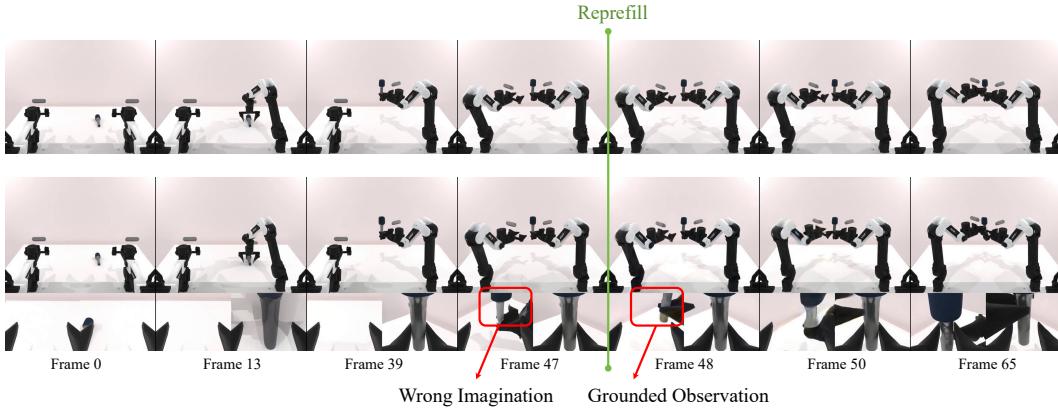
We conduct ablation studies on the RoboTwin benchmark to systematically evaluate the contributions of (1) the embodiment-aware diffusion loss and (2) closed-loop control enabled by real-world prefilling. As is shown in Table 1, removing embodiment-aware diffusion loss or closed-loop control lowers success rates, which provides solid evidence for **C4**. Detailed results are in Appendix C, where we also conduct a sensitivity analysis of the hyperparameter η .

4.4 CASE STUDY

As illustrated in Figure 5 and Figure 6, a case study is presented to demonstrate how the re-prefilling mechanism effectively bridges the gap between prediction and execution, thereby enhancing model performance. The upper image sequence was execution environment, the under image was the generated frames of the model.

5 RELATED WORK

Vision-Language-Action Methods for Robotics. Vision-Language-Action (VLA) models leverage natural language instructions as task conditions, enabling multi-task manipulation capabilities



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Figure 5: Execution of the method with closed-loop feedback. At frame 47, the model was grounded with real-world sensory data to correct generative drift, ensuring successful task execution.

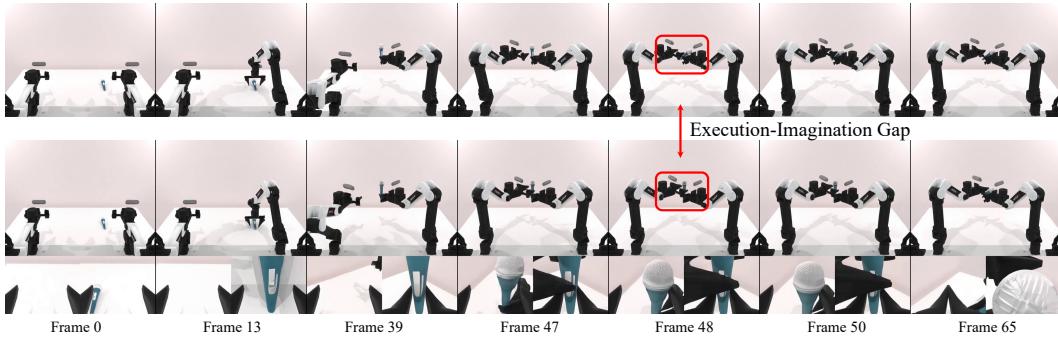


Figure 6: Execution of the method without closed-loop feedback. The model accumulates compounding errors due to ungrounded imagination, leading to eventual task failure.

that go beyond traditional embodied policies such as Diffusion Policy (Chi et al., 2023), which are typically restricted to single tasks. However, the main limitation of current VLA methods is their dependence on enormous, task-conditioned datasets—often comprising thousands of trajectories. The scarcity of such large-scale, richly annotated data severely curtails the broader application of VLA models. Recent advances, including OpenVLA (Kim et al., 2024), Pi0 (Black et al., 2024), Pi0.5 (Intelligence et al., 2025), and RDT-1B (Liu et al., 2024a), have relied on millions of real robot demonstrations spanning diverse embodiments. Despite the considerable scale of these datasets, VLA models still struggle to generalize robustly to unseen tasks or novel environments. Thus, there remains an urgent need for approaches that are both more data-efficient and more generalizable.

Video World Models for Robotics. Numerous studies have explored using video world models to decouple image and action spaces. Early approaches (Ha & Schmidhuber, 2018; Schmidhuber, 2015; 1990) utilized RNN-based models and controller architectures to encode visual information and decode actions, respectively. Building on this, recent methods have further explored video-action decoupling, primarily leveraging text-conditioned video generation (Du et al., 2023; Zhou et al., 2024; Bharadhwaj et al., 2024), with extensions including long-horizon planning (Du et al., 2024), 3D data utilization (Zhen et al., 2025), diverse datasets (Yang et al., 2024), and joint video-action latent spaces (Li et al., 2025). Despite all these advances, these methods still suffer from physical inaccuracies, kinematic collapses, and susceptibility to background distractions, especially when confronted with out-of-domain observations. To mitigate these limitations, subsequent work such as Vidar (Feng et al., 2025) extends this paradigm by introducing a two-stage framework for video generation model training and a masked IDM that ignores visual distractors to focus on the robot’s arms, thereby enhancing generalization to both novel tasks and backgrounds. However, it still exhibits limited video-level controllability and significant computational overhead. In parallel,

486 efficient approaches such as Vidman (Wen et al., 2024) and VPP (Hu et al., 2024) have emerged,
487 prioritizing efficiency over the video-action decoupling principle. However, this design choice limits
488 their capability, as they do not model tasks entirely within the visual observation space. This under-
489 scores the need for a video world model that simultaneously ensures physical accuracy, optimizes
490 computational cost, and operates within the visual observation space.

491
492 **Autoregressive Video Diffusion Models.** State-of-the-art video generation methods, especially
493 those based on diffusion models, have achieved remarkable progress in the quality and temporal
494 consistency of synthesized content (Bao et al., 2024; Wang et al., 2025; Gao et al., 2025b). Inspired
495 by the success of autoregressive frameworks in language modeling, recent studies have increasingly
496 applied autoregressive strategies to video synthesis. Here, pre-trained text-to-video diffusion
497 models generate future frames sequentially, conditioning on previously generated content—examples
498 include NOVA (Deng et al., 2025), NFD (Cheng et al., 2025), Self-Forcing (Huang et al., 2025),
499 Diffusion-Forcing (Chen et al., 2024), FAR (Gu et al., 2025), MAGI-1 (Teng et al., 2025), and
500 CausVid (Yin et al., 2025). This framework also supports interactive video generation, as demon-
501 strated by Matrix-Game 2.0 (He et al., 2025b). However, a primary challenge remains: the sub-
502 stantial inference latency introduced by the iterative diffusion denoising process. To address this,
503 key-value (KV) caching is widely adopted to accelerate decoding during inference (Deng et al.,
504 2025; He et al., 2025b; Huang et al., 2025; Yin et al., 2025; Teng et al., 2025; Cheng et al., 2025).
505 Since the timesteps of previous frames are fixed, features from denoised chunks can be cached and
506 efficiently reused for subsequent frames, eliminating redundant computations and significantly en-
507 hancing inference efficiency.

508

6 CONCLUSION

510 In this work, we presented Vidarc, a novel framework that integrates an autoregressive embodied
511 video diffusion model with a masked inverse dynamics model to address the challenges of fast,
512 precise control and generalization in data-limited embodied agent settings. By leveraging envi-
513 ronmental feedback for closed-loop control, adopting KV cache acceleration, and introducing an
514 embodiment-aware diffusion loss that highlights action-relevant regions, Vidarc overcomes key lim-
515 itations of existing video-based methods.

516 Extensive experiments demonstrate that Vidarc achieves significantly higher task success rates,
517 lower latency, and superior generalization to unseen platforms and environments, while also pro-
518 viding robust error correction in real time. Our results highlight the potential of video-based closed-
519 loop methods for scalable and adaptable embodied intelligence, and we believe Vidarc establishes a
520 new direction for efficient and transferable robot learning in complex, dynamic environments.

521
522

7 ETHICS STATEMENT

524 Vidarc offers the potential to develop generalist, low-latency robot policies with built-in error cor-
525 rection capabilities for real-world environments. However, deploying such systems in sensitive or
526 home settings may also introduce important safety and privacy concerns.

527
528

8 REPRODUCIBILITY STATEMENT

530 We include our code in the supplemental materials, covering both the video diffusion model and
531 the masked inverse dynamics model. To support reproducibility, we also plan to open-source our
532 code and model checkpoints. Appendix A provides a detailed description of our dataset, noting
533 that all pre-training datasets are publicly available. Additional information on training and inference
534 procedures is presented in Appendix B.

540 REFERENCES

541

542 AgiBot-World-Contributors, Qingwen Bu, Jisong Cai, Li Chen, Xiuqi Cui, Yan Ding, Siyuan Feng,
543 Shenyuan Gao, Xindong He, Xu Huang, Shu Jiang, Yuxin Jiang, Cheng Jing, Hongyang Li, Jialu
544 Li, Chiming Liu, Yi Liu, Yuxiang Lu, Jianlan Luo, Ping Luo, Yao Mu, Yuehan Niu, Yixuan Pan,
545 Jiangmiao Pang, Yu Qiao, Guanghui Ren, Cheng Ruan, Jiaqi Shan, Yongjian Shen, Chengshi
546 Shi, Mingkang Shi, Modi Shi, Chonghao Sima, Jianheng Song, Huijie Wang, Wenhao Wang,
547 Dafeng Wei, Chengen Xie, Guo Xu, Junchi Yan, Cunbiao Yang, Lei Yang, Shukai Yang, Maoqing
548 Yao, Jia Zeng, Chi Zhang, Qinglin Zhang, Bin Zhao, Chengyue Zhao, Jiaqi Zhao, and Jianchao
549 Zhu. Agibot world colosseo: A large-scale manipulation platform for scalable and intelligent
550 embodied systems. *CoRR*, abs/2503.06669, 2025. doi: 10.48550/ARXIV.2503.06669. URL
551 <https://doi.org/10.48550/arXiv.2503.06669>.

552 Philip J. Ball, Jakob Bauer, Frank Belletti, Bethanie Brownfield, Ariel Ephrat, Shlomi Fruchter,
553 Agrim Gupta, Kristian Holsheimer, Aleksander Holynski, Jiri Hron, Christos Kaplanis, Marjorie
554 Limont, Matt McGill, Yanko Oliveira, Jack Parker-Holder, Frank Perbet, Guy Scully, Jeremy
555 Shar, Stephen Spencer, Omer Tov, Ruben Villegas, Emma Wang, Jessica Yung, Cip Baetu,
556 Jordi Berbel, David Bridson, Jake Bruce, Gavin Buttimore, Sarah Chakera, Bilva Chandra, Paul
557 Collins, Alex Cullum, Bogdan Damoc, Vibha Dasagi, Maxime Gazeau, Charles Gbadamosi,
558 Woohyun Han, Ed Hirst, Ashyana Kachra, Lucie Kerley, Kristian Kjems, Eva Knoepfel, Vika
559 Koriakin, Jessica Lo, Cong Lu, Zeb Mehring, Alex Moufarek, Henna Nandwani, Valeria Oliveira,
560 Fabio Pardo, Jane Park, Andrew Pierson, Ben Poole, Helen Ran, Tim Salimans, Manuel Sanchez,
561 Igor Saprykin, Amy Shen, Sailesh Sidhwani, Duncan Smith, Joe Stanton, Hamish Tomlinson,
562 Dimple Vijaykumar, Luyu Wang, Piers Wingfield, Nat Wong, Keyang Xu, Christopher Yew,
563 Nick Young, Vadim Zubov, Douglas Eck, Dumitru Erhan, Koray Kavukcuoglu, Demis Hassabis,
564 Zoubin Gharamani, Raia Hadsell, Aäron van den Oord, Inbar Mosseri, Adrian Bolton, Satinder
565 Singh, and Tim Rocktäschel. Genie 3: A new frontier for world models. 2025.

566 Fan Bao, Chendong Xiang, Gang Yue, Guande He, Hongzhou Zhu, Kaiwen Zheng, Min Zhao,
567 Shilong Liu, Yaole Wang, and Jun Zhu. Vidu: a highly consistent, dynamic and skilled text-to-
568 video generator with diffusion models. *CoRR*, abs/2405.04233, 2024. doi: 10.48550/ARXIV.
2405.04233. URL <https://doi.org/10.48550/arXiv.2405.04233>.

569 Homanga Bharadhwaj, Debidatta Dwibedi, Abhinav Gupta, Shubham Tulsiani, Carl Doersch, Ted
570 Xiao, Dhruv Shah, Fei Xia, Dorsa Sadigh, and Sean Kirmani. Gen2act: Human video genera-
571 tion in novel scenarios enables generalizable robot manipulation. *CoRR*, abs/2409.16283, 2024.
572 doi: 10.48550/ARXIV.2409.16283. URL <https://doi.org/10.48550/arXiv.2409.16283>.

573 Kevin Black, Noah Brown, Danny Driess, Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo
574 Fusai, Lachy Groom, Karol Hausman, Brian Ichter, Szymon Jakubczak, Tim Jones, Liyiming Ke,
575 Sergey Levine, Adrian Li-Bell, Mohith Mothukuri, Suraj Nair, Karl Pertsch, Lucy Xiaoyang Shi,
576 James Tanner, Quan Vuong, Anna Walling, Haohuan Wang, and Ury Zhilinsky. π_0 : A vision-
577 language-action flow model for general robot control. *CoRR*, abs/2410.24164, 2024. doi: 10.
578 48550/ARXIV.2410.24164. URL <https://doi.org/10.48550/arXiv.2410.24164>.

579 Kevin Black, Manuel Y. Galliker, and Sergey Levine. Real-time execution of action chunking flow
580 policies, 2025. URL <https://arxiv.org/abs/2506.07339>.

581 Boyuan Chen, Diego Marti Monso, Yilun Du, Max Simchowitz, Russ Tedrake, and
582 Vincent Sitzmann. Diffusion forcing: Next-token prediction meets full-sequence dif-
583 fusion. In Amir Globersons, Lester Mackey, Danielle Belgrave, Angela Fan, Ul-
584 rich Paquet, Jakub M. Tomeczak, and Cheng Zhang (eds.), *Advances in Neural In-
585 formation Processing Systems 38: Annual Conference on Neural Information Pro-
586 cessing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 - 15,
587 2024*, 2024. URL http://papers.nips.cc/paper_files/paper/2024/hash/2aee1c4159e48407d68fe16ae8e6e49e-Abstract-Conference.html.

588 Xinle Cheng, Tianyu He, Jiayi Xu, Junliang Guo, Di He, and Jiang Bian. Playing with transformer
589 at 30+ FPS via next-frame diffusion. *CoRR*, abs/2506.01380, 2025. doi: 10.48550/ARXIV.2506.
590 01380. URL <https://doi.org/10.48550/arXiv.2506.01380>.

594 Cheng Chi, Siyuan Feng, Yilun Du, Zhenjia Xu, Eric Cousineau, Benjamin Burchfiel, and Shuran
595 Song. Diffusion policy: Visuomotor policy learning via action diffusion. In Kostas E. Bekris,
596 Kris Hauser, Sylvia L. Herbert, and Jingjin Yu (eds.), *Robotics: Science and Systems XIX, Daegu,*
597 *Republic of Korea, July 10-14, 2023, 2023*. doi: 10.15607/RSS.2023.XIX.026. URL <https://doi.org/10.15607/RSS.2023.XIX.026>.

598

599 Haoge Deng, Ting Pan, Haiwen Diao, Zhengxiong Luo, Yufeng Cui, Huchuan Lu, Shiguang Shan,
600 Yonggang Qi, and Xinlong Wang. Autoregressive video generation without vector quantization.
601 In *The Thirteenth International Conference on Learning Representations, ICLR 2025, Singapore,*
602 *April 24-28, 2025*. OpenReview.net, 2025. URL <https://openreview.net/forum?id=JE9tCwe3lp>.

603

604 Yilun Du, Sherry Yang, Bo Dai, Hanjun Dai, Ofir Nachum, Josh Tenenbaum, Dale Schuurmans,
605 and Pieter Abbeel. Learning universal policies via text-guided video generation. In Alice
606 Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.),
607 *Advances in Neural Information Processing Systems 36: Annual Conference on Neural In-*
608 *formation Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 -*
609 *16, 2023, 2023*. URL http://papers.nips.cc/paper_files/paper/2023/hash/1d5b9233ad716a43be5c0d3023cb82d0-Abstract-Conference.html.

610

611 Yilun Du, Sherry Yang, Pete Florence, Fei Xia, Ayzaan Wahid, Brian Ichter, Pierre Sermanet, Tianhe
612 Yu, Pieter Abbeel, Joshua B. Tenenbaum, Leslie Pack Kaelbling, Andy Zeng, and Jonathan
613 Tompson. Video language planning. In *The Twelfth International Conference on Learning*
614 *Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024*. OpenReview.net, 2024. URL
615 <https://openreview.net/forum?id=9pKtcJcMP3>.

616

617 Yao Feng, Hengkai Tan, Xinyi Mao, Guodong Liu, Shuhe Huang, Chendong Xiang, Hang Su, and
618 Jun Zhu. Vidar: Embodied video diffusion model for generalist bimanual manipulation. *CoRR*,
619 [abs/2507.12898](https://arxiv.org/abs/2507.12898), 2025. doi: 10.48550/ARXIV.2507.12898. URL <https://doi.org/10.48550/arXiv.2507.12898>.

619

620 Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
621 of deep networks. In Doina Precup and Yee Whye Teh (eds.), *Proceedings of the 34th Interna-*
622 *tional Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017,*
623 *volume 70 of Proceedings of Machine Learning Research*, pp. 1126–1135. PMLR, 2017. URL
624 <http://proceedings.mlr.press/v70/finn17a.html>.

625

626 Zipeng Fu, Tony Z. Zhao, and Chelsea Finn. Mobile ALOHA: learning bimanual mobile manip-
627 ulation with low-cost whole-body teleoperation. *CoRR*, [abs/2401.02117](https://arxiv.org/abs/2401.02117), 2024. doi: 10.48550/
628 ARXIV.2401.02117. URL <https://doi.org/10.48550/arXiv.2401.02117>.

629

630 Jianxiong Gao, Zhaoxi Chen, Xian Liu, Jianfeng Feng, Chenyang Si, Yanwei Fu, Yu Qiao, and
631 Ziwei Liu. Longvie: Multimodal-guided controllable ultra-long video generation. *CoRR*,
632 [abs/2508.03694](https://arxiv.org/abs/2508.03694), 2025a. doi: 10.48550/ARXIV.2508.03694. URL <https://doi.org/10.48550/arXiv.2508.03694>.

633

634 Yu Gao, Haoyuan Guo, Tuyen Hoang, Weilin Huang, Lu Jiang, Fangyuan Kong, Huixia Li, Jiashi
635 Li, Liang Li, Xiaojie Li, Xunsong Li, Yifu Li, Shanchuan Lin, Zhijie Lin, Jiawei Liu, Shu Liu,
636 Xiaonan Nie, Zhiwu Qing, Yuxi Ren, Limin Sun, Zhi Tian, Rui Wang, Sen Wang, Guoqiang
637 Wei, Guohong Wu, Jie Wu, Ruiqi Xia, Fei Xiao, Xuefeng Xiao, Jiangqiao Yan, Ceyuan Yang,
638 Jianchao Yang, Runkai Yang, Tao Yang, Yihang Yang, Zilyu Ye, Xuejiao Zeng, Yan Zeng, Heng
639 Zhang, Yang Zhao, Xiaozheng Zheng, Peihao Zhu, Jiaxin Zou, and Feilong Zuo. Seedance 1.0:
640 Exploring the boundaries of video generation models. *CoRR*, [abs/2506.09113](https://arxiv.org/abs/2506.09113), 2025b. doi: 10.
641 48550/ARXIV.2506.09113. URL <https://doi.org/10.48550/arXiv.2506.09113>.

642

643 Yuchao Gu, Weijia Mao, and Mike Zheng Shou. Long-context autoregressive video modeling with
644 next-frame prediction. *CoRR*, [abs/2503.19325](https://arxiv.org/abs/2503.19325), 2025. doi: 10.48550/ARXIV.2503.19325. URL
645 <https://doi.org/10.48550/arXiv.2503.19325>.

646

647 David Ha and Jürgen Schmidhuber. Recurrent world models facilitate policy evolution. *Advances*
in neural information processing systems, 31, 2018.

648 Xianglong He, Chunli Peng, Zexiang Liu, Boyang Wang, Yifan Zhang, Qi Cui, Fei Kang, Biao
649 Jiang, Mengyin An, Yangyang Ren, Baixin Xu, Hao-Xiang Guo, Kaixiong Gong, Cyrus Wu,
650 Wei Li, Xuchen Song, Yang Liu, Eric Li, and Yahui Zhou. Matrix-game 2.0: An open-source,
651 real-time, and streaming interactive world model, 2025a. URL <https://arxiv.org/abs/2508.13009>.
652

653 Xianglong He, Chunli Peng, Zexiang Liu, Boyang Wang, Yifan Zhang, Qi Cui, Fei Kang, Biao
654 Jiang, Mengyin An, Yangyang Ren, Baixin Xu, Hao-Xiang Guo, Kaixiong Gong, Cyrus Wu,
655 Wei Li, Xuchen Song, Yang Liu, Eric Li, and Yahui Zhou. Matrix-game 2.0: An open-source,
656 real-time, and streaming interactive world model. *CoRR*, abs/2508.13009, 2025b. doi: 10.48550/
657 ARXIV.2508.13009. URL <https://doi.org/10.48550/arXiv.2508.13009>.
658

659 Ryan Hoque, Peide Huang, David J. Yoon, Mouli Sivapurapu, and Jian Zhang. Egodex: Learning
660 dexterous manipulation from large-scale egocentric video. *CoRR*, abs/2505.11709, 2025. doi: 10.
661 48550/ARXIV.2505.11709. URL <https://doi.org/10.48550/arXiv.2505.11709>.

662 Yucheng Hu, Yanjiang Guo, Pengchao Wang, Xiaoyu Chen, Yen-Jen Wang, Jianke Zhang, Koushil
663 Sreenath, Chaochao Lu, and Jianyu Chen. Video prediction policy: A generalist robot policy with
664 predictive visual representations. *CoRR*, abs/2412.14803, 2024. doi: 10.48550/ARXIV.2412.
665 14803. URL <https://doi.org/10.48550/arXiv.2412.14803>.
666

667 Xun Huang, Zhengqi Li, Guande He, Mingyuan Zhou, and Eli Shechtman. Self forcing: Bridging
668 the train-test gap in autoregressive video diffusion. *CoRR*, abs/2506.08009, 2025. doi: 10.48550/
669 ARXIV.2506.08009. URL <https://doi.org/10.48550/arXiv.2506.08009>.
670

671 Yuanhui Huang, Wenzhao Zheng, Yuan Gao, Xin Tao, Pengfei Wan, Di Zhang, Jie Zhou, and Jiwen
672 Lu. Owl-1: Omni world model for consistent long video generation. *CoRR*, abs/2412.09600,
673 2024. doi: 10.48550/ARXIV.2412.09600. URL <https://doi.org/10.48550/arXiv.2412.09600>.
674

675 Physical Intelligence, Kevin Black, Noah Brown, James Darpinian, Karan Dhabalia, Danny Driess,
676 Adnan Esmail, Michael Equi, Chelsea Finn, Niccolò Fusai, Manuel Y. Galliker, Dibya Ghosh,
677 Lachy Groom, Karol Hausman, Brian Ichter, Szymon Jakubczak, Tim Jones, Liyiming Ke, Devin
678 LeBlanc, Sergey Levine, Adrian Li-Bell, Mohith Mothukuri, Suraj Nair, Karl Pertsch, Allen Z.
679 Ren, Lucy Xiaoyang Shi, Laura Smith, Jost Tobias Springenberg, Kyle Stachowicz, James Tanner,
680 Quan Vuong, Homer Walke, Anna Walling, Haohuan Wang, Lili Yu, and Ury Zhilinsky. $\pi_{0.5}$:
681 a vision-language-action model with open-world generalization. *CoRR*, abs/2504.16054, 2025.
682 doi: 10.48550/ARXIV.2504.16054. URL <https://doi.org/10.48550/arXiv.2504.16054>.
683

684 Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Balakrishna, Suraj Nair,
685 Rafael Rafailov, Ethan Paul Foster, Pannag R. Sanketi, Quan Vuong, Thomas Kollar, Benjamin
686 Burchfiel, Russ Tedrake, Dorsa Sadigh, Sergey Levine, Percy Liang, and Chelsea Finn. Openvla:
687 An open-source vision-language-action model. In Pulkit Agrawal, Oliver Kroemer, and Wolfram
688 Burgard (eds.), *Conference on Robot Learning, 6-9 November 2024, Munich, Germany*, volume
689 270 of *Proceedings of Machine Learning Research*, pp. 2679–2713. PMLR, 2024. URL <https://proceedings.mlr.press/v270/kim25c.html>.
690

691 Weijie Kong, Qi Tian, Zijian Zhang, Rox Min, Zuozhuo Dai, Jin Zhou, Jiangfeng Xiong, Xin
692 Li, Bo Wu, Jianwei Zhang, Kathrina Wu, Qin Lin, Junkun Yuan, Yanxin Long, Aladdin
693 Wang, Andong Wang, Changlin Li, Duojun Huang, Fang Yang, Hao Tan, Hongmei Wang,
694 Jacob Song, Jiawang Bai, Jianbing Wu, Jinbao Xue, Joey Wang, Kai Wang, Mengyang Liu,
695 Pengyu Li, Shuai Li, Weiyang Wang, Wenqing Yu, Xinchi Deng, Yang Li, Yi Chen, Yutao
696 Cui, Yuanbo Peng, Zhentao Yu, Zhiyu He, Zhiyong Xu, Zixiang Zhou, Zunnan Xu, Yangyu
697 Tao, Qinglin Lu, Songtao Liu, Daquan Zhou, Hongfa Wang, Yong Yang, Di Wang, Yuhong
698 Liu, Jie Jiang, and Caesar Zhong. Hunyuanvideo: A systematic framework for large video
699 generative models. *CoRR*, abs/2412.03603, 2024. doi: 10.48550/ARXIV.2412.03603. URL
700 <https://doi.org/10.48550/arXiv.2412.03603>.
701

Oliver Kroemer, Scott Niekum, and George Konidaris. A review of robot learning for manipulation:
Challenges, representations, and algorithms. *J. Mach. Learn. Res.*, 22:30:1–30:82, 2021. URL
<https://jmlr.org/papers/v22/19-804.html>.

702 Shuang Li, Yihuai Gao, Dorsa Sadigh, and Shuran Song. Unified video action model. *arXiv preprint*
703 *arXiv:2503.00200*, 2025.

704

705 Yue Liao, Pengfei Zhou, Siyuan Huang, Donglin Yang, Shengcong Chen, Yuxin Jiang, Hu Yue,
706 Jingbin Cai, Si Liu, Jianlan Luo, Liliang Chen, Shuicheng Yan, Maoqing Yao, and Guanghui
707 Ren. Genie envisioner: A unified world foundation platform for robotic manipulation. *CoRR*,
708 abs/2508.05635, 2025. doi: 10.48550/ARXIV.2508.05635. URL <https://doi.org/10.48550/arXiv.2508.05635>.

709

710 Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow
711 matching for generative modeling. In *The Eleventh International Conference on Learning
712 Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023*. OpenReview.net, 2023. URL
713 <https://openreview.net/forum?id=PqvMRDCJT9t>.

714

715 Songming Liu, Lingxuan Wu, Bangguo Li, Hengkai Tan, Huayu Chen, Zhengyi Wang, Ke Xu, Hang
716 Su, and Jun Zhu. RDT-1B: a diffusion foundation model for bimanual manipulation. *CoRR*,
717 abs/2410.07864, 2024a. doi: 10.48550/ARXIV.2410.07864. URL <https://doi.org/10.48550/arXiv.2410.07864>.

718

719 Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate
720 and transfer data with rectified flow. In *The Eleventh International Conference on Learning
721 Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023*. OpenReview.net, 2023. URL
722 <https://openreview.net/forum?id=XVjTT1nw5z>.

723

724 Yixin Liu, Kai Zhang, Yuan Li, Zhiling Yan, Chujie Gao, Ruoxi Chen, Zhengqing Yuan, Yue Huang,
725 Hanchi Sun, Jianfeng Gao, Lifang He, and Lichao Sun. Sora: A review on background, technol-
726 ogy, limitations, and opportunities of large vision models. *CoRR*, abs/2402.17177, 2024b. doi: 10.
727 48550/ARXIV.2402.17177. URL <https://doi.org/10.48550/arXiv.2402.17177>.

728 Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver: A
729 fast ODE solver for diffusion probabilistic model sampling in around 10 steps. In Sanmi
730 Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.), *Advances
731 in Neural Information Processing Systems 35: Annual Conference on Neural Information Pro-
732 cessing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9,
733 2022*. URL http://papers.nips.cc/paper_files/paper/2022/hash/260a14acce2a89dad36adc8eefe7c59e-Abstract-Conference.html.

734

735 J. Schmidhuber. An on-line algorithm for dynamic reinforcement learning and planning in reactive
736 environments. In *1990 IJCNN International Joint Conference on Neural Networks*, pp. 253–258
737 vol.2, 1990. doi: 10.1109/IJCNN.1990.137723.

738

739 Jürgen Schmidhuber. On learning to think: Algorithmic information theory for novel combinations
740 of reinforcement learning controllers and recurrent neural world models. *CoRR*, abs/1511.09249,
741 2015. URL <http://arxiv.org/abs/1511.09249>.

742

743 Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In
744 *9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria,
745 May 3-7, 2021*. OpenReview.net, 2021. URL <https://openreview.net/forum?id=St1giarCHLP>.

746

747 Zijian Song, Sihan Qin, Tianshui Chen, Liang Lin, and Guangrun Wang. Physical autoregressive
748 model for robotic manipulation without action pretraining. *CoRR*, abs/2508.09822, 2025. doi: 10.
749 48550/ARXIV.2508.09822. URL <https://doi.org/10.48550/arXiv.2508.09822>.

750

751 Chuyue Sun, Ying Sheng, Oded Padon, and Clark Barrett. Clover: Closed-loop verifiable code
752 generation, 2024. URL <https://arxiv.org/abs/2310.17807>.

753

754 Hengkai Tan, Yao Feng, Xinyi Mao, Shuhe Huang, Guodong Liu, Zhongkai Hao, Hang Su,
755 and Jun Zhu. Anypos: Automated task-agnostic actions for bimanual manipulation. *CoRR*,
abs/2507.12768, 2025. doi: 10.48550/ARXIV.2507.12768. URL <https://doi.org/10.48550/arXiv.2507.12768>.

756

756 Hansi Teng, Hongyu Jia, Lei Sun, Lingzhi Li, Maolin Li, Mingqiu Tang, Shuai Han, Tianning
757 Zhang, W. Q. Zhang, Weifeng Luo, Xiaoyang Kang, Yuchen Sun, Yue Cao, Yunpeng Huang,
758 Yutong Lin, Yuxin Fang, Zewei Tao, Zheng Zhang, Zhongshu Wang, Zixun Liu, Dai Shi, Guoli
759 Su, Hanwen Sun, Hong Pan, Jie Wang, Jiejin Sheng, Min Cui, Min Hu, Ming Yan, Shucheng
760 Yin, Siran Zhang, Tingting Liu, Xianping Yin, Xiaoyu Yang, Xin Song, Xuan Hu, Yankai Zhang,
761 and Yuqiao Li. MAGI-1: autoregressive video generation at scale. *CoRR*, abs/2505.13211, 2025.
762 doi: 10.48550/ARXIV.2505.13211. URL <https://doi.org/10.48550/arXiv.2505.13211>.
763

764 Ang Wang, Baole Ai, Bin Wen, Chaojie Mao, Chen-Wei Xie, Di Chen, Feiwu Yu, Haiming Zhao,
765 Jianxiao Yang, Jianyuan Zeng, Jiayu Wang, Jingfeng Zhang, Jingren Zhou, Jinkai Wang, Jixuan
766 Chen, Kai Zhu, Kang Zhao, Keyu Yan, Lianghua Huang, Xiaofeng Meng, Ningyi Zhang, Pandeng
767 Li, Pingyu Wu, Ruihang Chu, Ruili Feng, Shiwei Zhang, Siyang Sun, Tao Fang, Tianxing Wang,
768 Tianyi Gui, Tingyu Weng, Tong Shen, Wei Lin, Wei Wang, Wei Wang, Wenmeng Zhou, Wente
769 Wang, Wenting Shen, Wenyuan Yu, Xianzhong Shi, Xiaoming Huang, Xin Xu, Yan Kou, Yangyu
770 Lv, Yifei Li, Yijing Liu, Yiming Wang, Yingya Zhang, Yitong Huang, Yong Li, You Wu, Yu Liu,
771 Yulin Pan, Yun Zheng, Yuntao Hong, Yupeng Shi, Yutong Feng, Zeyinzi Jiang, Zhen Han, Zhi-
772 Fan Wu, and Ziyu Liu. Wan: Open and advanced large-scale video generative models. *CoRR*,
773 abs/2503.20314, 2025. doi: 10.48550/ARXIV.2503.20314. URL <https://doi.org/10.48550/arXiv.2503.20314>.
774

775 Fu-Yun Wang, Zhaoyang Huang, Xiaoyu Shi, Weikang Bian, Guanglu Song, Yu Liu, and Hongsheng
776 Li. Animatelcm: Accelerating the animation of personalized diffusion models and adapters with
777 decoupled consistency learning. *CoRR*, abs/2402.00769, 2024. doi: 10.48550/ARXIV.2402.
778 00769. URL <https://doi.org/10.48550/arXiv.2402.00769>.

779 Youpeng Wen, Junfan Lin, Yi Zhu, Jianhua Han, Hang Xu, Shen Zhao, and Xiaodan
780 Liang. Vidman: Exploiting implicit dynamics from video diffusion model for effec-
781 tive robot manipulation. In Amir Globersons, Lester Mackey, Danielle Belgrave, An-
782 gela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang (eds.), *Advances in
783 Neural Information Processing Systems 38: Annual Conference on Neural Information
784 Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 - 15,
785 2024*, 2024. URL http://papers.nips.cc/paper_files/paper/2024/hash/481c70828a4ff20d31a646cc6cc95f3d-Abstract-Conference.html.

787 Thaddäus Wiedemer, Yuxuan Li, Paul Vicol, Shixiang Shane Gu, Nick Matarese, Kevin Swersky,
788 Been Kim, Priyank Jaini, and Robert Geirhos. Video models are zero-shot learners and reasoners,
789 2025. URL <https://arxiv.org/abs/2509.20328>.

790 Kun Wu, Chengkai Hou, Jiaming Liu, Zhengping Che, Xiaozhu Ju, Zhuqin Yang, Meng Li, Yinuo
791 Zhao, Zhiyuan Xu, Guang Yang, Zhen Zhao, Guangyu Li, Zhao Jin, Lecheng Wang, Jilei
792 Mao, Xinhua Wang, Shichao Fan, Ning Liu, Pei Ren, Qiang Zhang, Yaoxu Lyu, Mengzhen
793 Liu, Jingyang He, Yulin Luo, Zeyu Gao, Chenxuan Li, Chenyang Gu, Yankai Fu, Di Wu,
794 Xingyu Wang, Sixiang Chen, Zhenyu Wang, Pengju An, Siyuan Qian, Shanghang Zhang,
795 and Jian Tang. Robomind: Benchmark on multi-embodiment intelligence normative data for
796 robot manipulation. *CoRR*, abs/2412.13877, 2024. doi: 10.48550/ARXIV.2412.13877. URL
797 <https://doi.org/10.48550/arXiv.2412.13877>.
798

799 Jinheng Xie, Zhenheng Yang, and Mike Zheng Shou. Show-o2: Improved native unified multimodal
800 models. *CoRR*, abs/2506.15564, 2025. doi: 10.48550/ARXIV.2506.15564. URL <https://doi.org/10.48550/arXiv.2506.15564>.

802 Han Xue, Jieji Ren, Wendi Chen, Gu Zhang, Yuan Fang, Guoying Gu, Huazhe Xu, and Cewu Lu.
803 Reactive diffusion policy: Slow-fast visual-tactile policy learning for contact-rich manipulation,
804 2025. URL <https://arxiv.org/abs/2503.02881>.

806 Jiange Yang, Wenhui Tan, Chuhao Jin, Keling Yao, Bei Liu, Jianlong Fu, Ruihua Song, Gangshan
807 Wu, and Limin Wang. Transferring foundation models for generalizable robotic manipulation.
808 In *IEEE/CVF Winter Conference on Applications of Computer Vision, WACV 2025, Tucson, AZ,
809 USA, February 26 - March 6, 2025*, pp. 1999–2010. IEEE, 2025. doi: 10.1109/WACV61041.
2025.00201. URL <https://doi.org/10.1109/WACV61041.2025.00201>.

810 Sherry Yang, Yilun Du, Seyed Kamyar Seyed Ghasemipour, Jonathan Tompson, Leslie Pack Kael-
811 bling, Dale Schuurmans, and Pieter Abbeel. Learning interactive real-world simulators. In
812 *The Twelfth International Conference on Learning Representations, ICLR 2024, Vienna, Aus-
813 tria, May 7-11, 2024*. OpenReview.net, 2024. URL [https://openreview.net/forum?
814 id=sFyTZEqmUY](https://openreview.net/forum?id=sFyTZEqmUY).

815 Seonghyeon Ye, Joel Jang, Byeongguk Jeon, Sejune Joo, Jianwei Yang, Baolin Peng, Ajay Man-
816 dlekar, Reuben Tan, Yu-Wei Chao, Bill Yuchen Lin, Lars Liden, Kimin Lee, Jianfeng Gao, Luke
817 Zettlemoyer, Dieter Fox, and Minjoon Seo. Latent action pretraining from videos, 2025. URL
818 <https://arxiv.org/abs/2410.11758>.

819
820 Tianwei Yin, Qiang Zhang, Richard Zhang, William T. Freeman, Frédo Durand, Eli Shechtman,
821 and Xun Huang. From slow bidirectional to fast autoregressive video diffusion mod-
822 els. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2025,
823 Nashville, TN, USA, June 11-15, 2025*, pp. 22963–22974. Computer Vision Foundation / IEEE,
824 2025. doi: 10.1109/CVPR52734.2025.02138. URL https://openaccess.thecvf.com/content/CVPR2025/html/Yin_From_Slow_Bidirectional_to_Fast_Autoregressive_Video_Diffusion_Models_CVPR_2025_paper.html.

825
826
827 Tony Zhao, Siddharth Karamcheti, Kollar Thomas, and Chelsea Finn. What makes representation
828 learning from videos hard for control. In *RSS 2022 Workshop on Scaling Robot Learning*, 2022.

829
830 Haoyu Zhen, Qiao Sun, Hongxin Zhang, Junyan Li, Siyuan Zhou, Yilun Du, and Chuang Gan.
831 Tesseract: learning 4d embodied world models. *arXiv preprint arXiv:2504.20995*, 2025.

832
833 Siyuan Zhou, Yilun Du, Jiaben Chen, Yandong Li, Dit-Yan Yeung, and Chuang Gan. Robodreamer:
834 Learning compositional world models for robot imagination. In *Forty-first International Con-
835 ference on Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024*. OpenReview.net,
836 2024. URL <https://openreview.net/forum?id=kHjOmAUfVe>.

837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

864

865

Table 4: Detailed information about pre-training and fine-tuning datasets.

Dataset	Size	Type	Camera
Egodex	230,949	Human	a movable front camera
Agibot	728,209	Genie-1 Robot	a fixed high camera, a movable left arm camera, and a movable right arm camera
RDT	6,083	Aloha Robot	a fixed front camera, a movable left arm camera, and a movable right arm camera
RoboMind Franka	9,589	Franka Robot	a fixed camera on the opposite side, a fixed left camera, and a fixed right camera
RoboMind Aloha	7,272	Aloha Robot	a fixed front camera, a movable left arm camera, and a movable right arm camera
RoboTwin	1,000	Aloha Robot	a fixed rear camera, a movable left arm camera, and a movable right arm camera
Vidarc	2,307	Aloha Robot	a fixed rear camera, a movable left arm camera, and a movable right arm camera

Figure 7: Visualizations of datasets.

A DATASET DETAILS

Detailed dataset information is shown in Table 4. For pre-training, we include human manipulation videos as well as bimanual manipulation videos from 3 different embodiments and various camera configurations. Notably, all these datasets are publicly available. For fine-tuning, we collect 1,000 episodes across 50 tasks on the RoboTwin benchmark; we also collect 2,307 episodes across 219 tasks on our target real-world platform. Notably, the camera and robotic arms for the fine-tuning datasets are unseen and totally different from pre-training. We also provide visualizations of datasets in Figure 7.

We adopt the unified observation space (Feng et al., 2025) for the formatting of all the datasets, which forms a consistent resolution of 720×640 .

B MODEL, TRAINING, AND INFERENCE DETAILS

B.1 TRAINING

The complete set of training hyperparameters is provided in Table 5.

For video-based models, input videos are downsampled to 10 frames per second (fps) and resized to a resolution of 736×640 . To support classifier-free guidance, the text conditioning is replaced with an empty string with a probability of 0.1 during training.

Our implementation of Vidarc adopts the Wan2.2 backbone. The training proceeds in two stages: (i) 10,000 pretraining steps on our internal pretraining dataset, followed by (ii) 14,000 fine-tuning steps on each downstream task (RoboTwin and Vidarc). This two-stage training consumes approximately 4,500 A100 GPU hours in total.

Vidarc is initialized from the reproduced Vidar model and further fine-tuned for an additional 4,000 steps on each downstream task. Notably, the Inverse Dynamics Model (IDM) is shared between

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Hyperparameter	Vidar/Vidarc	IDM	Pi0.5
Number of Parameters	5 Billion	92 Million	2Billion
Learning Rate	2×10^{-5}	5×10^{-4}	2.5×10^{-5}
Batch size	128	128	32
Warm-up	200 Steps	6k steps	1k steps
Optimizer	AdamW	AdamW	AdamW
AdamW β	(0.9, 0.999)	(0.9, 0.999)	(0.9, 0.95)
AdamW ϵ	10^{-8}	10^{-8}	10^{-8}
AdamW Weight Decay	0.1	10^{-2}	10^{-10}

Vidar and Vidarc. The IDM is trained separately for 60,000 steps with a weighting coefficient $\lambda = 3 \times 10^{-3}$.

For Pi0.5, due to architectural and optimization differences that lead to slower convergence, we fine-tune the model for 45,000 steps on the simulation dataset and 55,000 steps on the real-world dataset. To ensure a fair comparison across methods, we do not perform task-specific fine-tuning within individual tasks of the dataset (i.e., all tasks within a dataset share the same fine-tuned checkpoint).

B.2 INFERENCE

For the RoboTwin benchmark, we choose 20 sampling steps for both Vidarc and Vidar; the chunk size of Vidarc is set as 16.

For the real-world test, we chose 5 sampling steps for Vidarc and 15 steps for Vidar. In the dynamic scene, we choose a chunk size of 12 for Vidarc and 16 for all other settings.

In speed tests, Vidarc uses 5 sampling steps and generates 8 frames per chunk, whereas the Vidar variant utilizes 20 sampling steps. With our chunk re-prefill method, Vidarc gains an extra 6% end-to-end speed up compared with fully prefill (from 25.8s to 24.2s).

C ADDITIONAL RESULTS

The complete versions of our simulation and real-world experiments are shown in Table 6 and Table 7.

Detailed ablations are shown in Table 8 and Table 9. We can see that our modules do contribute to the success rates, while the success rates remain high for a wide range of hyperparameter η .

D HARDWARE DETAILS

Hardware details of our robot are shown in Figure 8 and Table 10.

E USAGE OF LARGE LANGUAGE MODELS

We use large language models to aid and polish writing. We draft the content ourselves and then use large language models to refine it, making the writing clearer, more structured, and easier to understand.

972
973
974
975 Table 6: Average success rates of different methods over the RoboTwin 2.0 benchmark. Vidarc
976 achieves higher average success rates across these methods.

977	Task	Pi0.5	Vidar	Vidarc
978	Click Alarmclock	70.0%	100.0%	100.0%
979	Click Bell	70.0%	95.0%	100.0%
980	Grab Roller	75.0%	100.0%	95.0%
981	Handover Mic	20.0%	0.0%	65.0%
982	Lift Pot	35.0%	90.0%	80.0%
983	Open Laptop	30.0%	50.0%	55.0%
984	Place A2B Left	10.0%	45.0%	35.0%
985	Place Burger Fries	75.0%	80.0%	80.0%
986	Place Can Basket	35.0%	50.0%	45.0%
987	Place Cans Plasticbox	15.0%	0.0%	85.0%
988	Press Stapler	60.0%	90.0%	100.0%
989	Shake Bottle	100.0%	100.0%	100.0%
990	Shake Bottle Horizontally	80.0%	100.0%	100.0%
991	Stack Bowls Two	65.0%	95.0%	90.0%
992	Average	52.9%	71.1%	80.7%

993
994
995
996
997 Table 7: Real-world evaluations for different methods under three scenarios. The notations “L”, “R”,
998 and “B” denote the left arm, right arm, and both arms, respectively. Vidarc achieves consistently
999 high average success rates across these scenarios.

1000	Seen	Vidarc	Vidar	Pi0.5
1001	Dump the Waste Paper - R	60.0%	100.0%	40.0%
1002	Dump the Waste Paper - L	80.0%	80.0%	100.0%
1003	Grasp the Radish - L	100.0%	80.0%	60.0%
1004	Wipe Table - L	60.0%	40.0%	20.0%
1005	Lift the Basket - B	60.0%	60.0%	20.0%
1006	Average	72.0%	72.0%	48.0%
1007	Unseen	Vidarc	Vidar	Pi0.5
1008	Place the Eggplant - L	40.0%	80.0%	20.0%
1009	Place the Cube - L	60.0%	40.0%	60.0%
1010	Place the Cube - R	40.0%	0.0%	20.0%
1011	Tap Number One - L	100.0%	100.0%	0.0%
1012	Place Steel Wool - R	40.0%	0.0%	40.0%
1013	Average	56.0%	44.0%	28.0%
1014	Dynamic	Vidarc	Vidar	Pi0.5
1015	Dump the Waste Paper - R	20.0%	0.0%	20.0%
1016	Dump the Waste Paper - L	20.0%	0.0%	40.0%
1017	Place the Yellow Item - L	60.0%	0.0%	80.0%
1018	Lift the Basket - B	60.0%	0.0%	0.0%
1019	Place the Apple - R	40.0%	0.0%	100.0%
1020	Average	40.0%	0.0%	48.0%
1021	All Average	56.0%	39.0%	41.0%

1026

1027 Table 8: Average success rates of different configurations over the RoboTwin 2.0 benchmark. “w/o
1028 Embodiment-aware” means using the vanilla diffusion loss, and “w/o Closed-loop” means inferring
1029 60 frames using one environmental frame each time.

Task	Vidarc	w/o Embodiment-aware	w/o Closed-loop
Click Alarmclock	100.0%	100.0%	100.0%
Click Bell	100.0%	100.0%	100.0%
Grab Roller	95.0%	75.0%	95.0%
Handover Mic	65.0%	50.0%	25.0%
Lift Pot	80.0%	75.0%	55.0%
Open Laptop	55.0%	65.0%	40.0%
Place A2B Left	35.0%	35.0%	35.0%
Place Burger Fries	80.0%	80.0%	55.0%
Place Can Basket	45.0%	20.0%	35.0%
Place Cans Plasticbox	85.0%	70.0%	50.0%
Press Stapler	100.0%	95.0%	100.0%
Shake Bottle	100.0%	100.0%	95.0%
Shake Bottle Horizontally	100.0%	100.0%	95.0%
Stack Bowls Two	90.0%	80.0%	55.0%
Average	80.7%	74.6%	66.8%

1046

1047

1048 Table 9: Average success rates of different configurations over the RoboTwin 2.0 benchmark. η is
1049 the weight hyperparameter in the embodiment-aware loss, and $\eta = 0$ case degrades to the vanilla
1050 diffusion loss.

Task	Vidarc ($\eta = 0$)	Vidarc ($\eta = 3$)	Vidarc ($\eta = 10$)
Click Alarmclock	100.0%	100.0%	100.0%
Click Bell	100.0%	100.0%	100.0%
Grab Roller	75.0%	95.0%	85.0%
Handover Mic	50.0%	65.0%	50.0%
Lift Pot	75.0%	80.0%	65.0%
Open Laptop	65.0%	55.0%	65.0%
Place A2B Left	35.0%	35.0%	30.0%
Place Burger Fries	80.0%	80.0%	85.0%
Place Can Basket	20.0%	45.0%	35.0%
Place Cans Plasticbox	70.0%	85.0%	85.0%
Press Stapler	95.0%	100.0%	95.0%
Shake Bottle	100.0%	100.0%	100.0%
Shake Bottle Horizontally	100.0%	100.0%	100.0%
Stack Bowls Two	80.0%	90.0%	85.0%
Average	74.6%	80.7%	77.1%

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

Figure 8: Our robotic platform.

Table 10: Hardware Information.

Parameters	Values
Cameras	3 RGB Cameras
Degree of Freedom	14
Arm weight	3.9 kg
Arm Valid Payload	1.0 kg
Arm Reach	0.6 m
Arm Repeatability	1 mm
Gripper Range	0 - 80 mm
Gripper Max Force	10 N