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ABSTRACT

Robotic arm manipulation in data-scarce settings is a highly challenging task due
to the complex embodiment dynamics and diverse contexts. Recent video-based
approaches have shown great promise in capturing and transferring the temporal
and physical interactions by pre-training on Internet-scale video data. However,
such methods are often not optimized for the embodiment-specific closed-loop
control, typically suffering from high latency and insufficient grounding. In this
paper, we present Vidarc (Video Diffusion for Action Reasoning and Closed-loop
Control), a novel autoregressive embodied video diffusion approach augmented by
a masked inverse dynamics model. By grounding video predictions with action-
relevant masks and incorporating real-time feedback through cached autoregres-
sive generation, Vidarc achieves fast, accurate closed-loop control. Pre-trained on
one million cross-embodiment episodes, Vidarc surpasses state-of-the-art base-
lines, achieving at least a 15% higher success rate in real-world deployment and
a 91% reduction in latency. We also highlight its robust generalization and error
correction capabilities across previously unseen robotic platforms.
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Figure 1: Left: Vidarc consists of an embodied autoregressive video diffusion model and a masked
inverse dynamics model. To enable closed-loop control, the inference pipeline re-prefills environ-
ment feedback into the autoregressive video generation. Right: After being pre-trained on approx-
imately one million bimanual demonstration episodes, Vidarc is fine-tuned on an unseen platform
using calibration with embodiment-specific masks; it achieves state-of-the-art performance and ex-
hibits robust error correction capabilities.

1 INTRODUCTION

Robotic arm manipulation is a fundamental yet higly complex task, requiring precise coordination
across multiple degrees of freedom to execute intricate movements in dynamic environments. In
many real-world applications, such as autonomous assembly lines, medical surgery, or hazardous
material handling, collecting large, high-quality datasets is prohibitively expensive or impractical,
especially when adapting robotic control to new platforms, tasks, or environments. As a result,
achieving robust and generalizable manipulation skills from limited data is a crucial goal, enabling
widespread and scalable deployment of robotic systems (Kroemer et al.|[2021}; [Yang et al., 2025).




Inspired by the success of large language models, one effective approach in data-scarce settings is to
leverage a pre-trained foundation model plus a fine-tuning step for knowledge transfer. Representa-
tive progress includes meta-learning (Finn et al, |2017), vision-language-action models which typ-
ically add action heads to pre-trained vision-language models (Kim et al.,|2024; [Intelligence et al.,
2025; |L1u et al. [2024a; [Song et al., 2025), as well as video generation models with lightweight
embodied-specific controllers or inverse dynamics models (Feng et al.| [2025; |Liao et al., [2025)).
Among these approaches, video generation models have shown great promise by fully exploring
the Internet-scale video data, while the others often have to collect a large set of human demon-
stration data. Videos, unlike static images or discrete trajectory representations, capture the full
temporal dynamics and interaction cues essential for manipulation tasks. Trained on massive video
datasets (Wang et al., [2025} [Liu et al.l [2024bj Kong et al., [2024), video generation models create
transferable priors that enforce physical consistency, support counterfactual reasoning, and can be
efficiently fine-tuned with very few demonstrations (Feng et al.l 2025).

This progress notwithstanding, little progress has been made so far on the real-time, embodiment-
specific requirements of robotic control. Closed-loop control is highly desired and especially im-
portant in robotics (Ye et al.| 20255 Xue et al.| 2025} |Sun et al.| 2024} Black et al., [2025) because it
enables the system to constantly refine its actions based on new sensory feedback, greatly increasing
robustness to unexpected environmental changes, errors, or perturbations. Achieving this with video
foundation models poses unique challenges: it requires low-latency generation, seamless integration
of real-time feedback, and quick adaptation to embodiment-specific cues within the video stream.
Previous approaches often focused on open-loop prediction or required slow, sequential inference,
making them impractical for real-world, interactive robot tasks (Du et al., 2023). Moreover, pure
video generative models typically lack grounding in embodiment-relevant dynamics and visual fea-
tures; subtle visual or physical deviations—such as minor changes in the robot arm’s appearance or
pose—can cause dramatic task failures if not properly accounted for (Zhao et al., [2022)).

To address these limitations, we propose Vidare (Video Diffusion for Action Reasoning and Closed-
loop Control), which consists of an autoregressive embodied video diffusion model and a masked
inverse dynamics model. By incorporating environmental feedback in the autoregressive generation
process with key-value (KV) caching, Vidarc enables robust closed-loop control with low latency
during inference. To further ground the video diffusion model in the specific dynamics of a robot,
we use learned action-relevant masks from the masked inverse dynamics model to construct an
embodiment-aware diffusion loss, ensuring the generated videos are actionable. We illustrate our
method in Figure[T]

With large-scale cross-embodiment pre-training on approximately one million episodes, Vidarc
adapts to an unseen real-world platform with superior success rates than strong baselines: 17%
higher than Vidar (Feng et al, 2025 and 15% higher than Pi0.5 (Intelligence et al.l 2025)). Fur-
thermore, Vidarc only incurs 8.8% of Vidar’s latency, with remarkable generalization and error
correction capabilities.

2 PREREQUISITE

We start by briefly summarizing the preliminary knowledge.

2.1 DIFFUSION MODEL

Diffusion model designs a noise injection and denoise process to generate high-quality images or
videos. Modern video diffusion models (Wang et al., 2025} Xie et al.,|2025) adopt the flow matching
framework (Lipman et al.l [2023} [Liu et al., 2023), which enables stable training with the ordinary
differential equation (ODE) formulation. Given a video x;, a random Gaussian noise zy with the
same size, and a timestep ¢ € [0, 1], we define the noised video z; as tz1 + (1 — t)zo. Let V
be the video space, and C be the condition space. The diffusion model learns a flow function vy :
YV xR xC — V, which parameterizes the vector field that transforms x; to z given the intermediate
x, and ¢ and condition c. The training objective is:

Ldiffusion = ]E;co,xl,t,c [||U9(xtat7c) - (1‘0 - xl)”%] . (1)



During inference, we can sample from the learned distribution by solving the following ODE from
t = 0tot = 1 by using efficient training-free solvers|Lu et al.| (2022)); Song et al.|(2021)):

da

e vg(ze, t,¢), t €]0,1]. )

Thanks to their strong ability to model complex spatial-temporal dynamics, video diffusion models
can serve not only as generative models but also as world models that simulate the evolution of
visual environments. Recent works have demonstrated their potential for interactive prediction and
control, such as physical simulation (Ball et al., 2025 |He et al., |2025a)) and robotic manipulation
planning (Feng et al.| 2025} [Du et al.| 2023)). As both model capacity and training data scale up,
video diffusion models exhibit emerging properties including zero-shot generalization and chain-of-
frames reasoning (Wiedemer et al.,|2025)), suggesting promising applicability to complex real-world
manipulation and reasoning tasks.

2.2 VIDEO-BASED ACTION PREDICTION

In video-based approaches, video diffusion models form the backbone, with actions derived either
from an action head, which takes latent vectors as input (Hu et al.| [2024)), or from an Inverse Dynam-
ics Model (IDM) (Tan et al., [2025), typically predicting actions & from images x. However, only the
robotic arm’s key regions are necessary for action prediction in these images, while other areas may
introduce noise that interferes with model performance. To address this, Vidar (Feng et al.| [2025))
introduces a masked inverse dynamics model (MIDM) approach, which employs a mask predictor U
to predict a mask m € [0, 1] that highlights action-relevant pixels, together with an action regressor
R for action regression:

m =U(z), &= R(Round(m)® z), 3)
where ‘“Round” is the rounding function. This masking mechanism preserves critical motion-related
regions and suppresses irrelevant visual information, thereby enhancing the accuracy and robustness
of action prediction in the IDM. Since the mask is closely tied to the robot’s dynamics, it offers a
more effective prior than general segmentation models. In the training process, Vidar regularizes the
area of m with a weight of \:

£acti0n = Ez,a [l(& - Cl) + )‘Hm”ﬂ ’ (4)

where [(.) is the Huber loss. Generally, the IDM handles robot-specific action spaces and control
signals, while video diffusion models focus on unified video generation tasks, where abundant prior
knowledge is transferred from pre-training.

3 METHOD

Although recent video world models have shown remarkable generalization across visual domains,
their architectures are inherently not optimized for embodied control. Most of these methods rely
on bidirectional diffusion mechanisms, which lack causality and suffer from high per-frame la-
tency (Wang et al.l 2024), global dependencies, and cumulative prediction errors in long-horizon
sequences (Deng et al.| 2025} |Gao et al.||2025a; |Huang et al.||2024; |Yin et al.,|2025). Moreover, the
conventional diffusion training paradigm treats all visual features equally, ignoring the asymmet-
ric, motion-dependent structure of physical interaction—a property essential for stable and efficient
action generation.

In contrast, a robot-native policy must process environmental feedback in a causal and low-latency
manner, enabling rapid perception—action cycles and continuous adaptation to dynamic surround-
ings. It should exhibit strong inductive biases for motion and kinematics, ensuring physically con-
sistent trajectories, while maintaining computational efficiency to support real-time inference and
robust generalization across diverse scenarios.

To meet these requirements, Vidarc builds upon causal autoregressive frame prediction with re-
prefilling to enable closed-loop interaction with minimal latency. By re-prefilling observations from
the environment, we can bridge the inherent training-inference gap in autoregressive models, pre-
venting error accumulation and accounting for environmental changes. Further enhanced with an
embodiment-aware loss, our model explicitly emphasizes motion dynamics during training, leading
to more stable, efficient, and adaptive embodied behavior.
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Figure 2: Vidarc comprises a video diffusion transformer and a masked inverse dynamics model.
The video diffusion transformer is trained via teacher-forcing to predict the next observation based
on previous observations and language instructions, while the masked inverse dynamics model is
trained to infer actions from observations using a learnable masking mechanism that focuses at-
tention on action-relevant regions. The learned mask is also used to reweight the diffusion loss,
enhancing the video model’s focus on regions important for action prediction.

3.1 MODEL DESIGN

Figure 3] presents an overview of our method. Specifically, let £ be the language instruction space, O
be the chunked visual observation space (a sequence of images with a chunk size > 1), and A be the
chunked action space (a sequence of actions with a chunk size > 1). We target to learn a conditional
robot manipulation policy 7 : £ x O — P(.A). Similar to previous video-based methods (Du et al.,
2023), we decompose it into two models: 7 = G o I, where G : L x O — P(O) is a video
generation model and I : @ — A is an inverse dynamics model. The inverse dynamics model is
typically modeled as a mapping from image to action; with a slight abuse of notation, we also use
the term “inverse dynamics model” to refer to the batch application of image chunks as input.

To adopt closed-loop control, we propose to take the feedback from the environment into the
pipeline. Assuming the transition function is 7 : O x A — O and the observation aggregation
function is C : ||, O™ — O, we can unroll the policy for timestep ¢ as follows:

0t41 ~ G(l,C(01,- - ,0t)) # Autoregressive Generation
ar = 1(0¢41) # Inverse Dynamics Decoding 5)
ot41 = T (o1, at) # Execution and Collection,

where o7 is the initial observation. Specifically, we first generate the next observation 6; based on
the instruction [ and the aggregation of previous observations. Then we decode the action a; from
the generated observation o;. Finally, we execute the action a; in the environment and collect the
new observation o ;.

3.2 TRAINING

We outline the training of the video diffusion transformer.

Causal Training To enable causal generation, we utilize the CausVid (Yin et al., [2025) method,
transfer the text-image to video model to a frame-by-frame generation model. During the generation
of each frame, all previous frames of this frame (z,.,) are noise-free (i.e., already denoised) and
can be attended to in the attention operation. The causal training objective is:

£Causal == Emo,rl,t,c |:||’Ug(f£t,t, C, xprev) - (xO - 1’1)”%} . (6)

Embodiment-aware Loss As shown in Figure 3.2} Video diffusion models suffer from inaccu-
rate modeling of robot-relevant features, which are crucial for precise control. To address this
issue, we propose an embodiment-aware loss that enhances the video diffusion model’s focus on
action-relevant regions. In this way, the model is adapted to the specific embodiment, enabling the
generation of more actionable videos.



Algorithm 1 Inference Algorithm of Vidarc

1: Input: Environment E, Instruction [, Autoregressive model G, Inverse Dynamics Model 1
2: Hyperparameters: Chunk size n_c, Maximum KV length n_k

3: while task not complete and not timeout do

4 01 < E.get_obs()

5: C ={c1} + G.prefill(o1) # Initialize the KV cache with the first observation

6: for i = 1 to n_k step n_c do

7: gen_obs + [ ]

8 forj=i+1toi+n_cdo

9 0}, ¢ + G.generate(l, C) # Generate with KV cache

10: gen_obs.append(0}); C.append(c})

11: end for

12: a < I(gen_obs)

13: E.execute(a)

14: C.pop_back(n_c) # Remove the last chunk of the KV cache

15: gt-obs = {041, ...0i4nc} < E.get_obs() # Get ground truth observations
16: C «+ G.chunk_prefill(C, gt_obs) # Re-prefill with ground truth observations
17: end for

18: C.clean() # Reset the KV cache
19: end while

Inspired by the masked inverse dynamic model, the mask m highlights regions relevant to the robot’s
actions, such as the robot arm. We use the learned mask to reweight the diffusion loss, encouraging
the video model to pay more attention to these critical areas. The final training objective is

Eembndimem—aware = ]Eaco,ml,t,c [”(1 + U U(Il)) ®© (Ug(l’t, t7 c, -Tprev) - (:CO - Il))”%] B (7)

where 7 is a hyperparameter controlling the strength of the reweighting.

In this way, the video diffusion model is guided to focus on action-relevant regions, also matching
the masked prediction of the inverse dynamics model (details in Section [2.2), leading to improved
performance in precise control tasks.
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Figure 3: Video predictions often get artifacts around the robot arm, which affects the task success.

3.3 INFERENCE

The general inference pipeline is described by equation [5} with our detailed implementation pro-
vided in Algorithm[I] In particular, we generate the next observation based on previous real-world
observations, rather than generated ones, enabling closed-loop control. This paradigm aligns with
teacher forcing training, incorporating inference to prevent error accumulation.

To accelerate the generation process, we employ KV caching and cache instruction embeddings,
thereby avoiding redundant recomputation across decoding steps. To further reduce inference la-
tency, we introduce a re-prefill mechanism that optimizes the prefill phase: rather than recomputing
KV caches for the entire sequence of prior observations, we only pop the latest generated KV cache,
and then perform chunk prefill with the latest observations. In this way, the step sequence length for
prefilling is significantly reduced, saving the computation cost and reducing the latency.



4 EXPERIMENTS

We now present experimental results with the goal to verify the following claims:
C1: Vidarc achieves superior success rates on both simulated and real domains;
C2: Vidarc generalizes effectively to unseen tasks and environments;

C3: Vidarc achieves low-latency closed-loop control with error correction abilities;

C4: The embodiment-aware diffusion loss enhances Vidarc’s ability.

4.1 EXPERIMENTAL SETUP

Hardware. We choose the widely used Aloha robot (Fu et al.l 2024} |Liu et al., [2024a) as our
target platform, with three cameras providing multi-view observations. The action for the robot is
the target absolute joint position, and does not depend on history. Detailed hardware configurations
are in Appendix [D]

Datasets. For pretraining, we use a curated dataset of one million video clips, sampled from four
diverse sources: Egodex (Hoque et al., [2025), Agibot (AgiBot-World-Contributors et al., |2025)),
RDT (Liu et al), |2024a), and RoboMind (Wu et al.| 2024). This large-scale, multi-domain pre-
training enables the model to learn rich visual and temporal representations of robotic and human
interactions. For finetuning data, finetuning is performed in two domain-specific datasets , including
simulation and real-world:

* RoboTwin: We collect 20 episodes for each task on the agilex Aloha platform, resulting in a total
of 1,000 episodes.

* Vidarc: We collected 2,307 episodes of high-quality, real-world robot operation data on our Aloha
robot platform.

More details of the datasets are shown in Appendix

Baselines. To ensure fair and meaningful comparisons, we implement two competitive baselines:

* Vidar (Feng et al., 2025): We replicate the Vidar approach using Wan2.2 (Wang et al.| [2025)
backbone. This baseline undergoes 10k steps of continued pretraining on our pretraining dataset,
followed by 14k steps of fine-tuning on each downstream task (RoboTwin and Vidarc), matching
our model’s fine-tuning budget and origin paper settings.

* Pi0.5 (Intelligence et al., 2025): A strong VLA baseline. Due to architectural and optimization
differences, Pi0.5 requires more steps to converge on the relatively scarce data for each task and
on extensive tasks. To ensure a fair comparison under the multi-task setting, we fine-tune it over
the whole dataset instead.

Our model is built upon the Vidar model that was fine-tuned on the downstream task as a weight
warm-up initial, augmented with a teacher-forcing mechanism during training, as detailed in Sec-
tion We fine-tune the model with 4k steps separately on each of the two downstream datasets
to adjust the model to capture the ability of causal generation. More training details are listed in
Appendix B} All models are evaluated on both the RoboTwin benchmark and our real-world deploy-
ment.

4.2 MAIN EXPERIMENTS
4.2.1 SIMULATION

Average success rates across 14 tasks and success rates for selected tasks are shown in Table [T}
where Vidarc achieves high success rates (C1). Vidarc is capable of performing complex tasks with
remarkable precision, such as grasping a roller using both arms and opening the articulated laptop.
Especially for tasks requiring precise bimanual collaborations, such as handing over the microphone,
Vidar achieves higher success rates than Vidar, demonstrating the benefits of closed-loop control.
Detailed success rates are provided in Table [6] Appendix



Table 1: Success rates of different methods and configurations over 14 tasks on the RoboTwin
benchmark, tested over 20 episodes. “Average*” means the average of all 14 tasks.

Handover Open  Place Can Place Cans

Method Average* Mic Laptop Basket Plasticbox
Pi0.5 52.9% 20.0% 30.0% 35.0% 15.0%
Vidar 71.1% 0.0% 50.0% 50.0% 0.0%
Vidarc 80.7 % 65.0% 55.0% 45.0% 85.0%
w/o Embodiment-aware 74.6% 50.0% 65.0% 20.0% 70.0%
w/o Closed-loop 66.8% 25.0% 40.0% 35.0% 50.0%

4.2.2 REAL-WORLD

Real-world experimental results are summarized in Table [2] where Vidarc achieves superior perfor-
mance over Vidar and Pi0.5 (C1). Across three scenarios, Vidarc achieves good generation ability
(C2) as well as adaptation to environmental changes (the dynamic case) with error correction abili-
ties (C3). Visualizations of error correction cases are shown in Figure 4] demonstrating the advan-
tages of our closed-loop control and acceleration methods. Detailed success rates are provided in
Table[7, Appendix [C]

Table 2: Success rates of different methods over real-world scenarios. “Dynamic” means we man-
ually change the position of the targeted object during execution. Vidarc achieves consistently high
success rates across all these scenarios.

Method Average Seen Unseen Dynamic
Pi0.5 41.0% 48.0% 28.0% 48.0%
Vidar 39.0% 72.0% 44.0% 0.0%

Vidarc (Ours) 56.0% 72.0% 56.0% 40.0%

4.2.3 SPEED EVALUATION

We also conduct a study on the inference speed of various approaches. All experiments are per-
formed under a unified task duration of 6.4 seconds of real-world execution time. We generate 64
frames for video models, as the video fps is 10. For Pi0.5, we generate 16 actions per chunk, 192
actions in total, as the control frequency of Pi0.5 is 30 Hz. All experiments run on a single NVIDIA
A100 GPU.

We evaluate performance mainly using two metrics: latency (measured by time to next chunk ex-
ecution) and end-to-end generation cost (total chunk generation time). As is shown in Table [3]
Vidar suffers from high latency due to its large chunk size and the quadratic complexity of its at-
tention operations; consequently, its latency equals its end-to-end cost, which is substantially high.
In contrast, Vidarc reduces latency by 91%, mainly benefiting from its causal generation mecha-
nism. With ongoing hardware advances and further model optimizations—such as quantization and
distillation—real-time video generation appears increasingly feasible.

Table 3: Inference speed of different methods (in seconds). Vidarc achieves a lower end-to-end cost
and a significantly lower latency than Vidar, making great achievements towards the traditionally
fast VLA method Pi0.5.

Method Latency Prefill Cost VAE Cost Diffusion Cost End-to-end Cost

Pi0.5 0.482 - - - 5.76
Vidar 343 - 6.25 26.9 343
Vidarc 3.03 0.896 6.45 10.3 242
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Mask
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Place The Apple On The Plate: The robot is instructed to pick up the apple and place it on the plate. During
movement, the position of the plate was changed (#0 — #1). The robot needs to: (1) pick up the green apple,
(2) try to place the apple, (3) identify the moved plate, (4) retry and place the apple as required.

Mask Prediction

Execution

Lift The Basket: The robot is instructed to lift the basket with both arms. During movement, the position of
the basket was changed (#0 — #1). The robot needs to: (1) align the grippers with the basket, (2) try to grasp
the basket, (3) realign the grippers with the moved basket, (4) retry and lift the basket as required.

Figure 4: Video predictions, corresponding masks, and executions of Vidarc for dynamic tasks,
where its error correction ability is observed.

4.3 ABLATION STUDY

We conduct ablation studies on the RoboTwin benchmark to systematically evaluate the contribu-
tions of (1) the embodiment-aware diffusion loss and (2) closed-loop control enabled by real-world
prefilling. As is shown in Table[T} removing embodiment-aware diffusion loss or closed-loop con-
trol lowers success rates, which provides solid evidence for C4. Detailed results are in Appendix [C]
where we also conduct a sensitivity analysis of the hyperparameter 7).

4.4 CASE STUDY

As illustrated in Figure[5]and Figure[f] a case study is presented to demonstrate how the re-prefilling
mechanism effectively bridges the gap between prediction and execution, thereby enhancing model
performance. The upper image sequence was execution environment, the under image was the
generated frames of the model.

5 RELATED WORK

Vision-Language-Action Methods for Robotics. Vision-Language-Action (VLA) models lever-
age natural language instructions as task conditions, enabling multi-task manipulation capabilities



Reprefill

J ol A IS LY LY L
£ it ALE 18 L et

e 33' | j ja
Frame 0 Frame 13 Frame 39 Frame 47

Wrong Imagination ~ Grounded Observation

w‘w‘i" w‘%i'l
¥

*-!|

Frame 48

Frame 50 Frame 65

Figure 5: Execution of the method with closed-loop feedback. At frame 47, the model was grounded
with real-world sensory data to correct generative drift, ensuring successful task execution.
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Figure 6: Execution of the method without closed-loop feedback. The model accumulates com-
pounding errors due to ungrounded imagination, leading to eventual task failure.

that go beyond traditional embodied policies such as Diffusion Policy 2023)), which are
typically restricted to single tasks. However, the main limitation of current VLA methods is their
dependence on enormous, task-conditioned datasets—often comprising thousands of trajectories.
The scarcity of such large-scale, richly annotated data severely curtails the broader application of
VLA models. Recent advances, including OpenVLA (Kim et all, 2024), Pi0 (Black et al.| [2024),
Pi0.5 (Intelligence et al.,[2025), and RDT-1B (Liu et al., 2024a)), have relied on millions of real robot
demonstrations spanning diverse embodiments. Despite the considerable scale of these datasets,
VLA models still struggle to generalize robustly to unseen tasks or novel environments. Thus, there
remains an urgent need for approaches that are both more data-efficient and more generalizable.

Video World Models for Robotics. Numerous studies have explored using video world models
to decouple image and action spaces. Early approaches (Ha & Schmidhuber} 2018}, [Schmidhuber]
utilized RNN-based models and controller architectures to encode visual information
and decode actions, respectively. Building on this, recent methods have further explored video-
action decoupling, primarily leveraging text-conditioned video generation (Du et al. Zhou
et al 2024} Bharadhwaj et all 2024), with extensions including long-horizon planning (Du et al.|
2024), 3D data utilization (Zhen et al.| 2025)), diverse datasets [2024), and joint video-
action latent spaces 2025). Despite all these advances, these methods still suffer from
physical inaccuracies, kinematic collapses, and susceptibility to background distractions, especially
when confronted with out-of-domain observations. To mitigate these limitations, subsequent work
such as Vidar extends this paradigm by introducing a two-stage framework for
video generation model training and a masked IDM that ignores visual distractors to focus on the
robot’s arms, thereby enhancing generalization to both novel tasks and backgrounds. However, it
still exhibits limited video-level controllability and significant computational overhead. In parallel,




efficient approaches such as Vidman (Wen et al., [2024) and VPP (Hu et al. |2024) have emerged,
prioritizing efficiency over the video-action decoupling principle. However, this design choice limits
their capability, as they do not model tasks entirely within the visual observation space. This under-
scores the need for a video world model that simultaneously ensures physical accuracy, optimizes
computational cost, and operates within the visual observation space.

Autoregressive Video Diffusion Models. State-of-the-art video generation methods, especially
those based on diffusion models, have achieved remarkable progress in the quality and temporal
consistency of synthesized content (Bao et al., [2024; Wang et al., [2025} |Gao et al.,|2025b). Inspired
by the success of autoregressive frameworks in language modeling, recent studies have increasingly
applied autoregressive strategies to video synthesis. Here, pre-trained text-to-video diffusion mod-
els generate future frames sequentially, conditioning on previously generated content—examples
include NOVA (Deng et al., [2025), NFD (Cheng et al.| [2025), Self-Forcing (Huang et al.| [2025),
Diffusion-Forcing (Chen et al., 2024), FAR (Gu et al., 2025), MAGI-1 (Teng et al., |2025), and
CausVid (Yin et al., 2025). This framework also supports interactive video generation, as demon-
strated by Matrix-Game 2.0 (He et al.| [2025b). However, a primary challenge remains: the sub-
stantial inference latency introduced by the iterative diffusion denoising process. To address this,
key-value (KV) caching is widely adopted to accelerate decoding during inference (Deng et al.,
2025; |He et al., [2025b; [Huang et al., 2025} |Yin et al.| 2025; [Teng et al., 2025} (Cheng et al., [2025)).
Since the timesteps of previous frames are fixed, features from denoised chunks can be cached and
efficiently reused for subsequent frames, eliminating redundant computations and significantly en-
hancing inference efficiency.

6 CONCLUSION

In this work, we presented Vidarc, a novel framework that integrates an autoregressive embodied
video diffusion model with a masked inverse dynamics model to address the challenges of fast,
precise control and generalization in data-limited embodied agent settings. By leveraging envi-
ronmental feedback for closed-loop control, adopting KV cache acceleration, and introducing an
embodiment-aware diffusion loss that highlights action-relevant regions, Vidarc overcomes key lim-
itations of existing video-based methods.

Extensive experiments demonstrate that Vidarc achieves significantly higher task success rates,
lower latency, and superior generalization to unseen platforms and environments, while also pro-
viding robust error correction in real time. Our results highlight the potential of video-based closed-
loop methods for scalable and adaptable embodied intelligence, and we believe Vidarc establishes a
new direction for efficient and transferable robot learning in complex, dynamic environments.

7 ETHICS STATEMENT

Vidarc offers the potential to develop generalist, low-latency robot policies with built-in error cor-
rection capabilities for real-world environments. However, deploying such systems in sensitive or
home settings may also introduce important safety and privacy concerns.

8 REPRODUCIBILITY STATEMENT

We include our code in the supplemental materials, covering both the video diffusion model and
the masked inverse dynamics model. To support reproducibility, we also plan to open-source our
code and model checkpoints. Appendix [A] provides a detailed description of our dataset, noting
that all pre-training datasets are publicly available. Additional information on training and inference
procedures is presented in Appendix [B]
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Table 4: Detailed information about pre-training and fine-tuning datasets.

Dataset Size Type Camera

Egodex 230,949 Human a movable front camera

Agibot 728,209 Genie-1 Robot a fixed high camera, a movable left arm cam-
era, and a movable right arm camera

RDT 6,083 Aloha Robot a fixed front camera, a movable left arm cam-

era, and a movable right arm camera
RoboMind Franka 9,589 Franka Robot a fixed camera on the opposite side, a fixed
left camera, and a fixed right camera
RoboMind Aloha 7,272 Aloha Robot a fixed front camera, a movable left arm cam-
era, and a movable right arm camera

RoboTwin 1,000 Aloha Robot a fixed rear camera, a movable left arm cam-
era, and a movable right arm camera
Vidarc 2,307 Aloha Robot a fixed rear camera, a movable left arm cam-

era, and a movable right arm camera

 ' Lf'.“{:
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Figure 7: Visualizations of datasets.

Egodex

A DATASET DETAILS

Detailed dataset information is shown in Table[d} For pre-training, we include human manipulation
videos as well as bimanual manipulation videos from 3 different embodiments and various camera
configurations. Notably, all these datasets are publicly available. For fine-tuning, we collect 1,000
episodes across 50 tasks on the RoboTwin benchmark; we also collect 2,307 episodes across 219
tasks on our target real-world platform. Notably, the camera and robotic arms for the fine-tuning
datasets are unseen and totally different from pre-training. We also provide visualizations of datasets
in Figure[7]

We adopt the unified observation space (Feng et al., 2025) for the formatting of all the datasets,
which forms a consistent resolution of 720 x 640.

B MODEL, TRAINING, AND INFERENCE DETAILS

B.1 TRAINING

The complete set of training hyperparameters is provided in Table 3]

For video-based models, input videos are downsampled to 10 frames per second (fps) and resized to
a resolution of 736 x640. To support classifier-free guidance, the text conditioning is replaced with
an empty string with a probability of 0.1 during training.

Our implementation of Vidar adopts the Wan2.2 backbone. The training proceeds in two stages: (i)
10,000 pretraining steps on our internal pretraining dataset, followed by (ii) 14,000 fine-tuning steps
on each downstream task (RoboTwin and Vidarc). This two-stage training consumes approximately
4,500 A100 GPU hours in total.

Vidarc is initialized from the reproduced Vidar model and further fine-tuned for an additional 4,000
steps on each downstream task. Notably, the Inverse Dynamics Model (IDM) is shared between
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Table 5: Hyperparameters for the training of our experiments.

Hyperparameter Vidar/Vidarc IDM Pi0.5
Number of Parameters 5 Billion 92 Million 2Billion
Learning Rate 2x107° 5x107%  25x 1075
Batch size 128 128 32
Warm-up 200 Steps 6k steps 1k steps
Optimizer AdamW AdamW AdamW
AdamW g3 (0.9,0.999)  (0.9,0.999) (0.9,0.95)
AdamW e 1078 1078 1078
AdamW Weight Decay 0.1 1072 1010

Vidar and Vidarc. The IDM is trained separately for 60,000 steps with a weighting coefficient
A=3x1073.

For Pi0.5, due to architectural and optimization differences that lead to slower convergence, we fine-
tune the model for 45,000 steps on the simulation dataset and 55,000 steps on the real-world dataset.
To ensure a fair comparison across methods, we do not perform task-specific fine-tuning within
individual tasks of the dataset (i.e., all tasks within a dataset share the same fine-tuned checkpoint).

B.2 INFERENCE

For the RoboTwin benchmark, we choose 20 sampling steps for both Vidarc and Vidar; the chunk
size of Vidarc is set as 16.

For the real-world test, we chose 5 sampling steps for Vidarc and 15 steps for Vidar. In the dynamic
scene, we choose a chunk size of 12 for Vidarc and 16 for all other settings.

In speed tests, Vidarc uses 5 sampling steps and generates 8 frames per chunk, whereas the Vidar
variant utilizes 20 sampling steps. With our chunk re-prefill method, Vidarc gains an extra 6%
end-to-end speed up compared with fully prefill (from 25.8s to 24.2s).

C ADDITIONAL RESULTS

The complete versions of our simulation and real-world experiments are shown in Table [6| and Ta-
ble

Detailed ablations are shown in Table[8]and Table[0] We can see that our modules do contribute to
the success rates, while the success rates remain high for a wide range of hyperparameter 7.

D HARDWARE DETAILS

Hardware details of our robot are shown in Figure [§|and Table [I0]

E USAGE OF LARGE LANGUAGE MODELS

We use large language models to aid and polish writing. We draft the content ourselves and then
use large language models to refine it, making the writing clearer, more structured, and easier to
understand.
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Table 6: Average success rates of different methods over the RoboTwin 2.0 benchmark. Vidarc
achieves higher average success rates across these methods.

Task Pi0.5 Vidar Vidarc
Click Alarmclock 70.0% 100.0% 100.0%
Click Bell 70.0% 95.0%  100.0%
Grab Roller 75.0% 100.0% 95.0%
Handover Mic 20.0% 0.0% 65.0%
Lift Pot 35.0% 90.0% 80.0%
Open Laptop 30.0%  50.0%  55.0%
Place A2B Left 10.0% 45.0% 35.0%
Place Burger Fries 75.0%  80.0%  80.0%
Place Can Basket 35.0% 50.0% 45.0%
Place Cans Plasticbox 15.0% 0.0% 85.0%
Press Stapler 60.0%  90.0% 100.0%
Shake Bottle 100.0% 100.0% 100.0%
Shake Bottle Horizontally = 80.0%  100.0% 100.0%
Stack Bowls Two 65.0% 95.0% 90.0%
Average 529%  T71.1%  80.7%

Table 7: Real-world evaluations for different methods under three scenarios. The notations “L”, “R”,
and “B” denote the left arm, right arm, and both arms, respectively. Vidarc achieves consistently
high average success rates across these scenarios.

Seen Vidarc Vidar Pi0.5

Dump the Waste Paper -R  60.0%  100.0%  40.0%
Dump the Waste Paper-L  80.0%  80.0%  100.0%

Grasp the Radish - L 100.0% 80.0%  60.0%
Wipe Table - L 60.0% 40.0%  20.0%
Lift the Basket - B 60.0% 60.0%  20.0%
Average 72.0%  72.0%  48.0%
Unseen Vidarc Vidar Pi0.5
Place the Eggplant - L 40.0%  80.0%  20.0%
Place the Cube - L 60.0%  40.0%  60.0%
Place the Cube - R 40.0% 0.0% 20.0%
Tap Number One - L 100.0% 100.0%  0.0%
Place Steel Wool - R 40.0% 0.0% 40.0%
Average 56.0%  44.0%  28.0%
Dynamic Vidarc Vidar Pi0.5

Dump the Waste Paper - R~ 20.0% 0.0% 20.0%
Dump the Waste Paper -L. ~ 20.0% 0.0% 40.0%
Place the Yellow Item - L 60.0% 0.0% 80.0%

Lift the Basket - B 60.0% 0.0% 0.0%

Place the Apple - R 40.0% 0.0%  100.0%
Average 40.0% 0.0% 48.0%
All Average 56.0% 39.0%  41.0%
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Table 8: Average success rates of different configurations over the RoboTwin 2.0 benchmark. “w/o
Embodiment-aware” means using the vanilla diffusion loss, and “w/o Closed-loop” means inferring
60 frames using one environmental frame each time.

Task Vidarc  w/o Embodiment-aware ~ w/o Closed-loop
Click Alarmclock 100.0% 100.0% 100.0%
Click Bell 100.0% 100.0% 100.0%
Grab Roller 95.0% 75.0% 95.0%
Handover Mic 65.0% 50.0% 25.0%
Lift Pot 80.0% 75.0% 55.0%
Open Laptop 55.0% 65.0% 40.0%
Place A2B Left 35.0% 35.0% 35.0%
Place Burger Fries 80.0% 80.0% 55.0%
Place Can Basket 45.0% 20.0% 35.0%
Place Cans Plasticbox 85.0% 70.0% 50.0%
Press Stapler 100.0% 95.0% 100.0%
Shake Bottle 100.0% 100.0% 95.0%
Shake Bottle Horizontally  100.0% 100.0% 95.0%
Stack Bowls Two 90.0% 80.0% 55.0%
Average 80.7% 74.6% 66.8%

Table 9: Average success rates of different configurations over the RoboTwin 2.0 benchmark. 7 is
the weight hyperparameter in the embodiment-aware loss, and n = 0 case degrades to the vanilla
diffusion loss.

Task Vidarc (n = 0) Vidarc (n = 3) Vidarc (n = 10)

Click Alarmclock 100.0% 100.0% 100.0%

Click Bell 100.0% 100.0% 100.0%

Grab Roller 75.0% 95.0% 85.0%

Handover Mic 50.0% 65.0% 50.0%

Lift Pot 75.0% 80.0% 65.0%

Open Laptop 65.0% 55.0% 65.0%

Place A2B Left 35.0% 35.0% 30.0%

Place Burger Fries 80.0% 80.0% 85.0%

Place Can Basket 20.0% 45.0% 35.0%

Place Cans Plasticbox 70.0% 85.0% 85.0%

Press Stapler 95.0% 100.0% 95.0%

Shake Bottle 100.0% 100.0% 100.0%

Shake Bottle Horizontally 100.0% 100.0% 100.0%

Stack Bowls Two 80.0% 90.0% 85.0%

Average 74.6% 80.7% 77.1%

Table 10: Hardware Information.

Parameters Values
Cameras 3 RGB Cameras
Degree of Freedom 14
Arm weight 3.9kg
Arm Valid Payload 1.0kg
Arm Reach 0.6 m
Arm Repeatability 1mm
Gripper Range 0 - 80 mm
Gripper Max Force 10N

Figure 8: Our robotic platform.
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