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Abstract

Knowledge Distillation (KD) has been validated as an
effective model compression technique for learning com-
pact object detectors. Existing state-of-the-art KD methods
for object detection are mostly based on feature imitation.
In this paper, we present a general and effective prediction
mimicking distillation scheme, called CrossKD, which de-
livers the intermediate features of the student’s detection
head to the teacher’s detection head. The resulting cross-
head predictions are then forced to mimic the teacher’s pre-
dictions. This manner relieves the student’s head from re-
ceiving contradictory supervision signals from the annota-
tions and the teacher’s predictions, greatly improving the
student’s detection performance. Moreover, as mimicking
the teacher’s predictions is the target of KD, CrossKD of-
fers more task-oriented information in contrast with feature
imitation. On MS COCO, with only prediction mimicking
losses applied, our CrossKD boosts the average precision
of GFL ResNet-50 with 1× training schedule from 40.2 to
43.7, outperforming all existing KD methods. In addition,
our method also works well when distilling detectors with
heterogeneous backbones.

1. Introduction

Knowledge Distillation (KD), serving as a model compres-
sion technique, has been deeply studied in object detec-
tion [5, 13, 29, 31, 56, 60, 61, 74, 75] and has received
excellent performance recently. According to the distil-
lation position of the detectors, existing KD methods can
be roughly classified into two categories: prediction mim-
icking and feature imitation. Prediction mimicking (See
Fig. 1(a)) was first proposed in [24], which points out that
the smooth distribution of the teacher’s predictions is more
comfortable for the student to learn than the Dirac distribu-

*Equal contribution.
†Corresponding author.

Figure 1. Comparisons between conventional KD methods and
our CrossKD. Rather than explicitly enforcing the consistency
between the intermediate feature maps or the predictions of the
teacher-student pair, CrossKD implicitly builds the connection be-
tween the heads of the teacher-student pair to improve the distilla-
tion efficiency.

tion of the ground truths. In other words, prediction mim-
icking forces the student to resemble the prediction distri-
bution of the teacher. Differently, feature imitation (See
Fig. 1(b)) follows the idea proposed in FitNet [54], which
argues that intermediate features contain more information
than the predictions from the teacher. It aims to enforce the
feature consistency between the teacher-student pair.

Prediction mimicking plays a vital role in distilling ob-
ject detection models. However, it has been observed to be
inefficient than feature imitation for a long time. Recently,
Zheng et al. [74] proposed a localization distillation (LD)
method that improves prediction mimicking by transferring
localization knowledge, which pushes the prediction mim-
icking to a new level. Despite just catching up with the ad-
vanced feature imitation methods, e.g., PKD [5], LD shows
that prediction mimicking has the ability to transfer task-
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Figure 2. Visualizations of the classification predictions from the GFL [35]. (a) and (b) are ground truth and distillation targets. (c) and (d)
are the classification outputs predicted by models training with conventional prediction mimicking and proposed CrossKD. In the green
circled areas, the distillation targets predicted by the teacher have a large discrepancy with the ground-truth targets assigned to the student.
prediction mimicking forces the student to mimic the teacher, while CrossKD can smooth the mimicking process.

specific knowledge, which benefits the student from the or-
thogonal aspect to feature imitation. This motivates us to
further explore and improve prediction mimicking.

Through investigation, we observe that conventional pre-
diction mimicking may suffer from a conflict between the
ground-truth targets from the student’s assigner and the dis-
tillation targets predicted from the teacher. When train-
ing a detector with prediction mimicking, the student’s pre-
dictions are forced to mimic both the ground-truth targets
and the teacher’s predictions simultaneously. However, the
distillation targets predicted by the teacher usually have
a large discrepancy with the ground-truth targets assigned
to the student. As shown in Fig. 2(a) and Fig. 2(b), the
teacher produces class probabilities in the green circled ar-
eas, which conflicts with the ground-truth targets assigned
to the student. As a result, the student detector experiences
a contradictory learning process during distillation, which
seriously interferes with optimization.

To alleviate the above conflict, previous prediction mim-
icking methods [13, 19, 74] tend to conduct the distillation
within regions containing mediate teacher-student discrep-
ancies. However, we argue that the heavily uncertain re-
gions generally accommodate more information that is ben-
eficial to the student. In this paper, we present a novel
cross-head knowledge distillation pipeline, abbreviated as
CrossKD. As illustrated in Fig. 1(c), We propose to feed the
intermediate features from the head of the student to that of
the teacher, yielding the cross-head predictions. Then, the
KD operations can be conducted between the new cross-
head predictions and the teacher’s predictions.

Despite its simplicity, CrossKD offers the following two
main advantages. First, since both the cross-head predic-
tions and the teacher’s predictions are produced by sharing
part of the teacher’s detection head, the cross-head predic-
tions are relatively consistent with the teacher’s predictions.
This relieves the discrepancy between the teacher-student
pair and enhances the training stability of prediction mim-
icking. In addition, as mimicking the teacher’s predictions

is the target of KD, CrossKD is theoretically optimal and
can offer more task-oriented information compared with
feature imitation. Both advantages enable our CrossKD to
efficiently distill knowledge from the teacher’s predictions
and hence result in even better performance than previous
state-of-the-art feature imitation methods.

Without bells and whistles, our method can significantly
boost the performance of the student detector, achieving a
faster training convergence. Comprehensive experiments on
the COCO [40] dataset are conducted in this paper to elabo-
rate the effectiveness of CrossKD. Specifically, with only
prediction mimicking losses applied, CrossKD achieves
43.7 AP on GFL with 1× training schedule, which is 3.5
AP higher than the baseline, surpassing all previous state-
of-the-art object detection KD methods. Moreover, exper-
iments also indicate our CrossKD is orthogonal to feature
imitation methods. By combining CrossKD with the state-
of-the-art feature imitation method, like PKD [5], we fur-
ther achieve 43.9 AP on GFL. Furthermore, we also show
that our method can be used to distill detectors with hetero-
geneous backbones and performs better than other methods.

2. Related Work
2.1. Object Detection

Object detection is one of the most fundamental computer
vision tasks, which requires recognizing and localizing ob-
jects simultaneously. Modern object detectors can be briefly
divided into two categories: one-stage [3, 10, 11, 35, 39,
51, 57, 70] detectors and two-stage [8, 17, 18, 20, 21,
38, 52, 58, 73] detectors. Among them, one-stage detec-
tors, also known as dense detectors, have emerged as the
mainstream trend in detection due to their excellent speed-
accuracy trade-off.

Dense object detectors have received great attention
since YOLOv1 [49]. Typically, YOLO series detectors [2,
16, 44, 49–51] attempt to balance the model size and their
accuracy to meet the requirement of real-world applica-
tions. Anchor-free detectors [27, 57, 76] attempt to dis-



card the design of anchor boxes to avoid time-consuming
box operations and cumbersome hyper-parameter tuning.
Dynamic label assignment methods [15, 47, 70] are pro-
posed to better define the positive and negative samples
for model learning. GFL [34, 35] introduces Quality Fo-
cal Loss (QFL) and a Distribution-Guided Quality Pre-
dictor to increase the consistency between the classifica-
tion score and the localization quality. It also models the
bounding box representation as a probability distribution
so that it can capture the localization ambiguity of the box
edges. Recently, attributing to the strong ability of the trans-
former block to encode expressive features, DETR fam-
ily [4, 6, 30, 42, 45, 68, 77] has become a new trend in
the object detection community.

2.2. Knowledge Distillation for Object Detection

Knowledge Distillation (KD) is an effective technique to
transfer knowledge from a large-scale teacher model to a
small-scale student model. It has been widely studied in
the classification task [12, 23, 26, 36, 37, 46, 48, 54, 63,
67, 71, 72], but it is still challenging to distill detection
models because of the extreme background ratio. The pi-
oneer work [7] proposes the first distillation framework
for object detection by simply combining feature imitation
and prediction mimicking. Since then, feature imitation
has attracted more and more research attention. Typically,
some works [13, 25, 33, 61] focus on selecting effective
distillation regions for better feature imitation, while other
works [19, 31, 75] aim to weight the imitation loss better.
There are also methods [5, 65, 66, 69] attempting to de-
sign new teacher-student consistency functions, aiming to
explore more consistency information or release the strict
limit of the MSE loss.

As the earliest distillation strategy proposed in [24], pre-
diction mimicking plays a vital role in classification distilla-
tion. Recently, some improved prediction mimicking meth-
ods have been proposed to adapt to object detection. For
example, Rank Mimicking [31] regards the score rank of
the teacher as a kind of knowledge and aims to force the
student to rank instances as the teacher. LD [74] proposes
to distill the localization distribution of bounding box [35]
to transfer localization knowledge. In this paper, we con-
struct a CrossKD pipeline which separates detection and
distillation into different heads to alleviate the target con-
flict problem of prediction mimicking. It’s worth noting
that HEAD [59] delivers the student features to an indepen-
dent assistant head to bridge the gap between heterogeneous
teacher-student pairs. In contrast, we observe that sim-
ply delivering the student feature to the teacher is effective
enough to achieve SOTA results. This makes our method
quite concise and different from HEAD. Our method is also
related to [1, 28, 32, 64], but all of them aim to distill clas-
sification models and are not tailored for object detection.

0.1 0.2 0.3 0.4 0.5
Threshold

0.5

1.0 RetinaNet ATSS GFL

Figure 3. Statistics of the target conflict degree between stu-
dent (GFL-R50) and teacher (GFL-R101, ATSS-R101, RetinaNet-
R101). X-axis is the teacher-student discrepancy threshold for
conflict areas. Y-axis represents the ratios of the target conflict
areas to the positive areas.

3. Methodology
3.1. Analysis of the Target Conflict Problem

Target conflict is a common issue confronted in conven-
tional prediction mimicking methods. In contrast to the
classification task, which assigns a specific category to ev-
ery image, the labels in advanced detectors are usually dy-
namically assigned and not deterministic. Typically, detec-
tors depend on a hand-crafted principle, i.e., assigner, to
determine the label in each location. In most cases, detec-
tors cannot reproduce the assigner’s labels exactly, which
results in a conflict between the teacher-student targets in
KD. Furthermore, the inconsistency of the assigners of the
student and teacher in real-world scenarios extends the dis-
tance between the ground-truth and distillation targets.

To quantitatively measure the degree of target conflict,
we statistic the ratios of conflict areas to the positive areas
under different teacher-student discrepancy in the COCO
minival dataset and report the results in Fig. 3. As we can
see, even if both the teacher (ATSS [70] and GFL [35])
and student (GFL) have the same label assignment strategy,
there are still numerous locations that have a discrepancy
larger than 0.5 between the ground-truth and distillation tar-
gets, respectively. When we use a teacher with a different
assigner (RetinaNet) to distill the student (GFL), the con-
flict areas increases by a large margin. More experiments
in Sec. 4.5 also demonstrate that the target conflict problem
severely hinders the performance of prediction mimicking.

Despite the large influence of target conflict, this prob-
lem has been neglected for a long time in previous predic-
tion mimicking methods [24, 31]. These methods intend
to directly minimize the discrepancy between the teacher-
student predictions. Its objective can be described as:

LKD =
1

|S|
∑
r∈R

S(r)Dpred(p
s(r),pt(r)), (1)

where ps and pt are the prediction vectors generated by the
detection heads of the student and the teacher, respectively.
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Figure 4. Overall framework of the proposed CrossKD. For a given teacher-student pair, CrossKD first delivers the intermediate features of
the student into the teacher layers and generates the cross-head predictions p̂s. Then, distillation losses are calculated between the original
teacher’s predictions and the cross-head predictions of the student. In back-propagation, the gradients with respect to the detection loss
normally pass through the student detection head, while the distillation gradients propagate through the frozen teacher layers.

Dpred(·) refers to the loss function calculating the discrep-
ancy between ps and pt, e.g., KL Divergence [24] for clas-
sification, L1 Loss [7] and LD [74] for regression. S(·) is
the region selection principle which produces a weight at
each position r in the entire image region R.

It’s worth noting that S(·), to a certain extent, can al-
leviate the target conflict problem by down-weighting the
regions with large teacher-student discrepancies. However,
the heavily uncertain regions usually accommodate more
information benefits for the student than undisputed areas.
Ignoring those regions may have a large impact on the effec-
tiveness of prediction mimicking methods. Consequently,
to push the envelope of prediction mimicking, it is neces-
sary to handle the target conflict problem gracefully instead
of directly down-weighting.

3.2. Cross-Head Knowledge Distillation

As described in Sec. 3.1, we observe that directly mim-
icking the predictions of the teacher confronts the tar-
get conflict problem, which hinders prediction mimicking
achieving promising performance. To alleviate this prob-
lem, we present a novel Cross-head Knowledge Distillation
(CrossKD) in this section. The overall framework is illus-
trated in Fig. 4. Like many previous prediction mimicking
methods, our CrossKD performs the distillation process on
the predictions. Differently, CrossKD delivers the interme-
diate features of the student to the teacher’s detection head
and generates cross-head predictions to conduct distillation.

Given a dense detector, like RetinaNet [39], each detec-
tion head usually consists of a sequence of convolutional
layers, represented as {Ci}. For simplicity, we suppose
there are totally n convolutional layers in each detection
head (e.g., 5 in RetinaNet with 4 hidden layers and 1 pre-
diction layer). We use fi, i ∈ {1, 2, · · · , n − 1} to denote
the feature maps produced by Ci and f0 the input feature

maps of C1. The predictions p are generated by the last
convolutional layer Cn. Thus, for a given teacher-student
pair, the predictions of the teacher and the student can be
represented as pt and ps, respectively.

Besides the original predictions from the teacher and the
student, CrossKD additionally delivers the student’s inter-
mediate features fs

i , i ∈ {1, 2, · · · , n − 1} to Ct
i+1, the

(i+1)-th convolutional layer of the teacher’s detection head,
resulting in the cross-head predictions p̂s. Given p̂s, instead
of computing the KD loss between ps and pt, we propose to
use the KD loss between the cross-head predictions p̂s and
the original predictions of the teacher pt as the objective of
our CrossKD, which is described as follows:

LCrossKD =
1

|S|
∑
r∈R

S(r)Dpred(p̂
s(r),pt(r)), (2)

where S(·) and |S| are the region selection principle and
the normalization factor. Instead of designing complicated
S(·), we equally conduct distillation between p̂s and pt

over the entire prediction map. Specifically, S(·) is a con-
stant function with the value of 1 in our CrossKD. Accord-
ing to the different tasks of each branch (e.g., classification
or regression), we perform different types of Dpred(·) to ef-
fectively deliver task-specific knowledge to the student.

By performing CrossKD, the detection loss and the dis-
tillation loss are separately applied to different branches. As
illustrated in Fig. 4, the gradients of the detection loss pass
through the entire head of the student, while the gradients of
distillation loss propagate through the frozen teacher layers
to the latent features of the student, which heuristically in-
creases the consistency between the teacher and the student.
Compared to directly closing the predictions between the
teacher-student pair, CrossKD allows part of the student’s
detection head to be only relative with detection losses, re-



Table 1. Effectiveness of applying CrossKD at different positions.
The index i represents the intermediate features used as input in
the cross-head branches. ‘LD’ means the direct application of
prediction mimicking on the student’s head with LD [74]. The
teacher-student pair is GFL with ResNet-50 and ResNet-18 back-
bones. We can see that i = 3 yields the best performance in this
experiment.

i AP AP50 AP75 APS APM APL

- 35.8 53.1 38.2 18.9 38.9 47.9

0 38.2 55.6 41.3 20.2 41.9 50.9
1 38.3 55.8 41.1 20.8 42.1 49.8
2 38.6 56.2 41.5 20.8 42.7 50.7
3 38.7 56.3 41.6 21.1 42.2 51.1
4 38.2 55.7 41.2 20.3 41.9 50.2

LD 37.8 55.5 40.5 20.0 41.4 49.5

sulting in a better optimization towards ground-truth targets.
Quantitative analysis is presented in our experiment section.

3.3. Optimization Objectives

The overall loss for training can be formulated as the
weighted sum of the detection loss and the distillation loss,
written as:

L = Lcls(p
s
cls,p

gt
cls) + Lreg(p

s
reg,p

gt
reg)

+ Lcls
CrossKD(p̂

s
cls,p

t
cls) + Lreg

CrossKD(p̂
s
reg,p

t
reg),

(3)

where Lcls and Lreg stand for the detection losses which
are calculated between the student predictions ps

cls, p
s
reg and

their corresponding ground truth targets pgt
cls, p

gt
reg. The ad-

ditional CrossKD losses are represented as Lcls
CrossKD and

Lreg
CrossKD, which are performed between the cross-head pre-

dictions p̂s
cls, p̂

s
reg and the teacher’s predictions pt

cls, p
t
reg.

We apply different distance functions Dpred to transfer
task-specific information in different branches. In the clas-
sification branch, we regard the classification scores pre-
dicted by the teacher as the soft labels and directly use Qual-
ity Focal Loss (QFL) proposed in GFL [35] to pull close the
teacher-student distance. As for regression, there are mainly
two types of regression forms presenting in dense detec-
tors. The first regression form directly regresses the bound-
ing boxes from the anchor boxes (e.g., RetinaNet [39],
ATSS [70]) or points (e.g., FCOS [57]). In this case, we
directly use GIoU [53] as Dpred. In the other situation, the
regression form predicts a vector to represent the distribu-
tion of box location (e.g., GFL [35]), which contains richer
information than the Dirac distribution of the bounding box
representation. To efficiently distill the knowledge of loca-
tion distribution, we employ KL divergence, like LD [74],
to transfer localization knowledge. More details about the
loss functions are given in the supplementary materials.

Table 2. Comparisons between feature imitation and CrossKD.
we choose advanced PKD to represent feature imitation and apply
PKD to different positions to compare with CrossKD fairly. Here,
‘neck’ means performing PKD on the FPN neck. ’cls’ and ’reg’
indicate applying PKD to the classification branch and the regres-
sion, respectively. The teacher-student pair is GFL with ResNet-50
and ResNet-18 backbones.

Methods AP AP50 AP75 APS APM APL

- 35.8 53.1 38.2 18.9 38.9 47.9

PKD:neck 38.0 55.0 41.2 19.6 41.5 50.2
PKD:cls 37.5 54.9 40.5 19.5 41.1 50.5
PKD:reg 37.2 54.0 40.2 19.0 40.9 50.0
PKD:cls+reg 37.3 54.3 40.0 19.2 41.1 49.8

CrossKD 38.7 56.3 41.6 21.1 42.2 51.1

4. Experiments
4.1. Implement Details

We evaluate the proposed method on the large-scale MS
COCO [40] benchmark as done in most previous works. To
ensure consistency with the standard practice, we use the
trainval135k set (115K images) for training and the minival
set (5K images) for validation. For evaluation, the standard
COCO-style measurement, i.e., Average Precision (AP), is
used. We also report mAP with IoU thresholds of 0.5 and
0.75, as well as AP for small, medium, and large objects.
Our proposed method, CrossKD, is implemented under the
MMDetection [9] framework in Python. For a fair compar-
ison, all experiments are developed using 8 Nvidia V100
GPUs with a minibatch of two images per GPU. Unless
otherwise stated, all the hyper-parameters follow the default
settings of the corresponding student model for both train-
ing and testing.

4.2. Method Analysis

To investigate the effectiveness of our method, we conduct
extensive ablation experiments based on GFL [35]. If not
specified, we use GFL with the ResNet-50 backbone [22]
as the teacher detector and use the ResNet-18 backbone in
the student detector. The accuracy of the teacher and the
student are 40.2 AP and 35.8 AP, respectively. All experi-
ments follow the default 1× training schedule (12 epochs).

Positions to apply CrossKD. As described in Sec. 3.2,
CrossKD delivers the i-th intermediate feature of the stu-
dent to part of the teacher’s head. Here, we conduct dis-
tillation on both classification and box regression branches.
When i = 0, CrossKD directly feeds the student’s FPN fea-
tures into the teacher’s head. In this case, the entire stu-
dent’s head is only supervised by the detection loss, and no
distillation loss is involved. As i gradually increases, more
layers of the student’s head are jointly affected by the detec-
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Figure 5. Visualizations of the gradients w.r.t feature imitation and CrossKD. The visualization demonstrates that our CrossKD guided by
prediction mimicking can effectively focus on the potentially valuable regions.

Table 3. Effectiveness of CrossKD on different branches. We sep-
arately apply CrossKD on the classification (cls) and regression
(reg) branches. The teacher-student pair is GFL with ResNet-50
and ResNet-18 backbones.

cls reg
LD CrossKD

AP AP50 AP75 AP AP50 AP75

✓ 37.3 55.2 40.0 37.7 55.6 40.2
✓ 36.8 53.8 39.6 37.2 54.0 40.0

✓ ✓ 37.8 55.4 40.5 38.7 56.3 41.6

tion loss and the distillation loss. When i = n, our method
degrades to the original prediction mimicking, where the
distillation loss will be directly performed between the two
predictions of the teacher-student pair.

In Tab. 1, we report the results of performing CrossKD
on different intermediate features. One can see that our
CrossKD can improve the distillation performance for all
the choices of i. Notably, when using the 3-rd intermediate
features, CrossKD reaches the best performance of 38.7 AP,
which is 0.9 AP higher than the recent state-of-the-art pre-
diction mimicking method LD [74]. This suggests that not
all layers in the student’s head need to be isolated from the
influence of the distillation loss. Therefore, we use i = 3 as
the default setting in all subsequent experiments.

CrossKD v.s. Feature Imitation. We compare CrossKD
with the advanced feature imitation method PKD [5]. For a
fair comparison, we perform PKD on the same positions as
our CrossKD, including FPN features and the third layer of
detection heads. The results are reported in Tab. 2. It can
be seen that PKD can achieve 38.0 AP when it is applied
between the FPN features of the teacher-student pair. On
the detection head, PKD even shows a performance drop.
In contrast, our CrossKD achieves 38.7 AP, which is 0.7
AP higher than PKD applied on the FPN features.

To further investigate the advantage of CrossKD, we vi-
sualize the gradients on the latent features of the detection

Table 4. Collective effect of CrossKD and prediction mimicking.
The teacher-student pair is GFL with ResNet-50 and ResNet-18
backbones.

CrossKD LD AP AP50 AP75 APS APM APL

- - 35.8 53.1 38.2 18.9 38.9 47.9

✓ 38.7 56.3 41.6 21.1 42.2 51.1
✓ 37.8 55.5 40.5 20.0 41.4 49.5

✓ ✓ 38.1 55.6 40.9 20.4 41.6 51.1

head, as shown in Fig. 5. As illustrated, the gradients gen-
erated by PKD have a large and wide impact on the entire
feature maps, which is inefficient and not targeted. On the
contrary, the gradients generated by CrossKD can focus on
potential semantic areas with objects of interest.

CrossKD v.s. Prediction Mimicking. We begin by sep-
arately performing prediction mimicking and CrossKD on
the classification and box regression branches. The results
are reported in Tab. 3. One can see that replacing predic-
tion mimicking with CrossKD leads to a stable performance
gain regardless of classification or regression branches.
Specifically, prediction mimicking produces 37.3 AP and
36.8 AP on the classification and regression branches, re-
spectively, while CrossKD yields 37.7 AP and 37.2 AP, rep-
resenting a consistent improvement over the corresponding
results of prediction mimicking. If KD is performed on the
two branches, our method can still outperform prediction
mimicking by +0.9 AP. Moreover, we further evaluate the
collective effect of prediction mimicking and CrossKD, as
shown in Tab. 4. Intriguingly, we observe that using both
prediction mimicking and CrossKD together yields a final
result of 38.1 AP, which is even lower than the result of
using CrossKD alone. We believe that this is because the
prediction mimicking introduces the target conflict problem
again, which makes the student model struggle to learn.

In addition, we visualize the statistical variation during
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Figure 6. Visualization for the variation of statistics during training. (a) Curves of average L1 distance between student predictions ps and
teacher’s pt. (b) Curves of average L1 distance between student predictions ps and positive ground truth targets pgt. (c) Curves of Average
Precision (AP). All curves are evaluated on the COCO minival set. X-axis refers to the epoch number. Y-axis in (a) and (b) indicate the
average L1 distance, while in (c) means the value of AP.

Table 5. Comparison with state-of-the-art detection KD meth-
ods on COCO. * denotes results are referenced from LD [74] and
PKD [5]. All results are evaluated on the COCO minival set.

Method AP AP50 AP75 APS APM APL

GFL-R101 (T) 44.9 63.1 49.0 28.0 49.1 57.2
GFL-R50 (S) 40.2 58.4 43.3 23.3 44.0 52.2

FitNets* [54] 40.7 (0.5↑) 58.6 44.0 23.7 44.4 53.2
Inside GT Box* 40.7 (0.5↑) 58.6 44.2 23.1 44.5 53.5
Defeat* [19] 40.8 (0.6↑) 58.6 44.2 24.3 44.6 53.7
Main Region* [74] 41.1 (0.9↑) 58.7 44.4 24.1 44.6 53.6
Fine-Grained* [62] 41.1 (0.9↑) 58.8 44.8 23.3 45.4 53.1
FGD [65] 41.3 (1.1↑) 58.8 44.8 24.5 45.6 53.0
GID* [13] 41.5 (1.3↑) 59.6 45.2 24.3 45.7 53.6
SKD [14] 42.3 (2.1↑) 60.2 45.9 24.4 46.7 55.6
LD [74] 43.0 (2.8↑) 61.6 46.6 25.5 47.0 55.8
PKD* [5] 43.3 (3.1↑) 61.3 46.9 25.2 47.9 56.2

CrossKD 43.7 (3.5↑) 62.1 47.4 26.9 48.0 56.2
CrossKD+PKD 43.9 (3.7↑) 62.0 47.7 26.4 48.5 57.0

training to conduct further analysis on CrossKD and predic-
tion mimicking. We first calculate the L1 distances between
the student’s predictions ps and the teacher’s predictions
pt, as well as the ground-truth targets pgt at each epoch.
As plotted in Fig. 6(a), the distance L1(p

s,pt) can be re-
duced significantly by our CrossKD, while it is reasonable
for the prediction mimicking to achieve the lowest distance
as the distillation is directly imposed on ps. However, as the
optimization target conflict exists, the prediction mimick-
ing involves a contradictory optimization process, thereby
generally yielding a larger distance L1(p

s,pgt) than our
CrossKD, as shown in Fig. 6(b). In Fig. 6(c), our method
shows a faster training process and achieves the best perfor-
mance of 37.8 AP.

Table 6. CrossKD for detectors with homogeneous backbones.
Teacher detectors use ResNet-101 as the backbone, while the stu-
dents use ResNet-50 as the backbone. All results are evaluated on
the COCO minival set.

Student Methods AP AP50 AP75 APS APM APL

RetinaNet [39]
R101 38.9 58.0 41.5 21.0 32.8 52.4
R50 37.4 56.7 39.6 20.0 40.7 49.7

CrossKD 39.7 58.9 42.5 22.4 43.6 52.8

FCOS [57]
R101 40.8 60.0 44.0 24.2 44.3 52.4
R50 38.5 57.7 41.0 21.9 42.8 48.6

CrossKD 41.3 60.6 44.2 25.1 45.5 52.4

ATSS [70]
R101 41.5 59.9 45.2 24.2 45.9 53.3
R50 39.4 57.6 42.8 23.6 42.9 50.3

CrossKD 41.8 60.1 45.4 24.9 45.9 54.2

4.3. Comparison with SOTA KD Methods

In this section, we evaluate various state-of-the-art object
detection KD methods on the GFL [35] framework and
fairly compare them with our proposed CrossKD. We use
ResNet-101 as the backbone for the teacher detector, which
is trained with a 2× schedule and multi-scale augmenta-
tion. For the student detector, we adopt the ResNet-50 back-
bone. We train the student with the 1× schedule. The pre-
trained checkpoint of the teacher is directly borrowed from
the MMDetection[9] model zoo.

We report all results in Tab. 5. As we can see, at the
same condition, CrossKD can achieve 43.7 AP without bells
and whistles, which improves the accuracy of the student
by 3.5 AP, outperforming all other state-of-the-art methods.
Notably, CrossKD surpasses the advanced feature imitation
method PKD by 0.4 AP and surpasses the advanced predic-
tion mimicking method LD by 0.7 AP, demonstrating the
effectiveness of CrossKD. In addition, we also observe that



Table 7. CrossKD for teacher-student pairs with different label
assigners. All results are evaluated on the COCO minival set.

Methods AP AP50 AP75 APS APM APL

GFL-R50 (S) 40.2 58.4 43.3 23.3 44.0 52.2
ATSS[70]-R101 (T) 41.5 59.9 45.2 24.2 45.9 53.3

KD 39.7 57.9 42.8 21.8 44.2 51.5
CrossKD 42.1 60.5 45.7 24.5 46.3 54.5

GFL-R50 (S) 40.2 58.4 43.3 23.3 44.0 52.2
Retinanet[39]-R101 (T) 38.9 58.0 41.5 21.0 32.8 52.4

KD 30.3 49.2 31.2 20.0 38.1 34.4
CrossKD 41.2 59.4 44.8 24.0 45.1 53.5

CrossKD is also orthogonal to the feature imitation meth-
ods. With the help of PKD, CrossKD achieves the high-
est results of 43.9 AP, achieving an improvement of 3.7 AP
compared to the baseline.

4.4. CrossKD on Different Detectors

Besides performing CrossKD on GFL, we select three com-
monly used detectors, i.e., RetinaNet[39], FCOS [57], and
ATSS [70], to investigate the effectiveness of CrossKD. We
strictly follow the student settings for training and refer-
ence the teacher and student results from the MMDetection
model zoo. The results are presented in Tab. 6. As shown
in Tab. 6, CrossKD significantly boosts the performance of
all three types of detectors. Specifically, RetinaNet, FCOS,
and ATSS with our CrossKD achieve 39.7 AP, 41.3 AP, and
41.8 AP, respectively, which are 2.3 AP, 2.8 AP, and 2.4 AP
higher than their corresponding baselines. All results after
distillation even outperform the original teachers, indicating
that CrossKD can work well on different dense detectors.

4.5. Distillation under Severe Target Conflict

In this subsection, we perform prediction mimicking and
our CrossKD between detectors with different assigners to
explore the effectiveness of CrossKD against the target con-
flict problem. As shown in Tab. 7, the target conflict prob-
lem has a large impact on the optimization of the student,
leading to an inferior performance. Specifically, predic-
tion mimicking reduces the AP to 30.3 with the teacher as
RetinaNet which has a different assigner with GFL. Fur-
thermore, even if the ATSS has the same assigner as GFL,
the student’s AP is only distilled to 39.7, falling below the
performance without KD. In contrast, CrossKD can still sig-
nificantly improve the student’s accuracy even if existing a
large discrepancies between the ground-truth and distilla-
tion targets. CrossKD boosts the accuracy of GFL-R50 to
42.1 (+1.9 AP) when applying ATSS as the teacher. Even
guided by a weak teacher ReitnaNet, CrossKD still im-
proves the performance of GFL-R50 to 41.2 AP, 1.0 AP
higher than the baseline. This demonstrates how robust our

Table 8. CrossKD for other detector pairs with Heterogeneous
Backbones. For convenience, only the backbone lists below, where
‘SwinT’ refers to RetinaNet with a tiny version of Swin Trans-
former [43]. All results are evaluated on the COCO minival set.

Methods AP AP50 AP75 APS APM APL

SwinT (T) [43] 37.3 57.5 39.9 22.7 41.0 49.6
ResNet-50 (S) 36.5 55.4 39.1 20.4 40.3 48.1

PKD 37.2 56.7 39.5 21.2 41.2 49.7
CrossKD 38.0 58.1 40.5 23.1 41.8 49.7

ResNet-50 (T) 36.5 55.4 39.1 20.4 40.3 48.1
MobileNetv2 (S) [55] 30.9 48.7 32.5 16.3 33.5 41.9

PKD 33.2 51.3 35.0 16.5 36.6 46.5
CrossKD 34.1 52.7 36.5 18.8 37.1 45.4

CrossKD is when confronting severe target conflict.

4.6. Distillation between Heterogeneous Backbones

In this subsection, we explore the ability of our CrossKD for
distilling the heterogeneous students. We perform knowl-
edge distillation on RetinaNet [39] with different back-
bone networks and compare our method with the recent
state-of-the-art method PKD [5]. Specifically, we choose
two typical heterogeneous backbones, i.e., the transformer
backbone Swin-T [43] and the lightweight backbone Mo-
bileNetv2 [55]. All the detectors are trained for 12 epochs
with a single-scale strategy. The results are presented in
Tab. 8. We can see when distilling knowledge from Swin-T,
CrossKD reaches 38.0 AP (+1.5 AP), outperforming PKD
by 0.8 AP. CrossKD also improves the results of RetinaNet
with the MoblieNetv2 backbone to 34.1 AP, which is 3.2
AP higher than the baseline and surpasses PKD by 0.9 AP.

5. Conclusions and Discussions

In this paper, we introduce CrossKD, a novel KD method
designed to enhance the performance of dense object detec-
tors. CrossKD transfers the intermediate features from the
student’s head to that of the teacher to produce the cross-
head predictions for distillation, an efficient way to alleviate
the conflict between the supervised and distillation targets.
Our results have shown that CrossKD can improve the dis-
tillation efficiency and achieve state-of-the-art performance.
In the future, we will further extend our method to other rel-
evant fields, e.g. 3D object detection.
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Appendix

6. Details of Distillation Losses
According to the task of detection heads, i.e., classification,
and regression, we apply different distance functions Dpred
to transfer task-specific information in different branches.
In this section, we introduce the details of distance functions
Dpred applied in CrossKD.

Regression Branch. There are mainly two types of regres-
sion branches that existed in dense detectors. The first re-
gression branch directly regresses the bounding boxes from
the anchor boxes (e.g., RetinaNet [39], ATSS [70]) or points
(e.g., FCOS [57]). In this case, we directly use GIoU [53]
as Dpred, which is defined as:

Dpred(B,B′) =
|B ∩ B′|
|B ∪ B′|

− |C \ (B ∪ B′))|
|C|

, (4)

where B and B′ represent the predicted and ground-truth
bounding boxes and C is the smallest enclosing convex ob-
ject for B and B′.

In the other situation, the regression branch predicts a
vector to represent the distribution of box location (e.g.,
GFL [35]), which contains richer information than the Dirac
distribution of the bounding box representation. To effi-
ciently distill the knowledge of location distribution, we
employ the same Dpred like LD [74], which is defined as:

Dpred(p,p
′) = KL(s(p/τ), s(p′/τ)), (5)

where KL means KL divergence, s(·) indicates the Softmax
function, and τ is a factor to smooth the distribution.

Classification Branch. Distillation in the classification
branch severely suffers from the imbalance of the fore-
ground and background instances problem. To avoid train-
ing crash, previous prediction mimicking methods usually
design complicated region selection principle to choose ef-
fective areas. In contrast, without selecting effective re-
gions, we regard the classification scores predicted by the
teacher as the soft labels and directly use Quality Focal
Loss (QFL) proposed in GFL [35] to pull close the teacher-
student distance. We define Dpred in the classification
branch as:

Dpred(p,p
′) = (|σ(p)−σ(p′)|)γ ·BCE(σ(p), σ(p′)), (6)

where σ denotes the sigmoid function and BCE indicates
binary cross entropy. (|σ(p) − σ(p′)|)γ serves as a mod-
ulating factor added to the cross entropy function, with a
tunable focusing parameter γ ≥ 0. Here, γ is set as 1 in all
experiments, which we find is the optimum.

We also compare the performance of QFL with the
widely used BCE loss. As shown in Tab. 9, The BCE loss

Loss Region AP AP50 AP75 APS APM APL

- - 35.8 53.1 38.2 18.9 38.9 47.9
BCE P 36.3 53.8 39.1 19.1 39.6 48.3
BCE N 36.2 53.5 38.9 19.3 40.0 48.2
BCE P+N 36.9 54.3 39.5 20.0 40.7 48.4
QFL P+N 38.7 56.3 41.6 21.1 42.2 51.5

Table 9. Effectiveness of different distillation losses in classifica-
tion branch. ‘BCE’ and ‘QFL’ means the binary cross entropy loss
and quality focal loss, respectively. ‘P’ and ‘N’ refer to the pos-
itive and negative regions. The teacher-student pair is GFL with
ResNet-50 and ResNet-18 backbones.

Student CrossKD AP AP50 AP75 APS APM APL

ResNet-18
35.8 53.1 38.2 18.9 38.9 47.9

✓ 39.2 57.0 42.2 22.7 43.0 51.3

ResNet-34
38.9 56.6 42.2 21.5 42.8 51.4

✓ 42.4 60.4 45.8 24.4 46.8 55.6

ResNet-50
40.2 58.4 43.3 23.3 44.0 52.2

✓ 43.7 62.1 47.4 26.9 48.0 56.2

Table 10. Quantitative results of CrossKD for lightweight detec-
tors. Standard 1× schedule is applied in all experiments. The
teacher detector is GFL with ResNet-101 backbones.

can receive 36.3 and 36.2 AP when separately applied on
the positive and negative regions. When we perform distil-
lation on both positive and negative regions, BCE loss can
only achieve 36.9 AP, far below 38.7 AP of QFL, which
demonstrates the effectiveness of the current distillation
losses.

7. The Generalization Ability of CrossKD

CrossKD is adaptable for any detector distillation since the
target conflict is a common problem of object detection dis-
tillation due to imperfect teacher predictions. To demon-
strate the generalization, we apply CrossKD on detectors
with various types of backbones and structures.

The results of our CrossKD on a series of lightweight
students distilled with GFL with ResNet-18, ResNet-34,
and ResNet-50 backbones are presented in Tab. 10. We
apply ResNet-101 as the backbone for the teacher detec-
tor. As shown in Tab. 10, our method can effectively en-
hance the performance of all given lightweight detectors.
Specifically, CrossKD achieves stable improvements for the
students with ResNet-18, ResNet-34, and ResNet-50 back-
bones, which reach 39.2 AP, 42.4 AP, and 43.7 AP.

Furthermore, we adapt CrossKD to typical Faster R-
CNN (two-stage) and Deformable DETR (DETR-like) de-
tectors and report their performance in Tab. 11. In Faster
R-CNN, we deliver the student region features to the R-
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Figure 7. Different cross-head strategies. (a) is the original strategy used in CrossKD. (b) delivers the intermediate features of the teacher
to the student head and conducts KD between the cross-head predictions of the teacher and the student’s predictions. (c) does the same
cross-head strategy as (a) but performs KD between the student’s original predictions and cross-head predictions. (d) does the same cross-
head strategy as (b) but performs KD between the teacher’s original predictions and the cross-head predictions.

CNN head of the teacher to generate cross-head predic-
tions to accept the teacher’s supervision. In Deformable
DETR, the cross-head predictions are created by passing
the encoder features of the student into each stage of the
teacher decoder. As shown in Tab. 11, without finely tuned
hyper-parameters, CrossKD boosts the accuracy of ResNet-
18 based Faster R-CNN and Deformable DETR to 35.5 (2.0
↑) and 45.8 (1.7↑) AP, which demonstrates the generaliza-
tion ability of CrossKD.

Method Schedule AP AP50 AP75

Faster R-CNN R18 (S) 12e 33.5 53.7 35.9
Faster R-CNN R50 (T) 12e 37.4 58.1 40.4

CrossKD 12e 35.5 (2.0↑) 55.8 38.0

Deform. DETR R18 (S) 50e 44.1 62.8 47.9
Deform. DETR R50 (T) 50e 47.0 66.1 50.9

CrossKD 50e 45.8 (1.7↑) 63.8 49.9

Table 11. CrossKD for Faster R-CNN and Deformable DETR.

8. More Ablations

Strategy AP AP50 AP75 APS APM APL

- 35.8 53.1 38.2 18.9 38.9 47.9
(a) 38.7 56.3 41.6 21.1 42.2 51.5
(b) 35.4 52.5 37.8 18.6 38.4 47.1
(c) 34.5 51.9 36.7 17.8 37.6 45.1
(d) 32.5 48.8 35.0 16.6 35.0 42.8

Table 12. Comparisons of different cross-head strategies. The
strategies (a), (b), (c), (d) have shown in Fig. 7, where (a) is the
current strategy used in CrossKD. The teacher-student pair is GFL
with ResNet-50 and ResNet-18 backbones.

In this section, we experiment different cross-head

strategies to demonstrate the effectiveness of our CrossKD,
which are illustrated in Fig. 7. As presented in Tab. 12,
strategy (b), which differently reuses the student’s detec-
tion head, achieved only 35.4 AP, significantly lower than
the 38.7 AP obtained by CrossKD. We hypothesize that this
difference in performance may be attributed to the subop-
timal optimization of the student’s blocks in this approach.
Fig. 7(c) and Fig. 7(d) minimize the distances between the
original predictions and the cross-head predictions. How-
ever, these strategies have limited impact on the student’s
backbones, resulting in 34.5 AP and 32.5 AP for Fig. 7(c)
and Fig. 7(d), respectively.

Moreover, Fig. 7(b), (c), and (d) all perform distilla-
tion losses and detection losses at the student’s detection
heads, so the target conflict problem still exists. In contrast,
CrossKD separates the distillation losses onto the teacher’s
branch and hence avoids the target conflict problem. As a
result, CrossKD receives the highest AP of 38.7 among all
cross-head strategies.

9. Relation to Previous Works
In this section, we describe the differences of our method
and some related works which are originally designed for
the classification task [1, 28, 32, 41, 64]. Here, we compare
CrossKD with these works from the aspects of motivation
and structure to emphasize the differences.

Motivation. Previous works all concentrate on the classi-
fication task. For instance, Bai et al. [1] aims to alleviate
overfitting in few-shot task. Li et al. [32] focuses on using a
residual network to help a non-residual network overcome
gradient vanishing. Some works [41, 64] target on the gen-
eral KD scenario in classification. These methods all at-
tempts to solve specific problems in classification and are
not specially designed for distilling object detectors.

In contrast, CrossKD, which is specially designed for the
object detection task, focuses on the target conflict prob-
lem in object detection. To our knowledge, this is the first



work to discuss the target conflict problem in distilling ob-
ject detectors. As presented in Sec. 1 of the main paper, the
teacher detector usually predicts inaccurate results, which
conflict with the ground-truth targets. The traditional KD
methods supervise the student detector with those two con-
troversial labels at the same place, resulting in low distil-
lation efficiency. To alleviate this problem, we propose to
deliver the intermediate features of the student to the part
of the teacher’s detection head and generate new cross-head
predictions to accept the distillation losses.

However, without the detection-specific design, those
methods can not achieve a promising performance.

Structure. Previous works tend to design a complicated
manner to utilize the teacher-student latent features. Typ-
ically, Li et al. [32] forwards every stage features of the
student into the teacher’s blocks. Liu et al. [41] alternately
delivers the intermediate features from the student to the
teacher or from the teacher to the student. These strate-
gies significantly increase the computational complexity in
training phase.

Instead of applying a complicated design, CrossKD is
relatively simple, which only passes the student’s latent fea-
tures through part of the teacher’s detection head. Despite
its simplicity, extensive experiments demonstrate its effec-
tiveness in object detection KD.

10. Result Visualization
We visualize the detection results of the teacher, the stu-
dent, and our CrossKD in Fig. 8. As the visualization
shows, CrossKD usually receives even better results than
the teacher detector, which demonstrates that CrossKD can
relieve the influence of the teacher’s inaccurate predictions
and achieve a better optimization towards ground-truths.
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Figure 8. Visualization of detection results of CrossKD. The teacher is GFL-R50 with 40.2 AP and student is GFL-R18 with 35.8 AP.
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