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Abstract

The difficulty of anonymizing text data hinders001
the development and deployment of NLP in002
high-stakes domains that involve private data,003
such as healthcare and social services. Poorly004
anonymized sensitive data cannot be easily005
shared with annotators or external researchers,006
nor can it be used to train public models. In007
this work, we develop methods to generate and008
evaluate synthetic data to facilitate the devel-009
opment of NLP in these domains without com-010
promising privacy. We use language models011
fine-tuned with differential privacy to generate012
data and incorporate NLI-based filtering to im-013
prove text coherence. In contrast to prior work,014
we generate and evaluate data for fine-grained015
applications in real high-stakes domains. Our016
results show that prior simplistic evaluations017
have failed to highlight utility, privacy, and018
fairness issues in the synthetic data generated,019
and while NLI-based filtering can help allevi-020
ate some of these weaknesses, the quality of021
the synthetic data generated still necessitates022
further improvements.023

1 Introduction024

Widespread availability of public digitized text025

has greatly facilitated the advancement of natu-026

ral language processing (NLP). Text processing027

could also be extremely valuable for processing028

high-stakes private data, like healthcare records029

(Panchbhai and Pathak, 2022), social workers’030

notes (Gandhi et al., 2023), or legal documents031

(Zhong et al., 2020). However, the need to maintain032

data privacy hinders the responsible development033

and deployment of models in these domains.034

Building NLP often requires sharing data exter-035

nally with contractors or researchers, as agencies036

like child protective services typically do not have037

in-house AI expertise. While this has been accom-038

plished through data use agreements with individ-039

ual teams, it still requires increasing the number of040

people who have access to sensitive data. Further- 041

more, limited sharing precludes the development of 042

public benchmarks, which have proved crucial for 043

standardizing model development, and any models 044

trained on private data must themselves be treated 045

as private, as NLP models are prone to outputting 046

sensitive information from training data (Carlini 047

et al., 2023). The risks of sharing data further lead 048

to trade-offs between privacy and other goals of 049

responsible AI development; for example, auditing 050

models for potential unfairness typically requires 051

sharing data externally (Field et al., 2023). 052

An alternative approach is laboriously creating 053

anonymized data sets (e.g., Johnson et al. (2016a)). 054

However, text data is extremely difficult to fully 055

anonymize, and even lower dimensional data is of- 056

ten possible to re-identify with just small amounts 057

of auxiliary data (Narayanan and Shmatikov, 2008; 058

Sweeney, 2000). As anonymizing data typically 059

involves masking sensitive information, this data 060

is also not useful for tasks requiring sensitive in- 061

formation, such as developing a model to identify 062

contact information for potential caretakers of a 063

child (Field et al., 2023). 064

In this work, we consider synthetic data as an 065

alternative approach, and we develop and evalu- 066

ate methods for synthetic text generation. Our 067

primary approach involves fine-tuning language 068

models with differential privacy (DP), and using 069

these models to generate synthetic text. DP offers a 070

formal privacy guarantee and allows us to specify a 071

privacy budget while preserving the utility of mod- 072

els trained on such data. Although the bulk of work 073

in developing DP approaches has been centered 074

around models trained on tabular and image-related 075

data, there has been increasing interest in adapting 076

the notion of DP to apply it to unstructured text 077

data (Shi et al., 2022; Yue et al., 2021; Feyisetan 078

et al., 2019). 079

A small amount of very recent work has simi- 080

larly explored synthetic text for improving privacy 081
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(Yue et al., 2023; Kurakin et al., 2023; Mattern082

et al., 2022a; Putta et al., 2023), but this work has083

lacked grounding in realistic applications, for ex-084

ample, running experiments with public internet085

data that language models may already have been086

exposed to during pre-training. In contrast, we087

conduct experiments on text data from two high088

stakes domains: healthcare and child protective ser-089

vices, and we rigorously evaluate the synthesized090

text for its utility, privacy, and potential fairness091

implications. For utility and privacy, we introduce092

novel well-motivated evaluation criteria (“silver”093

coreference modeling and entity-centric metrics).094

To the best of our knowledge, no prior work has095

investigated fairness considerations in this domain.096

We do identify some promising opportunities for097

synthetic text, and we further these opportunities098

by proposing an NLI-based data-filtering approach099

to improve text coherence. However, our evalua-100

tions expose decreases in utility, potential privacy101

leakage, and potential unfairness, which are not102

well-reported in prior work.103

Our primary contributions include: (1) a rigor-104

ous and reproducible evaluation framework that105

exposes limitations underestimated in prior work,106

(2) empirical results over real high stakes data, and107

(3) a proposed NLI-based data filtering approach108

to alleviate some of the limitations our evaluations109

expose. Overall, our work demonstrates that con-110

trived metrics do not necessarily translate to more111

realistic scenarios, emphasizing the need for thor-112

ough in-domain evaluation to understand potential113

strengths and limitations of synthetic data.114

2 Related Work115

The majority of research on enabling shareable sen-116

sitive data has focused on text anonymization, re-117

placing or redacting private information like names118

and addresses from text. While some approaches119

redact and replace sensitive information using de-120

terministic rule-based systems (Mamede et al.,121

2016; Yermilov et al., 2023; Ben Cheikh Larbi122

et al., 2023; Sotolář et al., 2021; Volodina et al.,123

2020), others employ masked language models124

(Yermilov et al., 2023). Differentially private mech-125

anisms have also been integrated into text sani-126

tization processes, such as differentially private127

perturbation of text embeddings (Feyisetan et al.,128

2020) or sampling of replacement tokens (Yue et al.,129

2021; Chen et al., 2023) building on the principle130

of Metric-Local DP (Alvim et al., 2018). Although131

these methods are computationally inexpensive and 132

domain-agnostic, they have weak privacy guaran- 133

tees and limited capacity to modify text (Mattern 134

et al., 2022b; Domingo-Ferrer et al., 2021; Brown 135

et al., 2022). 136

Recently, datasets comprised entirely of syn- 137

thetic data have become potentially viable (Guan 138

et al., 2018; Yale et al., 2020). Our work differs 139

from similar approaches to synthetic data gener- 140

ation in its focus on actual high stakes data and 141

thorough grounded evaluation (Yue et al., 2023; 142

Kurakin et al., 2023; Mattern et al., 2022a; Putta 143

et al., 2023). Notably, Al Aziz et al. (2021) do 144

similarly investigate healthcare data, but they do 145

not evaluate potential privacy leakage, and their 146

utility measures do not adequately capture errors 147

in text fluency and consistency which is crucial for 148

finer-grained applications. 149

A separate but overlapping line of work has fo- 150

cused on improving privacy in NLP models, rather 151

than in generated data. This work has similarly 152

trained NLP models with differential privacy but 153

has evaluated direct performance of these models 154

on downstream tasks (Li et al., 2021; Wu et al., 155

2022). Kurakin et al. (2023); Mattern et al. (2022a); 156

Putta et al. (2023) connect these lines of work by 157

offering training on DP-generated data as an alter- 158

native to DP-training on real data. Nevertheless, 159

this line of work is not directly comparable to ours, 160

given its differing goals. 161

3 Methodology 162

3.1 Text Generation 163

Our goal is to generate realistic, but entirely synthe- 164

sized text for a high stakes domain, such as doctors’ 165

notes from a healthcare institution. We assume we 166

have a data set of real text from that domain, which 167

we can use to guide the generation. 168

Fine-tuning Our primary approach is to start 169

with a pre-trained autoregressive language model 170

(Xia et al., 2024), fine-tune it using the real in- 171

domain data, and then generate new data from it. 172

We utilize top-k sampling (Fan et al., 2018) and nu- 173

cleus sampling (Holtzman et al., 2019) to generate 174

diverse synthetic notes, and we train a differen- 175

tially private version of the model using DP-SGD. 176

For reference, we provide background on DP and 177

DP-SGD in Appendix A. 178

We condition the text generation on control 179

codes (Keskar et al., 2019). More specifically, dur- 180

ing training, we prepend one or more labels associ- 181
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ated with the text to the model input. We similarly182

prepend control codes during inference, where we183

sample the provided codes from their distribution184

in the training data. Thus, during training and infer-185

ence, the probability distribution of the subsequent186

text x = {x1, x2...xn} is conditioned on the con-187

trol code information c, which is described by the188

following equation:189

P (x|c) =
n∏

i=1

P (xi|x1...xi−1, c) (1)190

Controllable generation approaches enable the191

generation of notes with specific properties. We192

primarily use them to enable classification-based193

utility evaluations (described in §3.3).194

ICL In order to explore the potential capabilities195

of much larger models and investigate if fine-tuning196

is actually needed, we also generate notes using in-197

context learning. We provide as context examples198

of training data text with pre-pended control codes,199

followed by an additional set of codes to prompt200

the model to generate content in accordance with201

the final set of codes. The number of examples pro-202

vided varies, as we require that each control code203

for the note to be generated has at least one corre-204

sponding note within the examples that contains it.205

This approach is most directly comparable to the206

fine-tuned models without DP.207

3.2 NLI-based data filtering208

Synthetic text often contains inconsistencies and209

contradictions (see for example, samples provided210

in the appendix of Yue et al. (2023)). In order to im-211

prove the quality of generated text, we experiment212

with using natural language inference (NLI) models213

to score and filter out inconsistent text. NLI-based214

approaches have previously been used to rank or215

evaluate the quality of the generated text (Dušek216

and Kasner, 2020; Garneau and Lamontagne, 2021;217

Chen and Eger, 2023) and have been incorporated218

into the generation pipeline to enhance the con-219

sistency of outputs produced by LMs (Mersinias220

and Mahowald, 2023). Specifically, we use a pre-221

trained model fine-tuned over MNLI to predict en-222

tailment, neutral, and contradiction for each pair223

of consecutive sentences in the text. We then take224

the percentage of entailments and neutrals (e.g. the225

absence of contradictions) as the text’s NLI score226

(denoted by SNLI ), which we use to rank and filter227

model outputs.228

3.3 Utility Evaluation 229

Given our goal of developing synthetic data that 230

could be shared externally with researchers or third- 231

party contractors, we evaluate the data’s utility 232

based on the performance of NLP models trained 233

over this data. 234

Classification Similar to prior work (Yue et al., 235

2023; Kurakin et al., 2023), we evaluate model per- 236

formance over classification tasks, where we use 237

the control codes provided during text generation 238

as class labels. We focus on multiclass and/or mul- 239

tilabel classification tasks, and we compare model 240

performance as task difficulty increases. 241

Coreference Resolution Classification tasks can 242

be highly dependent on keywords and phrases, and 243

they do not necessarily require training data to be 244

coherent and consistent across a full paragraph or 245

document. Consistency of entity properties across 246

a document, however, is a necessary condition for 247

coreference training data. Coreference and the re- 248

lated task of mention detection also offer a realistic 249

use case in processing expert-written notes (Gandhi 250

et al., 2023). Thus, we measure the utility of the 251

synthetic data for training coreference models. 252

Unlike classification labels, coreference annota- 253

tions cannot be easily generated through control 254

codes. In a practical setting, annotations of corefer- 255

ence clusters would likely be conducted over syn- 256

thesized data manually by hired annotators or re- 257

searchers, but this process does not scale for evalu- 258

ation of multiple iterations of synthetic data eval- 259

uation. Instead, we use a fine-tuned coreference 260

model to simulate “silver” annotations over the 261

synthesized data. 262

More specifically, given a subset of the original 263

dataset D annotated with gold coreference clusters, 264

we first finetune a pretrained coreference model 265

(Kirstain et al., 2021) on this data. Using this 266

model, we infer coreference clusters over synthetic 267

data from the same domain which we consider sil- 268

ver annotations. We finetune a separate coreference 269

model that has not been task-finetuned with the sil- 270

ver coreference clusters to approximate the utility 271

of the synthetic data for coreference resolution. 272

We run all experiments with a neural coreference 273

model (Kirstain et al., 2021). We report results after 274

finetuning the model for 40 epochs, where scores 275

are averaged over standard coreference metrics: 276

MUC,B3,CEAFϕ4 . 277
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3.4 Privacy Evaluation278

Canary Attacks Consistent with prior work, to279

assess the potential leakage of sensitive informa-280

tion in our training data and the extent to which281

the model memorizes personally identifiable infor-282

mation (PII), we use the canary evaluation method283

proposed by (Carlini et al., 2018). This approach284

involves injecting artificial canary sequences con-285

taining PII into the training data and analyzing the286

likelihood of the frequency of appearance of this287

PII in the generated outputs.288

We create artificial canary samples that are con-289

textually relevant to both domains and include PII290

such as names, emails, addresses, and numeric iden-291

tifiers (details in the appendix in Table 14 and Ta-292

ble 13). Following the methodology outlined in293

(Yue et al., 2023), we vary the number of injections294

of these canary samples into our training data for295

1, 10, and 100 repetitions. For each canary, we296

generate 10,000 candidate sequences and rank the297

canaries based on their perplexity score.298

Entity-focused metrics As canary evaluations299

are only a proxy for assessing potential privacy300

risks and may not be comprehensive, we directly301

leverage entity markers in our datasets to evalu-302

ate privacy concerns (we provide details on data-303

specific entity definitions in §4).304

We compare the frequency of identified entities305

in the original vs. synthetic data. Further, while306

an isolated entity poses some privacy risk, the risk307

is magnified if the context surrounding the entity308

is also leaked. Thus we examine the frequency of309

entities with variable-length surrounding context310

in the synthetic data and compare them with the311

training data to estimate the number of memorized312

patterns that reappear in the synthetic data.313

3.5 Fairness Evaluation314

We compute fairness metrics over the same control-315

code classification tasks as the utility evaluation316

(§3.3). In data with available demographic informa-317

tion, we compare fairness classification for race and318

gender subgroups using equality difference (ED)319

and equalized odds (EO) metrics. For ED, for in-320

stance, False Positive Equality Difference (FPED)321

is the sum of the differences between the over-322

all false positive rate (FPR) for the entire dataset323

and the FPR for each subgroup. EO constitutes324

a stricter notion of fairness by evaluating whether325

both the FPR and TPR rates are the same across all326

groups. In both cases, values closer to zero indicate327

that the model performs more uniformly across sub- 328

groups, with zero indicating perfect parity across 329

subgroups. For reference, we formally define these 330

metrics in Appendix C. 331

4 Experimental Setup 332

4.1 Data 333

Healthcare Our primary source of healthcare 334

data is the MIMIC-III Clinical Database (Johnson 335

et al., 2016b,a; Goldberger et al., 2000), which 336

contains > 2M deidentified notes associated with 337

> 40K patients admitted to the Beth Israel Dea- 338

coness Medical Center in Boston, Massachusetts. 339

As control codes we use ICD-9 codes, which are 340

a standardized format for medical conditions that 341

have been human-annotated in MIMIC. Each note 342

can contain multiple possible codes, making our 343

evaluation task multiclass and multilabel. There are 344

> 8000 unique ICD-9 codes. Thus, we restrict data 345

to notes containing any of the n most frequent ICD- 346

9 codes, where we typically set n = 10 and report 347

n ∈ 3, 5 for some comparisons, similar to Al Aziz 348

et al. (2021); Huang et al. (2019). As a result, the 349

training data size for the generative models can vary 350

depending on the value of n. The dataset splits for 351

the classification tasks are provided in Appendix D. 352

To ensure synthetic data is balanced comparably to 353

real data when evaluating fairness, we additionally 354

provide the patient’s ethnicity and biological sex as 355

control codes. 356

For coreference resolution, we use notes from 357

the MIMIC-II Database annotated for coreference 358

as a part of the i2b2/VA Shared-Task and Workshop 359

in 2011 (Uzuner et al., 2012). This includes 251 360

train documents, 51 of which we have randomly 361

selected for development and 173 test documents. 362

As the MIMIC data is already deidentified, we 363

directly leverage the strings used for deidentifica- 364

tion, e.g. [**Hospital1 18**], [**First Name3 365

(LF) 2704**], in order to conduct entity-centric 366

privacy evaluations. Finally, we note that although 367

the MIMIC-III diagnoses notes are not permissi- 368

ble to be used for training publicly available lan- 369

guage models, there remains a possibility that some 370

MIMIC notes may have been indirectly included 371

in the training data through various other sources. 372

Child Protective Services We additionally re- 373

port results over a data set of contact notes from 374

a county-level Department of Human Services 375

(DHS). These contact notes log contact with fam- 376

ilies involved in child protective services, and 377
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they are written by caseworkers and other service378

providers. Unlike MIMIC-III, this data set is not379

deidentified, which makes it a more realistic test380

data set, but also prevents the data from being pub-381

licly accessible. Throughout our work, this data382

was stored on a secure server with restricted access,383

in accordance with IRB-approved protocol and a384

data sharing agreement established with the county.385

The full data set contains 3.1M notes, from ap-386

proximately 2010 to November 23, 2020. As con-387

trol codes, we use existing metadata, specifically,388

the “Contact Source Description” field, which spec-389

ifies one of five possible labels for each note. Simi-390

lar to the ICD9 codes, we use the 3 most frequent391

labels: Case, Investigation, and Call Screen. For392

coreference resolution, we use a set of 200 notes393

annotated for coreference by prior work and shared394

with us by the county (Gandhi et al., 2023). This395

data has train/dev/test sets of sizes 100/10/90 notes.396

Finally, for entity-centric evaluations, we use a397

spaCy NER model to identify spans of entities in398

the text, and we focus on entities likely to contain399

private identifying information (e.g., names and400

organizations).401

As CPS cases are complex and involve multiple402

people, the notion of race or gender for a note is403

less clear than in the MIMIC data. Thus, we do not404

report fairness results for this data. We also do not405

report ICL results, as our single secure server did406

not have sufficient resources for the larger model.407

4.2 Models408

Our primary text generation model is Sheared-409

LLaMA-1.3B1. We fine-tune using Low-Rank410

Adaption (LoRA) (Hu et al., 2021), and we use411

Opacus (Yousefpour et al., 2022) for DP fine-412

tuning. We generally set a privacy budget of ϵ = 8,413

and δ = 1e-5 (considering our relatively small414

dataset size), and we report some results with ϵ = 4415

for comparison. For ICL, we used the instruction-416

tuned BioMistral-7B2 model. As the inference for417

the BioMistral 7B model is expensive, we have418

generated a limited number of notes with which we419

carry out these experiments. For the NLI-based fil-420

tering, we use a pretrained BERT-base model fine-421

tuned over MNLI.3 As this filtering is intended to422

improve text coherence, which is less important for423

1https://huggingface.co/princeton-nlp/Sheared-LLaMA-
1.3B

2https://huggingface.co/BioMistral/BioMistral-7B
3https://huggingface.co/JeremiahZ/bert-base-uncased-

mnli

classification, we report results from this approach 424

using coreference metrics. For the classification 425

tasks, we fine-tune a pretrained BERT-base model. 426

We have specified the hyperarameters for each of 427

the models used, dataset distributions and addi- 428

tional detail regarding the experimental setup in 429

Appendix B and Appendix D. 430

5 Results 431

5.1 Utility 432

Overall Classification Tables 1 and 2 report re- 433

sults for classification tasks for all models, for the 434

healthcare and CPS data respectively. Unsurpris- 435

ingly, models trained on data generated from DP 436

fine-tuned models generally under-perform models 437

trained on real data or data generated without DP. 438

Table 1 reports performance for varying task com- 439

plexity by increasing number of labels n for our 440

multilabel ICD-9 code classification task. For sim- 441

pler tasks, e.g. ICD-9n=3, there is a much smaller 442

performance degradation and the Dϵ=∞ (F1=0.87) 443

and Dϵ=8 (F1=0.84) models are nearly comparable. 444

In contrast, there is much larger performance degra- 445

tion for the more difficult ICD-9n=10 task, where 446

F1=0.61 for Dϵ=∞ and F1=0.37 for Dϵ=8. 447

In the classification task with the CPS data (Ta- 448

ble 2), however, we notice a significant drop in per- 449

formance for models trained over Dϵ=8, 4. From 450

examining the data, this task is generally more diffi- 451

cult and the associations between the administrative 452

label and the text in the real data can be quite subtle. 453

It is likely that the generative model often fails to 454

pick up on these associations, and noise introduced 455

by DP further masks these subtleties. 456

Overall Coreference Table 3 reports coreference 457

results. For comparison, we report Dreal(gold), 458

model performance when trained over gold in- 459

domain data, which represents the best possible 460

performance we can obtain with human annota- 461

tions and Dreal(sivler), model performance when 462

trained over silver annotated real data. The 15 463

point performance difference in F1 between these 464

two setups represents the performance degradation 465

we should expect to see as a result of inevitable 466

cascading errors from the silver annotations. 467

Data generated without DP seems to outperform 468

data generated with DP in both models, but the mar- 469

gin is larger for synthetic healthcare data. Since 470

the mention detection performance for CPS data 471

is much higher than for healthcare data, it is likely 472
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Training
Data

Dataset
F1

Micro
F1

Macro
Subset

Accuracy

Dreal ICD-9n=10 0.70 ± 0.010 0.67 ± 0.012 0.32 ± 0.016
Dϵ=∞ ICD-9n=10 0.66 ± 0.001 ↓-0.04 0.61 ± 0.003 ↓-0.06 0.26 ± 0.004 ↓-0.06

Dϵ=8 ICD-9n=10 0.51 ± 0.007 ↓-0.19 0.37 ± 0.017 ↓-0.30 0.14 ± 0.007 ↓-0.18

DICL ICD-9n=10 0.57 ± 0.011 ↓-0.13 0.47 ± 0.014 ↓-0.20 0.21 ± 0.008 ↓-0.11

Dreal ICD-9n=5 0.77 ± 0.008 0.76 ± 0.016 0.56 ± 0.007
Dϵ=∞ ICD-9n=5 0.75 ± 0.003 ↓-0.02 0.73 ± 0.003 ↓-0.03 0.55 ± 0.004 ↓-0.01

Dϵ=8 ICD-9n=5 0.66 ± 0.006 ↓-0.11 0.57 ± 0.008 ↓-0.19 0.44 ± 0.007 ↓-0.12

Dreal ICD-9n=3 0.89 ± 0.000 0.90 ± 0.000 0.76 ± 0.002
Dϵ=∞ ICD-9n=3 0.87 ± 0.001 ↓-0.02 0.87 ± 0.001 ↓-0.03 0.73 ± 0.006 ↓-0.03

Dϵ=8 ICD-9n=3 0.84 ± 0.006 ↓-0.05 0.84 ± 0.007 ↓-0.06 0.68 ± 0.005 ↓-0.07

Table 1: Difference in performance between models trained on the synthetic data generated with (Dϵ=8) and without
(Dϵ=∞) DP and the models trained on real data (Dreal) for multilabel ICD code classification with the top 10, 5,
and 3 most frequent labels. Performance degradation greatly increases for more complex tasks.

F-1 Score Accuracy

Dreal 0.78 ± 0.018 0.89 ± 0.006
Dϵ=∞ 0.64 ± 0.139 ↓0.14 0.86 ± 0.023 ↓0.03

Dϵ=8 0.29 ± 0.000 ↓0.49 0.78 ± 0.000 ↓0.11

Dϵ=4 0.32 ± 0.054 ↓0.46 0.79 ± 0.006 ↓0.10

Table 2: Difference in performance between models
trained on data generated with differential privacy and
models trained on real data, evaluated over CPS classifi-
cation, for varying privacy budgets.

that the coreference score is dominated by the men-473

tion detection task, and consequently coreference474

performance is a weaker signal of coherence and475

consistency of entities for the CPS domain than the476

healthcare domain.477

We inspect how the NLI-reranking approach to478

improve consistency is captured by the coreference479

model utility by comparing subsets of synthetic480

data ranked low and high for consistency. The481

reranking approach is consistent with coreference482

utility in that stronger coreference performance is483

associated with higher ranked examples. This re-484

sult, however, does not hold for the CPS domain,485

likely as a result of the dominance of the mention486

detection task which makes consistency less rele-487

vant for strong coreference performance.488

5.2 Privacy489

Canary Attacks Table 4 reports results for ca-490

nary attacks. The DP fine-tuned models exhibit491

higher perplexity scores for all the canaries, demon- 492

strating that models trained with DP are less likely 493

to output phrases from training data. DP similarly 494

improves (increases) rank for most canaries, again 495

indicating that models trained with DP are less 496

likely to output phrases from training data. Al- 497

though Yue et al. (2023) assert that the differentially 498

private training of language models can effectively 499

eliminate the risk of privacy leakage, our canary 500

evaluation results indicate that this may not hold 501

true for all types of PII. This is further illustrated 502

by our experiments over PII in our entity-centric 503

analysis. 504

Entity-centric Metrics We do not assess the 505

leakage (e.g., appearance in generated text) of the 506

canaries in our generated sequences in this work. 507

Instead, we perform this analysis over leakage of 508

the PII that is already present in the training data. 509

The entity-centric metrics (Table 5) show that 510

while DP-generated data does contain fewer in- 511

stances of potentially sensitive information, these 512

entities are not removed from the data entirely, and 513

there is still the risk of leakage. In Table 6, we 514

gauge how often sequences containing these leaked 515

entities appear in the generated outputs, where we 516

vary the number of words in the context surround- 517

ing the entities (denoted by k ∈ {1, 2, 3, 4}). The 518

results provide further evidence that, while train- 519

ing models with differential privacy may decrease 520

the risk of information memorization, it does not 521

provide a failsafe. There is a notable disparity in 522
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Training Data
Healthcare CPS

Mention Detection Coreference Mention Detection Coreference

Dreal(gold) 0.799 ± 0.013 0.703 ± 0.011 0.877 ± 0.004 0.789 ± .005
Dreal(silver) 0.659 ± 0.121 0.552 ± 0.126 0.805 ± 0.007 0.642 ± 0.008

Dϵ=∞ 0.596 ± 0.014 0.422 ± 0.014 0.785 ± 0.001 0.594 ± 0.014

D
SNLI, high
ϵ=∞ 0.588 ± 0.069 0.430 ± 0.072 0.756 ± 0.003 0.571 ± 0.005

D
SNLI, low
ϵ=∞ 0.462 ± 0.034 0.288 ± 0.027 0.750 ± 0.046 0.566 ± 0.046

DICL 0.712 ± 0.010 0.588 ± 0.022 - -

Dϵ=8 0.575 ± 0.002 0.404 ± 0.023 0.777 ± 0.013 0.582 ± 0.020

D
SNLI, high

ϵ=8 0.570 ± 0.086 0.423 ± 0.087 0.783 ± 0.002 0.593 ± 0.008

D
SNLI, low

ϵ=8 0.496 ± 0.083 0.335 ± 0.063 0.785 ± 0.006 0.598 ± 0.008

Table 3: F1 scores for coreference and mention detection over entities from human-annotated test splits of the CPS
and i2b2/VA datasets. All synthetic datasets are annotated with silver labels. We compare performance between
synthetic data generated from models where (ϵ = 8, ∞) and models trained with real data. We also compare the
performance over data generated from these models with a high SNLI score and a low SNLI score.

Rank Perplexity

H
ea

lth
ca

re Name 10001 / 10001 54.06 / 50.11
Address 5645 / 3088 62.57 / 41.08
Number 1 / 1 14.59 / 9.54
Email 9479 / 9372 71.98 / 37.40

C
PS

Name 1 / 1 12.355 / 12.142
Address 9863 / 7849 26.741 / 21.726
Number 9999 / 9645 26.038 / 16.409
Email 10000 / 9951 87.724 / 52.070

Table 4: Rank and perplexity metrics for 10-insertion
canary attacks over MIMIC and CPS data (1 and 100
insertions, reported in Appendix E, are similar). Each
column is formatted as ϵ = 8/ϵ = ∞ . DP reduces but
does not eliminate privacy risks for all canaries.

the frequency of phrases from the training data re-523

produced in these datasets: Dϵ=∞ contains nearly524

2.6 times as many phrases as the Dϵ=8, but the525

phrase leakage from Dϵ=8 is still non-zero. On the526

other hand, while DICL is 0.6 times the size of the527

other datasets, it seems to regurgitate contextual528

information about these entities from the in-context529

samples less frequently. However, results from Ta-530

ble 5 indicate that it still poses privacy risks, as the531

ICL tends to reproduce these entities, even if not532

the contexts in which they appear.533

5.3 Fairness534

We report the FNED and Equalized Odds (EO) met-535

rics for the results from the ICD-9n=10 multilabel536

classification tasks in Table 8. The metrics reflect 537

the difference in model performance for the gender 538

and race/ethnicity subgroups with more than 100 539

samples in the test set, with a larger value indicating 540

more disparate performance across the subgroups. 541

While the gender metrics indicate minimal perfor- 542

mance differences, the race/ethnicity metrics show 543

significant disparities. The disparate performance 544

increases for models trained over the data gener- 545

ated from the DP model (Dϵ=8) as compared to 546

the model without DP (Dϵ=∞). Although DICL 547

appears to preserve utility for coreference resolu- 548

tion and mention detection (Table 3), and provides 549

better utility than Dϵ=8 for classification, it is con- 550

sistently exhibits the most disparate performance 551

over subgroups. We report additional fairness met- 552

rics in Appendix C in Table 8 that show similar 553

trends. 554

6 Discussion 555

Overall, our results are consistent with prior work 556

in that we find only small performance degradation 557

when training a model on DP-generated synthetic 558

text as compared to real data for relatively less 559

fine-grained (e.g. ICD-9n=3, in Table 1) classifi- 560

cation tasks. Similarly, we do find evidence that 561

DP reduces potential privacy leakage in that artifi- 562

cial canaries (Table 4) and real entities (Table 5) are 563

generated less frequently by DP-fine-tuned models. 564

However, our evaluations also expose previ- 565

ously unexplored weaknesses to this approach. For 566

instance, the model performance’s generally de- 567

7



Healthcare CPS
Overall Name Loc. Hospital DT NI OI Org. Person Date

Dreal 1617.17 797.51 64.71 109.13 53.56 318.94 273.32 968.90 1419.12 194.64
Dϵ=∞ 111.06 88.62 3.00 11.99 0.93 2.48 4.03 88.93 62.57 29.36
DICL 96.18 60.85 7.74 12.22 1.27 5.04 9.06 - - -
Dϵ=8 48.42 40.04 1.13 7.22 0.03 0.00 0.00 25.99 12.89 34.17

Table 5: Entity-centric privacy evaluation. We report the number of instances of each type of identifier in the real
or generated data, divided by the total number of notes, multiplied by 1000. Results can be read as the number
of identifiers estimated to occur in 1000 notes of this type. “DT” stands for Date/Time, “NT” refers to numeric
identifiers, such as phone number, social security number, etc., and “OI” reports other identifiers.

Healthcare CPS
Ratio Count Ratio Count

Dϵ=∞ 0.00504 16271 0.01854 5150
DICL 0.00117 3761 - -
Dϵ=8 0.00196 6316 0.00416 1010
Dϵ=4 - - 0.00436 1069

Table 6: Unique contexts in which entities (PER/ORG
categories for CPS) in the real data appear in the syn-
thetic data. Surrounding context word lengths vary from
1 to 4. “Count” denotes the number of entity-contexts
appearing in both the generated data and real data. “Ra-
tio” denotes that count divided by the number of phrases
in either data.

grades much more sharply as task complexity in-568

creases (e.g. ICD-9n=10 classification, Table 1),569

and there is still a substantial risk of data leak-570

age (Tables 4-6). These results suggest that DP-571

generated synthetic data may be of sufficient qual-572

ity for certain NLP tasks and domains, but the qual-573

ity degradation from DP can be a limitation. Our574

NLI-based ranking suggests that some output text575

is higher quality than others, and further filter meth-576

ods may offer opportunities to improve quality.577

Further, simply applying DP during fine-tuning578

is not sufficient to prevent data leakage and more579

care needs to be taken. It may be possible to al-580

leviate privacy risk through modifications to the581

pipeline, such as using stricter privacy budgets.582

A more promising approach may be to combine583

privacy-preserving techniques.584

We further find substantial variance not only in585

the task difficulty, but also across data sets. While586

models perform comparably when trained on sil-587

ver coreference annotations over synthetic text and588

real text for the CPS data, the synthetic data is589

markedly worse the than real data for MIMIC (Ta-590

FNED Equalized Odds

R
ac

e

Dreal 0.34 ± 0.011 0.21 ± 0.009
Dϵ=∞ 0.37 ± 0.006 0.21 ± 0.002
DICL 0.52 ± 0.008 0.30 ± 0.002
Dϵ=8 0.48 ± 0.034 0.28 ± 0.014

G
en

de
r

Dreal 0.04 ± 0.005 0.04 ± 0.005
Dϵ=∞ 0.03 ± 0.006 0.03 ± 0.006
DICL 0.04 ± 0.005 0.04 ± 0.005
Dϵ=8 0.03 ± 0.003 0.03 ± 0.003

Table 7: Fairness evaluation for the MIMIC-III
ICD-9n=10 task, for the gender and race categories.

ble 3). These differences could be due to a num- 591

ber of factors, such as the similarity between each 592

private data set and the model pre-training data. 593

Regardless, these results emphasize the importance 594

of evaluating on in-domain data, as results are not 595

likely to generalize. 596

Conclusions Our findings show that while DP 597

reduces privacy risks, it does not eliminate them. 598

The utility of synthetic data may not be comparable 599

to real data for more complex tasks and may even 600

introduce fairness issues. We also demonstrate 601

that maintaining the coherence & consistency of 602

synthetic text can benefit tasks like coreference 603

resolution. While DP shows promise in these ap- 604

plications, our findings also indicate that additional 605

elements need to be incorporated in the pipeline 606

to potentially improve the quality and privacy- 607

preserving aspects of synthetic data. 608

7 Limitations 609

The primary limitation of our work is the impos- 610

sibility of considering all possible model and pa- 611

rameter configurations. While we selected high- 612

8



performing models that we were able to fine tune613

and evaluate on our compute resources, results may614

differ for different pre-trained language models.615

Similarly, while we select hyper-parameters based616

on prior work and conduct some ablation studies,617

text-generation is extremely compute-intensive and618

a fully exhaustive hyper-parameter sweep is not619

feasible. Overall our results emphasize the need620

to thoroughly evaluate models on target data and621

cannot necessarily be assumed to generalize to622

untested data.623

There are also additional approaches we do624

not explore that could reduce privacy risk or im-625

prove the quality of synthetic data generated dur-626

ing training. Examples include combining text-627

anonymization with DP fine-tuning or selective628

constraints applied to the training data to reduce629

the frequency of entity mentions. However, this630

is difficult in practice, as real-world data is com-631

plex with, for example, the same people mentioned632

across multiple CPS cases.633

8 Ethical Considerations634

Our work involves the use of private sensitive data,635

particularly the CPS data, which is not de-identified.636

To minimize risk, throughout this project we main-637

tained a high level of data security, in compliance638

with IRB-approved protocol. The CPS data was ex-639

clusively stored on a secure restricted-access server640

with HIPPA-standard of security. All CPS exper-641

iments were conduct on this server, which also642

limited the models we could investigate. Our paper643

does not include any examples from either data644

set, in compliance with their respective data use645

agreements.646
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A Background: Differential Privacy 918

Differential privacy offers a formal privacy guaran- 919

tee that ensures that any individual’s data cannot be 920

inferred from a query applied to a dataset (Dwork 921

et al., 2006, 2014). In other words, the result of 922

such a query is nearly indistinguishable from the 923

result of the same query applied to a dataset that 924

either includes a modified version of the individ- 925

ual’s data or excludes the record entirely, thereby 926

preserving the individual’s privacy. In this case, 927

the notion of adjacency is defined as a difference 928

of a single record in the original dataset D and the 929

modified dataset D’. 930

Formally, differential privacy is defined as fol- 931

lows: 932

Definition: Given a dataset D and an adjacent 933

dataset D′, which is produced by removing or mod- 934

ifying a single record from D, a randomized algo- 935

rithm F : D → Y is (ϵ, δ)-private if for any two 936
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neighboring datasets D,D′, with the constraints937

ϵ > 0 and δ ∈ [0, 1], the following holds true for938

all sets y ⊆ Y :939

Pr[F (D) ∈ y] ≤ eϵ Pr[F (D′) ∈ y] + δ940

The value of ϵ denotes the privacy budget, while941

δ specifies the likelihood that the privacy guaran-942

tee may fail. If δ is set to 0, this implies a purely943

differentially private setting with no probability of944

the guarantee being broken. The value of ϵ con-945

strains how similar the outputs of both distributions946

are; a higher ϵ value indicates a greater privacy947

budget, meaning the algorithm is less private. DP948

guarantees that even if an adversary has access to949

any side-knowledge, the privacy leakage of (ϵ, δ)-950

DP algorithms will not increase. Additionally, an-951

other property of DP is that it ensures that any post-952

processing on the outputs of (ϵ, δ)-differentially953

private algorithms will remain (ϵ, δ)-differentially954

private.955

We use DP-SGD (Abadi et al., 2016), a modi-956

fication to the stochastic gradient descent (SGD)957

algorithm, which is typically used to train neural958

networks. DP-SGD clips the gradients to limit the959

contribution of individual samples from the train-960

ing data and subsequently adds noise from a pre-961

defined type of distribution (such as a Gaussian or962

Laplacian distribution) to the sum of the clipped963

gradients across all samples. DP-SGD thus pro-964

vides a differentially private guarantee to obfuscate965

the gradient update, thereby ensuring that the con-966

tribution of any given sample in the training data is967

indistinguishable due to the aforementioned post-968

processing property. This process ensures (ϵ, δ)-969

differential privacy for each model update. Given a970

privacy budget, number of epochs, and other train-971

ing parameters, we can estimate the privacy pa-972

rameters using estimation algorithms (Gopi et al.,973

2021).974

B Hyperparameters975

For training the autoregressive model, we used a976

batch size of 4, set the maximum sequence length977

to 1024 tokens and a batch size of 4. Training was978

conducted over 3 epochs with a learning rate set to979

3e-4, optimized using the AdamW optimizer using980

the default hyperparameters for the same. For the981

LoRA hyperparameters, we used a dimension of982

4 and an alpha value of 32, specifically targeting983

the query (q_proj) and value (v_proj) projection984

layers of the transformer. To ensure training stabil-985

ity, we applied gradient clipping with a maximum986

gradient norm of 1.0. For the DP fine-tuning of 987

the autoregressive model, we train with a privacy 988

budget of epsilon = 8, and considering our rela- 989

tively small dataset size we set delta to 1e-5 for our 990

experiments. 991

For training the downstream classifier, we con- 992

ducted training over 3 epochs with a batch size of 993

8 and a maximum sequence length of 512 tokens. 994

We utilized the AdamW optimizer with a learning 995

rate of 5e-5. 996

During inference, we set the top-k sampling pa- 997

rameter to k = 50 and the nucleus sampling parame- 998

ter to p = 0.95. We generate approximately 30k and 999

31k samples for the child welfare data and diag- 1000

nosis notes for the 10 most frequent ICD-9 codes, 1001

respectively, which are then used to train the down- 1002

stream classifiers. We use similar inference hyper- 1003

parameters for the instruction-tuned BioMistral-7B 1004

model for ICL, we set the top-k value to 50, top-p 1005

to 0.9 and the penalty-alpha parameter to 0.6. 1006

Our experiments for all the aforementioned ex- 1007

perimental setups used an A100 GPU for the 1008

MIMIC data and A6000 GPUs on a single secure 1009

server for the CPS data. 1010

C Fairness 1011

The False Positive Equality Difference (FPED) met- 1012

ric is the sum of the differences between the overall 1013

false positive rate (FPR) for the entire dataset and 1014

the FPR for each subgroup d ∈ D, where D is a 1015

set consisting of all subgroups corresponding to a 1016

demographic attribute within the dataset. 1017

FPED =

D∑
d=1

|FPRoverall − FPRd| (2) 1018

TNED =
D∑

d=1

|TNRoverall − TNRd| (3) 1019

Similarly, these ED metrics can be estimated 1020

for the true positive, true negative and false nega- 1021

tive rates to estimate the TPED, TNED and FNED 1022

respectively. Lower values of these ED scores indi- 1023

cate that the model’s performance is more consis- 1024

tent across different subgroups. 1025

The Equalized Odds ratio is calculated as fol- 1026

lows: 1027

12



FNED FPED TPED TNED Equalized Odds
Race
Dbase

real 0.34 ± 0.011 0.01 ± 0.003 0.34 ± 0.011 0.01 ± 0.003 0.21 ± 0.009
Dϵ=∞ 0.37 ± 0.006 0.01 ± 0.002 0.37 ± 0.006 0.01 ± 0.002 0.21 ± 0.002
Dϵ=8 0.48 ± 0.034 0.02 ± 0.007 0.48 ± 0.034 0.02 ± 0.007 0.28 ± 0.014
DICL 0.52 ± 0.008 0.03 ± 0.003 0.52 ± 0.008 0.03 ± 0.003 0.30 ± 0.002

Gender
Dbase

real 0.04 ± 0.005 0.00 ± 0.001 0.04 ± 0.005 0.00 ± 0.001 0.04 ± 0.005
Dϵ=∞ 0.03 ± 0.006 0.00 ± 0.001 0.03 ± 0.006 0.00 ± 0.001 0.03 ± 0.006
Dϵ=8 0.03 ± 0.003 0.00 ± 0.001 0.03 ± 0.003 0.00 ± 0.001 0.03 ± 0.003
DICL 0.04 ± 0.005 0.00 ± 0.001 0.04 ± 0.005 0.00 ± 0.001 0.04 ± 0.005

Table 8: Fairness evaluation for the MIMIC-III ICD-9n=10 task, for the gender and race categories.

EOD = max

(
max
i∈D

(TPRi)−min
i∈D

(TPRi),1028

max
i∈D

(FPRi)−min
i∈D

(FPRi)

)
1029

We have two categories of subgroups that are1030

present in the MIMIC-III dataset over which we1031

perform fairness evaluations with the downstream1032

classifier trained over synthetic data with demo-1033

graphic control codes. The following categorical1034

variables assigned to each within the dataset:1035

• Gender: Female, Male1036

• Race/Ethnicity: American Indian/Alaska Na-1037

tive, Asian, Black, Hispanic/Latino, Middle1038

Eastern, Multi Race/Ethnicity, Other, Por-1039

tuguese, South American, White1040

The format of the control code for the MIMIC-1041

III data is as follows: Long_Title: <diagnoses>,1042

ICD9_CODE: <codes>, Gender: <gender>, Eth-1043

nicity: <ethnicity>, where the <diagnoses> vari-1044

able represents the long title form of the ICD-91045

codes, information that is already provided with1046

the MIMIC-III dataset.1047

D Data Statistics1048

Our train/dev splits for the CPS, ICD-9n=10,1049

ICD-9n=5 and ICD-9n=3 datasets the generative1050

model was trained on are 90250/4750, 44215/2327,1051

37245/1960, 31317/1648 respectively.1052

The train/dev sets for the models trained for1053

downstream classification on the real (Dreal) and1054

synthetic (Dϵ=∞, 8, 4) CPS data are 18000/48751055

and 27000/3000 respectively. The size of the test 1056

set for this task was 4875. 1057

For the ICD-9n=10 multilabelling task, the real 1058

(Dreal) and synthetic (Dϵ=∞, 8, 4) train/dev split 1059

was the same, with ≃ 27920/3100 for all models, 1060

and the test set size was ≃ 7500 samples. For the 1061

ICD-9n=5 task, the train/dev split was the same 1062

for all models ≃ 23520/2615, and the test set size 1063

was ≃ 6315 samples. Similarly, for the ICD-9n=3 1064

task, the train/dev split was ≃ 19780 / 2200, and 1065

the test set size was ≃ 5310 samples. Each of 1066

these experiments for the downstream tasks (coref- 1067

erence/mention detection & classification) was av- 1068

eraged over 3 runs. 1069

We report additional data statistics in Table 9 1070

and Table 10. 1071

E Extended Privacy Evaluation results 1072

In Table 4 we report the full set of canary results 1073

(for 1, 10, and 100 insertions, for each canary type). 1074

Results are generally similar across different num- 1075

bers of insertions, in that DP generally reduces rank 1076

and perplexity, thus improving privacy, but does 1077

not eliminate all risk of leakage. 1078
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Model
Mean
TTR

1-gram
Overlap Ratio

2-gram
Overlap Ratio

3-gram
Overlap Ratio

4-gram
Overlap Ratio

Dbase
(real, ICD-9n=10)

0.474 0.827 0.805 0.773 0.750

D(ϵ=∞, ICD-9n=10) 0.569 0.165 0.083 0.046 0.028
D(ϵ=8, ICD-9n=10) 0.539 0.153 0.085 0.043 0.022
D(ICL, ICD-9n=10) 0.448 0.134 0.093 0.051 0.028

Dbase
(real, ICD-9n=5)

0.468 0.679 0.639 0.585 0.548

D(ϵ=∞,, ICD-9n=5) 0.569 0.161 0.079 0.042 0.026
D(ϵ=8, ICD-9n=5) 0.528 0.143 0.078 0.038 0.020

Dbase
(real, ICD-9n=3)

0.474 0.608 0.556 0.494 0.453

D(ϵ=∞, ICD-9n=3) 0.574 0.146 0.073 0.039 0.023
D(ϵ=8, ICD-9n=3) 0.543 0.142 0.074 0.036 0.019

Table 9: Comparison of MIMIC-III TTR (Type-Token Ratio) and n-gram overlap statistics, with the overlap
measured between unique n-grams in the synthetic data and the training data.

Data
Mean
TTR

1-gram
Overlap Ratio

2-gram
Overlap Ratio

3-gram
Overlap Ratio

4-gram
Overlap Ratio

Dbase
real 0.512 0.407 0.354 0.288 0.248

Dϵ=∞ 0.429 0.150 0.129 0.097 0.063
Dϵ=8 0.403 0.131 0.113 0.082 0.052
Dϵ=4 0.405 0.134 0.114 0.083 0.051

Table 10: Comparison of CPS TTR (Type-Token Ratio) and n-gram overlap statistics, with the overlap measured
between unique n-grams in the synthetic data and the training data.

Model Data Size
Phrase Overlap

Ratio
Total #

of Phrase Overlap
Total #

of Phrases
Total # of Deidentified

Phrases Generated
D(real, ICD-9 n=10) 44215 1 2935955 2935955 3845112
D(ϵ=∞, ICD-9n=10) 31020 0.00504 16271 3229278 369390
D(ϵ=8, ICD-9n=10) 31020 0.00196 6316 3229096 322280
D(ICL, ICD-9n=10) 19640 0.00117 3761 3205098 316905

D(real, ICD-9n=5) 37245 1 2565699 2565699 3352588
D(ϵ=∞, ICD-9n=5) 26136 0.00478 13537 2831658 323963
D(ϵ=8, ICD-9n=5) 26136 0.00160 4554 2841128 297966

D(real, ICD-9n=3) 31317 1 2066294 2066294 2697186
D(ϵ=∞, ICD-9n=3) 21978 0.00502 11438 2280229 267603
D(ϵ=8, ICD-9n=3) 21978 0.00174 3942 2267090 217834

Table 11: Analysis for the MIMIC-III dataset of all the unique contexts in which entities of from all categories from
the training data appear in the synthetic data, considering surrounding context word lengths varying from 1 to 4.
Dreal corresponds to the training data the generative models were trained on.
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MIMIC CPS
Rank Perplexity Rank Perplexity

100 Insertions
Name 10001 / 10001 53.14 / 34.51 1 / 1 11.516 / 8.659
Address 5535 / 35 61.57 / 20.13 9907 / 1 33.909 / 4.117
Number 1 / 1 14.48 / 7.84 9999 / 4696 25.337 / 8.712
Email 9455 / 1 70.15 / 11.01 10000 / 140 90.389 / 14.626

10 Insertions
Name 10001 / 10001 54.06 / 50.11 1 / 1 12.355 / 12.142
Address 5645 / 3088 62.57 / 41.08 9863 / 7849 26.741 / 21.726
Number 1 / 1 14.59 / 9.54 9999 / 9645 26.038 / 16.409
Email 9479 / 9372 71.98 / 37.40 10000 / 9951 87.724 / 52.070

1 Insertion
Name 10001 / 10001 54.20 / 52.46 1 / 1 12.374 / 12.931
Address 5696 / 6590 62.82 / 57.51 9867 / 8770 26.808 / 25.666
Number 1 / 1 14.63 / 9.87 9999 / 9653 26.041 / 17.599
Email 9549 / 9745 72.29 / 43.92 10000 / 10000 87.987 / 75.408

0 Insertions
Name 10001 / 10001 60.164 / 52.682 1 / 1 12.375 / 13.052
Address 6256 / 7298 57.133 / 65.527 9867 / 9080 26.814 / 26.142
Number 1 / 1 14.440 / 11.356 9999 / 9541 26.040 / 17.262
Email 9594 / 9694 66.829 / 41.371 10000 / 10000 88.038 / 81.019

Table 12: Rank and perplexity metrics for canary attacks over MIMIC and CPS data. Each column is formatted
as ϵ = 8/ϵ = ∞ . Perplexity scores suggest that DP reduces privacy metrics for all canaries, and generally show
similar privacy improvements.
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Figure 1: Dϵ=∞ Figure 2: Dϵ=8 Figure 3: Dϵ=4

Figure 4: Dϵ=∞ Figure 5: Dϵ=8 Figure 6: Dϵ=4

Figure 7: CPS data: Graph depicts the frequency of overlapping entities between the training data Dtrain for the
generative model and synthetic data. The top row presents the top 500 most frequent entities from each dataset,
limited to entities with a frequency count below 500 in Dtrain. The bottom row includes all instances of entities
found exclusively in the synthetic data, where the count in Dtrain equals 1.
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Figure 8: Dϵ=∞ Figure 9: Dϵ=8

Figure 10: Dϵ=∞ Figure 11: Dϵ=8

Figure 12: MIMIC-III ICD-9n=10 data: Graph depicts the frequency of overlapping entities between the training
data Dtrain for the generative model and synthetic data. The top row presents the top 500 most frequent entities
from each dataset, limited to entities with a frequency count below 500 in Dtrain. The bottom row includes all
instances of entities found exclusively in the synthetic data, where the count in Dtrain equals 1.
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Type Canary Sequence

Name
Pt Robin Kramer is has been admitted to
the hospital and the patient’s medical records were
updated yesterday.

Address
The patient has been admitted to the hospital at 789
Elmford St, Maplegreen.

Number
The patient’s contact number for emergencies is
(541) 545-6789.

E-mail
In case of any inquiries, the patient can be contacted at
ptcareastps456@email.com.

Table 13: The canaries inserted into the training data for
the models fine-tuned to generate synthetic MIMIC-III
data.

Type Canary Sequence

Name
Robin Kramer has been placed in temporary foster
care and there is an ongoing investigation into the
child’s welfare.

Address
The CW visited the foster family’s address at
456 W Oak Avenue, Springfield, IL.

Number
The case number CW-2023-56893 has been
assigned for tracking purposes.

E-mail
The CW can contact the foster family at
randuser789@xyzreportnews.com in
case of any emergencies.

Table 14: The canaries inserted into the training data for
the models fine-tuned to generate synthetic CPS data.
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Model
Data
Size

Overlap Ratio of
EP

Overlap
EP #

Total EP # in Dreal

+ Dsynth−data

Total EP # in
Dsynth−data

Dreal 90250 1.00000 216592 216592 326926
Dϵ=∞ 30000 0.01854 5150 277710 105213
Dϵ=8 30000 0.00416 1010 242528 34153
Dϵ=4 30000 0.00436 1069 244932 37787

Table 15: Analysis for the CPS data of all the unique contexts in which entities in the PERSON/ORG categories
from the training data appear in the synthetic data, considering surrounding context word lengths varying from 1 to
4. Dreal corresponds to the training data the generative models were trained on.

Model
Data
Size

Overlap Ratio of
EP

Overlap
EP #

Total EP # in Dreal

+ Dsynth−data

Total EP # in
Dsynth−data

Dreal 90250 1 323272 323272 471245
Dϵ=∞ 30000 0.01817 7410 407779 164060
Dϵ=8 30000 0.00678 2504 369061 64519
Dϵ=4 30000 0.00580 2129 366935 61565

Table 16: Analysis for the CPS data of all the unique contexts in which entities of from all categories from the
training data appear in the synthetic data, considering surrounding context word lengths varying from 1 to 4. Dreal

corresponds to the training data the generative models were trained on.
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