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Objective: This study aims to evaluate whether in-context learning (ICL), a prompt-based learning mechanism
enabling multimodal foundation models to rapidly adapt to new tasks without retraining or large annotated datasets, 
can achieve comparable diagnostic performance to domain-specific foundation models. Specifically, we use diabetic 
retinopathy (DR) detection as an exemplar task to probe if a multimodal foundation model (Google Gemini 1.5 Pro),
employing ICL, can match the performance of a domain-specific model (RETFound) fine-tuned explicitly for DR 
detection from color fundus photographs (CFPs).
Design: A cross-sectional study.
Subjects: A retrospective, publicly available dataset (Indian Diabetic Retinopathy Image Dataset) comprising 516

CFPs collected at an eye clinic in India, featuring both healthy individuals and patients with DR.
Methods: The images were dichotomized into 2 groups based on the presence or absence of any signs of DR. 

RETFound was fine-tuned for this binary classification task, while Gemini 1.5 Pro was assessed for it under zero-shot 
and few-shot prompting scenarios, with the latter incorporating random or k-nearest-neighbors-based sampling of a 
varying number of example images. For experiments, data were partitioned into training, validation, and test sets in a 
stratified manner, with the process repeated for 10-fold cross-validation.
Main Outcome Measures: Performance was assessed via accuracy, F1 score, and expected calibration error of 

predictive probabilities. Statistical significance was evaluated using Wilcoxon tests.
Results: The best ICL performance with Gemini 1.5 Pro yielded an average accuracy of 0.841 (95% confidence 

interval [CI]: 0.803—0.879), an F1 score of 0.876 (95% CI: 0.844—0.909), and a calibration error of 0.129 (95% CI: 
0.107—0.152). RETFound achieved an average accuracy of 0.849 (95% CI: 0.813—0.885), an F1 score of 0.883 (95% CI: 
0.852—0.915), and a calibration error of 0.081 (95% CI: 0.066—0.097). While accuracy and F1 scores were comparable 
(P > 0.3), RETFound’s calibration was superior (P = 0.004).
Conclusions: Gemini 1.5 Pro with ICL demonstrated performance comparable to RETFound for binary DR 

detection, illustrating how future medical artificial intelligence systems may build upon such frontier models rather 
than being bespoke solutions.
Financial Disclosure(s): Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at 

the end of this article. Ophthalmology Science 2026;6:100934 © 2025 by the American Academy of Ophthalmology. 
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Foundation models trained on broad, multimodal data have 
demonstrated impressive performance in diverse 
scenarios 1—5 and hold promise as general-purpose solutions 
adaptable to various clinical tasks. 6 However, their 
deployment in specialized domains like medical imaging 
often requires resource-intensive fine-tuning on domain-
specific datasets, limiting accessibility and scalability in 
all settings, not just in resource-constrained ones. 7 

Initially observed in natural language processing 8 and 
later in computer vision, 9—12 in-context learning (ICL) of-
fers an alternative to transfer learning that typically requires 
fine-tuning of a pretrained model to new tasks before 
making predictions. Unlike transfer learning via fine-tuning,

ICL does not require model retraining or parameter updates 
and instead allows foundation models to be adapted to new 
tasks by conditioning them via task-specific prompts. 13 

These prompts typically include concise task descriptions 
along with a few illustrative examples. 14

In-context learning is particularly relevant for medical 
use cases, as language-based prompting allows nontech-
nical users to easily adjust a model’s behavior. By elimi-
nating the need for extensive labeled datasets, 
computational resources, or coding expertise, ICL can 
expand access to cutting-edge artificial intelligence (AI), 
allowing clinicians and researchers to leverage powerful 
models developed outside health care without the burden of
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building custom solutions from scratch. Recent reports of 
widespread adoption of the DeepSeek models 15 in Chinese 
hospitals exemplify this trend. 16 Additionally, ICL can 
potentially enhance explainability by exploiting 
multimodal foundation models’ ability to generate natural 
language-based descriptions of clinically relevant features 
and decision rationales, aligning AI outputs with the inter-
pretability needs of clinicians and stakeholders.

Recently, ICL has been shown to enable classification of 
pathology images while attaining performance comparable 
to or surpassing that of fine-tuned foundation models, despite 
using significantly fewer annotated examples. 17 Given that 
ophthalmology is an imaging-driven specialty of medicine, 
we explore the potential of ICL in this field by using it to 
detect signs of diabetic retinopathy (DR) on color fundus 
photographs (CFPs) in a proof-of-concept study. Diabetic 
retinopathy detection was selected not due to unmet diag-
nostic performance, but because it serves as a well-suited 
benchmark for evaluating new learning approaches. 18,19 

We demonstrate that ICL using a multimodal foundation 
model (Gemini 1.5 Pro) can achieve diagnostic performance 
comparable to RETFound, a domain-specific foundation 
model specialized for retinal imaging, 1 while also providing 
fairly well-calibrated predictive uncertainty estimates simply 
via prompt engineering. In addition, we provide evidence 
that the Gemini model can offer a window into its decision 
mechanism through counterfactual reasoning, achieved 
solely through prompt engineering.

Methods

Dataset

We evaluated the performance of ICL against transfer learning 
using a well-known publicly available dataset, the Indian Diabetic 
Retinopathy Image Dataset (IDRiD). 20 Five hundred sixteen 
macula-centered images were acquired in mydriasis via a Kowa 
VX-10α digital fundus camera with a 50 ◦ field of view and were 
taken from clinical examinations performed at an eye clinic in 
India. 21 All images in the dataset were graded according to the 
International Clinical Diabetic Retinopathy Severity Scale 22 by 2 
medical experts who provided adjudicated consensus grades. 21 

No demographic information, for example, age, sex, or ethnicity, 
was available in the public dataset.

DR Detection as a Binary Classification Task

To test ICL as a potential tool for DR detection, we defined our 
task as a binary classification problem by dichotomizing the 
severity labels into the following groups: {0} vs. {1,2,3,4}. Thus, 
in the presence of any signs of DR, a classifier is expected to 
assign the positive class label 1 (DR present). Otherwise, it should 
assign 0, the negative class label indicating an absence of DR. For 
probabilistic classification, this can be achieved by estimating 
p(y = 1|x), where x is an image and the model, f (x); essentially 
outputs the probability of the image belonging to the positive 
class, that is, y = 1. Then, a simple thresholding scheme yields the 
most likely class label: If p(y = 1|x) ≥ 0:5, then 1; else 0.

A well-calibrated classifier provides probability estimates that 
accurately reflect the true likelihood of its predictions being cor-
rect. This ensures that its outputs can be interpreted as confidence 
values, making it easier to assess the reliability of automated

decisions. Such classifiers can be integrated into clinical work-
flows, 23 aid in decision referrals, and highlight cases where 
clinical decision-making may be particularly challenging. 24—26 

Expected calibration error (ECE) summarizes the overall calibra-
tion quality of a classifier into a single metric by capturing the gap 
between its confidence and accuracy. 27

Model Development

We induced classifiers to perform the binary DR detection task 
via 2 approaches: transfer learning and ICL (Fig 1). Our code, 
including prompts tailored to the task, is also available at https:// 
github.com/msayhan/ICL-Ophthalmology-Public. 

Transfer Learning. For transfer learning, we used
RETFound, 1 which was pretrained firstly on ImageNet 28 and then 
on 904 170 CFPs. We coupled its feature extraction encoder with a 
single linear layer for binary classification and fine-tuned the 
entire model using the binary cross-entropy loss in an end-to-end 
fashion, including all layers. In order to evaluate the model on 
IDRiD, we performed 10-fold stratified cross-validation. Specif-
ically, we allocated 10% of data for testing, while another 10% 
went for validation and the remaining 80% for training. We trained 
each model for 20 epochs using binary cross-entropy loss, eval-
uating on the validation set after each epoch. We then selected the 
models with the smallest validation loss for testing. During 
training, we used a weight decay parameter of 0.01, an initial 
learning rate of 0.001, which is linearly scaled with the minibatch 
size of 8 times batch accumulation steps of 2 divided by 256, and a 
layer decay of 0.75. Our optimizer was AdamW 29 coupled with 
cosine scheduling and warm restarts in every 100 steps. 30 For 
data augmentation, we used standard transformations, including 
random cropping, brightness, contrast, saturation, and hue 
adjustments, as well as Gaussian blur and rotation. Lastly, we 
normalized pixel values via the ImageNet statistics.

ICL. All ICL experiments in this study were performed with 
Google’s Gemini model (Gemini 1.5 Pro). Given the temperature 
range [0, 2.0] for this particular model and its default value of 1.0, 
we trialed several values, including 0.1, 0.3, 0.5, 0.6, 0.7, and 0.75, 
and settled on 0.7 in order to slightly trade the model’s random-
ness off against its determinism in responses. Additionally, we 
adopted nucleus sampling (also known as top-p sampling) 31 with a 
threshold of 0.9 for the probability mass of most likely tokens to 
be generated. The remaining and potentially unreliable portions 
of probability distributions were truncated in the hope of 
avoiding degenerate text. 31

We used the stratified partitions described earlier (80% for 
training, 10% for validation, and 10% for testing, repeated 10 
times) also for the ICL experiments. Considering individual im-
ages from test sets as query objects, say x, we simply prompted the 
model to classify them one at a time according to the absence or 
presence of DR pathology in zero-shot settings. For few-shot 
learning, we additionally sampled support sets from the nontest 
partitions with k examples, where kϵ{3; 5; 10; 20}, from each class 
(negative and positive) and concatenated them with prompts. 
Sampling was either random or based on k-nearest-neighbors 
(kNNs) of a query image. When using kNN, we used fundus 
image feature representations extracted via RETFound and sorted 
images in ascending order with respect to their cosine distance to 
the query image. The top k images were returned and used as 
examples in prompts. For supervision in few-shot learning, we 
also padded images as follows during concatenation: “Ophthal-
mologists classified the following image as {y}: {x},” where y 
was the class label as either “normal” or “diabetic retinopathy 
(DR).”

We used three main prompts: system instruction (also known as 
master prompt), zero-shot prompt, and few-shot prompt (see
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Supplementary File 1 available at www.ophthalmologyscience.org). 
The system instruction was used when a Gemini model was 
instantiated, and it described a role for the model to assume, for 
example, “a helpful and professional medical assistant for an 
ophthalmologist who needs to classify CFPs of patients.” The 
system instruction also included examples of good and bad 
responses as well as the overall structure of expected JavaScript 
Object Notation (JSON) outputs. During zero-shot prompting, the 
prompt elaborated on the role and defined the classification task 
along with domain-specific considerations regarding retinal struc-
tures, DR pathology, and its appearance on CFPs, which were then 
followed by concrete steps for the analysis of images and decision-
making. Finally, we reiterated the description of JSON output format 
by specifying details on the fields like “findings,” “thoughts,” 
“answer,” and “counterfactual,” as well as “confidence_value” for 
the answer given at that instance. For few-shot prompting, we tried 
to steer the model to utilize additional images by including additional 
instructions such as “carefully examine examples and find patterns 
that distinguish normal images from diseased ones” and “compare 
what you see in the patient’s image to the patterns you learned from 
the examples,” while keeping most of the prompt identical to the 
zero-shot one. For counterfactual reasoning, we encouraged the 
model in both zero-shot and few-shot scenarios to ponder alternative 
scenarios through questions like “If the patient had not had DR, how 
would the image have looked?” or “If the patient had had DR, how 
would the image have looked?”

Results

We evaluated the performance of both RETFound and 
Gemini 1.5 Pro on test sets via accuracy, F1 score, and the 
ECE of predictive probabilities (Fig 2). RETFound 
achieved an average accuracy of 0.849 (95% confidence 
interval [CI]: 0.813—0.885), an average F1 score of 0.883 
(95% CI: 0.852—0.915), and an average ECE of 0.081 
(95% CI: 0.066—0.097). For Gemini 1.5 Pro, we started 
out with rudimentary prompts (Supplementary File 1A) 
that included only broad, high-level descriptions of retinal 
structures, DR pathology, and general CFP features. While 
the rudimentary prompts (Fig 2, green lines) resulted in an 
average accuracy of 0.641 (95% CI: 0.610—0.673), an 
average F1 score of 0.547 (95% CI: 0.496—0.599), and an 
average ECE of 0.348 (95% CI: 0.340—0.357) in the 
zero-shot (k = 0) setting, the performance increased with 
few-shot prompting and reached an average accuracy of 
0.773 (95% CI: 0.739—0.807), an F1 score of 0.738 (95% 
CI: 0.695—0.780), and an average ECE of 0.287 (95% CI: 
0.274—0.300) with kNN-based sampling of 20 examples 
per class. There was no significant difference in perfor-
mance between random or kNN-based sampling strategies 
across different values of k.

Figure 1. Study workflow. We performed binary DR classification using the IDRiD dataset. Transfer learning with RETFound served as a comparator 
(left panel). We used ICL with Gemini 1.5 Pro (right panel), employing 3 distinct prompting strategies: zero-shot prompting, few-shot prompting with 
randomly selected example images, and few-shot prompting with kNN-based example selection. Across all ICL scenarios, a system instruction 
(master prompt) was provided to define the model’s role. For details on dataset splitting and training procedures, refer to the methodological 
explanations provided in the Methods section. DR = diabetic retinopathy; ICL = in-context learning; IDRiD = Indian Diabetic Retinopathy Image 
Dataset; kNN = k-nearest-neighbor.
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Next, we iteratively optimized prompts by incorporating 
increasingly detailed clinical descriptions of general features 
visible on CFPs along with descriptions of specific DR-
associated alterations. In addition, we provided a clear 
framework for classification (Supplementary File 1B). The 
optimized prompts dramatically improved the ICL 
performance of Gemini 1.5 Pro and resulted in an average 
accuracy of 0.754 (95% CI: 0.713—0.794), an average F1 
score of 0.788 (95% CI: 0.748—0.829), and an average 
ECE of 0.217 (95% CI: 0.188—0.246) in the zero-shot 
(k = 0) setting (Fig 2, blue lines). With few-shot prompt-
ing and kNN-based sampling of 10 images per class, the 
model’s ICL performance peaked at an average accuracy of 
0.841 (95% CI: 0.803—0.879), an average F1 score of 0.877 
(95% CI: 0.844—0.909), and an average ECE of 0.129 (95% 
CI: 0.107—0.152). There was no significant difference in the 
classification performance of RETFound and Gemini 1.5 Pro 
guided with clinical knowledge and few relevant examples 
(P values for accuracy and F1 score: 0.326 and 0.432, 
respectively). RETFound’s predictive probabilities were, 
however, significantly better calibrated (P value: 0.004). 

Despite optimized prompts, ICL with few-shot prompting 
with random image sampling was almost never competitive 
with transfer learning via RETFound. For the F1-score, ICL 
only reached the RETFound performance level with k = 20 
examples (P value: 0.106). In terms of accuracy, RETFound 
was better (P value: 0.049). In contrast, kNN-based sampling 
with k = 5 led to an ICL calibration performance noninferior 
to that of RETFound (P value: 0.106).

We used both models’ predictions from test runs and 
computed their confusion matrices for the whole collection 
of 516 CFPs (Fig 3). On these predictions, RETFound’s 
sensitivity and specificity were 0.862 and 0.821, 
respectively. Gemini 1.5 Pro achieved 0.845 and 0.833 
for the same measures. With a Cohen kappa score of 
0.700, the agreement between models was substantial. 32 

Finally, we selected examples to demonstrate the outputs 
of Gemini 1.5 Pro with ICL and kNN-based sampling 
(Fig 4). The examples in the first 2 rows belong to the “DR”

and “no DR” (normal) classes, respectively. The model’s 
textual descriptions of retinal findings and its thoughts 
and counterfactual reasoning provide insights into how 
the model arrived at correct decisions on these 2 cases. Its 
answer for the last example, however, was wrong. 
Interestingly, it was able to assign the correct label with 
random sampling.

Discussion

We demonstrated that Gemini 1.5 Pro, a general-purpose 
multimodal foundation model, achieved performance com-
parable to RETFound, a domain-specific model for retinal 
imaging that was fine-tuned with a linear head on a small 
dataset, on a binary DR detection task. This was accom-
plished using an ICL approach, with as few as 10 repre-
sentative CFPs from each class providing sufficient context 
to guide inferences. These findings underscore the untapped 
potential of multimodal foundation models for enabling 
timely translation of cutting-edge AI developments into 
clinical research by side-stepping the need for de novo model 
development or fine-tuning as well as cumbersome efforts of 
data annotation at scale. Notably, this study has not even 
leveraged the most advanced multimodal large language 
models available today, yet has still achieved results com-
parable to a domain-specific model. As foundation models 
continue to evolve, their applications in medical imaging 
could extend far beyond current expectations.

During the experiments, we realized that adding more ex-
amples sometimes led to a paradoxical dip in performance. 
Despite being nonsignificant, this could indicate that focusing 
on a judiciously selected set of examples may help the model 
better concentrate on key features for diagnostic decision-
making. On that note, selection of examples can also impact 
the model’s performance beyond implicit assumptions. 
Recent work in visual ICL has emphasized the importance of 
prompt structure and example selection in determining model 
performance. Studies have shown that curated or retrieval-

Figure 2. Diabetic retinopathy classification performance of ICL in comparison with RETFound. Mean performances based on 10-fold cross-validation are 
shown along with 95% confidence intervals. Horizontal black lines (dash-dotted for the mean and dotted for the confidence interval) indicate RETFound’s 
performance. Categorical plots in blue or green show the ICL results with varying numbers of examples. Blue indicates results achieved with 
optimized prompts, whereas green indicates results obtained by using rudimentary (rudi.) prompts. (A) Accuracy, (B) F1 score, and (C) ECE via relplot. 36 

ECE = expected calibration error; ICL = in-context learning; kNN = k-nearest-neighbor.
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based examples consistently outperform random sampling and 
that sophisticated prompting strategies can improve 
generalization across vision tasks. 33—35 However, selection of 
examples can also impact the model’s performance beyond 
implicit assumptions. For instance, for the DR example in 
Fig 4C, kNN-based sampling resulted in predominantly 
normal-looking images, despite the presence of DR, thereby 
potentially biasing the model’s decision toward the incorrect 
classification (Supplementary File 2 and Supplementary 
Figure 1, available at www.ophthalmologyscience.org). This 
effect is particularly relevant when applying kNN sampling 
to images that contain clinically significant pathologies, such 
as neovascularization or intraretinal microvascular 
abnormalities, but otherwise exhibit a relatively mild 
appearance (e.g., only a few hemorrhages or 
microaneurysms). In such cases, the strongly pathological 
features may be overshadowed by the overall normal-like 
appearance, causing kNN-based sampling to select images 
that resemble healthy cases (Supplementary File 2 and 
Supplementary Figure 1). On the other hand, random 
sampling returned more prominent examples of DR, and the 
model made the correct decision based on them 
(Supplementary File 2 and Supplementary Figure 2, 
available at www.ophthalmologyscience.org). Thus, future 
studies may benefit from a hybrid approach where both 
random and kNN-based examples are used together for ICL. 
In scenarios where performance is highly sensitive to example 
selection, a supervised retrieval framework 35 can also be used 
to determine the examples most aligned with the ICL purposes 
and mitigate the impact of suboptimal examples.

We also explored how prompting the model to re-engage 
with the same image through counterfactual reasoning led 
to slight yet consistent improvements in classification ac-
curacy. Although these gains were not large, the approach 
mirrors human diagnostic workflows, where specialists 
frequently revisit initial assessments to verify or refine their 
conclusions. This iterative style of interrogation could 
eventually serve as a means to mitigate oversights, thereby 
increasing both clinician confidence and patient safety. 
Moreover, Gemini 1.5 Pro’s ability to generate written

explanations for its decisions represents an additional 
advantage, as it offers clinicians or educators a language-
based and therefore easily accessible window into the 
reasoning process. Such text-based justifications can high-
light the visual cues the model deems most relevant, facil-
itating human review of the model’s decision-making steps 
and potentially accelerating the education of trainees 
through interactive case discussions. However, future ex-
periments will have to critically assess how reliable those 
explanations are.

On a more general level, clinical deployment of such 
tools faces notable challenges, including privacy concerns, 
limited local compute resources, and stringent regulatory 
requirements, particularly for large language model-based 
systems. While widespread clinical adoption may not yet 
be feasible, the text-based interaction paradigm offers im-
mediate potential to support clinician-led research and 
exploratory use.

Looking ahead, the growing capabilities of general-
purpose foundation models raise the possibility of support-
ing a broad range of clinical and research tasks without the 
need to develop and fine-tune separate models for each 
application. Our findings illustrate that, with appropriate 
prompting and minimal task-specific examples, such models 
can approximate the performance of specialized tools for a 
defined task. While significant challenges remain for clinical 
implementation, this approach may enable more flexible and 
scalable use of AI, particularly in research settings where 
adaptability and rapid prototyping are valuable.

Limitations

Despite the intriguing results, this study has several limi-
tations. The proprietary nature of Gemini 1.5 Pro’s training 
data makes it unclear whether prior exposure to the IDRiD 
dataset influenced results. This also leads to transparency 
concerns, as the model’s training corpus remains undis-
closed, limiting interpretability and bias assessment. 
Therefore, we cannot categorically exclude the possibility 
that prior familiarity with the IDRiD dataset during

Figure 3. Confusion matrices for RETFound and Gemini-ICL predictions on the IDRiD dataset during test time. (A) Confusion matrix for 
RETFound. (B) Confusion matrix for Gemini 1.5 Pro using ICL. In-context learning was performed with k = 10 NNs per class. DR = diabetic 
retinopathy; ICL = in-context learning; IDRiD = Indian Diabetic Retinopathy Image Dataset; kNN = k-nearest-neighbor.
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pretraining may have influenced model performance. 
However, the conspicuous gap in performance between 
rudimentary prompts (see Fig 2 and Supplementary File 1) 
and carefully engineered prompts implies that skilled 
prompt design itself, rather than mere exposure to the 
images, plays a central role in eliciting the model’s 
diagnostic capabilities. Another important observation is 
that the model struggled with fine-grained detection,

precise enumeration, or meticulous observation of small 
pathological features, a limitation that may pose challenges 
in advanced DR staging, which can hinge on identifying 
and counting subtle lesions. The binary classification task is 
a relatively simple scenario, and it remains uncertain how 
well ICL would perform in more complex multiclass set-
tings. In addition, the study relied on a single, modestly 
sized dataset (IDRiD), and external validation was not

Figure 4. Representative example images and Gemini-ICL (k = 10 NNs per class) outputs. (A) A case of correctly identified DR. (B) A case of correctly 
identified healthy fundus appearance. (C) A DR image misclassified as healthy when using kNN-based sampling. DR = diabetic retinopathy; ICL = in-
context learning; kNN = k-nearest-neighbor.
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performed. This limits the assessment of generalizability 
across different populations, imaging conditions, and dis-
ease distributions. Future research should also explore its 
performance in multitask scenarios, where models are ex-
pected to solve different tasks simultaneously, 24 validate 
findings in diverse datasets as well as clinical settings, 
and assess newer model iterations. Newer members of the 
Gemini family, for example, the now available Gemini 2.5 
Pro or other state-of-the-art models, along with better 
adaptation strategies, may well lead to improved speed, 
accuracy, and reasoning depth, as well as enhanced capa-
bilities for numerical tasks. Another consideration for lim-
itation is that increasing the number of support examples 
did not always improve classification and sometimes 
reduced accuracy, highlighting the need for careful selec-
tion to mitigate bias, particularly with kNN-based sampling. 
While accuracy and F1 scores were comparable to 
RETFound, Gemini 1.5 Pro exhibited poorer calibration, 
which may impact the reliability of its confidence scores in 
clinical applications. Lastly, it would have been optimal to 
tune the temperature and prompt configurations on a vali-
dation set, with final evaluation restricted to the test set. 
Consequently, our reported results may be marginally 
overestimated owing to leakage from the test set. Never-
theless, given that ICL is applied postmodel training, such 
that the underlying model weights remain unaltered, and the 
test partition is internal to the IDRiD dataset, we maintain 
confidence in the validity of our qualitative conclusions. 
Additionally, running multiple trials per instance could 
better capture variability in responses and improve perfor-
mance estimates but was not feasible due to computational

constraints. Future work should incorporate such variability 
and adopt more sophisticated evaluation protocols for 
clinical validation.

Conclusion

This study highlights the potential of ICL with multimodal 
foundation models for medical AI, demonstrating that 
Gemini 1.5 Pro can match the performance of a domain-
specific foundation model in DR classification without 
retraining or large annotated datasets. Its ability to generate 
language-based explanations enhances interpretability and 
educational value. While challenges remain in transparency, 
calibration, and fine-grained pathology detection, these 
findings suggest that multimodal foundation models could 
transform medical imaging by enabling scalable, data-
efficient diagnostic support across diverse medical 
applications.
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