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Objective: This study aims to evaluate whether in-context learning (ICL), a prompt-based learning mechanism
enabling multimodal foundation models to rapidly adapt to new tasks without retraining or large annotated datasets,
can achieve comparable diagnostic performance to domain-specific foundation models. Specifically, we use diabetic
retinopathy (DR) detection as an exemplar task to probe if a multimodal foundation model (Google Gemini 1.5 Pro),
employing ICL, can match the performance of a domain-specific model (RETFound) fine-tuned explicitly for DR
detection from color fundus photographs (CFPs).

Design: A cross-sectional study.

Subjects: A retrospective, publicly available dataset (Indian Diabetic Retinopathy Image Dataset) comprising 516
CFPs collected at an eye clinic in India, featuring both healthy individuals and patients with DR.

Methods: The images were dichotomized into 2 groups based on the presence or absence of any signs of DR.
RETFound was fine-tuned for this binary classification task, while Gemini 1.5 Pro was assessed for it under zero-shot
and few-shot prompting scenarios, with the latter incorporating random or k-nearest-neighbors-based sampling of a
varying number of example images. For experiments, data were partitioned into training, validation, and test sets in a
stratified manner, with the process repeated for 10-fold cross-validation.

Main Outcome Measures: Performance was assessed via accuracy, F1 score, and expected calibration error of
predictive probabilities. Statistical significance was evaluated using Wilcoxon tests.

Results: The best ICL performance with Gemini 1.5 Pro yielded an average accuracy of 0.841 (95% confidence
interval [CI]: 0.803—0.879), an F1 score of 0.876 (95% Cl: 0.844—0.909), and a calibration error of 0.129 (95% ClI:
0.107—0.152). RETFound achieved an average accuracy of 0.849 (95% Cl: 0.813—0.885), an F1 score of 0.883 (95% CI:
0.852—0.915), and a calibration error of 0.081(95% CI: 0.066—0.097). While accuracy and F1 scores were comparable
(P > 0.3), RETFound's calibration was superior (P = 0.004).

Conclusions: Gemini 1.5 Pro with ICL demonstrated performance comparable to RETFound for binary DR
detection, illustrating how future medical artificial intelligence systems may build upon such frontier models rather
than being bespoke solutions.

Financial Disclosure(s): Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at
the end of this article. Ophthalmology Science 2026,6:100934 © 2025 by the American Academy of Ophthalmology.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Supplemental material available at www.ophthalmologyscience.org.
[]

Foundation models trained on broad, multimodal data have
demonstrated  impressive  performance in  diverse
scenarios' > and hold promise as general-purpose solutions
adaptable to various clinical tasks. However, their
deployment in specialized domains like medical imaging
often requires resource-intensive fine-tuning on domain-
specific datasets, limiting accessibility and scalability in
all settings, not just in resource-constrained ones.’
Initially observed in natural language processing” and
later in computer vision,” '* in-context learning (ICL) of-
fers an alternative to transfer learning that typically requires
fine-tuning of a pretrained model to new tasks before
making predictions. Unlike transfer learning via fine-tuning,
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ICL does not require model retraining or parameter updates
and instead allows foundation models to be adapted to new
tasks by conditioning them via task-specific prompts."”
These prompts typically include concise task descriptions
along with a few illustrative examples.'”

In-context learning is particularly relevant for medical
use cases, as language-based prompting allows nontech-
nical users to easily adjust a model’s behavior. By elimi-
nating the need for extensive labeled datasets,
computational resources, or coding expertise, ICL can
expand access to cutting-edge artificial intelligence (Al),
allowing clinicians and researchers to leverage powerful
models developed outside health care without the burden of
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building custom solutions from scratch. Recent reports of
widespread adoption of the DeepSeek models'” in Chinese
hospitals exemplify this trend.'® Additionally, ICL can
potentially  enhance  explainability by  exploiting
multimodal foundation models’ ability to generate natural
language-based descriptions of clinically relevant features
and decision rationales, aligning Al outputs with the inter-
pretability needs of clinicians and stakeholders.

Recently, ICL has been shown to enable classification of
pathology images while attaining performance comparable
to or surpassing that of fine-tuned foundation models, despite
using significantly fewer annotated examples.'” Given that
ophthalmology is an imaging-driven specialty of medicine,
we explore the potential of ICL in this field by using it to
detect signs of diabetic retinopathy (DR) on color fundus
photographs (CFPs) in a proof-of-concept study. Diabetic
retinopathy detection was selected not due to unmet diag-
nostic performance, but because it serves as a well-suited
benchmark for evaluating new learning approaches.'®'”

We demonstrate that ICL using a multimodal foundation
model (Gemini 1.5 Pro) can achieve diagnostic performance
comparable to RETFound, a domain-specific foundation
model specialized for retinal imaging," while also providing
fairly well-calibrated predictive uncertainty estimates simply
via prompt engineering. In addition, we provide evidence
that the Gemini model can offer a window into its decision
mechanism through counterfactual reasoning, achieved
solely through prompt engineering.

Methods

Dataset

We evaluated the performance of ICL against transfer learning
using a well-known publicly available dataset, the Indian Diabetic
Retinopathy Image Dataset (IDRiD).”° Five hundred sixteen
macula-centered images were acquired in mydriasis via a Kowa
VX-10a. digital fundus camera with a 50° field of view and were
taken from clinical examinations performed at an eye clinic in
India.>’ All images in the dataset were graded according to the
International Clinical Diabetic Retinopathy Severity Scale” by 2
medical experts who provided adjudicated consensus grades.”'
No demographic information, for example, age, sex, or ethnicity,
was available in the public dataset.

DR Detection as a Binary Classification Task

To test ICL as a potential tool for DR detection, we defined our
task as a binary classification problem by dichotomizing the
severity labels into the following groups: {0} vs. {1,2,3,4}. Thus,
in the presence of any signs of DR, a classifier is expected to
assign the positive class label 1 (DR present). Otherwise, it should
assign 0, the negative class label indicating an absence of DR. For
probabilistic classification, this can be achieved by estimating
p(y = 1|x), where x is an image and the model, f(x), essentially
outputs the probability of the image belonging to the positive
class, that is, y = 1. Then, a simple thresholding scheme yields the
most likely class label: If p(y = 1|x) > 0.5, then 1; else 0.

A well-calibrated classifier provides probability estimates that
accurately reflect the true likelihood of its predictions being cor-
rect. This ensures that its outputs can be interpreted as confidence
values, making it easier to assess the reliability of automated
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decisions. Such classifiers can be integrated into clinical work-
ﬂows,23 aid in decision referrals, and highlight cases where
clinical decision-making may be particularly challenging.”* >°
Expected calibration error (ECE) summarizes the overall calibra-
tion quality of a classifier into a single metric by capturing the gap
between its confidence and accuracy.”’

Model Development

We induced classifiers to perform the binary DR detection task
via 2 approaches: transfer learning and ICL (Fig 1). Our code,
including prompts tailored to the task, is also available at https://
github.com/msayhan/ICL-Ophthalmology-Public.

Transfer Learning. For transfer learning, we used
RETFound,' which was pretrained firstly on ImageNet™ and then
on 904 170 CFPs. We coupled its feature extraction encoder with a
single linear layer for binary classification and fine-tuned the
entire model using the binary cross-entropy loss in an end-to-end
fashion, including all layers. In order to evaluate the model on
IDRiD, we performed 10-fold stratified cross-validation. Specif-
ically, we allocated 10% of data for testing, while another 10%
went for validation and the remaining 80% for training. We trained
each model for 20 epochs using binary cross-entropy loss, eval-
uating on the validation set after each epoch. We then selected the
models with the smallest validation loss for testing. During
training, we used a weight decay parameter of 0.01, an initial
learning rate of 0.001, which is linearly scaled with the minibatch
size of 8 times batch accumulation steps of 2 divided by 256, and a
layer decay of 0.75. Our optimizer was AdamW?>’ coupled with
cosine scheduling and warm restarts in every 100 steps.’” For
data augmentation, we used standard transformations, including
random cropping, brightness, contrast, saturation, and hue
adjustments, as well as Gaussian blur and rotation. Lastly, we
normalized pixel values via the ImageNet statistics.

ICL. All ICL experiments in this study were performed with
Google’s Gemini model (Gemini 1.5 Pro). Given the temperature
range [0, 2.0] for this particular model and its default value of 1.0,
we trialed several values, including 0.1, 0.3, 0.5, 0.6, 0.7, and 0.75,
and settled on 0.7 in order to slightly trade the model’s random-
ness off against its determinism in responses. Additionally, we
adopted nucleus sampling (also known as top-p sampling)®' with a
threshold of 0.9 for the probability mass of most likely tokens to
be generated. The remaining and potentially unreliable portions
of probability distributions were truncated in the hope of
avoiding degenerate text.’’

We used the stratified partitions described earlier (80% for
training, 10% for validation, and 10% for testing, repeated 10
times) also for the ICL experiments. Considering individual im-
ages from test sets as query objects, say x, we simply prompted the
model to classify them one at a time according to the absence or
presence of DR pathology in zero-shot settings. For few-shot
learning, we additionally sampled support sets from the nontest
partitions with k examples, where ke{3,5,10,20}, from each class
(negative and positive) and concatenated them with prompts.
Sampling was either random or based on k-nearest-neighbors
(kNNs) of a query image. When using kNN, we used fundus
image feature representations extracted via RETFound and sorted
images in ascending order with respect to their cosine distance to
the query image. The top k images were returned and used as
examples in prompts. For supervision in few-shot learning, we
also padded images as follows during concatenation: “Ophthal-
mologists classified the following image as {y}: {x},” where y
was the class label as either “normal” or “diabetic retinopathy
(DR).”

We used three main prompts: system instruction (also known as
master prompt), zero-shot prompt, and few-shot prompt (see
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Figure 1. Study workflow. We performed binary DR classification using the IDRiD dataset. Transfer learning with RETFound served as a comparator
(left panel). We used ICL with Gemini 1.5 Pro (right panel), employing 3 distinct prompting strategies: zero-shot prompting, few-shot prompting with

randomly selected example images, and few-shot prompting with kNN-based example selection. Across all ICL scenarios, a system instruction
(master prompt) was provided to define the model’s role. For details on dataset splitting and training procedures, refer to the methodological
explanations provided in the Methods section. DR = diabetic retinopathy; ICL = in-context learning; IDRiD = Indian Diabetic Retinopathy Image

Dataset; kNN = k-nearest-neighbor.

Supplementary File 1 available at www.ophthalmologyscience.org).
The system instruction was used when a Gemini model was
instantiated, and it described a role for the model to assume, for
example, “a helpful and professional medical assistant for an
ophthalmologist who needs to classify CFPs of patients.” The
system instruction also included examples of good and bad
responses as well as the overall structure of expected JavaScript
Object Notation (JSON) outputs. During zero-shot prompting, the
prompt elaborated on the role and defined the classification task
along with domain-specific considerations regarding retinal struc-
tures, DR pathology, and its appearance on CFPs, which were then
followed by concrete steps for the analysis of images and decision-
making. Finally, we reiterated the description of JSON output format
by specifying details on the fields like “findings,” “thoughts,”
“answer,” and ‘“counterfactual,” as well as “confidence_value” for
the answer given at that instance. For few-shot prompting, we tried
to steer the model to utilize additional images by including additional
instructions such as “carefully examine examples and find patterns
that distinguish normal images from diseased ones” and “‘compare
what you see in the patient’s image to the patterns you learned from
the examples,” while keeping most of the prompt identical to the
zero-shot one. For counterfactual reasoning, we encouraged the
model in both zero-shot and few-shot scenarios to ponder alternative
scenarios through questions like “If the patient had not had DR, how
would the image have looked?” or “If the patient had had DR, how
would the image have looked?”

Results

We evaluated the performance of both RETFound and
Gemini 1.5 Pro on test sets via accuracy, F1 score, and the
ECE of predictive probabilities (Fig 2). RETFound
achieved an average accuracy of 0.849 (95% confidence
interval [CI]: 0.813—0.885), an average F1 score of 0.883
(95% CI: 0.852—0.915), and an average ECE of 0.081
(95% CI: 0.066—0.097). For Gemini 1.5 Pro, we started
out with rudimentary prompts (Supplementary File 1A)
that included only broad, high-level descriptions of retinal
structures, DR pathology, and general CFP features. While
the rudimentary prompts (Fig 2, green lines) resulted in an
average accuracy of 0.641 (95% CI: 0.610—0.673), an
average F1 score of 0.547 (95% CI: 0.496—0.599), and an
average ECE of 0.348 (95% CI: 0.340—0.357) in the
zero-shot (k = 0) setting, the performance increased with
few-shot prompting and reached an average accuracy of
0.773 (95% CI: 0.739—0.807), an F1 score of 0.738 (95%
CI: 0.695—0.780), and an average ECE of 0.287 (95% CI:
0.274—0.300) with kNN-based sampling of 20 examples
per class. There was no significant difference in perfor-
mance between random or kNN-based sampling strategies
across different values of k.
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Figure 2. Diabetic retinopathy classification performance of ICL in comparison with RETFound. Mean performances based on 10-fold cross-validation are
shown along with 95% confidence intervals. Horizontal black lines (dash-dotted for the mean and dotted for the confidence interval) indicate RETFound’s
performance. Categorical plots in blue or green show the ICL results with varying numbers of examples. Blue indicates results achieved with
optimized prompts, whereas green indicates results obtained by using rudimentary (rudi.) prompts. (A) Accuracy, (B) F1 score, and (C) ECE via relplot. 5
ECE = expected calibration error; ICL = in-context learning; kNN = k-nearest-neighbor.

Next, we iteratively optimized prompts by incorporating
increasingly detailed clinical descriptions of general features
visible on CFPs along with descriptions of specific DR-
associated alterations. In addition, we provided a clear
framework for classification (Supplementary File 1B). The
optimized prompts dramatically improved the ICL
performance of Gemini 1.5 Pro and resulted in an average
accuracy of 0.754 (95% CI: 0.713—0.794), an average F1
score of 0.788 (95% CI: 0.748—0.829), and an average
ECE of 0.217 (95% CI. 0.188—0.246) in the zero-shot
(k = 0) setting (Fig 2, blue lines). With few-shot prompt-
ing and kNN-based sampling of 10 images per class, the
model’s ICL performance peaked at an average accuracy of
0.841 (95% CI: 0.803—0.879), an average F1 score of 0.877
(95% CI: 0.844—0.909), and an average ECE of 0.129 (95%
CI: 0.107—0.152). There was no significant difference in the
classification performance of RETFound and Gemini 1.5 Pro
guided with clinical knowledge and few relevant examples
(P values for accuracy and F1 score: 0.326 and 0.432,
respectively). RETFound’s predictive probabilities were,
however, significantly better calibrated (P value: 0.004).

Despite optimized prompts, ICL with few-shot prompting
with random image sampling was almost never competitive
with transfer learning via RETFound. For the F1-score, ICL
only reached the RETFound performance level with k = 20
examples (P value: 0.106). In terms of accuracy, RETFound
was better (P value: 0.049). In contrast, KNN-based sampling
with k = 5 led to an ICL calibration performance noninferior
to that of RETFound (P value: 0.106).

We used both models’ predictions from test runs and
computed their confusion matrices for the whole collection
of 516 CFPs (Fig 3). On these predictions, RETFound’s
sensitivity and specificity were 0.862 and 0.821,
respectively. Gemini 1.5 Pro achieved 0.845 and 0.833
for the same measures. With a Cohen kappa score of
0.700, the agreement between models was substantial.””

Finally, we selected examples to demonstrate the outputs
of Gemini 1.5 Pro with ICL and kNN-based sampling
(Fig 4). The examples in the first 2 rows belong to the “DR”
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and “no DR” (normal) classes, respectively. The model’s
textual descriptions of retinal findings and its thoughts
and counterfactual reasoning provide insights into how
the model arrived at correct decisions on these 2 cases. Its
answer for the last example, however, was wrong.
Interestingly, it was able to assign the correct label with
random sampling.

Discussion

We demonstrated that Gemini 1.5 Pro, a general-purpose
multimodal foundation model, achieved performance com-
parable to RETFound, a domain-specific model for retinal
imaging that was fine-tuned with a linear head on a small
dataset, on a binary DR detection task. This was accom-
plished using an ICL approach, with as few as 10 repre-
sentative CFPs from each class providing sufficient context
to guide inferences. These findings underscore the untapped
potential of multimodal foundation models for enabling
timely translation of cutting-edge Al developments into
clinical research by side-stepping the need for de novo model
development or fine-tuning as well as cumbersome efforts of
data annotation at scale. Notably, this study has not even
leveraged the most advanced multimodal large language
models available today, yet has still achieved results com-
parable to a domain-specific model. As foundation models
continue to evolve, their applications in medical imaging
could extend far beyond current expectations.

During the experiments, we realized that adding more ex-
amples sometimes led to a paradoxical dip in performance.
Despite being nonsignificant, this could indicate that focusing
on a judiciously selected set of examples may help the model
better concentrate on key features for diagnostic decision-
making. On that note, selection of examples can also impact
the model’s performance beyond implicit assumptions.
Recent work in visual ICL has emphasized the importance of
prompt structure and example selection in determining model
performance. Studies have shown that curated or retrieval-
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Figure 3. Confusion matrices for RETFound and Gemini-ICL predictions on the IDRiD dataset during test time. (A) Confusion matrix for
RETFound. (B) Confusion matrix for Gemini 1.5 Pro using ICL. In-context learning was performed with k = 10 NNs per class. DR = diabetic
retinopathy; ICL = in-context learning; IDRiD = Indian Diabetic Retinopathy Image Dataset; kNN = k-nearest-neighbor.

based examples consistently outperform random sampling and
that sophisticated prompting strategies can improve
generalization across vision tasks.”* > However, selection of
examples can also impact the model’s performance beyond
implicit assumptions. For instance, for the DR example in
Fig 4C, kNN-based sampling resulted in predominantly
normal-looking images, despite the presence of DR, thereby
potentially biasing the model’s decision toward the incorrect
classification (Supplementary File 2 and Supplementary
Figure 1, available at www.ophthalmologyscience.org). This
effect is particularly relevant when applying kNN sampling
to images that contain clinically significant pathologies, such
as neovascularization or intraretinal microvascular
abnormalities, but otherwise exhibit a relatively mild
appearance (e.g., only a few hemorrhages or
microaneurysms). In such cases, the strongly pathological
features may be overshadowed by the overall normal-like
appearance, causing kNN-based sampling to select images
that resemble healthy cases (Supplementary File 2 and
Supplementary Figure 1). On the other hand, random
sampling returned more prominent examples of DR, and the
model made the correct decision based on them
(Supplementary File 2 and Supplementary Figure 2,
available at www.ophthalmologyscience.org). Thus, future
studies may benefit from a hybrid approach where both
random and kNN-based examples are used together for ICL.
In scenarios where performance is highly sensitive to example
selection, a supervised retrieval framework™ can also be used
to determine the examples most aligned with the ICL purposes
and mitigate the impact of suboptimal examples.

We also explored how prompting the model to re-engage
with the same image through counterfactual reasoning led
to slight yet consistent improvements in classification ac-
curacy. Although these gains were not large, the approach
mirrors human diagnostic workflows, where specialists
frequently revisit initial assessments to verify or refine their
conclusions. This iterative style of interrogation could
eventually serve as a means to mitigate oversights, thereby
increasing both clinician confidence and patient safety.
Moreover, Gemini 1.5 Pro’s ability to generate written

explanations for its decisions represents an additional
advantage, as it offers clinicians or educators a language-
based and therefore easily accessible window into the
reasoning process. Such text-based justifications can high-
light the visual cues the model deems most relevant, facil-
itating human review of the model’s decision-making steps
and potentially accelerating the education of trainees
through interactive case discussions. However, future ex-
periments will have to critically assess how reliable those
explanations are.

On a more general level, clinical deployment of such
tools faces notable challenges, including privacy concerns,
limited local compute resources, and stringent regulatory
requirements, particularly for large language model-based
systems. While widespread clinical adoption may not yet
be feasible, the text-based interaction paradigm offers im-
mediate potential to support clinician-led research and
exploratory use.

Looking ahead, the growing capabilities of general-
purpose foundation models raise the possibility of support-
ing a broad range of clinical and research tasks without the
need to develop and fine-tune separate models for each
application. Our findings illustrate that, with appropriate
prompting and minimal task-specific examples, such models
can approximate the performance of specialized tools for a
defined task. While significant challenges remain for clinical
implementation, this approach may enable more flexible and
scalable use of Al, particularly in research settings where
adaptability and rapid prototyping are valuable.

Limitations

Despite the intriguing results, this study has several limi-
tations. The proprietary nature of Gemini 1.5 Pro’s training
data makes it unclear whether prior exposure to the IDRiD
dataset influenced results. This also leads to transparency
concerns, as the model’s training corpus remains undis-
closed, limiting interpretability and bias assessment.
Therefore, we cannot categorically exclude the possibility
that prior familiarity with the IDRiD dataset during
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Findings: The patient's fundus image shows a few scattered
yellow-white spots in the posterior pole.

Thoughts: The patient's image shows a few scattered yellow-white
spots, primarily in the superior quadrants. These spots are well-de-
fined with sharp edges, consistent with hard exudates. The presence
of hard exudates is a hallmark of diabetic retinopathy. Therefore, |
classify this image as Diabetic Retinopathy (DR?.

Answer: Diabetic Retinopathy (DR)

Counterfactual: If the patient did not have diabetic retinopathy, the
fundus ima?e would not show these hard exudates. The retina would
appear healthy, with a normal distribution of blood vessels and no
sgns of leakage or damage. Conversely, if the patient had more
advanced diabetic retinopathy, we might observe additional findings
such as microaneurysms, hemorrhages, or cotton wool spots.

Confidence value: 0.85

Findings: The retinal background appears within normal limits. No
signs of diabetic retinopathy such as

microaneurysms, hemorrhages, or exudates are observed. The optic
disc is healthy, and the vessels are

unremarkable.

Thoughts: This color fundus photograph reveals a healthy retina with
no signs of diabetic retinopathy. The absence of microaneurysms,
hemorrhages, exudates, or any other abnormalities supports this
conclusion. The optic disc appears normal, and the retinal vasculature
is unremarkable.

Answer: Normal

Counterfactual: If the patient had diabetic retinopathy, we might
observe signs like microaneurysms, hemorrhages, exudates, or cotton
wool spots. Conversely, if the patient did not have diabetic retinopathy,
we would expect to see a healthy retina like the one presented in this
image.

Confidence value: 0.95
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Findings: The patient's color fundus photograph shows no signs of
retinal abnormalities. The retina appears healthy with a normal reddish
color. The optic disc is well-defined with a normal cup-to-disc ratio.

The retinal vessels are normally distributed and there is no evidence of
microaneurysms, hemorrhages, exudates, or cotton wool spots. No
signs of neovascularization or macular edema are observed.

Thoughts: Based on the absence of any abnormalities or signs of
diabetic retinopathy, the patient's retina appears healthy. The retinal
vessels are of normal caliber and there are no signs of leakage or
damage. The absence of microaneurysms, hemorrhages, exudates,
1enddcotton wool spots further supports the conclusion of a normal
undus.

Answer: Normal

Counterfactual: If the patient had diabetic retinopathy, we might
observe signs like microaneurysms, hemorrhages, hard exudates, or
cotton wool spots. The retinal vessels might also show abnormalities
such as venous beading or

neovascularization. However, none of these signs are present in the
current image. If the patient did not have diabetic retinopathy, the
image would look exactly as it does, with no abnormalities.

Confidence value: 0.95

~

J

Figure 4. Representative example images and Gemini-ICL (k = 10 NN per class) outputs. (A) A case of correctly identified DR. (B) A case of correctly
identified healthy fundus appearance. (C) A DR image misclassified as healthy when using kKNN-based sampling. DR = diabetic retinopathy; ICL = in-

context learning; kNN = k-nearest-neighbor.

pretraining may have influenced model performance.
However, the conspicuous gap in performance between
rudimentary prompts (see Fig 2 and Supplementary File 1)
and carefully engineered prompts implies that skilled
prompt design itself, rather than mere exposure to the
images, plays a central role in eliciting the model’s
diagnostic capabilities. Another important observation is
that the model struggled with fine-grained detection,

precise enumeration, or meticulous observation of small
pathological features, a limitation that may pose challenges
in advanced DR staging, which can hinge on identifying
and counting subtle lesions. The binary classification task is
a relatively simple scenario, and it remains uncertain how
well ICL would perform in more complex multiclass set-
tings. In addition, the study relied on a single, modestly
sized dataset (IDRiD), and external validation was not
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performed. This limits the assessment of generalizability
across different populations, imaging conditions, and dis-
ease distributions. Future research should also explore its
performance in multitask scenarios, where models are ex-
pected to solve different tasks simultaneously,”* validate
findings in diverse datasets as well as clinical settings,
and assess newer model iterations. Newer members of the
Gemini family, for example, the now available Gemini 2.5
Pro or other state-of-the-art models, along with better
adaptation strategies, may well lead to improved speed,
accuracy, and reasoning depth, as well as enhanced capa-
bilities for numerical tasks. Another consideration for lim-
itation is that increasing the number of support examples
did not always improve classification and sometimes
reduced accuracy, highlighting the need for careful selec-
tion to mitigate bias, particularly with kNN-based sampling.
While accuracy and F1 scores were comparable to
RETFound, Gemini 1.5 Pro exhibited poorer calibration,
which may impact the reliability of its confidence scores in
clinical applications. Lastly, it would have been optimal to
tune the temperature and prompt configurations on a vali-
dation set, with final evaluation restricted to the test set.
Consequently, our reported results may be marginally
overestimated owing to leakage from the test set. Never-
theless, given that ICL is applied postmodel training, such
that the underlying model weights remain unaltered, and the
test partition is internal to the IDRiD dataset, we maintain
confidence in the validity of our qualitative conclusions.
Additionally, running multiple trials per instance could
better capture variability in responses and improve perfor-
mance estimates but was not feasible due to computational
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