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Abstract

Advanced applied mathematics problems are not well-represented in existing
benchmarking datasets used to evaluate Large Language Models (LLMs). To
address this, we introduce HARDMATH, the Harvard Approximate Reasoning
Dataset for Mathematics—a dataset of 1,466 difficult problems inspired by Harvard
University’s graduate course on asymptotic methods. The dataset contains a diverse
set of challenging applied mathematics problems with worked solutions that employ
various analytical approximation methods. Developing such solutions typically
requires multiple modes of analysis—including mathematical reasoning, the use of
computational tools, and subjective judgment—making this a challenging problem
for LLMs. We establish a framework that auto-generates an arbitrarily large number
of ‘hard’ applied mathematics problems with approximate analytical solutions that
include validity checks against numerical ground-truths. We evaluate frontier
LLMs on HARDMATH-MINI, a sub-sampled test set of 366 problems, as well
as on 40 word problems formulated in applied science contexts. Even leading
closed-source models like GPT-4 achieve only 43.8% overall accuracy with few-
shot Chain-of-Thought prompting, and all models demonstrate significantly lower
performance compared to results on existing mathematics benchmark datasets. We
additionally conduct a detailed error analysis to gain insights into the failure cases
of LLMs. These results demonstrate limitations of current LLM performance on
advanced graduate-level asymptotic math problems and underscore the importance
of datasets like HARDMATH to advance mathematical abilities of LLMs.
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1 Introduction

Many scientific and engineering problems involve mathematical equations, such as integrals, ordinary
differential equations (ODEs), and partial differential equations (PDEs), that rarely have closed-form
solutions. Traditional mathematics courses and most Large Language Model (LLM) benchmark
datasets focus on problems with exact, analytical solutions. However, these benchmarks overlook
a large class of math problems often arising in applied sciences that require approximate solutions,
which are essential for gaining insights into complex systems. Numerical solutions to such problems
can be useful, but they lack the explanatory power offered by approximate analytical methods, e.g.
asymptotic and applied analysis.
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To address this gap, we introduce HARDMATH, the Harvard Approximate Reasoning Dataset
for Mathematics. This benchmark dataset is designed to evaluate LLMs on their ability to solve
applied mathematics problems that require approximation techniques. HARDMATH contains
1,466 problems inspired by Harvard University’s graduate course on asymptotic methods; it covers
polynomials, ODEs, and integrals that often arise in real scientific and engineering contexts but that
cannot be solved exactly. The dataset emphasizes problems that require advanced mathematical
reasoning and approximations, offering a more challenging and diverse testbed for LLMs compared
to existing datasets, which mostly focus on simpler, symbolically solvable calculations [1, 2, 3, 4].

Rather than sourcing problems from textbooks or standardized tests, we develop a codebase for
automatically generating problems and step-by-step solutions. Our dataset includes a larger set for
fine-tuning and two test sets for evaluating LLMs’ mathematical reasoning on approximation methods.
Here, we evaluate the accuracy of LLMs on our dataset and study their common error modes. We
find that current LLMs perform poorly overall on these problems and demonstrate significant room
for improvement.

2 Related work

2.1 Mathematics Datasets

Most mathematics datasets for evaluating or training LLMs focus on elementary arithmetic or word
problems. Notable examples include MATH (12,500 high school competition-style problems) [3],
GSM8K (8,500 multistep grade-school problems) [4], and ODYSSEY-MATH (387 hand-curated
problems across various difficulty levels) [5]. While these datasets are valuable for assessing basic
LLM math performance, most are limited in scope and complexity.

Recent efforts targeting more advanced problems are often manually sourced. Datasets like
JEEBENCH [6] and a subset of MATHBENCH [1] include some college-level topics, such as
ODEs and multivariable calculus. GHOSTS includes more advanced problems from graduate-level
texts on functional analysis, topology, and probability theory [7], while ARB features formal math
problems from qualifying exams at Harvard and Berkeley [8]. However, these datasets often (1) are
limited in size and scalability, (2) focus on formal mathematics, or (3) cull problems from textbooks
protected by copyrights. Notably, none of the existing datasets (Table 1) focus on advanced applied
mathematics. HARDMATH fills this gap by presenting a large corpus of problems that require
approximation techniques from asymptotics to be solved. HARDMATH is also highly scalable with
a codebase for data generation. Since these problems cannot be formalized using tools like Lean
or solved with symbolic computation software, they present the ideal domain for evaluating how
LLMs integrate natural language reasoning and code-based tools to solve out-of-training sample math
problems.

Table 1: Comparison of HARDMATH with related datasets. Note that for all datasets excluding
MATH, we report the number of relevant problems at a comparable difficulty to our dataset (e.g.,
THEORY-KNOWLEDGE-COLLEGE in MATHBENCH, and GRAD-TEXT and HOLES-IN-PROOFS
from GHOSTS.) HARDMATH is the largest graduate-level dataset.

Dataset Size Data Generation Difficulty

MATH [3] 12.5K Manual High School
MATHBENCH-T [1] 632 Manual, Algorithmic Undergraduate
JEEBENCH [6] 236 Manual High School
GHOSTS [7] 190 Manual Graduate
ARB [8] 34 Manual Graduate

HARDMATH (Ours) 1.4K Algorithmic Graduate

2.2 Recent interest in advanced mathematics reasoning

As LLMs continue to improve, there has been growing interest in developing more challenging
benchmarks. A notable example is the recent open challenge, Humanity’s Last Exam, which aims to
create the world’s most difficult public AI benchmark, requesting questions that "only exceptional
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individuals can answer correctly" and do not involve "straightforward calculation/computation"
[9]. Similarly, frontier models have been advancing quickly, and many are explicitly focused on
quantitative and scientific reasoning, such as OpenAI’s recent o1 series. In line with our motivation
for developing HARDMATH to better track the progress of LLMs, OpenAI argues that "recent
frontier models do so well on MATH and GSM8K that these benchmarks are no longer effective at
differentiating models" [10].

3 Datasets

HARDMATH contains four problem classes with seven distinct problem types covering nondimen-
sionalization, polynomial root-finding, ODEs, and integrals, as well as 40 handwritten word problems
designed to place the problems in applied scientific contexts (see Appendix A.1 for problem details).
The main dataset (1,060 problems) is suitable for model development, while the HARDMATH-mini
evaluation set (366 problems) is used for benchmarking LLM performance. Fig. 1 shows a breakdown
of the datasets by problem type.

(a) HARDMATH-MINI dataset (b) HARDMATH dataset

Figure 1: Breakdowns of the HARDMATH-MINI (left) and the HARDMATH (right) datasets.

Solutions to all HARDMATH problems share a common reasoning framework; the Method of Domi-
nant Balance simplifies problems by focusing on terms that ‘dominate’ the solution’s behavior and
can significantly simplify the equation [11]. Solution methods also involve combining sophisticated
computational and analytical techniques, such as self-consistency checks and the use of numerical
methods. To solve these problems, subjective decisions about solution regimes to consider, terms to
include, and approximation methods must be made with rigorous justification, which is challenging
for current LLMs.

Implementation of this reasoning framework is realized through a robust data generation process.
The data generation code uses SymPy [12] and SciPy [13] to implement mathematical procedures for
generating approximate analytical solutions tailored to each problem class. Problems are generated
randomly by combining sets of random coefficients, functional forms, and initial conditions. Solutions
are generated algorithmically, with key steps described in explanatory texts. The main results are
embedded in the LaTeX \boxed{} command, following conventions from other mathematics datasets
(e.g. MATH [3]). Each problem type includes: 1) LATEX-formatted problem statements, 2) LATEX-
formatted solution steps, 3) accuracy demonstrations comparing analytical and numerical solutions,
and 4) metadata descriptors of the problem and solution types (Appendix A.1).

We evaluate solutions by calculating the relative error between analytical and numerical results at
selected evaluation points. Problems are included in the dataset only if their solutions are within 10%
of the numerical ground-truth, ensuring that all problems in HARDMATH maintain high accuracy.
For polynomial root correction problems, we further check that the corrections improve on the
original approximation.
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4 Evaluation

4.1 Model choice and evaluation protocols

We evaluate several leading LLMs on HARDMATH-MINI, a subset of 366 problems representative
of HARDMATH (Fig. 1). Closed-source LLMs evaluated include GPT-3.5 [14, 15, 16], GPT-4 [17]
and o1-mini [18], open-source LLMs include Llama3 [19] and CodeLlama [20]. All models are
tested in zero- and few-shot settings with Chain-of-Thought (CoT) prompting, which encourages
complex reasoning capabilities by providing intermediate steps in sample answers [21]. Prompts and
hyper-parameters are detailed in Appendix A.3.4.

We focus our evaluation on the four key problem types in HARDMATH: Nondim (symbolic and
numerical nondimensionalization), Roots (polynomial root-finding), ODEs (nonlinear ODEs), and
Integrals (traditional and Laplace integrals). Models are evaluated for accuracy and common er-
ror modes using zero- and few-shot CoT prompting. Prompts contain example question-solution
pairs, problem setup and formatting hints (Appendix A.3.1). Following Hendrycks et al. [3], auto-
matic assessment compares the final model-generated answer (A.3.1) to the true solution (both in
LATEX\boxed{} environments), using SymPy-based [12] equivalence checks and numerical evalua-
tions. We also develop a procedural grading system using GPT-4o to (1) provide intermediate step
grading for multi-step solutions, and (2) assess models’ ability to make approximation judgments,
which allow for a range of self-consistent solutions. Rubrics are adapted from grading guidelines of
the course that inspired the HARDMATH problems (Appendix A.3.2 ). Human grading on a subset
of LLM responses shows good alignment with GPT-based grading, with average score adjustments
summarized in Appendix A.3.3.

4.2 Model performance and error mode analysis

Here, we report the accuracy of models across problem types and prompting settings (Table 2,
Appendix A.4, Fig. 3). Few-shot CoT prompting enhances model performance across the board,
particularly for o1-mini and GPT-4, which demonstrate the most substantial improvements, consistent
with findings from [21] (Fig. 3a). The performance increase associated with prompting varies by
problem-type; gains tend to saturate quickly on more challenging problems such as ODEs(Appendix
A.4, Fig. 4). Notably, OpenAI’s new o1-mini, though with much smaller parameter size, outperforms
other models at all tested shot levels, confirming its optimization for STEM reasoning [18].

o1-mini with 5-shot CoT achieves the highest overall accuracy of 62.3%, while Llama3-8b achieves
20.2%, the highest among open-source models. In contrast, Llama3-8b performs significantly better
on existing datasets, achieving 30.0% on MATH (4-shot CoT) and 79.6% on GSM-8K (8-shot
CoT)[19]), compared to its 20.2% on HARDMATH-MINI. GPT-4 also shows strong performance
on MATH (72.2%, 0-shot CoT), GSM-8K (92.0%, 5-shot CoT) [22, 17], and a recently released
advanced mathematical dataset MINIGHOSTS (average score of 4.15 out of 5). Yet, GPT-4 achieves
only 43.8% on HARDMATH-MINI. Similarly, o1-mini demonstrates 90.0% accuracy on MATH-
500 with 0-shot CoT [18], but achieves only 62.3% accuracy on HARDMath-mini with 5-shot CoT.
This reveals a significant performance increase compared to other models on some (e.g. Nondim)
but not all problem types. This suggests that the HARDMATH benchmark presents problems that
remain challenging and unfamiliar to even the most performant LLMs developed for advanced STEM
reasoning.

We also evaluate model responses across varying levels of correctness, allowing us to identify
common error patterns. When breaking down performance by correct, partially correct, and incorrect
responses, we observe that few-shot prompting improves performance to different degrees across
problem types (Fig. 2). LLM solutions to harder problems, like ODEs and Integrals, are rarely fully
correct, but receive more partial credit with increasing CoT shots. In contrast, for simpler problems
like Roots, advanced models (o1-mini and GPT-4) get more fully correct responses with increasing
CoT shots (Fig. 2, 5). Fig. 6 compares GPT-4’s responses at 0 vs. 5 shot CoT on Roots, showing that
the most common error mode—incorrectly setting up dominant balances—gets significantly reduced.
Instead, errors shift to more nuanced issues, such as missing cases or failing to calculate complex
roots (examples in Appendix A.4.2). This indicates that CoT improves the model’s application of
dominant balance techniques, enabling it to overcome simple mistakes.
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Table 2: Evaluation Accuracy (percentage) on the HARDMATH evaluation set.

Model ALL Nondim Roots ODEs Integrals

Closed-source models
GPT-3.5 (0 shot) 6.04 5.05 17.2 1.39 3.33
GPT-3.5 (1 shot CoT) 14.2 6.11 29.3 6.94 18.2
GPT-3.5 (5 shot CoT) 24.6 24.3 35.0 16.2 23.1
GPT-4 (0 shot) 14.0 6.04 33.7 7.87 14.9
GPT-4 (1 shot CoT) 37.6 36.5 52.8 15.9 40.5
GPT-4 (5 shot CoT) 43.8 48.6 57.3 21.7 41.4
o1-mini (0 shot CoT) 29.8 38.1 24.3 10.2 32.5
o1-mini (5 shot CoT) 62.3 84.5 62.1 30.6 46.5
Open-source models
Llama3-8b (0 shot) 3.67 0.50 11.5 4.63 2.52
Llama3-8b (5 shot CoT) 20.2 17.9 17.1 12.0 28.1
CodeLlama-13b (0 shot) 1.94 0.00 8.73 1.85 0.50
CodeLlama-13b (5 shot CoT) 9.79 8.41 13.1 9.7 9.57

Figure 2: Breakdown of model accuracy percentages for o1-mini, GPT-4 and Llama3 by prompting
types and problem types.

Finally, to assess how well LLMs can solve these problems when situated in realistic research contexts,
we evaluate GPT-4 (the best performing stable model) on a set of word problems covering all problem
types (Appendix A.2). This yields an overall accuracy of 28.1%. Overall, this analysis highlights
the value of HARDMATH as a challenging benchmark for evaluating mathematical capabilities of
LLMs on advanced approximate analytical mathematics.

5 Conclusion

We introduce HARDMATH, a new dataset covering several problem types from an advanced
asymptotics course that can be used to benchmark LLMs’ mathematical capabilities and perform
model developments. This dataset consists of 1060 examples, and we additionally include 366 verified
examples in HARDMATH-MINI and 40 verified ‘problems in context’ that we use to evaluate various
leading LLMs. HARDMATH is unique as there do not exist large-scale mathematical datasets
covering problems of similar difficulty from applied mathematics, and because HARDMATH’s
problems and solutions are algorithmically generated, meaning that one could produce datasets of
arbitrary size using our framework.

Our evaluation highlights that while few-shot CoT prompting significantly improves model perfor-
mance, especially for models like o1-mini and GPT-4, the overall accuracy on HARDMATH-MINI
problems remains much lower compared to other existing benchmarks. This suggests that our dataset
poses unique and challenging tasks that go beyond the boundaries of current LLM capabilities,
particularly in approximation-oriented mathematical reasoning.

Future work will fine-tune LLMs on HARDMATH to improve performance. Additionally, while
we have evaluated several frontier models, we plan to extend our evaluations to more LLMs as they
become available. This expanded evaluation should provide more detailed insights into performance
disparities across different models, further advancing our understanding of LLMs’ capabilities in
handling complex asymptotic reasoning.
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A Appendix

A.1 Implementation and method details for data generation

The following subsections detail the process used to generate the problems and solutions for each
problem type.

A.1.1 Nondimensionalization of polynomials

Nondimensionalization is a technique to simplify equations by reducing the number of parameters
[23]. In HARDMATH, the first type of polynomial used for nondimensionalization demonstration
contains symbolic coefficients and is of the form

a1x
n1 + a2x

n2 + a3, n1 > n2 > 0. (1)

Nondimensionalization converts this to the form ϵyn1 + yn2 +1. The second type contains numerical
coefficients and are of the form

±a1x
n1 ± a2x

n2 ± a3, n1 > n2

which can be simplified to ϵyn1 ± yn2 ± 1 given a specific numerical value of ϵ. Here, integer
numerical values for the coefficients a1, a2, a3 are randomly chosen from [−10, 10].

The first nondimensionalization sub-type is generalized by varying the integer values for the degrees
n1 and n2 within the range 0 < n2 < n1 < 10, while keeping a1, a2, a3 > 0 symbolic. Solutions to
these problems express the dimensionless parameter ϵ in terms of these three coefficients.

Sample Symbolic Nondimensionalization Problem and Full Solution

Problem: Nondimensionalize the polynomial

a1x
10 + a2x

9 + a3

into one of the form ϵy10 + y9 + 1. Express ϵ as a function of a1, a2, and a3.

Solution: We begin with the substitution

x = y 9

√
a3
a2

This gives the expression

a1y
10

(
a3
a2

) 10
9

+ a3y
9 + a3

Divide by the coefficient remaining in front of the constant, leaving us with the nondimen-
sionalized polynomial with coefficients in terms of a1, a2, and a3:

a1y
10
(

a3

a2

) 10
9

a3
+ y9 + 1.

By inspection, we can see that

ϵ =
a1

(
a3

a2

) 10
9

a3
.

The second subtype implements integer numerical values for the coefficients a1, a2, a3 that are are
randomly chosen from [−10, 10].
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Sample Numeric Nondimensionalization Problem and Full Solution

Problem: Nondimensionalize the polynomial

P (x) = 2x7 + 8x2 + 5

into a polynomial of the form ϵy7 ± y2 ± 1. Solve for ϵ.

Solution: For now, we ignore the numeric values of the coefficients and instead call them
a1, a2, a3. Our polynomial is then:

a1x
7 + a2x

2 + a3.

Use the substitution

x = y

√
a3
a2

,

which gives the expression

a1y
7

(
a3
a2

) 7
2

+ a3y
2 + a3.

Divide all terms by the coefficient remaining in front of the constant term, giving us the
nondimensionalized polynomial with coefficients in terms of a1, a2, a3:

a1y
7
(

a3

a2

) 7
2

a3
+ y2 + 1

Substituting in the known numeric values for a1, a2, a3 (using their absolute values as we
have already accounted for sign), we get:

25
√
10y7

1024
+ y2 + 1

From inspection of this nondimensionalized equation, we can now identify ϵ:

ϵ =
25

√
10

1024
=⇒ ϵ ≈ 0.08.

A.1.2 Polynomial root-finding

Exact formulas exist for quadratic, cubic, and quartic equations, but deriving them for quintic or
higher-order polynomials is not possible [24]. HARDMATH includes approximate root-finding
examples for higher order polynomials of the form ϵxn1 ± xn2 ± 1. The goal is to solve for roots in
terms of ϵ using the method of dominant balance for small and large positive ϵ regimes.

As with the nondimensionalization problems, degrees in the polynomial are randomly generated with
maximum order ten and 0 < n2 < n1. See a full problem and solution below.

Sample Polynomial Root-finding Problem and Full Solution

Problem: Consider the polynomial

P (x) = ϵx6 − x5 + 1.

Find first order approximations for all roots of the polynomials in the limit of small positive ϵ
and large positive ϵ.

Solution: We begin by equating the polynomial to zero to solve for the roots: P (x) = 0.
This problem can be rewritten in the form A + B + C = 0, where: A = ϵx6; B = −x5;
C = 1.
This problem has no analytical solutions, so we find approximate solutions to the roots by
considering the three possible dominant balances. For each dominant balance, we find the
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roots of the resulting equation and evaluate whether each balance is self-consistent for small
or large positive ϵ.

We start with the balance A+B = 0, assuming that |C| is negligible when compared to |A|
and |B|. Solving this for x in terms of ϵ then gives us 1 non-zero root:

ϵx6 − x5 = 0

=⇒ x =

[
1

ϵ

]
.

To verify that these roots are consistent with the assumption that |A|, |B| ≫ |C|, we substitute
these found roots back into the terms A, B, and C and compare their magnitudes. Using this
method, we find that it is true that these roots are valid for small ϵ, while validity for large ϵ
is false.
Therefore, these roots are valid in the limit of small positive ϵ only.

Next we examine the balance B + C = 0, assuming that |A| is negligible when compared to
|B| and |C|. Solving this for x in terms of ϵ gives us 5 non-zero roots:

1− x5 = 0

=⇒
x =1, −1

4
+

√
5

4
− i
√

2
√
5 + 10

4
, −1

4
+

√
5

4
+

√
−10− 2

√
5

4
,

−
√
5

4
− 1

4
− i
√
10− 2

√
5

4
, −

√
5

4
− 1

4
+

i
√

10− 2
√
5

4

.

To verify that these roots are consistent with the assumption that |B|, |C| ≫ |A|, we substitute
these found roots back into A, B, and C and compare their magnitudes. Using this method,
we find that it is true that these roots are valid for small ϵ, while validity for large ϵ is false.
Therefore, these roots are valid in the limit of small positive ϵ only.

Finally, we examine the balance A+ C = 0, assuming that |B| is negligible when compared
to |A| and |C|. Solving this for x in terms of ϵ gives us 6 non-zero roots:

ϵx6 + 1 = 0

=⇒

x =

− 6

√
−1

ϵ
,

6

√
−1

ϵ
,

6

√
− 1

ϵ

(
−1−

√
3i
)

2
,

6

√
− 1

ϵ

(
−1 +

√
3i
)

2
,

6

√
− 1

ϵ

(
1−

√
3i
)

2
,

6

√
− 1

ϵ

(
1 +

√
3i
)

2


.

To verify that these roots are consistent with the assumption that |A|, |C| ≫ |B|, we substitute
these found roots back into A, B, and C and compare their magnitudes. Using this method,
we find that it is false that these roots are valid for small ϵ, while validity for large ϵ is true.
Therefore, these roots are valid in the limit of large positive ϵ only.

By the Fundamental Theorem of Algebra, a polynomial of degree 6.0 has exactly 6.0 roots.We
have found 6.0 roots that are valid in the limit of small positive ϵ and 6.0 roots valid in the
limit of large positive ϵ. Our method therefore provides a complete solution to the problem,
finding the correct number of roots in each ϵ regime.
The roots of P (x) for large positive ϵ are

− 6

√
−1

ϵ
,

6

√
−1

ϵ
,

6

√
− 1

ϵ

(
−1−

√
3i
)

2
,

6

√
− 1

ϵ

(
−1 +

√
3i
)

2
,

6

√
− 1

ϵ

(
1−

√
3i
)

2
,

6

√
− 1

ϵ

(
1 +

√
3i
)

2
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and the roots of P (x) for small positive ϵ are

1

ϵ
, 1, −1

4
+

√
5

4
− i
√

2
√
5 + 10

4
, −1

4
+

√
5

4
+

√
−10− 2

√
5

4
,

−
√
5

4
− 1

4
− i
√
10− 2

√
5

4
, −

√
5

4
− 1

4
+

i
√

10− 2
√
5

4

A.1.3 Polynomial root correction terms

The use of two-term dominant balances—such as in the previous problem type—neglects terms
and introduces an error. We can calculate a correction term δ to reduce this error via the following:
suppose the true roots x∗ of a polynomial are given by x∗(ϵ) = x(ϵ)+δ, where x is our approximation
to the root (as found in Appendix A.1.2)and δ is the error term. Plugging the roots x∗(ϵ) = x(ϵ) + δ
into the polynomial allows one to use a Taylor expansion of δ around x and solve for the correction
δ—see the worked solution below.

We also check that resulting solutions have δ < x and exclude solutions that do not meet this criterion.

Sample Numeric Nondimensionalization Problem and Full Solution

Problem: Consider the polynomial

P (x) = ϵx3 − x+ 1.

Find approximate expressions for all roots of the polynomial in the limit of small positive ϵ
and large positive ϵ. Use a series expansion to calculate improved formulae for these roots to
order 1 i.e. calculate O(1) corrections for each root.

Solution: Note: The root calculation in this problem follow the same method as those
demonstrated in the A.3, so they has been omitted here. We include only correction term
calculations for the sake of brevity.

We now need to calculate correction terms for these roots to give us better approximations.
We consider the ansatz that the root is given by x+ δ, where the correction term δ is the sum
of higher order terms of ϵ that we initially neglected in our approximation x. By definition,
δ < x. We plug this ansatz into the polynomial and perform a series expansion in δ. We keep
terms only up to O(1) in δ. Then, we set the expression equal to 0 and solve for δ.

Regime 1: valid for small ϵ

Root 1: −
√

1
ϵ

x+ δ = −
√

1

ϵ
+ δ

Substitute this into P (x) for x and equate to 0:

−δ + ϵ

(
δ −

√
1

ϵ

)3

+

√
1

ϵ
+ 1 = 0.

We then expand this expression to get

δ3ϵ− 3δ2ϵ

√
1

ϵ
+ 2δ − ϵ

(
1

ϵ

) 3
2

+

√
1

ϵ
+ 1 = 0

and represent it as a series of O(1) in δ, discarding higher order δ terms

2δ − ϵ

(
1

ϵ

) 3
2

+

√
1

ϵ
+ 1 ≈ 0.
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We can then solve the expression for the correction δ to O(1), and get

δ ≈
ϵ
(
1
ϵ

) 3
2

2
−

√
1
ϵ

2
− 1

2
.

Root 2:
√

1
ϵ

x+ δ =

√
1

ϵ
+ δ

Substitute this into P (x) for x and equate to 0:

−δ + ϵ

(
δ +

√
1

ϵ

)3

−
√

1

ϵ
+ 1 = 0.

We then expand this expression to get

δ3ϵ+ 3δ2ϵ

√
1

ϵ
+ 2δ + ϵ

(
1

ϵ

) 3
2

−
√

1

ϵ
+ 1 = 0

and represent it as a series of O(1) in δ, discarding higher order δ terms

2δ + ϵ

(
1

ϵ

) 3
2

−
√

1

ϵ
+ 1 ≈ 0.

We can then solve the expression for the correction δ to O(1), and get

δ ≈ −
ϵ
(
1
ϵ

) 3
2

2
+

√
1
ϵ

2
− 1

2
.

Regime 2: valid for small ϵ
Root 1: 1

x+ δ = 1 + δ

Substitute this into P (x) for x and equate to 0:

−δ + ϵ (δ + 1)
3
= 0.

We then expand this expression to get

δ3ϵ+ 3δ2ϵ+ 3δϵ− δ + ϵ = 0

and represent it as a series of O(1) in δ, discarding higher order δ terms

δ (3ϵ− 1) + ϵ ≈ 0.

We can then solve the expression for the correction δ to O(1), and get

δ ≈ − ϵ

3ϵ− 1
.

Regime 3: valid for large ϵ

Root 1: 3

√
− 1

ϵ

x+ δ =
3

√
−1

ϵ
+ δ

Substitute this into P (x) for x and equate to 0:

−δ + ϵ

(
δ +

3

√
−1

ϵ

)3

− 3

√
−1

ϵ
+ 1 = 0.
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We then expand this expression to get

δ3ϵ+ 3δ2ϵ
3

√
−1

ϵ
+ 3δϵ

(
−1

ϵ

) 2
3

− δ − 3

√
−1

ϵ
= 0

and represent it as a series of O(1) in δ, discarding higher order δ terms

δ

(
3ϵ

(
−1

ϵ

) 2
3

− 1

)
− 3

√
−1

ϵ
≈ 0.

We can then solve the expression for the correction δ to O(1), and get

δ ≈
3

√
− 1

ϵ

3ϵ
(
− 1

ϵ

) 2
3 − 1

.

Root 2:
3
√

− 1
ϵ (−1−

√
3i)

2

x+ δ =

3

√
− 1

ϵ

(
−1−

√
3i
)

2
+ δ

Substitute this into P (x) for x and equate to 0:

−δ + ϵ

δ +

3

√
− 1

ϵ

(
−1−

√
3i
)

2

3

−
3

√
− 1

ϵ

(
−1−

√
3i
)

2
+ 1 = 0.

We then expand this expression to get

δ3ϵ−
3δ2ϵ 3

√
− 1

ϵ

2
−

3
√
3iδ2ϵ 3

√
− 1

ϵ

2
−

3δϵ
(
− 1

ϵ

) 2
3

2

+
3
√
3iδϵ

(
− 1

ϵ

) 2
3

2
− δ +

3

√
− 1

ϵ

2
+

√
3i 3

√
− 1

ϵ

2
= 0

and represent it as a series of O(1) in δ, discarding higher order δ terms

δ

−
3ϵ
(
− 1

ϵ

) 2
3

2
+

3
√
3iϵ
(
− 1

ϵ

) 2
3

2
− 1

+

3

√
− 1

ϵ

2
+

√
3i 3

√
− 1

ϵ

2
≈ 0.

We can then solve the expression for the correction δ to O(1), and get

δ ≈
3

√
− 1

ϵ

(
1 +

√
3i
)

3ϵ
(
− 1

ϵ

) 2
3 − 3

√
3iϵ
(
− 1

ϵ

) 2
3 + 2

.

Root 3:
3
√

− 1
ϵ (−1+

√
3i)

2

x+ δ =

3

√
− 1

ϵ

(
−1 +

√
3i
)

2
+ δ

Substitute this into P (x) for x and equate to 0:

−δ + ϵ

δ +

3

√
− 1

ϵ

(
−1 +

√
3i
)

2

3

−
3

√
− 1

ϵ

(
−1 +

√
3i
)

2
+ 1 = 0.
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We then expand this expression to get

δ3ϵ−
3δ2ϵ 3

√
− 1

ϵ

2
+

3
√
3iδ2ϵ 3

√
− 1

ϵ

2
−

3δϵ
(
− 1

ϵ

) 2
3

2

−
3
√
3iδϵ

(
− 1

ϵ

) 2
3

2
− δ +

3

√
− 1

ϵ

2
−

√
3i 3

√
− 1

ϵ

2
= 0

and represent it as a series of O(1) in δ, discarding higher order δ terms

δ

−
3ϵ
(
− 1

ϵ

) 2
3

2
−

3
√
3iϵ
(
− 1

ϵ

) 2
3

2
− 1

+

3

√
− 1

ϵ

2
−

√
3i 3

√
− 1

ϵ

2
≈ 0.

We can then solve the expression for the correction δ to O(1), and get

δ ≈
3

√
− 1

ϵ

(
1−

√
3i
)

3ϵ
(
− 1

ϵ

) 2
3 + 3

√
3iϵ
(
− 1

ϵ

) 2
3 + 2

.

A.1.4 Nonlinear ordinary differential equations

We generate nonlinear third-order ODEs for which there do no exist exact analytical solutions and
provide approximate formulae for small and large x regimes, where the small x regime is near x = 0
and the large x regime typically involves the solution diverging (example in Appendix A.1.4). The
method is robust for higher-order problems, but for simplicity we include only third-order ODEs of
the form

y′′′ = f1(x)(y
′′)a + f2(x)(y

′)b + f3(x)y
c + f4(x),

where f1(x), f2(x), f3(x), f4(x) are rational functions with integer coefficients. The initial condi-
tions are randomly selected integers from [0, 3]. The dataset excludes problems with a function of x
as a dominant term because of the difficulty of deriving power law expressions in these cases.

Approximate solutions at small x can be derived using a Taylor series expansion (up to the third
order) around x = 0. Solving ODEs in the large x regime involves determining the two largest terms,
assuming a divergence at some large x∗, and solving the dominant balance between these terms to
create a power law approximation of the form

y(x) = A(x∗ − x)p.

ODE Problem and Solution

Problem: Consider the following third-order ordinary differential equation:

y′′′ = − y

24x4 + 6x2 + 3
+ y′2 − y′′

5x3 − 2x2 − x+ 2
− 1

12x2 − cos (x) + 11

with initial conditions at x = 0:

y(0) = 1.00

y′(0) = 0.00

y′′(0) = 0.00

Find analytical expressions that approximate the solution of y(x) at small and large x.

Solution:
The dominant balance in the large x regime is given by

d3

dx3
y =

(
d

dx
y

)2

.
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We recognize that the solution of this ODE will diverge at finite x and that divergences
typically follow a power law of the form

y = α(x− x∗)p,

where x∗ is the divergence point. The divergence point can be determined by estimated by
examining the numerical solution generated by code.
Plugging in the dominant terms we found previously yields the following equation:

αp (p− 2) (p− 1) (x− 11.45)
p−3

= α2p2 (x− 11.45)
2p−2

.

After substituting the derivatives, the equation is reorganized to collect terms with respect
to (x − x∗). This leads to an equation where the coefficients and powers of (x − x∗) are
equated on both sides. Simplifying the equation gives us two separate equations, one for the
coefficients and another for the powers of (x − x∗). There is now a system of equations,
where the coefficients’ equation is

αp (p− 2) (p− 1) = α2p2

and the powers’ equation is:
p− 3 = 2p− 2.

Solving this system of equations provides the values of α and p. A valid solution is identified
if α and p are both nonzero. Here, the solution for α and p is found to be:

α = −6, p = −1

With these values, the analytical approximation for the solution at large x (near the divergence
point) is given by

y = −6(x− 11.45)−1.

The approximate solution at small x can also be solved used dominant balance, but one can
take advantage of the initial conditions and form a Taylor series instead around x = 0, which
is given by

y(x) ≈ y(0) + y′(0)x+
y′′(0)

2!
x2 +

y′′′(0)

3!
x3.

Plugging in the initial conditions, we get the following expression at small x:

y(x) = 1− 13

180
x3

Thus, with rounding for clarity, the solution is given by

y(x) = 1− 13

180
x3, y = −6(x− 11.45)−1.

A.1.5 Traditional integrals

We consider integrals of the form I(ϵ) =
∫ a

0
1

ϵ+P (x) dx, where P (x) is an arbitrary polynomial. The
dataset provides approximations of each integral in three regimes (small, intermediate, and large ϵ).

The polynomial P (x) is randomly generated to consist of up to ten terms, where each term is a power
function of x with an integer power randomly sampled from 1 and 20 and an integer coefficient
sampled from 1 to 10. The integration bound a ∈ [0, 100] is also randomly selected. This form
ensures that the integral does not oscillate.

The height is approximated as the maximum value of the integrand, which is 1
ϵ , and the width can be

estimated as the distance over which the integrand decreases from its maximum value by a factor of
2, which implies that the width x obeys the equation

1

ϵ+ P (x)
=

1

2ϵ
⇒ P (x) = ϵ.

In the regime of small ϵ, the term with the smallest degree and ϵ are the dominant terms, and in the
regime of intermediate ϵ, the term with the largest degree and ϵ are dominant. There exists one more
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solution regime when the width of the integral exceeds the limits of integration, or when ϵ is "very
large." In this case, the integral is approximated by L/ϵ, where L is the integration range.

Sample Integral Problem and Full Solution

Problem:
Consider the integral I(ϵ) =

∫ 56.00

0
1

ϵ+2.0x6.0+2.0x9.0+5.0x11.0+5.0x13.0 dx. Develop analytical
formulas that approximate I(ϵ) for different regimes of ϵ.

Solution: The integral is of the form I(ϵ) =
∫ 56

0
1

ϵ+P (x)dx where P (x) is a polynomial.
Thus, its value can be estimated as the product between a height and a width.
Since the integrand is maximized at x = 0, the height can be set to 1

ϵ .
For small ϵ, we define the width as the point where the integrand becomes half of its
maximum height. This corresponds to solving for x given P (x) = ϵ. Applying dominant
balance, considering the term in P (x) with the smallest degree, the width is approximated
as
(

1
2.0∗ϵ

)1/6.0
. Therefore, the analytical approximation of the integral for small ϵ is I(ϵ) =

0.8909
ϵ0.8333 .
For an intermediate regime where ϵ is large, we also define the width based on the term with
the largest degree. The width is approximated as

(
1

5.0∗ϵ
)1/13.0

. Therefore, the analytical
approximation of the integral for large ϵ is I(ϵ) = 0.7647

ϵ0.8333 .
If the width of the integral exceeds the range of integration, we consider one more regime for
very large ϵ. The width is then just the range of integration, so in this regime, the integral can
be approximated as L

ϵ . Therefore, the analytical approximation of the integral for very large
ϵ is I(ϵ) = 56

ϵ .

Altogether, the solutions at small, large, and very large ϵ are
0.89

ϵ0.83
,
0.76

ϵ0.83
,
56

ϵ
.

A.1.6 Laplace integrals

We consider integrals of the form I(x) =
∫ b

a
g(t)e±xf(t)dt, which can be approximated using

Laplace’s Method when x is very large because the integral’s value is dominated by the region around
t0 [11].

Laplace integrals of the form I(x) =
∫ b

a
g(t)e±xf(t)dt assume that f(t) > 0, is never a constant, and

has an absolute minimum at a point t0 either in the interior of or on the bounds of the interval [a, b].
Depending on the where the minimum is, the approximate solution is either

I(x) ≈ g(t0)e
±xf(t0)

√
2π

x|f ′′(t0)|
or I(x) ≈ g(t0)e

±xf(t0)

x|f ′′(t0)|.

The set of possible Laplace integrals I(x) in our dataset are parameterized by four parameters:
the bounds [a, b], g(t), f(t), and the sign in front of x. To generate the dataset, the bounds for
each problem were randomly sampled from the [−1,−0.9, . . . 0.9, 1], and the sign was uniformly
sampled from {−1, 1}. The functions f(t) and g(t) were generated by randomly selecting a linear
combination of polynomials up to fifth order and basic trigonometric functions.

Our solution uses SymPy under the hood to find the minima of f(t) (or the dual annealing algorithm
if SymPy fails to return the minima).

Laplace Integral Problem and Solution

Problem: Consider the integral

I(x) =

∫ 0.3

−0.9

(−1.6t2 − 0.5 sin (t)− 1.9)e+x(−2.5t4−0.8t3+1.4t2) dt (2)
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Develop an analytical formula for I(x) that is accurate as x → ∞.

Solution:
The integral is of the form

I(x) =

∫ b

a

g(t)e+xf(t) dt (3)

where a = −0.9, b = 0.3, g(t) = −1.6t2 − 0.5 sin (t)− 1.9, and f(t) = −2.5t4 − 0.8t3 +
1.4t2. This means we can use Laplace’s method to develop an analytical approximation in
the limit that x → ∞. In this limit, the integral will be dominated by the integrand near
the maximum of f(t) within the bounds [−0.9, 0.3]. So, to simplify the integral, we will
expand the integrand around this maximum. In this case, we can find the maximum of
f(t) = −2.5t4 − 0.8t3 + 1.4t2 on the interval analytically. We begin by looking for critical
point(s) tcrit of f(t) by solving f ′(t) = −10.0t3 − 2.4t2 + 2.8t = 0 for t. This gives us
that tcrit = [−0.66, 0]. To find the maximum on this interval, we evaluate f(t) at the critical
point(s) tcrit and the bounds −0.9 and 0.3. We take the t that gives the largest value. Here,
this maximum t0 = [−0.66]. Since the integral is dominated by the value of the integrand
near -0.66, we Taylor expand the integrand around this point.

I(x) =

∫ b

a

(g(−0.66) + (t+ 0.66)g′(−0.66) + ...)

∗ e+x(f(−0.66)+(t+0.66)f ′(−0.66)+
(t+0.66)2

2 f ′′(−0.66)+...)dt (4)

But f ′(−0.66) = 0 by definition, so we can remove this term from the exponent. We can
then approximate

I(x) ≈
∫ b

a

g(−0.66)e+x(f(−0.66)+
(t+0.66)2

2 f ′′(−0.66)) dt, (5)

which equals

g(−0.66)e+xf(−0.66)

∫ b

a

e+x(
(t+0.66)2

2 f ′′(−0.66)) dt (6)

We perform the change of variables u =
√
x |f ′′(−0.66)|

2 (t+ 0.66), rewriting the integral as

g(−0.66)e+xf(−0.66)

∫ √
x

|f′′(−0.66)|
2 (b+0.66)√

x
|f′′(−0.66)|

2 (a+0.66)

√
2

x|f ′′(−0.66)|
e−u2

dt (7)

Since x → ∞, we approximate this as

g(−0.66)e+xf(−0.66)

√
2

x|f ′′(−0.66)|

∫ ∞

−∞
e−u2

dt (8)

Solving the integral and evaluating, we find that

I(x) ≈ −1.21

√
π

x
e0.37x (9)

A.2 Word problems in context

One motivation for creating HARDMATH is to help LLMs recognize and solve problems where
approximation techniques are needed. To evaluate how LLMs perform on such problems in realistic
scenarios, we sample a subset of examples from each problem type and convert these into word
problems with a fictional context, creating a dataset of 40 such problems and solutions (see example
in the box below). This approach mirrors a format commonly found in textbooks, where a fictional
setting provides additional context for the LLM to parse.
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Although this dataset is smaller than our hand-verified evaluation set, it is large enough to evaluate
the effect of additional context in the problem statement on LLM accuracy.

2. Sample Word Problem with Context

The density of fish at different points along a certain path in a lake can be modeled as
(ϵ+ x2 + x5)−1, where x represents the distance from the shore in kilometers (ranging from
0 to 100 km), and ϵ represents environmental factors that affect the fish density. To study
the total presence of fish along the path, develop an approximate analytical formula for I(ϵ)
given below:

I(ϵ) =

∫ 100

0

1

ϵ+ x2 + x5
dx.
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A.3 Evaluation setup

A.3.1 Prompts for response generation

Table 3: Problem type specific hints by Question and Answer Type

Question
Type

Answer Type Task instruction

Nondim-
symbolic

SymPy Please answer the question requiring an answer in a
SymPy convertible formula containing variables and math
operation expressions and provide the final answer, e.g.,
x3, x

y inside a Latex boxed format \boxed{}.

Nondim-
numerical

Float (2) Please answer the question requiring a floating-point num-
ber with two decimal places and provide the final value,
e.g., 0.80, 3.12, inside a Latex box \boxed{}.

Polynomial
Roots

SymPy List Please answer the question requiring a Python list contain-
ing SymPy convertible formulas of variable ϵ and math
operation expressions and provide the final list, e.g., [ϵ3,
1
ϵ ] inside a Latex boxed format \boxed{}.

ODEs SymPy List Please answer the question requiring a Python list contain-
ing SymPy convertible formula of y = f(x) and provide
the final list, e.g., [y = 1− x3, y = −6/(x− 5)], inside a
Latex boxed format \boxed{}.

Integrals SymPy Please answer the question requiring an answer in a
SymPy convertible formula containing formulas of vari-
able x and math operation expressions and provide
the final answer, e.g., x3 inside a Latex boxed format
\boxed{}.
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A.3.2 Prompts for grading

Table 4: LLM-based grading prompts by Question and Answer Type

Question
type

Answer type Task instruction

Polynomial
Roots

SymPy List Please take this response {response} and this answer
key {answer key} and grade the response based on the
following criteria: 1) Check both the small and large ϵ
solutions. 2) For each solution, give full credit if it com-
pletely matches the elements in the answer key; give par-
tial credit proportional to the number of matching roots
between the response and the answer key; give no credit
if it is completely wrong. 3) For both partial and no credit
briefly state the error reason. 4) Average the scores for the
small and large epsilon solutions to obtain a final score
between 0 and 1. 5) Give the final grading as a float in
Latex boxed format \boxed{}.

ODEs SymPy List Please take this response {response} and this solution
{answer key} and grade the response based on the fol-
lowing criteria: 1) Check both the small and large ϵ solu-
tions. 2) For small regime solution, only give full credit
if it matches the formula in the answer key exactly; give
no credit if it is doesn’t match the form. For large regime
solution, give full credit if it matches the formula in the
answer key exactly; give partial credit if it doesn’t match
but the numerical evaluation is not far from solution at this
regime; give no credit if neither satisfies 3) Average the
scores for the small and large epsilon solutions to obtain a
final score between 0 and 1. 4) Give the final grading as a
float in Latex boxed format \boxed{}.

Integrals (tra-
ditional)

SymPy List Please take this response {response} and this solution
{answer key} and grade the response based on the fol-
lowing criteria: 1) Check both the small and large ϵ solu-
tions. 2) For each solution, give full credit if it matches
the formula in the answer key; give no credit if it is com-
pletely wrong and briefly state the reason for the error. 3)
Average the scores for the small and large epsilon solu-
tions to obtain a final score between 0 and 1. 4) Give the
final grading as a float in Latex boxed format \boxed{}.

Integrals
(Laplace)

SymPy Please take this response {response} and this solution
{answer key} and grade the response based on the fol-
lowing criteria: 1) Check the large x final solution. 2) Give
full credit if it matches the formula in the answer key; give
half credit if the {response} get to the checkpoint where
it correctly identifies t0 where f attains its maximum and
attempt performing Taylor’s expansion around it but the
final answer is wrong; give no credit if it is completely
wrong. 3) For both partial and no credit briefly state the
error reason. 4) Give the final grading as a float in Latex
boxed format \boxed{}.
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A.3.3 GPT grading human verification

Model Roots ODEs Integrals
GPT3.5 (0) 0 0 0
GPT3.5 (1) 0 -0.09 -0.02
GPT3.5 (5) +0.02 +0.07 +0.02
GPT4 (0) 0 -0.02 0
GPT4 (1) 0 -0.04 -0.02
GPT4 (5) +0.07 -0.07 -0.15
o1-mini (0) +0.04 +0.05 0
o1-mini (5) +0.05 +0.05 0
Llama3-8b (0) 0 0 -0.02
Llama3-8b (5) -0.07 -0.02 -0.02
Codellama3-14b (0) 0 -0.02 0
Codellama3-14b (5) 0 -0.02 0

Table 5: Average adjusted points using human judgment from GPT-based grading. Rows with score
adjustments of 0.1 or more are highlighted in pink.

A.3.4 Model hyper-parameters

Table 6: Generating parameters for various LLMs.

Model Generation Setup
GPT-3.5 model = gpt-3.5-turbo, temperature = 0, max_tokens = 4000
GPT-4 model = gpt-4-turbo, temperature = 0, max_tokens = 4000
o1-mini model = o1-mini, temperature = 0, max_tokens = 4000
Llama3 model = llama3:8b, temperature = 0
CodeLlama model = codellama:13b, temperature = 0

A.3.5 Computing resource

Evaluations of open-source models on HARDMATH are conducted on a high-performance compute
cluster with a single Tesla V100 GPU (16GB vram). Evaluation on one problem type typically takes
less than 1 hour. Evaluations of open-source models on HARDMATH are conducted on the O2 High
Performance Compute Cluster, supported by the Research Computing Group, at Harvard Medical
School. See https://it.hms.harvard.edu/our-services/research-computing for more
information. Evaluation on one problem type typically takes less than 1 hour with a single Tesla
V100 GPU (16GB vram). We would like to thank the HMS Research Computing Consultant Group
for their consulting services, which facilitated the computational analyses detailed in this paper.
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A.4 Extended experimental results

A.4.1 Extended evaluation results

(a) Model accuracy increases with shot numbers.
(b) Model accuracy breakdown by problem sub-
types for all models with 5-shot CoT prompting.

Figure 3: Model evaluation accuracy breakdown by shot number and problem sub-types. (a)
evaluation accuracy for all models increases with shot numbers for CoT prompting with o1-mini and
GPT-4 showing the most obvious improvements; (b) evaluation accuracy breakdown for all models
on all problem sub-types under the 5-shot CoT condition.

Figure 4: Model performance scaling upon few-shot prompting (0, 1, 5, 10) for problem type Nondim
and ODEs
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Figure 5: Percentage of correct, partial, and incorrect responses for GPT-3.5 and CodeLlama using
CoT.

Figure 6: GPT-4 error modes for problem type Roots at 0 vs. 5 shot CoT prompting

A.4.2 Extended error mode analysis

Problem 136 Grading Response: Roots (error mode: incorrect dominant balance setup)

Question: Consider the polynomial P (x) = ϵx6 + x4 − 1. Find approximate expressions
for all roots of the polynomials in the limit of small positive ϵ and large positive ϵ . Only a
single term approximation to the root is required.
Grading for Large Positive ϵ:
Model Response: For large ϵ When ϵ is large, the term ϵx6 dominates the polynomial for
most x , except for potentially small x where x4 might still be relevant. However, focusing
on the dominant term gives: P (x) ≈ ϵx6. Setting this equal to zero for an approximation
(acknowledging that we’re looking for non-trivial roots of the overall polynomial, but focusing
on dominance to guide our approximation), suggests that we don’t get meaningful roots from
this term alone since x6 = 0 doesn’t provide roots that satisfy the original polynomial’s
requirement for non-zero roots.
Reference Solution: Finally, we examine the balance A + C = 0 , assuming that |B| is
negligible when compared to |A| and |C| . Solving this for x in terms of ϵ gives us 6 non-zero

roots: ϵx6 − 1 = 0 implies x =

(−1±
√
3i
)

6

√
1
ϵ

2
,

(
1±

√
3i
)

6

√
1
ϵ

2
,− 6

√
1

ϵ
,

6

√
1

ϵ

 . To

verify the roots found for consistency with our initial assumption, we check that |A|, |C| >>
|B| holds for this root by substituting our found root expression for x back into A , B , and
C and comparing their magnitudes. Using this method, we find that validity for small ϵ is
False and validity for large ϵ is True.
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Grading: The response wrongly sets up the dominant balance as A = 0 and does not provide
a concrete list of roots for large ϵ. Therefore, score for large positive ϵ is 0.0

Problem 133 Grading Response: Roots (error mode: drop imaginary roots)

Question: Consider the polynomial P (x) = ϵx3 + x2 − 1. Find approximate expressions
for all roots of the polynomials in the limit of small positive ϵ and large positive ϵ . Only a
single term approximation to the root is required.
Grading for Large Positive ϵ:
Model Response: To find the approximate expressions for all roots of the polynomial
P (x) = ϵx3 + x2 − 1 in the limits of small and large ϵ , we will consider the two cases
separately. For Large ϵ When ϵ is large, the term ϵx3 dominates the polynomial. Thus, the
polynomial can be approximated by ignoring the x2 term, leading to ϵx3 − 1 ≈ 0 . Solving

for x gives us an approximation for the root: x ≈
(
1
ϵ

) 1
3 . The other roots in this limit are

complex and given the scope, we’ll focus on this real root approximation.
Reference Solution: Finally, we examine the balance A+C = 0 , assuming that |B| is negligi-
ble when compared to |A| and |C| . Solving this for x in terms of ϵ gives us 3 non-zero roots:

ϵx3 − 1 = 0 implies x =

(−1−
√
3i
)

3

√
1
ϵ

2
,

(
−1 +

√
3i
)

3

√
1
ϵ

2
,

3

√
1

ϵ

 . To verify the

roots found for consistency with our initial assumption, we check that |A|, |C| >> |B| holds
for this root by substituting our found root expression for x back into A , B , and C and com-
paring their magnitudes. Using this method, we find that validity for small ϵ is False and va-
lidity for large ϵ is True. Therefore, these roots are valid in the limit of large positive ϵ only.
Grading: The response makes additional assumptions to drop the two other complex roots
for large ϵ regime without the question asking it to do so. Therefore, score for large positive ϵ
is 0.5

A.4.3 Extended example GPT-4o grading responses

Grading Response: ODEs (incorrect)

To grade the response, we will compare the provided solutions in the response with the ground
truth solutions in both the small x and large x regimes.

Small x Regime
Response: y(x) = 1− 5e−x

Ground Truth: y(x) = 1− 5x3

6
The response and the ground truth solution for small x are significantly different. The ground
truth solution is a polynomial in x, while the response includes an exponential term. They do
not match at all, so the solution for the small x regime is completely wrong.

Large x Regime
Response: y(x) = "Assumed rapid growth form due to y′4 term."
Ground Truth: y = 3

√
30(x− 2.68)

1
3 + (1.84)

The response does not provide a specific analytical expression for the large x regime, while
the ground truth does provide a specific form. The response mentions rapid growth due to
y′4, but without a clear analytical form, this response doesn’t match the ground truth solution.
This indicates that the solution for the large x regime is also completely wrong.
Given the evaluation criteria, both solutions do not match or are incomplete compared to the
ground truth. Therefore, each solution gets no credit.
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The final grading is 0.0 .

Box 2: Example grading response for a ODEs problem that gets zero point.

Grading Response: Integrals (correct)

The model response approximates the integral for small ϵ as
1

61/4
ϵ−3/4 and for large ϵ as

1

81/18
ϵ−17/18.

Now, let’s compare these results with the ground truth solutions:

For small ϵ: - The ground truth solution is I(ϵ) =
0.64

ϵ0.75
. - The model’s result is

1

61/4
ϵ−3/4 .

Both results for small ϵ are essentially the same, with:

1

61/4
≈ 0.64

For large ϵ: - The ground truth solution is I(ϵ) =
0.89

ϵ0.94
. - The model’s result is

1

81/18
ϵ−17/18 .

Both results for large ϵ are essentially the same, with:

1

81/18
≈ 0.89

Since the model’s response closely matches the ground truth solutions in both regimes (small
and large ϵ) and provides essentially the same approximations, I would give full credit 1.0

Box 3: Example grading response for a Integrals sub-type simple integral problem that gets full
points.

Grading Response: Integrals (partial)

Answer Key
1. Setup and Formulation: it 1) correctly identifies the integral form; 2) uses Laplace’s
method; 3) identifies critical points and uses Taylor expansion around the point of interest; 4)
performs a change of variables to simplify the integral.
2. Key Steps and Approximations: it 1) expands the integrand around the minimum of f(t);
2) approximates the integral by focusing on the dominant exponential term; 3) provides a
final analytical approximation for I(x) as x → ∞.
3. Final Result:

I(x) ≈ −0.004e0.89x

x

Model Answer
1. Setup and Formulation: it 1) correctly identifies the integral form; 2) recognizes that the
exponential term will dominate for large x; 3) focuses on the region where the integrand is
most significant (near t = 0.7).
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2. Key Steps and Approximations: it 1) uses the method of steepest descents heuristically
without detailed Taylor expansion; 2) approximates by evaluating the polynomial part at
t = 0.7 and considering the exponential decay; 3) recognizes the dominant behavior of the
exponential term but does not perform a detailed variable change or expansion.
3. Final Result:

I(x) ≈ −0.017 · ex·2.6·0.7
3

Comparison
1. Similarities: 1) understanding of dominance: both the answer key and the student correctly
identify that the behavior of the integral for large x is dominated by the exponential term;
2) identifying significant points: both recognize that t = 0.7 is the critical point where
the integrand contributes significantly; 3) approximate behavior: Bbth solutions focus on
approximating the behavior of the integral for large x, emphasizing the exponential term’s
dominance.
2. Differences: 1) mathematical rigor: the answer key employs a more rigorous mathematical
approach, including Taylor expansion and change of variables, providing a more precise
and detailed solution; 2) heuristic approach: the student takes a more heuristic approach,
focusing on the dominant exponential term without detailed mathematical expansions or
variable changes; 3) accuracy of final expression: the answer key provides a more accurate
final expression with specific constants derived from the detailed process, while the student’s
result, though on the right track, has a different coefficient due to the heuristic method. I
would give partial credit 0.5

Box 4: Example grading response for a Integrals sub-type Laplace integral problem highlighting the
error of failing to develop Taylor’s expansion.
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