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Abstract

In the realm of Natural Language Processing (NLP), large-scale transformers
have established themselves as pivotal, achieving unparalleled results across nu-
merous tasks. The conventional approach involves pre-training these models on
extensive web-scale data, followed by fine-tuning them for specific downstream
tasks. However, the burgeoning size of these models, which has surged almost
two orders of magnitude faster than GPU memory since 2018, has rendered their
fine-tuning financially and computationally exorbitant, limiting this capability to a
select few well-funded institutions. Parameter-efficient transfer learning (PETL)
has emerged as a potential solution, aiming to efficiently adapt pre-trained model
parameters to target tasks using smaller, task-specific models. Nonetheless, ex-
isting PETL methods either introduce additional inference latency or marginally
reduce memory requirements during training, thus not fully addressing the primary
motivation behind PETL. This paper introduces REcurrent ADaption (READ),
a novel, lightweight, and memory-efficient fine-tuning method that incorporates
a small RNN network alongside the backbone model. READ not only achieves
comparable model quality to traditional fine-tuning, saving over 84% in energy con-
sumption, but also demonstrates scalability and independence from the backbone
model size. Through extensive experiments on various NLP benchmarks, including
the GLUE benchmark, READ showcases robust performance and high efficiency,
reducing model training memory consumption by 56% and GPU energy usage by
84% relative to full-tuning, without significantly impacting inference latency and
memory. We provide a theoretically justified, scalable solution for fine-tuning large
transformers.

1 Introduction

Large-scale transformers architecture have achieved state-of-the-art results in several Natural Lan-
guage Processing (NLP) tasks [2, 5, 22, 23, 25, 33]. Scaling up the size of these models has been
shown to confer various benefits, such as improved model prediction performance and sample effi-
ciency [9, 14, 34]. The conventional paradigm is to pre-train large-scale models on generic web-scale
data and fine-tune the models to downstream tasks. However, fine-tuning these models has become
prohibitively expensive.

Since 2018, the model size has increased by almost two orders of magnitude faster than GPU memory
[20], resulting in prohibitively high cost to advance AI technologies [36]. Only a few well-funded
institutions have the resources to fine-tune these models. Parameter-efficient transfer learning (PETL)
[1, 13, 15, 16, 18, 19, 38] has emerged as a promising solution to overcome the challenges of full fine-
tuning. Parameter-efficient transfer learning techniques aim to address these challenges by leveraging
smaller and more task-specific models to efficiently adapt the pre-trained model’s parameters to the
target task.
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Figure 1: (Left) Comparison of READ and other fine-tuning methods over GLUE tasks on training
energy. (Center) Peak training memory relative to full-tuning. (Right) Normalized energy consump-
tion relative to full-tuning on GLUE tasks.

However, all these methods either come with additional inference latency [13] or reduces only a
small amount of memory requirement during training — the primary motivation of PETL. Figure
1 illustrates that parameter-efficient methods, while tuning only a small percentage of the overall
parameters, still consume significant energy to fine-fine. Since the updated parameters are inside
the backbone language models, to calculate gradients for these parameters for backpropagation,
PETL methods need to run the backward pass through the sizeable pre-trained language models.
This prevents PETL methods from being applied to many real-world applications with limited
computational resources. Recent works of Side-Tuning [39] and Ladder-Side Tuning (LST) [29]
propose to use a side network that takes intermediate activations from the backbone networks to
reduce the need to backpropagate through the large backbone layer. It thus reduces training memory
requirement. However, both Side-Tuning and LST have significant drawbacks. In Side-Tuning,
the side network only consumes the original inputs, leaving the informative intermediate results
from the backbone unused. LST overcomes this problem by using a side Transformer. However,
Transformers are challenging to train [21]. Moreover, LST requires an extra pretraining stage to
extract a sub-Transformer from the backbone and use it to initialize the side network, increasing the
cost of fine-tuning. Additionally, the size of the side-Transformer and the backbone increase, making
this approach hard to scale (Figure 4). In this work, we introduce REcurrent ADaptation (READ),
a novel, lightweight, and efficient fine-tuning method that incorporates a small Recurrent Neural
Network (RNN) alongside the backbone model. READ not only achieves comparable model quality
to traditional fine-tuning but also realizes more than 84% energy savings during the process.

Contributions

We present READ, a memory and parameter-efficient fine-tuning method that:

1. Introduces a side-tuning design that requires no pretraining of the side network, addressing
limitations of previous PETL and side-tuning methods.

2. Demonstrates robust performance and efficiency across various NLP benchmarks, reducing
model training memory consumption by 56% and GPU energy usage by 84% relative to
full-tuning.

3. Proves scalable for fine-tuning large transformers, independent of the backbone model size.

4. Offers theoretical justification for utilizing the backbone hidden state for side-tuning.

2 Breaking Down REcurrent ADaptation (READ)

2.1 What is READ?

Figure 2 illustrates the READ fine-tuning mechanism on an encoder-decoder transformer backbone,
T , which is frozen during training. READ, initialized at both encoder and decoder, primarily consists
of a standard RNN and a Joiner network, facilitating the amalgamation of multiple information
sources to generate RNN inputs. The forward pass through T is independent of READ, with
intermediate results cached at each transformer layer, followed by iterative computation of RNN
hidden states and the addition of RNN and T outputs to derive the final state.
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Figure 2: READ Fine-Tuning Mechanism. Figure 3: Commuting diagram for correction.

Key properties of READ include:

1. Isolation from Backbone: Forward pass is separate from T , preventing backward propaga-
tion through it and reducing training memory [29].

2. Simplicity and Efficiency: Involves only RNNs and FFNs, enhancing usability and training
efficiency without requiring pre-training.

3. Parameter Scalability: The recurrent nature ensures trainable parameters do not increase
with backbone layers, exhibiting sub-linear growth with backbone size.

4. Unmodified Intermediate Results Consumption: READ utilizes without altering the
backbone’s intermediate results2.

2.2 How does READ work?

Figure 2 provides a visual representation of the READ fine-tuning mechanism, applied to an encoder-
decoder transformer backbone, denoted as T . In simpler terms, READ learns the necessary adjust-
ments, or corrections, to the output hidden states at each layer of T to adapt it for a new task.
Definition 2.1 (Correction). If T ′ is a modified version of T and ϕ′i represents the hidden states at
layer L′

i of T ′, the difference ϕ′i − ϕi is termed a correction to ϕi, and is denoted as δϕi.

In essence, a correction (δϕi) represents the difference between the hidden states of the original and
modified transformer layers, as illustrated in Figure 3. Key Insights into READ

Separation from Other Methods: Unlike many fine-tuning methods that directly alter ϕi by updating
backbone weights or injecting learnable parameters, READ focuses on learning the correction needed
for a new task.

Practical Application: In practice, we utilize a neural network, named READ, to model the equation
system. This involves employing a Joiner network to compute xi, substituting various mathematical
entities in the equation with Feed-Forward Networks (FFNs) or linear layers and merging learnable
parameters across all indices i for efficiency and scalability. Additionally, Recurrent Neural Networks
(RNN) are utilized to model part of the equation system.

This approach does not involve attention mechanisms and operates only on the column space of ϕ,
ensuring that all operations are executed efficiently and effectively.

3 Experiment Setup

Baseline and Other State-of-the-Art Designs We compare READ against full tuning and other
commonly-used PETL methods. Full tuning is not an efficient fine-tuning method but serves as
a strong baseline for performance. BitFit [3] tunes only bias terms of the model during training.
Prompt-tuning [17] inserts trainable prompt vectors to the inputs’ embedding vectors. Adapters [13]

2Notably, although not detailed in this paper, READ enables multi-tasking with multiple networks, necessi-
tating only a single backbone pass, thereby reducing training and inference costs.
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appends a small residual MLP after every attention and feed-forward layer. We experiment with the
sequential adapter version by Houlsby et al. [13]. LoRA [15] inserts trainable low-rank matrices
into each layer of the backbone Transformer model to parameterize the weights’ changes. LST [29]
hierarchically adds multiple side networks, with each side network responsible for modulating the
activations of a specific layer in the pre-trained model. For all PETL methods and READ, we keep
the backbone transformer frozen throughout the training and only update the new parameters.

Datasets. We evaluate READ and the baselines on the GLUE [31] benchmarks. These benchmarks
cover a variety of NLP tasks, including linguistic acceptability (CoLA [32]), paraphrase detection
(MRPC [10], QQP [8], STS-B [6]), natural language inference (MNLI [35], QNLI [27]), and
sentiment classification (SST-2)3. In GLUE, the original test set labels are not publicly available.
Instead, we follow [40] and [16] to create a test set for each task as follows: if the training set contains
less than 10k samples, we equally split the original validation set into two subsets and treat them as
new validation and test sets; otherwise, we use the original validation set as the test set, and split 1k
from the training set as the new validation set. For MNLI, we use the mismatched set as the validation
set and the matched set as the test set. We report the dataset sizes in Appendix D.1.

Model Specification and Experimental Details. We adopt the encoder-decoder T5 [24] model
as our backbone transformer. We use T5BASE for all of our experiments, and also use T5LARGE for
READ experiments, which we denote by READ-large. We perform fine-tuning on each dataset for up
to 30 epochs and do an early stop once validation metric stops improving. For READ, we experiment
with {128, 256} as RNN hidden dimensions, {RNN, LSTM, GRU} as RNN architectures. For PETL
baselines, we experiment with {32, 64} as Adapters’ bottleneck sizes, {8, 32} as LoRA’s ranks, and
{10, 20, 30} as Prompt-tuning’s prompt sizes. For all experiments, we conduct a grid search for
learning rates in between [1 × 10−6, 3 × 10−3] on log scale for up to 32 rounds. We choose the
hyperparameters that achieve the best validation scores and report their test scores. Complete setup
and hyperparameters detail are in Appendix D.2.

4 Evaluation Results

We train and evaluate each method on all the GLUE tasks. We take the cumulative energy consumption
and measure the peak GPU during training. In this section, we report and analyze the results on the
GLUE Benchmarks.

READ outperforms other methods while consuming significantly lower energy: Figure 1 (left)
shows that READ can reduce GPU energy consumption by up to 90% compared to full-tuning.
READ lowers the GPU memory footprint by 56% while retaining the same model accuracy when
retraining. While other parameter-efficient transfer learning (PETL) methods like LoRA, BitFit or
Adapter reduce the number of trainable parameters, they do not reduce the compute cost required to
fine-tune. We believe the underlying optimization objective for PETL is to reduce this compute cost.
Table 1 shows the performance of all methods on GLUE with T5BASE. Excluding Adapter, READ
outperforms all parameter-efficient methods while consuming at least 68% less energy. Compared
to Adapter, READ achieves nearly the same model accuracy (less than 0.1% lower) while using
70% less energy. More interestingly, READ with T5LARGE (i.e. READ-large) achieves better
performance than all other methods and consumes similar or less energy compared to other methods.
For example, READ-large outperforms Full-tuning and Adapter by 1.4% and 0.8% with 69% and 5%
less energy, respectively. These results show that by using READ, we can scale up the model size
while keeping the same hardware and memory constraints.

READ consumes less training memory: Figure 1 (right) shows the design space trade-off between
model quality performance and memory footprint. READ improves the training memory requirement
by at least 25% compared to all the other baselines while achieving similar or better performance.
READ with T5LARGE consumes similar amount of memory as full-tuning with T5BASE. As the
backbone size increases, the memory savings achieved by READ become increasingly significant in
comparison to the other PETL methods, as depicted in Figure 4 (right). Notably, at the T53B backbone
level, these savings reach as high as 43%. This observation suggests that READ is remarkably
effective in the regime of fine tuning large Transformers.

3We exclude RTE from GLUE due to its small size compared to other tasks
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Table 1: Performance and energy consumption results of all methods on GLUE tasks. We report the
accuracy for SST-2, MNLI, QNLI, and Matthew’s Correlation for CoLA. For STS-B we report the
average of Pearson correlation and Spearman correlation. For MRPC and QQP, we report the average
of F1 score and accuracy. For all tasks, we report the average score on 3 different seeds. Bold fonts
indicate the best results of that column.

Method Trainable
Params (%)

Power
(kW)

Energy
(kWh) CoLA MNLI QNLI MRPC QQP SST-2 STS-B Avg.

Baselines

Full-tuning 100 0.77 12.52 53.97 86.17 90.87 86.88 89.71 92.89 88.19 84.52
Adapter 0.96 0.50 6.99 52.56 85.68 92.89 87.84 88.95 93.12 87.51 85.04
LoRA 0.48 0.68 10.58 51.70 85.20 92.72 88.07 88.92 93.46 86.97 84.89
BitFit 0.06 0.47 7.68 50.92 85.28 92.58 86.32 88.70 94.15 86.94 84.43
Prompt-tuning 0.01 0.50 6.45 42.71 79.38 91.73 86.04 88.74 93.12 84.96 82.38
LST 2.00 0.44 10.59 53.38 84.53 92.43 87.38 88.31 92.09 87.37 84.58

Our method

READ 0.80 0.43 2.06 52.59 85.25 92.93 87.09 89.10 93.80 87.77 84.97
READ-large 0.32 0.62 6.62 54.05 87.29 93.68 87.70 89.34 93.92 88.58 85.73

Table 2: READ with and without recurrency

Method CoLA MNLI QNLI MRPC QQP SST-2 STS-B Avg. Trainable Params (%)

READ (with Recurrency) 52.59 85.25 92.93 87.09 89.10 93.80 87.77 84.97 0.8
READ (w/o. Recurrency) 53.24 84.10 91.51 89.02 89.18 94.04 87.10 85.15 9.6

READ-large (with Recurrency) 54.05 87.29 93.68 87.70 89.34 93.92 88.58 85.73 0.32
READ-large (w/o Recurrency) 50.17 86.90 93.00 87.61 89.12 94.15 87.46 85.02 6.4

READ is scalable: As shown in Figure 4 (left), the number of trainable parameters of READ scale
more slowly as compared to the other PETL methods. READ’s number of parameters exhibits a
log-linear growth pattern as the T5 backbone model size increases. In fact, the recurrent nature of
READ makes its tunable size independent from the number of backbone layers, making READ a
more suitable choice for fine-tuning large Transformers in practice.

The importance of recurrency We perform ablation analysis on the importance of recurrence in
READ in Table 2. We find that the removal of recurrence does not significantly enhance READ
quality and even diminishes quality for the T5 large backbone. However, without recurrence leads to
over 12 times more trainable parameters, compromising scalability.

Comparison with Ladder-Side-Tuning (LST) We compare our methods with Ladder-Side-Tuning
(LST), another memory efficient fine-tuning approach [29]. We follow the pruning method introduced
in [29] to extract a smaller transformer from the backbone transformer and use it to initialize the
side transformer, and re-implement LST. Table 1 lists the results of LST (using T5BASE) on GLUE
benchmarks and its energy efficiency.The results indicate that READ (base) outperforms LST (base)
on most tasks (except for a tiny task MRPC), using 80% less energy consumption and 60% less
trainable parameters. While LST consumes 15% less peak training memory relative to READ, it
takes 40% more inference memory and 77% longer inference time than READ, a consequence of
its attention-based side-network architecture. It is also noteworthy that when compared to LST even
READ-large saves 38% GPU energy and yields a similar inference latency, with 1.4% relative gain
on the averaged GLUE score. Furthermore, the "pre-training stage" refers to the process described in
LST paper section 2.2, where distillation is performed with T5 pre-training objective. It is important
to note that caching the attention outputs does not involve updating any model parameters and should
not be considered as a form of training.

5 Related Work

In this section, we summarize the closely related works to ours and leave the more detailed discussion
to Appendix C.
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Figure 5: Inference latency as backbone model
size increases.

Parameter-efficient Transfer Learning. The surge in generative AI applications [4, 28, 30, 33] has
been hindered by the computational and memory costs of fine-tuning large transformers. Parameter-
efficient transfer learning (PETL) [1, 13, 18–20, 29, 38] addresses this by training a minimal parameter
set, with various methods like Adapter-based approaches, Low-Rank Adaptation (LoRA), BitFit, and
Prompt-tuning. Unlike these, READ introduces memory efficiency by incorporating a small recurrent
network into the backbone, focusing on reducing memory usage over parameter minimization.

Memory-Efficient Training. Memory-efficient training strategies, such as gradient checkpointing
[7], reversible layers [11], ZeRO [26], and Layer-wise Adaptive Rate Scaling (LARS) [37], aim to
mitigate memory consumption by optimizing the storage and computation of intermediate activations
and model states, particularly in distributed training environments.

Sidenet Tuning. Side-tuning [39] and Ladder side-tuning [29] employ lightweight side networks to
adapt pre-trained model activations for new tasks without modifying the base model. READ, while
inspired by these, distinguishes itself by utilizing a single RNN block that processes the backbone
network’s hidden state recurrently, ensuring the fine-tuning parameter count does not scale with the
backbone size. Unlike Side-Tuning, READ iteratively calculates its RNN states across all layers
and exclusively employs RNN and Feed-Forward Network (FNN) structures, negating the need for
transformers or attention mechanisms and enabling use without pre-training.

6 Conclusion and Limitations

Limitations. Due to our limited computing resources, we could not scale the backbone to an even
larger scale. A future direction is to fine-tune READ on Llama-7B [30] or even larger variants.
Another direction can be studied if READ can generalize well in a low-data regime. A drawback
of READ is its tendency to require more epochs to converge on small datasets than other PETL
methods. Consequently, although READ is more efficient in per-unit time computations, it may not
yield significant overall consumption gains when a task has few data points. We leave investigating
READ on the low-data regime as future work.

Conclusion. In this paper, we propose REcurrent ADaption (READ), a lightweight and efficient pa-
rameter and memory-efficient fine-tuning method, for large-scale transformers. We show that READ
achieves comparable accuracy to full fine-tuning while saving more than 84% of energy consumption
and reducing training memory consumption by 56% relative to full-tuning. We demonstrate the
scalability of READ because READ is independent of backbone model size. We hope that READ can
make fine-tuning large models more accessible to a broader range of researchers and applications.
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A Appendix

A.1 Revisit Transformer

In this subsection, we briefly revisit the computation of transformer and introduce some convenient
notations for the future. Let T be a transformer of dimension d with N layers L1, · · · ,LN . At each
layer Li, let the feed-forward network be Fi and multihead-attention beAi. Given a context sequence
of m tokens, we can express each layer as a mapping from Rm×d to Rm×d as follows:

Li = (F∗
i + I) ◦ A∗

i + I, (1)

where I represents the identity mapping, ◦ denotes mapping composition, and F∗
i =: Fi ◦ LN,

A∗
i =: Ai ◦LN (i.e. compositions with layer-normalization). Further, we defineRi = (F∗

i + I) ◦A∗
i

so as to write layer mapping as Li = Ri + I.

A.2 Derivations of READ

Following the notations in Subsection A.1, we derive an inductive formula for the corrections:

δϕi = ϕ′i − ϕi
= (R′

i + I)(ϕ′i−1)− (Ri + I)(ϕi−1)

= R′
i(ϕ

′
i−1)−Ri(ϕi−1) + (ϕ′i−1 − ϕi−1)

= R′
i(ϕ

′
i−1)−Ri(ϕi−1) + δϕi−1

=
(
R′

i−1 −Ri

)
(ϕ′i−1) +

(
Ri(ϕ

′
i−1)−Ri(ϕi−1)

)
+ δϕi−1

= δRi(ϕ
′
i−1) + JRiδϕi−1 + δϕi−1.

(2)

Here δRi denotes the operator differenceR′
i−Ri, and JRi is the Jacobian matrix ofRi(·) evaluated

at some point lying on the line segment from ϕi−1 to ϕ′i−1. To simplify our arguments, we (1) assume
that JRi takes value at ϕi−1, (2) let T ′ be the consequence of fine-tuning with Adapter or LoRA
(applied at FFN layers Fi) 4. We use P to denote a common module adopted by Adapter and LoRA
which consists of a down projection matrix to a lower dimension possibly followed by a non-linear
activation, and then composed with an upper projection back to the original dimension5. Under these
assumptions, the first term of the RHS in (2) now becomes

δRi(ϕ
′
i−1) =

{
Pi ◦ (Pi + I)−1ϕ′i (Adapter)
Pi ◦ (Pi + Fi)

−1ϕ′i (LoRA)

=:Wi(ϕi + δϕi)

(3)

Now plugging (3) back to (2), we obtain

δϕi =Wi(ϕi + δϕi) + JRiδϕi−1 + δϕi−1. (4)

Notice that both sides of equation (4) contains δϕi. Because of the non-linearity of Wi, there is no
straightforward way to extract an inductive formula of δϕi from (4).

However, let us rewrite equation (4) as
δϕi −Wi(ϕi + δϕi)− (JRiδϕi−1 + δϕi−1)

=F (δϕi, ϕi, JRiδϕi−1 + δϕi−1) = 0,
(5)

and compute the Jacobian to see that JδϕiF = I − JWi, which is invertible when Pi (and henceWi

3) has small norm. Now by Implicit Function Theorem there exists G such that

δϕi = G(ϕi, JRiδϕi−1 + δϕi−1). (6)

An alternative argument is to use a first order approximation ofWi(ϕi + δϕi) assuming that δϕi is
sufficiently small, which gives us the following inductive formula:

δϕi = (I − JWi)
−1 ◦

(
Wiϕi + JRiδϕi−1 + δϕi−1

)
(7)

4For fine-tuning methods that modify attention, we expect a similar conclusion that demands a more intricate
line of reasoning, which we defer to future research.

5The operator norm of P is small when its two matrices have small weights, and therefore addition with P
will not change the invertibility of an already invertible operator.
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We take the second approach above and adopt formula (7) as we move forward, because of its explicit
function form. Note that every operation in (7) acts on the column space of ϕ except for the Jacobian
transform JRi, so let us first focus on expanding JRiδϕi−1. In fact, we will compute the Jacobian
for a general attention mapping that takes 3 arguments ϕq, ϕk, ϕv (i.e. hidden states of queries,
keys, and values), and then apply the results to the special case of self-attention (as in encoder) and
cross-attention (as in decoder) respectively. For the sake of brevity, we assume that the number of
attention head is 1 and omit the output projection, as neither of which is essential to our conclusion.

Let ϕq, ϕk, ϕv be matrices in Rmq×d,Rmk×d,Rmk×d, which stand for Rd-vector representations of
the query, key, and value token sequences with length mq,mk,mk respectively. We use an upper
index α to denote the vector associated to the αth token, and omit the lower layer index i when no
ambiguity is present (e.g. Aα is the αth column of A’s output.). First, we have

JRiδϕi−1 = (JF∗ + I) ◦ JA ◦ JLN(δϕi−1) (8)
by chain rule. Next we expand JA, as every other operation in (8) acts on the column space of ϕ;
especially, up to composing with a feed-forward neural network, let us replace JLN by an identity to
simplify our notations. A straightforward computation gives the following:

JϕqAα(δϕq) =

[ mq∑
β=1

σαβ · (v
β −Aα) · kβT

√
d

·WQ

]
δϕαq ,

Jϕk
Aα(δϕk) =

mk∑
β=1

σαβ · (v
β −Aα) · qαT

√
d

·WKδϕ
β
k ,

JϕvAα(δϕv) =

mk∑
β=1

σαβ ·WV δϕ
β
v .

(9)

Here WQ,WK ,WV denote the query, key, and value projection matrices of A, qα = WQϕ
α
q ,

kα =WKϕ
α
k , and σαβ = softmax(qαT · kβ/

√
d).

Case 1, A is self-attention Upon setting ϕq, ϕk, ϕv to ϕ, and δϕq, δϕk, δϕv to δϕ in (9), we obtain:

JAαδϕ =

[ mq∑
β=1

σαβ · (v
β −Aα) · kβT

√
d

·WQ

]
δϕα

+

mq∑
β=1

σαβ ·
[
(vβ −Aα) · qαT

√
d

·WK +WV

]
δϕβ .

(10)

Note the two quantities in the square brackets are Rd×d-matrix-valued linear functions of values that
can be computed from the cached results at Li, which we shall denote by Φ,Ψ from now on:

JAαδϕ = Φ · δϕα +

mq∑
β=1

σαβΨ · δϕβ . (11)

Now, upon inserting (11) to the αth-column of (8) by setting ϕ as ϕi, and then plugging (8) back in
(7), we obtain the iterative formula for outputs hi:

ψα
i = Φi · Fiδϕ

α
i−1 +

∑m
β=1 σ

αβ
i Ψi · Fiδϕ

β
i−1

xαi = [ϕαi
T , ψα

i
T ]T

δϕαi = Gi(Hix
α
i + δϕαi−1)

(12)

where Φi,Ψi are defined as in (11), and Fi,Gi,Hi are FNNs that simulate JLN, (I − JWi)
−1, and

[Wi, JF∗
i + I] respectively; see (7) and (8). Note (12) is exactly (??) upon replacing δϕ by h.

Case 2, A is cross-attention Since the decoder’s correction iterative formula follows from a similar
line of reasoning as self attention, we present the final results while omitting the details:

ψα
i = Φi · FD

i δϕ
D,α
i−1 +

∑m
β=1 σ

αβ
i Ψi · FE

i δϕ
E,β

xαi = [ϕαi
T , ψα

i
T ]T

δϕD,α
i = Gi(Hix

α
i + δϕD,α

i−1 )

(13)
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Table 3: Efficiency results of LST, READ, and Full-tuning. We report the training GPU energy
usage summed over all tasks, and the peak training memory (per batch) averaged over all tasks. For
inference memory/time, we use MNLI and report the average per batch (with test batch size 1).

Training GPU
Energy (kWh)

Training
Memory (GB)

Trainable Params
(Million/%)

Inference
Time (s)

Inference
Memory (GB)

Full-tuning 12.52 17.86 247.58/100.00 0.083 0.943
LST 10.59 5.77 5.04/2.00 0.165 1.358

READ 2.07 6.90 1.97/0.80 0.093 0.966
READ-large 6.62 17.74 11.17/1.4 0.175 2.943

where an upper index D\E are used to distinguish between the hidden states of decoder and encoder,
and δϕE is the final correction of encoder.

A.3 Ablation Experiments

A.4 GPU Energy Analysis

To provide a comprehensive understanding, we include an analysis below to show the mean and
standard deviation for the sums of GPU energy, epochs to convergence, and training time across
all GLUE tasks. While this analysis does reveal some variations in energy/time levels, they are
not significantly substantial to alter the general trend, as READ continues to stand out as the most
energy-efficient approach, with faster convergence than most baselines except for full-tuning.

Full Adapter LoRA Prompt BitFit LST READ
Energy 12.520.44 6.990.62 10.581.9 6.450.24 7.680.06 10.590.3 2.060.18

Epoch 7.00 13.010.58 25.843.9 34.852.4 23.611.3 23.581.5 12.311.4

Time 472.7412.77 485.251.12 409.419.52 315.535.01 292.894.03 984.5519.07 155.118.4

Table 4: GPU Energy Consumption and Training Time across 3 trials.

A.5 READ’s Inference and Memory Efficiency

As Figure 5 (left) and Table 5 indicate, READ achieves comparable inference latency and memory
requirement as the other PETL methods. To assess the inference memory impact of READ more
comprehensively, we use Figure 5 (right) to demonstrate that, as the backbone size increases, the
inference memory growth (relative to Full-tuning) of READ becomes less noticeable and decays to a
similar extent as the other methods at T5LARGE.

Table 5: Average inference memory consumption (GB) for every method with different backbones on
GLUE benchmark.

READ LST Adapter LoRA Prompt Bias Full

T5SMALL 0.317 0.427 0.303 0.302 0.301 0.301 0.300
T5BASE 0.966 1.358 0.952 0.948 0.948 0.945 0.943

T5LARGE 2.943 4.597 2.936 2.925 2.925 2.914 2.912
T53B 10.885 11.400 10.878 10.866 10.894 10.855 10.853
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Table 6: Split sizes, training GPU number, and training batch size per GPU node for all GLUE tasks.

CoLA MNLI QNLI MRPC QQP SST-2 STS-B

Training
Samples (k) 8.5 392.7 99.3 3.7 323.4 66.5 5.8

Test
Samples (k) 0.52 9.8 5.4 0.2 40.4 0.9 0.8

Validation
Samples (k) 0.52 9.8 1.0 0.2 1.0 1.0 0.8

GPUs 2 8 8 1 8 8 1

Batch Size
per GPU 48 12 12 96 12 12 96

B Architecture

B.1 Architecture choices

The matrix functions Ψ,Φ in equation (12) and (13) requires computing dot products for m2 pairs of
vectors (9) with time complexity as large as O(m2d2). To reduce latency cost in practice, we make
substantial reductions to the first equation in both (12) and (13) for READ experiments in this paper,
as listed below:

• Indices is are removed and learnable parameters are fused across all layers;

• In self-attention, we set Ψ,Φ to be constantly zeros; in other words, only hidden states are
cached and used for encoder corrections;

• In cross-attention, we set Φ to zero and Ψ · FE
i h

β
i−1 =: Lhβi−1, where L is a learnable linear

projection, so besides decoder hidden states we also need to cache the cross-attention scores
for computing decoder corrections. Furthermore, we use a simple addition operation to
combine ϕi and ψi in (13) instead of a learnable layer.

Note some reductions we made above might be over-simplified but this paper does not explore other
more sophisticated6 while still computationally efficient options, such as a gated neural network:{

Φ · Fi(h
α
i−1) = Gate(ϕαi )⊙ FFN(hαi−1),

Ψ · Fi(h
β
i−1) = Gate(ϕαi )⊙ FFN(hβi−1),

(14)

where v ⊙X = diag(v) ·X . We leave the pertinent explorations to future works.

B.2 READ Algorithm

Algorithm 1 outlines a forward pass during READ fine-tuning. Let T be a transformer with NE

encoder layers and ND decoder layers, and X\Y be source\target sequences of length m\n:

C Related Works

Parameter-efficient Transfer Learning. There has been an explosion of generative AI applications
in recent months [4, 28, 30, 33]. However, the ability to fine-tune large transformers is primarily
limited by the growing compute cost required to adapt and serve these models. Parameter-efficient
transfer learning (PETL) [1, 13, 18–20, 29, 38] aims to solve this problem by training only a small
set of parameters. There are many PETL methods which we defer the reader to [20] for a more
comprehensive overview. In this section, we will summarize the most popular PETL methods which

6A more sophisticated choice potentially introduces more dependency on cached results and likely to improve
performance at a trade-off of higher number of computation flops.
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Algorithm 1 READ Fine Tuning Algorithm
Initialize RNNs NE , ND and a learnable projection Ψ.

{ϕE,α
i }N

E ,m
i=1,α=1, {ϕ

D,α
j }N

D,n
j=1,α=1, {σ

E,αβ
i }N

E ,m,m
i=1,α=1,β=1, {σ

D,αβ
j }N

D,n,m
j=1,α=1,β=1 ← T (X,Y )

hE,0 ← 0 ▷ We assume embeddings need no corrections.

for i in 1, · · · , NE do ▷ Iteratively compute encoder corrections.

hE,α
i = NE(ϕαi , h

E,α
i−1 ), ∀α

hD,0 ← 0

for j in 1, · · · , ND do ▷ Iteratively compute decoder corrections.

ψα
j =

∑m
β=1 σ

αβ
D,jΨh

E,β
NE , ∀α

xαj = ϕαj + ψα
j , ∀α

hD,α
j = ND(xαj , h

D,α
j−1), ∀α

ϕDND

′ ← ϕDND + hDND ▷ Obtain adapted outputs.

we used as baselines. Adapter-based approaches [12, 13] insert small learnable modules between pre-
trained model layers and only update these adapters during fine-tuning, reducing computational cost
and memory requirements. Low-Rank Adaptation (LoRA) [15] injects trainable rank decomposition
matrices into each layer of the Transformer model. BitFit [38] fine-tunes only the biases of the model.
Prompt-tuning [18] is a successor of Prefix-Tuning [19], which adds a continuous task-specific
prompt to the input. In contrast, current PETL approaches aim to minimize the number of parameters
trained. These approaches do not lead to memory efficiency, a more meaningful objective than
parameter efficiency. This work proposes READ, simple memory-efficient methods by inserting a
small recurrent network into the backbone.

Memory-Efficient Training. Memory-efficient training reduces memory consumption by reducing
the storage of intermediate activations [29]. Gradient checkpointing [7] reduces memory consumption
during backpropagation by storing a subset of intermediate activations and recomputing them as
needed, trading time for memory. Reversible layers [11] reconstruct each layer’s activations from the
next layer’s activations. ZeRO [26] partitions model states, gradients, and optimizer states across
multiple devices for distributed training, significantly reducing memory redundancy. Layer-wise
Adaptive Rate Scaling (LARS) [37] dynamically scales learning rates for different layers, reducing
memory overhead associated with large gradients and enabling the training of large models with
limited memory.

Sidenet Tuning. Side-tuning [39] adds a lightweight side network alongside the pre-trained model.
During training, the side network and the task-specific head are updated while the pre-trained
model’s parameters are kept fixed. The side network learns to modulate the pre-trained model’s
activations, allowing it to adapt to the new task without altering the base model. Ladder side-tuning
[29] hierarchically adds multiple side networks, with each side network responsible for modulating
the activations of a specific layer in the pre-trained model. While READ takes inspiration from
Side-Tuning and LST, we would like to highlight significant differences between READ and prior
works. First, READ only contains a single RNN block which takes in the hidden state of the backbone
network in a recurrent manner. This way, the number of parameters to fine-tune does not increase with
the size of the backbone, whereas LST attaches multiple transformer blocks to the backbone network.
When the backbone gets larger, the size of the LST network also gets larger. Secondly, Side-Tuning
uses an additive side network to sum its representation with the backbone network in only the last
layer. READ consumes the backbone’s hidden state at every layer to iteratively calculate its RNN
states. The recurrence nature of RNN allows information to flow from one layer to the next, which
is why READ outperforms other PETL methods. Last, our fine-tuning is transformer-free as only
RNN and Feed-Forward Network (FNN) structures are used in READ and require no transformer
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Table 7: Model architectures for four different sized T5 models.

Params
(Million)

Encoder
Layers

Decoder
Layers Heads Embedding

Dimension
Head

Dimension
FFN

Dimension

T5SMALL 77 6 6 8 512 64 2048
T5BASE 248 12 12 12 768 64 3072

T5LARGE 771 24 24 16 1024 64 4069
T53B 2885 24 24 32 1024 128 16384

or attention mechanism. We may use a randomly initialized READ network without going through
pre-training like in LST or exploiting any subtle tricks for training a transformer.

D Experimental Details

Energy Consumption Measurement. Higher training efficiency translates to lower energy consump-
tion. To demonstrate the training efficiency benefit of READ, we measure and report the training
GPU energy consumption (in kWh) for every experiment. We adopt the following commonly-used
methodology to measure and estimate the model training energy consumption. We take the GPU
resource utilization into account when computing the corresponding energy consumption by assuming
a simple linear relationship between GPU utilization and its power consumption. Assume a training
experiment endures H hours on GPUs, with power consumption of p0 kW, at the GPU utilization
level (summed over all GPU nodes) u(t) (in percent). Then the total energy consumption (in kWh) is
given by

E =

∫ H

0

u(t)

100
· p0dt = H ·

(
1

H

∫ H

0

u(t)dt

)
· p0
100

. (15)

In practice, we sample u(t) at the granularity of minutes throughout training using NVIDIA’s System
Management Interface (smi). We then calculate its cumulative sum U =

∑60H
i=1 ui, thereby we can

approximate the right hand side of Equation (15) by

H ·
∑60H

i=1 ui
60H

· p0
100

= U · p0
6000

. (16)

When reporting the energy consumption analysis for READ and other designs (see Section 4), we
use p0 = 0.25 kW for a NVIDIA V100 32 GB GPU 7 for Equation (16).

D.1 Dataset and model details

GLUE Datasets In Table 6, we list the dataset size, number of GPU nodes, and training batch size
per GPU node for every task in GLUE. Note the total batch size (summed over all nodes) are fixed as
96 across all tasks and all methods.

T5 models Table 7 gives architecture-related numbers for four sizes of T5 model. Note for all
experiments T5BASE we use the original archtectures, while for READ experiments with T5LARGE,
we drop the last 4 layers from both encoder and decoder.

D.2 Hyperparameters

Architecture search For fine-tuning methods that have tunable architectural hyperparameters (e.g.
RNN hidden dimensions in READ, ranks in LoRA, etc), we do hyperparameter search as follows:
first, we fix the architecture A (e.g. in READ, take RNN-dim = 128 and side-net type to be LSTM),
and do learning rate search for every dataset D. Among each hyperparameter sweep H (D) there
exists a runR∗(D) that has the best validation score S (D). Then we calculate the average of S (D)
across all datasets D as the quality score of A, denoted as S (A). Now we move on to the next
architecture (e.g. in READ, take RNN-dim = 256 and side-net to be GRU) and repeat the above
process. After iterating through all architecture candidates, we choose the architecture A∗ that has

7250W comes from the datasheet on NVIDIA’s website
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Table 8: Final archtecture choices for all PEFT experiments reported in Section 4.

READ READ
large Adapter LoRA Prompt

tuning LST

Architecture
HP Names

RNN-type/
RNN-dim

RNN type/
RNN-dim

Bottleneck
size Rank Number of

prompts Sidenet-dim

Architecture
Candidates

{GRU/256,
GRU/128,
LSTM/128}

{GRU/256,
GRU/128,
LSTM/128}

{32, 64, 128} {8, 16, 32} {10, 20, 30} {64, 96, 128}

Final
Choices GRU/256 GRU/256 64 32 20 96

Table 9: Final learning rates for all fine-tuning methods and GLUE datasets

CoLA MNLI QNLI MRPC QQP SST-2 STS-B

Full-tuning 9× 10−6 7.16× 10−5 3.76× 10−4 3.59× 10−5 1.75× 10−4 4.6× 10−6 1.30× 10−4

Adapter 1.16× 10−3 7.47× 10−4 4.6× 10−6 1.95× 10−3 4.6× 10−6 1.46× 10−4 2.83× 10−3

LoRA 1.75× 10−4 3.05× 10−5 9× 10−6 1.75× 10−4 9× 10−6 7.16× 10−5 1.15× 10−4

BitFit 3× 10−3 2.83× 10−3 2.83× 10−3 2.83× 10−3 2.83× 10−3 3× 10−3 2.83× 10−3

Prompt-tuning 2.83× 10−3 1.40× 10−3 7.47× 10−4 3× 10−3 2.83× 10−3 3× 10−3 2.74× 10−3

LST 2.51× 10−4 1.75× 10−4 7.16× 10−5 7.47× 10−4 3.7× 10−4 1.75× 10−4 1.45× 10−3

READ 3.29× 10−4 3.67× 10−4 1.75× 10−4 7.8× 10−5 1× 10−6 2.5× 10−6 4.6× 10−5

READ-large 8.5× 10−5 1.46× 10−4 1.75× 10−4 1.43× 10−3 2.13× 10−4 2.04× 10−4 7.1× 10−5

the best score S (A∗), and report the test scores of each best run R∗(D) of A∗. Therefore, each
method in Table 1 adopts the same architectures throughout all datasets. For Full-tuning and BitFit
where no architectural hyperparameters are present, we do the learning rate search once to obtain the
test scores.

Learning rate search For each learning rate sweep, we do learning rates search in between [1 ×
10−6, 3× 10−3] at log-scale for up to 32 rounds, where we employ Bayesian optimization for faster
convergence of hyperparameter sweeps at lower computation costs.

Hyperparameter choices Table 8 and 9 summarize our final choices of architectural hyperparameters
and learning rates.
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