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ABSTRACT

The nuanced differences in human behavior and the complex dynamics of human-
AI interactions pose significant challenges in optimizing human-AI cooperation.
Existing approaches tend to oversimplify the problem and rely on a single global
behavior model, which overlooks individual variability, leading to sub-optimal so-
lutions. To bridge this gap, we introduce PHICO, a novel framework for human-
AI cooperative classification that initially identifies a set of representative annota-
tor profiles characterized by unique noisy label patterns. These patterns are then
augmented to train personalised AI cooperative models, each tailored to an an-
notator profile. When these models are paired with human inputs that exhibit
similar noise patterns from a corresponding profile, they consistently achieve a
joint classification accuracy that exceeds those achieved by either AI or humans
alone. We theoretically prove the convergence of PHICO, ensuring the reliability
of the framework. To evaluate PHICO, we introduce novel measures for assess-
ing human-AI cooperative classification and empirically demonstrate its general-
isability and performance across diverse datasets including CIFAR-10N, CIFAR-
10H, Fashion-MNIST-H, AgNews, and Chaoyang histopathology. PHICO is both
a model-agnostic and effective solution for improving human-AI cooperation.

1 INTRODUCTION

Determining the optimal human-AI cooperation mechanism is challenging (Dafoe et al., 2021).
Humans bring experience and contextual insights but are prone to biases; machine learning mod-
els excel in specific tasks but lack contextual understanding and complex reasoning (Holstein &
Aleven, 2021). Many human-AI joint decision making strategies were proposed, e.g., learning to de-
fer (Raghu et al., 2019; Madras et al., 2018; Mozannar et al., 2023), learning to complement (Wilder
et al., 2021), human-in-the-loop (Wu et al., 2022), and algorithm-in-the-loop (Green & Chen, 2019),
seeking to blend the best of human and AI for optimal decision-making.

We argue that effective human-AI joint decision-making depends on personalising machine learning
(ML) models to the individual’s behaviour patterns. While recent works have shown promising
progress in incorporating human behaviours through behaviour models (Vodrahalli et al., 2022) or
confusion matrices (Kerrigan et al., 2021), they rely on single global matrix and could not account
for the varied biases and preferences among annotators (Kocielnik et al., 2019; Wang et al., 2021).

Indeed, learning individual behavior patterns is challenging, as each person’s data usually represents
only a small portion of the total, making it insufficient to train personalised AI models Johnson et al.
(2021). Beyond the scarcity of individual data, evaluating the effectiveness of various human-AI
cooperation frameworks also poses difficulties. Traditional metrics such as accuracy fail to cap-
ture whether the ML model’s alteration to human inputs improve or degrade performance, further
complicating the assessment of cooperation effectiveness Shneiderman (2022).

This paper addresses these research gaps with PHICO, a framework designed for personalised
human-AI cooperative classification to achieve optimal performance (Figure 1). More specifically,
given a training dataset with noisy labels from multiple annotators, PHICO first identifies a set of
annotator profiles, each characterized by distinct noisy labeling patterns. PHICO then augments
these identified noisy label patterns to train personalised AI cooperative model, each optimized to

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Profiler

Multi -
rater

Dataset

𝑿
__

__
_…

_𝑁

𝑿

___
___…
___𝑁

𝑿
__

_…
__𝑁

Noisy label 
Augmentation

𝑇𝑘

Human Label 
Encoder ℎ!

Base Model 𝑓"

Decision Model 
𝑑#

Personalised AI 
Cooperative model 𝑚$ –

for profile 𝑘%

𝑿
_
_
_
_

Personalised AI 
Cooperative model

User Profiling

Training

Inference

Matched

Profile 𝑘!

Profile 𝑘"

Profile 𝐾

…
…

Figure 1: Training and inference of PHICO.

effectively interact with its corresponding annotator profile. During testing, a new user undergoes
a user profiling process, after which a suitable personalised AI cooperative model is selected for
personalised human-AI cooperative classification.

We present both a theoretical proof of convergence and an empirical evaluation of PHICO, and in-
troduce a novel assessment measure, alteration rate, which quantifies how the model positively or
negatively alters labels from human and AI sources. Our empirical studies include both simulated
and real multi-rater datasets across various modalities (images and texts) and domains (daily ob-
jects, news, and medical), including CIFAR-10N, CIFAR-10H, Fashion-MNIST-H, AgNews, and
Chaoyang histopathology. The results show that PHICO is a model-agnostic human-AI cooperation
framework outperforming both AI and human decisions alone, as well as state-of-the-art human-AI
cooperation methods across various classification tasks. To summarise, our contributions are:

• The first human-AI cooperation framework that combines noisy label learning methods and
personalised AI cooperative model.

• A new cooperative classification assessment measure, alteration rate, to quantify how the
model positively or negatively alters labels from human and AI sources.

• A theoretical proof of convergence and empirical results demonstrating state-of-the-art per-
formance across diverse datasets, including CIFAR-10N, CIFAR-10H, Fashion-MNIST-H,
AgNews, and Chaoyang histopathology.

PHICO is model-agnostic and can be trained effectively with noisy labels from multiple raters with-
out ground truth labels, making it a valuable and practical contribution to the ML community.

2 RELATED WORK

The conventional belief that automation lessens human control is under revision (Parasuraman et al.,
2000; Committee, 2014), as the uncertainties of automation often demand more human involvement,
leading to new human-AI collaboration strategies (Strauch, 2018). With AI models exceeding
human accuracy in certain tasks, three new human-AI collaboration paradigms have emerged:

Learning-to-assist approaches aim to support human decision-making with AI model predictions
(Straitouri et al., 2023). These approaches are commonly seen in critical domains, such as law (Liu
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et al., 2021) and medicine (Levy et al., 2021), where humans make the final decision. Considerable
work has been done to improve model explainability and transparency. (Tjoa & Guan, 2021).

Learning-to-defer methods allow AI models to autonomously manage confident cases and defer
decisions to humans when confidence is low (Madras et al., 2018; Mozannar et al., 2023; Alves
et al., 2023). These approaches focus on the optimization of a utility function that takes into account
the accuracy of the AI model, the preference of the human decision maker, and the cost of deferring
decisions. For example, Raghu et al. (2019) used an ensemble of AI models to predict the risk of
patient death, and then defers decisions to a human expert for patients with the highest risk.

Learning-to-complement models are optimized to leverage the strengths from both human and
AI model to improve decision-making. For example, Steyvers et al. (2022) proposed a Bayesian
framework for modeling human-AI complementarity. Kerrigan et al. (2021) used a calibrated con-
fusion matrix to combine human and model predictions in a way that minimizes the expected loss.
Wilder et al. (2021) consider the uncertainty from AI models and humans to jointly train a model
that allocates tasks to the AI model or the human to maximize the overall accuracy.

PHICO falls into the category of learning-to-complement and aims to utilise complementary
strengths of both humans and AI. Unlike other approaches that rely on a single behavior model
or a global confusion matrix for the entire dataset, PHICO takes a step further by identifying biases
among annotators and personalizing the human-AI cooperation to account for these unique biases.

2.1 EVALUATING HUMAN-AI COOPERATION

Human-AI complementarity is defined by Dellermann et al. (2021) as leveraging the unique capa-
bilities of both humans and AI to achieve better results than each one could achieve alone. However,
assessing the interaction between humans and AI is complicated, and numerous benchmarks have
been suggested in existing literature. In the context of learning-to-assist or learning-to-complement,
traditional measures such as accuracy, precision, and recall are commonly used. For learning-to-
defer, measures such as coverage are proposed to evaluate the proportion of the data that is processed
by the model alone (Raghu et al., 2019). When dealing with noisy labels, additional measurements
such as label precision, label recall, and correction error are also used (Song et al., 2022a). As
PHICO presents a new paradigm that combines decisions from humans and AI, we introduce new
assessment measures to understand whether combination leads to better decisions.

2.2 LEARNING FROM NOISY-LABEL (LNL) AND MULTI-RATER LEARNING (MRL)

PHICO draws insights from the LNL and MRL community. LNL aims to design algorithms that are
robust to the presence of noisy training labels. Recent advancements include DivideMix (Li et al.,
2020) with its semi-supervised approach, ELR (Liu et al., 2020) exploring early learning phenom-
ena, C2D (Zheltonozhskii et al., 2022) tackling the warm-up obstacle, and UNICON (Karim et al.,
2022) with a unified supervised and unsupervised learning to handle noisy labels effectively. MRL
trains models using noisy labels from multiple annotators per sample, which can mitigate the iden-
tifiability problem under certain conditions (Liu et al., 2023). Key developments include MRNet (Ji
et al., 2021), which addresses multi-rater disagreement, and Crowdlab (Goh et al., 2023), designed
to be model-agnostic. Despite improvements from LNL and MRL, an accuracy gap persists com-
pared to training with clean labels. This has led to our personalized human-AI joint decision-making
paradigm, which incorporates inputs from both humans and AI to make decisions.

3 METHODOLOGY

PHICO is a model-agnostic human-AI cooperation framework designed to enhance the performance
of human-AI joint decision making. In the following sub-sections, we first define the dataset nota-
tions in Section 3.1, explain the training process and convergence proof in Section 3.2, and outline
the profiling and inference stages in Section 3.3. Section 3.4 presents our proposed metrics for
assessing personalised human-AI cooperation.
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3.1 DATASET NOTATION

Let a multi-rater training set for a multi-class classification task be D̃ = {(xi, {ỹi,j}j∈A)}Ni=1,
where xi ∈ X is a data sample, ỹi,j ∈ Y ⊂ {0, 1}C is a one-hot vector for the C-class classifica-
tion, representing the noisy-label provided by annotator j ∈ A. We assume that each data sample
has a latent clean label denoted by yi ∈ Y , annotators’ label noise is class-dependent (or asym-
metric) (Song et al., 2022b), and a consensus labelled training set denoted by D̄ = {(xi, ȳi)}Ni=1.
Note that a key challenge in most human-AI cooperation approaches is their dependence on ground
truth labels, which are often hard to obtain. PHICO tackles this problem by using consensus labels,
generated through methods like majority voting or expectation maximization (Sinha et al., 2018; Ji
et al., 2021; Warfield et al., 2004), eliminating the need for ground truth. In our case, we utilize
Crowdlab (Goh et al., 2023) for its simplicity and superior performance in estimating consensus
labels. We provide more details about estimating consensus labels in Appendix A.

3.2 TRAINING OF PERSONALISED HUMAN-AI COOPERATIVE MODEL

Figure 1 shows the three steps for training PHICO: 1) identifying annotator profiles with distinct
noisy-label patterns, 2) augmenting noisy labels for each profile, and 3) training personalized AI
cooperative models using the augmented noisy labels. We explain each step below.

Identifying annotator profiles: To identify a set of representative profiles, each with a distinct noisy
label pattern, we first arrange the label sets from all annotators in a uniform format as equation 1.
We take each annotator j ∈ A and each class c ∈ {1, ..., C} to build the set of sample labels that
have consensus label c, with S(c)

j = {ỹi,j |(xi, ỹi,j) ∈ D̃, c = argmaxc̃∈{1,...,C} ȳi(c̃)}. We can
then build the L× C vector,

sj = [l
(1)
1 , ..., l

(1)
L , ..., l

(C)
1 , ..., l

(C)
L ] (1)

for annotator j ∈ A by randomly selecting L data samples for each class, where l
(c)
l =

argmaxc̃∈{1,...,C} ỹi,j(c̃) with ỹi,j ∈ S(c)
j representing one of the noisy labels from S(c)

j . Each
sj may be different, but class order is preserved for all annotators. This process is repeated for all
annotators to form the set L = {sj}j∈A. We identify representative annotator profiles within L
based on distinct noisy label patterns (Dehariya et al., 2010), using Fuzzy K-Means for its robust-
ness in handling noisy data (Xu et al., 2016) with the optimal K determined by the silhouette score,
which measures clustering quality (Appendix B). Each annotator is then assigned a profile.

Noisy-label augmentation: After identifying a set of K profiles, the original training set D̃ is
divided into K subsets D̃k ⊂ D̃, each containing the users allocated to profile k ∈ {1, ...,K}. Since
the data is divided, some subsets may be missing samples from the original set, as users may not
have annotated all samples in D. To address this, we propose a noisy label augmentation process that
generates extra labels for each profile, enabling the training of K models. This label augmentation
is obtained by sampling from the estimated profile-specific label transition matrix, mapping the
consensus label to the noisy label. This approach captures the label biases in each profile, allowing
the classifier to be trained to effectively handle these biases.

Assuming profile k from annotator subset Ak ⊂ A, k’s label transition matrix Tk ∈ [0, 1]C×C is:

Tk(c, :) =
1

|Ak|
∑

ỹi∈
{
S(c)
j

}
j∈Ak

ỹi, (2)

where
{
S(c)
j

}
j∈Ak

denotes the set of labels defined above (from samples with consensus label c, for

all users in Ak). Note that each element of the transition matrix for profile k from equation 2 denotes
the probability that a user in profile k flips from the consensus label Ȳ = c to the noisy label Ỹ = n,
as in Tk(c, n) = p(Ỹ = n|Ȳ = c,R = k), where R is the random variable for the user profile.
For each data point xi in D̃k, we take its consensus label c from D̄ and the profile k’s transition
matrix Tk from equation 2 to generate G labels by sampling {ŷg}Gg=1 ∼ p(Ỹ |Ȳ = c,R = k),
which represents the categorical distribution in row c of the transition matrix Tk. The new noisy-
label augmented training set for each profile k is denoted by D̂k = {(x, {ŷg}Gg=1)|(x, {ỹj}

Ak
j=1) ∈

D̃k, {ŷg}Gg=1 ∼ p(Ỹ |Ȳ = c,R = k)}.
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Training personalised human-AI cooperative model: With the annotator profiles and their aug-
mented noisy labels, we can now formulate the training of the personalised AI cooperative model.
The proposed model (top-right of Figure 1) has three components: 1) a base model that trans-
forms input data into a logit with fψk

: X → RC ; 2) a human label encoder that takes the
one-hot user provided noisy label and transforms it into a logit with hϕk

: Y → RC ; and 3) a
decision model that takes the model’s and human’s logits to output a categorical distribution with
dζk : RC × RC → ∆C−1. The base model fψk

(.) learns the features of the data, the human label
encoder model hϕk

(.) aims to discover the label biases of user profile k, and dζk(.) aims to model the
joint label noise distribution between the base model and human label encoder to make mθk(x, ŷ)
robust to label noise. The whole model mθk : X × Y → ∆C−1 is defined as:

mθk(x, ŷ) = dζk(fψk
(x)⊕ hϕk

(ŷ)), (3)

where θk = {ψk, ϕk, ζk}, and ⊕ represents the concatenation operator. The base model fψk
(.)

could use a different architecture, provided it is trained on D̄. Similarly, hϕk
(.) and dζk(.) can be

of different architectures; we configured them as a two-layer and three-layer multi-layer perceptron,
respectively, with ReLU activations. The model in equation 3 is trained as:

{θ∗k}Kk=1 = arg min
{θk}K

k=1

1

K × |D̂k| ×G
×

K∑
k=1

∑
(xi,{ŷi,g)}G

g=1)∈D̂k

ℓ (ȳi,mθk(xi, ŷi,g))+

λ× ℓ
(
ŷi,g, (Tk)

⊤ ×mθk(xi, ŷi,g)
)
,

(4)

where ȳi is the consensus label from D̄, ℓ(.) is the cross-entropy loss, λ ∈ [0,∞] is a hyper-
parameter, and the second loss term is motivated by the forward correction procedure proposed by
Patrini et al. (2017), transforming the clean label prediction from mθk(.) into the noisy ones in D̂k.

Theoretical proof of PHICO convergence: In the Appendix D, we prove the convergence of the
key steps PHICO, namely, the Fuzzy K-Means clustering used to identify annotator profiles, the
training of the personalized human-AI cooperative models, and the integration of these two steps.

3.3 USER PROFILING FOR PERSONALISATION

Once the models are trained, PHICO achieves personalisation during the testing by first matching
the new user to one of the learned personalised AI cooperative models, after which they perform
human-AI cooperative classification. The matching process, which we name user profiling, has two
steps: 1) classifying the testing user into one of the K profiles, to enable the matching of the user to
its personalized classifier mθk(.) and 2) setting an entry condition based on a comparison between
the accuracy of the testing user and the base model fψk

(.).

The classifier used in the first step is trained with samples that consist of randomly collected labels
of M training samples for each of the C classes (estimated from the consensus labels), from users
belonging to each of the K profiles. This forms multiple vectors of size M × C, which have the
structure defined in equation 1, where each of those vectors is labelled with the user’s profile. We
then train a one-versus-all (OVA) support vector machine (SVM) K-class classifier.

To classify a testing user into one of the K profiles, we first ask the user to label each image in a
validation set, V = {(xi,yi)}M×C

i=1 , which contains images not used in the training or testing sets.
Using these labels, we build an M × C vector, which is then processed by the OVA SVM classifier
to determine the user’s profile.

In the second step, we compare the base model and testing user accuracies on the validation set
V . The model mθk(.) is used only if the base model fψk

(.) performs better (Steyvers et al., 2022).
mθk(.) is evaluated on the test set T = {(xi,yi)} with no overlap with training or validation images.

3.4 NEW METRICS FOR PERSONALISED HUMAN-AI COOPERATIVE CLASSIFICATION

Our new evaluation criteria assesses the impact of the model’s label alterations on user performance.
We first define the positive and negative alteration measures:

5
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Positive
Alteration

: A+ =
1

|T | × |A|

|T |,|A|∑
i=1,j=1

ÿi,j = ȳi
ỹi,j ̸= ȳi

Negative
Alteration

: A− =
1

|T | × |A|

|T |,|A|∑
i=1,j=1

ÿi,j ̸= ȳi
yi,j = ȳi

(5)

Positive
Alteration
Rate

: RA+
=

A+

A+ +A−

Negative
Alteration
Rate

: RA− =
A−

A+ +A−

(6)

where ÿj = OneHot(mθk(x, ỹj)), with the function OneHot : ∆C−1 → Y returning a one-hot
label representing the class with the largest prediction from the model mθk(.). In equation 5, A+

quantifies the effectiveness of the model to correct users’ labels, where the user provided incorrect
labels. In contrast, A−, in equation 5, measures the proportion where the user had a correct label
that was subsequently misclassified by the model.

Aligning with that, RA+
and RA− in equation 6 measure positive and negative alteration rates,

respectively. Hence, an effective model should have high RA+
, low RA− , and a high post-alteration

accuracy, i.e. the accuracy after the label alteration by the personalised AI cooperative model.

4 EXPERIMENTS

4.1 DATASETS

CIFAR-10 includes 50,000 training, 200 validation, and 9,800 testing class-balanced color images,
each sized 32×32, with 10 classes. CIFAR-10N extends CIFAR-10’s training set via crowd-sourced
labeling to 747 annotators, with each image having three labels from different annotators. CIFAR-
10H expands CIFAR-10’s testing set via crowd-sourcing to 2571 annotators, resulting in an average
of 51 labels per image. Fashion-MNIST-H extends Xiao et al.’s Fashion-MNIST’s testing set to
multiple annotations from 885 annotators, averaging 66 labels per image. We use the crowd-sourced
testing set as the training set, with 200 images from the original training set allocated for validation
and the remainder for testing. AgNews is a text classification dataset with 120,000 training, 200
validation, and 7,400 testing news articles across 4 classes. Lastly, Chaoyang is a pathological
dataset with 4021 training, 80 validation, and 2059 testing images, each having three expert labels
in the training set. More details about datasets can be found in Appendix C.1.

Setup on datasets with simulated annotators: On CIFAR-10, a pairwise flipping experiment is
conducted where 8 out of 10 classes have clean labels, but in two classes, 80% of samples have
labels flipped. Three user profiles are simulated by flipping labels between classes airplane↔bird,
another profile that flips horse↔deer, and the other flips truck↔automobile. This results in 15
unique users (5 for each profile) for training and testing. For AgNews, pairwise flipping occurs on
two out of four classes, with 80% of samples flipped. Three user profiles are simulated, one that
flips between classes business↔science/technology, another that flips world↔sports, and the third
that flips sports↔business. resulting in 15 unique users (with 5 for each profile) for training and
testing. Both datasets use D̃ for training OVA SVM with automatically chosen K profiles based
on silhouette score in equation 8. ResNet-18 He et al. (2016) and Bert-Base-Uncased Devlin et al.
(2018) models are used as fψk

(.) in training mθk(.) in equation 3 for each profile k with CIFAR-10
and AgNews respectively. More details on the simulation setup is in Appendix C.

Setup on datasets with real annotators: for CIFAR-10N training, we conduct two experiments. In
the first experiment, the labels from 747 annotators form D̃. Of these, 155 annotators who labeled at
least 20 images per class are selected, split into 79 training users and 80 testing users. The training
users’ labels are used to build K profiles where K is automatically chosen based on the silhouette
score in equation 8, and train the OVA SVM classifier. During testing, noisy-label transition matrices
are estimated using annotator labels and consensus labels for each testing user, resulting in 80 noisy
test sets. In the second CIFAR-10N experiment, CIFAR-10H is used as the testing set without
modification. Noise transition matrices are estimated and used to simulate noisy annotations for
each testing user, resulting in unique noisy test sets for all 2571 users. For Fashion-MNIST-H,
labels from 885 annotators form D̃. 366 annotators who labeled at least 20 images per class are
selected, split into 183 training and 183 testing users. Similar to CIFAR-10N, noisy-label transition
matrices are estimated for testing users, producing 183 noisy testing sets. Chaoyang dataset has

6
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three annotators per image, forming D̃. Training users are used to buildK profiles and train an OVA
SVM classifier. During testing, noisy-label transition matrices are estimated, resulting in three noisy
test sets. Details on experiment setup, data preparation, and implementation are in Appendix C.

Backbone models and training details: Our experiments use various backbone models to showcase
robustness, including ViT-Large-16, DenseNet-121, and ResNet-50. Data augmentation policy by
Cubuk et al. (2019) was adopted for CIFAR-10 and Cubuk et al. (2020) for Fashion-MNIST datasets,
while Chaoyang is limited to random horizontal and vertical flips. Pre-trained models are employed
for their robustness to noisy labels (Jiang et al., 2020). We use Adam and NAdam optimizers to
train fψk

(.) and mθk(.). Implementation is in PyTorch, running on an NVIDIA RTX 4090 GPU.

4.2 RESULTS

Table 1 displays the post-alteration accuracy,
provided by PHICO, with respect to the orig-
inal accuracy of users, followed by Table 2
that shows positive and negative alteration as
computed in equation 5 and alteration rates
from equation 6 for K selected from the
silhouette score in equation 8. The shaded
rows in Table 1 contrast testing users who
met the entry condition (see second step
in Section 3.3), against all testing users in
the unshaded rows (note: for the CIFAR10
simulation, the two sets are the same since
all users met the condition). Note that
Table 2 shows results for profiled users from
the shaded rows of Table 1.

Results of datasets with simulated
annotators: The first and second rows
of Table 1 detail the number of testing
users that improved (I), maintained (M), or
did not improve (NI) with PHICO in the
CIFAR-10 and AgNews simulations. The
accompanying comparison between original
and post-alteration accuracy is reported in
the last two columns. Note that in Table 1,
all 15 users improved, with the average
accuracy after alteration surpassing the
original accuracy in both datasets. In Table

Table 1: Number of users who improved (I), main-
tained (M) or did not improve (NI) and Initial accuracy
vs accuracy after alterations. (Un)shaded rows: users
who (do not)meet entry condition.

Dataset K (Silhouette
score) Users I M NI Original

Accuracy
Post-alt.

acc.
With simulated annotators

CIFAR10 3 (0.55) 15 15 0 0 0.8400 0.8788
15 15 0 0 0.8400 0.8788

AgNews 3 (0.57) 15 15 0 0 0.5998 0.9802
15 15 0 0 0.5998 0.9802

With real annotators

CIFAR10-N 2 (0.01) 80 80 0 0 0.8365 0.9891
80 80 0 0 0.8365 0.9891

CIFAR10-H 2 (0.01) 2571 2566 1 4 0.9487 0.9930
2022 2022 0 0 0.9399 0.9926

Fashion-
MNIST-H 2 (0.09) 183 183 0 0 0.6723 0.8785

182 182 0 0 0.6625 0.8779

Chaoyang 3 (0.99) 3 3 0 0 0.9027 0.9466
2 2 0 0 0.8582 0.9237

Table 2: Positive and negative alterations and rates
from on-boarded users of Table 1.

Dataset K (Silhouette
score)

Positive and Negative
alterations

Positive and Negative
alteration rates

A+ A− RA+
RA−

With simulated annotators
CIFAR10 3 (0.55) 0.9437 0.1336 0.8759 0.1240
AgNews 3 (0.57) 0.9748 0.0162 0.9836 0.0164

With real annotators
CIFAR10-N 2 (0.01) 0.9541 0.0040 0.9958 0.0042
CIFAR10-H 2 (0.01) 0.9389 0.0041 0.9956 0.0044
Fashion-
MNIST-H 2 (0.09) 0.7581 0.0731 0.9121 0.0879

Chaoyang 3 (0.99) 0.7377 0.0453 0.9422 0.0578

2, a large A+ contrasts with a low A−, emphasizing a high proportion of RA+ and a low proportion
of RA− . Notably, the noise matrices estimated for K = 3 in figures 9 and 10 closely resemble those
used to simulate 15 users in figures 3 and 2, which confirms the estimated K = 3 in Tables 1 and 2.

Results of datasets with real annotators: According to Table 1, all users who were profiled and
met entry condition in every experiment, improved their accuracy with PHICO. Even considering all
users, the method tends to improve the performance of the majority. Table 1 shows that the accuracy
after alterations for profiled users in CIFAR-10N, CIFAR-10H, Fashion-MNIST-H and Chaoyang
increase by approximately 18%, 5%, 30%, 7%, respectively. Table 2 shows that PHICO has high
positive alteration rates for profiled users compared to negative alteration rates.

Appendix E presents standard deviation and 95% confidence values for post-alteration accuracy at
automatically selected K for all datasets, showing a significant improvement in user accuracy in
all datasets. Additionally, Table 11 in Appendix F highlights effective joint decision-making, even
when both human and base model are incorrect, showcasing the capacity to learn joint biases. A
simple attempt to model interpretability is discussed in Appendix G using CIFAR-10 simulation.

Comparison with related methods: In Table 3, we compare our results with the following compet-
ing methods proposed in literature: Raghu et al. (2019) which defers to humans when the classifier’s
error probability is high, Madras et al. (2018) blending human and AI insights, Okati et al. (2021)
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Table 3: Comparison of PHICO against proposed meth-
ods in literature.

Method CIFAR-10N CIFAR-10H FashionM-H Chaoyang
Trained with Ground Truth

Madras et al. (2018) 0.8307 0.8120 0.6002 0.5835
Raghu et al. (2019) 0.9703 0.9709 0.8005 0.8626
Mozannar & Sontag (2020) 0.9489 0.9669 0.7295 0.7059
Okati et al. (2021) 0.9402 0.9439 0.7040 0.7648
Verma & Nalisnick (2022) 0.9588 0.9741 0.7938 0.8448
Mozannar et al. (2023) 0.9479 0.9757 0.7753 0.8724

Trained without Ground Truth
Madras et al. (2018) 0.8605 0.8838 0.5998 0.5951
Raghu et al. (2019) 0.9668 0.9688 0.7834 0.8621
Mozannar & Sontag (2020) 0.9254 0.9688 0.7491 0.6774
Okati et al. (2021) 0.8811 0.9002 0.7522 0.7195
Verma & Nalisnick (2022) 0.9450 0.9711 0.6090 0.8668
Mozannar et al. (2023) 0.9446 0.9682 0.7515 0.8668
Ours 0.9891 0.9926 0.8778 0.9237

Table 4: Comparing PHICO to LNL and
MRL methods with asymmetric label noise
10%, 30%, 40% on CIFAR-10, referencing
accuracy from Karim et al.; Zheltonozhskii
et al.

Method Noise Rate
10% 30% 40%

LNL methods
CE 0.888 0.817 0.761
JPL Kim et al. (2021) 0.942 0.925 0.907
Dmix Li et al. (2020) 0.938 0.925 0.917
ELR Liu et al. (2020) 0.954 0.947 0.930
MOIT Ortego et al. (2021) 0.942 0.941 0.932
C2D Zheltonozhskii et al. (2022) - - 0.937
UNICON Karim et al. (2022) 0.953 0.948 0.941

MRL methods
Fast-DS Sinha et al. (2018) 0.9847 0.9836 0.9811
CrowdLab Goh et al. (2023) 0.9878 0.9874 0.9818
Ours 0.9978 0.9959 0.9927

refining the classifier to outperform humans and using a post-hoc rejector to decide who is more
likely to err on individual case and Mozannar & Sontag (2020), Verma & Nalisnick (2022), Mozan-
nar et al. (2023) which propose surrogate loss functions to better align the optimisation with deferral
goals. The comparison involves training models with and without ground truth, assessed by accu-
racy against test set ground truth annotations (see Table 3). When trained without ground truth, the
training set consensus ȳ is used. Remarkably, our models trained without ground truth outperform
those trained with ground truth.

Table 4 shows a comparison between PHICO and LNL and MRL methods on CIFAR-10, fol-
lowing Karim et al. (2022) using a Vit-Base-16 backbone pre-trained on ImageNet-21K. In this
experiment, we simulate six users, each introducing a 10% asymmetric noise in three class pairs
(Airplane↔Bird, Truck↔Automobile, and Horse↔Deer). Subsequently, we trained and evaluated
PHICO with K = 3. The same experiment was repeated for 30% and 40% noise rates. This com-
parison uses the cross entropy (CE) baseline and the following LNL methods: DMix (Li et al.,
2020) based on semi-supervised learning, ELR (Liu et al., 2020) exploring a regularised loss, C2D
(Zheltonozhskii et al., 2022) addressing the warm-up obstacle, JPL (Kim et al., 2021) exploring neg-
ative learning, MOIT (Ortego et al., 2021) combining contrastive and semi-supervised learning, and
UNICON (Karim et al., 2022) providing a unified framework for supervised and unsupervised learn-
ing. We also include the following MRL methods in the comparison: Goh et al. (2023) exploring a
majority voting followed by ensemble method to reach consensus, and Sinha et al. (2018) introduc-
ing a rapid vote aggregation method for consensus labelling based on expectation maximization.

5 ABLATION STUDIES

We report the results and main conclusions of the ablation study, where details can be found in the
cited appendices. We study the effect of noisy label augmentation in Table 5 (details explained in
Appendix K), which evaluates post alteration accuracy against augmentation times G ∈ {0, 1, 3, 5},
where results show a large accuracy increase from G = 0 to G = 1 and a steady improvement
for G > 1. Next, we evaluate different backbone models, including DenseNet-121, ResNet-50 and
ViT/B-16. Results in Table 8 show consistent improvement across all backbones while remaining
agnostic to the backbone model. Additionally, comparison to related methods confirms our superior
performance across different backbone models in Table 7 (see details in Appendix J). Table 9 per-
forms an ablation study by varying asymmetric noise rates (40%, 60%, 80%, 90%) on CIFAR-10
simulations (details in Appendix I), showcasing the robustness of our approach with accuracy above
86% in all noise rates. Table 6 (and Appendix H) shows the variation in post-alteration accuracy
for higher K ∈ 1, 2, 3, 6, 10 with CIFAR-10N. Increasing K from 1 to 3 improves accuracy, but it
declines for K > 3 due to fewer users per profile. Additional experiments on positive and negative
alterations around the optimal K are shown in Tables 16 and 17. Appendix L explores the effect of
λ in the loss function equation 4, with λ = 0.1 yielding the best accuracy.
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Table 5: Performance on CIFAR-10N [K=2]
as a function of the noisy label augmentation
hyper-parameter G.

G
Post-alt.

acc. A+ A- RA+ RA-

0 0.6148 0.4113 0.3015 0.5770 0.4229
1 0.9889 0.9530 0.0040 0.9958 0.0042
3 0.9891 0.9541 0.0040 0.9958 0.0042
5 0.9892 0.9522 0.0035 0.9963 0.0037

Table 6: Performance on CIFAR-10N as a func-
tion of the number of clusters K.

K
Post-alt.

acc. A+ A- RA+ RA-

K=1 0.9878 0.9528 0.0055 0.9943 0.0057
K=2 0.9891 0.9541 0.0040 0.9958 0.0042
K=3 0.9892 0.9542 0.0040 0.9958 0.0042
K=6 0.9877 0.9438 0.0037 0.9961 0.0039

K=10 0.9728 0.9135 0.0038 0.9959 0.0041

Table 7: Comparison between HAICO-CN and
competing methods in the literature with different
base models using CIFAR-10N.

Method ResNet50 DenseNet121 ViTB16
With Ground Truth

Madras et al. (2018) 0.8508 0.8412 0.8307
Raghu et al. (2019) 0.8707 0.8281 0.9703
Mozannar & Sontag (2020) 0.8514 0.8502 0.9489
Okati et al. (2021) 0.8103 0.8021 0.9402
Verma & Nalisnick (2022) 0.7008 0.6332 0.9588
Mozannar et al. (2023) 0.7822 0.8496 0.9479

Without Ground Truth
Madras et al. (2018) 0.8427 0.8474 0.8605
Raghu et al. (2019) 0.8316 0.8788 0.9668
Mozannar & Sontag (2020) 0.7030 0.8489 0.9254
Okati et al. (2021) 0.8003 0.7055 0.8811
Verma & Nalisnick (2022) 0.6241 0.5932 0.9450
Mozannar et al. (2023) 0.6588 0.8470 0.9446
Ours 0.9677 0.9686 0.9891

Table 8: Ablation with CIFAR-10N using different backbone
models as the base model fψk

(.).
Backbone

Model
Original
Accuracy

Post-alt.
acc. A+ A- RA+ RA-

ResNet-50 0.8461 0.9677 0.8623 0.0131 0.9849 0.0150
DenseNet-
121 0.8464 0.9686 0.8535 0.0105 0.9878 0.0122

Vit/B-16 0.8365 0.9891 0.9541 0.0040 0.9958 0.0042

Table 9: Performance on CIFAR-
10 as a function of noise rate

Asymmetric
Noise Rate

Original
Accuracy

Post alt.
acc. (K=3)

40% 0.9198 0.9923
60% 0.8800 0.9678
80% 0.8400 0.8788
90% 0.8202 0.8684

6 DISCUSSION

An intriguing aspect of PHICO is its capability to correct errors even when both humans and AI
models make mistakes. Sec. 4.2 and Appendix F suggest it happens from the personalised AI coop-
erative model that associates noisy labelling patterns of raters and the AI model to the correct label.
A necessary condition for this to happen is to prove that P (C|¬A,¬B) > 0, where A represents the
event that the base model provides a correct prediction, B denotes the event that the human provides
a correct label, and C is the event that our joint decision model produces a correct classification.
Assuming that the base model and humans can make mistakes, and that events A and B are inde-
pendent (and also independent given C), we trivially have: P (C|¬A,¬B) = P (¬A,¬B|C).P (C)

P (¬A,¬B) =
(1−P (A|C)).(1−P (B|C)).P (C)

(1−P (A))(1−P (B)) > 0 because 0 < P (B|C), P (A|C), P (A), P (B), P (C) < 1.

Future work for PHICO includes addressing the complexity of human-AI cooperation, where inter-
actions may change human behavior over time. While PHICO currently doesn’t account for this
dynamic, it could be adapted by regularly updating user’s assigned profile to reflect evolving inter-
actions and noisy patterns. Additionally, we will aim to create a more efficient few-shot profiling
process and extend PHICO for multi-label classification, building on insights from Li et al. (2022);
Kye et al. (2022). Enhancing privacy in learned profiles through local differential privacy Yang et al.
(2022) is also a key direction for future work.

7 CONCLUSIONS

We introduced PHICO, a novel human-AI cooperation framework that integrates noisy label learning
methods with personalized AI cooperative models. Through both a theoretical convergence proof
and an empirical evaluation across diverse datasets, including CIFAR-10N, CIFAR-10H, Fashion-
MNIST-H, AgNews, and Chaoyang histopathology, we demonstrated the robustness and effective-
ness of PHICO. We also proposed a new measure, the alteration rate, to quantify the impact of
PHICO on label modifications from both human and AI sources. With its model-agnostic design
and the ability to manage multi-rater datasets without ground truth labels, PHICO offers an effective
solution to human-AI cooperation tasks.
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A CONSENSUS LABEL ESTIMATION

Many multi-rater input datasets lack ground truth labels. To address this, PHICO is built to function
effectively without relying on them. During training, we use Crowdlab (Goh et al., 2023) to estimate
a consensus label ȳi, which approximates the true clean label yi. Crowdlab works in two steps. In
the first step, it estimates a consensus by majority vote ȳ′

i per training sample. In the second step,
it trains a classifier using the initial consensus and obtains predicted class probabilities for each
training example. After that, Crowdlab uses these predicted probabilities along with the original
annotations from raters to estimate a better consensus, creating the following ensemble,

ȳi = wγ × fγ(xi) +w1 × ỹi,1 + ...+w|A| × ỹi,|A|, (7)

where fγ : X → ∆C−1 is a classifier trained with the majority vote label ȳ′
i to output a categorical

distribution for C classes, and the weights wγ ,w1, ...,w|A| are assigned according to an estimate
of how trustworthy the model is, compared to each individual annotator. The outcome of Crowdlab
is a consensus labelled training set denoted by D̄ = {(xi, ȳi)}Ni=1. Note that the consensus label is
necessary only when the clean label yi is latent. If such clean label is observed, then Crowdlab is
no longer needed, and PHICO can be trained with D = {(xi,yi)}Ni=1.

B DECIDING THE OPTIMAL NUMBER OF PROFILES

We determine the optimal number of profiles K with the silhouette score defined by,

Sk =
1

|A|
∑
j∈A

b(sj)− a(sj)

max{a(sj), b(sj)}
, (8)

where a(sj) denotes the sample’s intra-profile distance (i.e., the average L2 distance to all other
points in the same profile), b(sj) represents the inter-profile distance (i.e., the lowest average L2
distance to all points in any other profile). The mean silhouette score for K profiles is defined by
S(K) = 1

K

∑K
k=1 Sk. The optimal number of profiles for the dataset is identified by selecting K

that yields the highest silhouette score.
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C EXPERIMENTAL SETUP

C.1 DATASETS

CIFAR-10 comprises 50,000 training, 200 validation, and 9,800 testing class-balanced color images,
each sized 32×32, and has 10 classes. CIFAR-10N extends the training set of CIFAR-10 by crowd-
sourcing its labelling to 747 annotators, where each image has three labels produced by different
annotators. The majority of annotators provided 200 labels. CIFAR-10H extends the CIFAR-10
testing set by crowd-sourcing it to 2571 annotators, each contributing with 210 labels. The resulting
label set contains an average of 51 labels per image. Fashion-MNIST (Xiao et al., 2017) comprises
60,000 training samples, and 10,000 testing samples with class-balanced images (belonging to one
of 10 classes) of size 28 × 28 pixels. Fashion-MNIST-H (Ishida et al., 2023) extends the Fashion-
MNIST’s testing set of 10,000 images by crowd-sourcing them to 885 annotators. The resulting
label set contains an average of 66 labels per image. We train the model using Fashion-MNIST-H’s
annotations on Fashion-MNIST’s test set, utilizing its 10,000 test images for training and splitting
the original training set into 200 validation and 59,800 test images. AgNews is a text classification
dataset comprising 120,000 training, 200 validation and 7,400 testing class-balanced news articles
categorized into 4 classes. Lastly, Chaoyang is a pathological dataset featuring four classes of
images, having a training set of 4021 images, a validation set with 80 images, and a testing set of
2059 images. Notably, each image in the training set is labeled by three experts, resulting in three
labels per image, and the testing set presents a single consensus label.

C.2 DATASET WITH SIMULATED ANNOTATORS

The simulation experiments on CIFAR-10 consists of a pairwise flipping experiment, where 8 out
of 10 classes have 100% of clean labels, but in two classes, 80% of samples have labels flipped
to the incorrect class. We simulate three profiles of users, one that flips 80% of the samples be-
tween classes airplane↔bird, another profile that flips horse↔deer, and the other profile that flips
truck↔automobile. For each profile, we simulate five training and five testing users, producing a
total of 5 × 3 = 15 unique users for training and another 15 users for testing. The training images,
together with the 15 labels/image by the training users, will form D̃ and it is used to buildK profiles
and train the OVA SVM, where K is automatically chosen based on the silhouette score in equa-
tion 8. The model for each profile k, mθk(.) in equation 3, uses a ResNet-18 He et al. (2016) as
fψk

(.) Figure 3 shows the noise matrices used for simulating CIFAR-10 users.

For AgNews, we adopted a pairwise flipping on two out of four classes, where 80% of samples are
flipped to the incorrect class while the remaining 2 classes have 100% clean labels. We simulate
three profiles of users, one that flips between classes business↔science/technology, another profile
that flips world↔sports, and the third profile that flips sports↔business. Five training and five
testing users are simulated for each profile producing a total of 15 unique users for training and
another 15 for testing. The training articles together with 15 training labels/article make up D̃ which
is used to make K profiles and train OVA SVM, where K is automatically chosen based on the
silhouette score in equation 8. A Bert-Base-Uncased Devlin et al. (2018) model is used as fψk

(.)
when training mθk(.) in equation 3 for each profile k. The figure 2 shows the noise matrices used
for simulating AgNews users.

Figure 2: Noise matrices used for simulating users with AgNews.
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Figure 3: Noise matrices used for simulating users with CIFAR-10.

C.3 DATASET WITH REAL ANNOTATORS

When training with CIFAR-10N, we present two experiments. For the first experiment, the labels
from 747 annotators form D̃. Out of them, 155 were identified for having annotated at least 20
images per class, and they were split in half, taking 79 as training users and 80 as testing users. The
training users’ labels are used to build the K profiles and train the OVA SVM classifier, where K
is automatically chosen based on the silhouette score in equation 8. During testing, a testing user’s
noisy-label transition matrix is estimated using the annotator’s labels and consensus labels. This
matrix is used to simulate noisy annotations from that testing user. Therefore, 80 noisy test sets are
produced, with each representing the biases that each user possesses. The model for each profile k,
denoted by mθk(.), uses ViT-Base-16 (Dosovitskiy et al., 2020) as the backbone for fψk

(.).

For the second CIFAR-10N experiment, we use CIFAR-10H as the testing set, where the labels
from testing users were used without any modification for user profiling. The same labels were used
to estimate a noise transition matrix and simulate their own test set. For all 2571 users, their own
test test was simulated with own biases. The models trained for CIFAR-10N were used for this
experiment.

For the Fashion-MNIST-H experiment, the labels from all 885 annotators are taken to form the D̃.
Then, 366 out of 885 users are chosen since they have annotated at least 20 images per class and
are split in half to have 183 users for training and 183 for testing. The training users’ labels are
used to build the K profiles and train the OVA SVM classifier, where K is automatically chosen
based on the silhouette score in equation 8. During testing, the testing user’s noisy-label transition
matrix is estimated using the annotator’s labels and consensus labels. This matrix is used to simulate
noisy annotations from that testing user. Therefore, 183 noisy testing sets are produced, with each
representing the biases that each user possesses. The model for each profile k, represented bymθk(.)
uses DenseNet-121 (Huang et al., 2017) for fψk

(.).

Chaoyang has three annotators per image, which form the D̃. Training users are used to make K
profiles, and train an OVA SVM, where K is automatically chosen based on the silhouette score in
equation 8. For each profile k, a model mθk(.) is trained with a ViT-Large-16 as the backbone for
fψk

(.). During testing, user’s noisy-label transition matrix is estimated using the annotator’s labels
and consensus labels. This matrix is used to simulate noisy annotations from that user, resulting
three noisy test sets.

Our method retain annotators’ noisy label patterns, but it’s important to note that Fashion-MNIST-
H and Chaoyang test sets are simulated and might not completely mimic real annotator inputs. In
contrast, CIFAR-10N and CIFAR-10H, with human labels for CIFAR-10’s training and testing sets,
offer a more realistic setup with crowd-sourced labels in both phases, better reflecting real-world
conditions.

In our experiments, we use various backbone models to showcase our model’s robustness. An
ablation study in Appendix J details the switch from ViT-Base-16 (Dosovitskiy et al., 2020) to
DenseNet-121 (Huang et al., 2017) and Resnet-50 He et al. (2016) on CIFAR-10N.
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In our CIFAR experiments, we adopted the data augmentation policy introduced by Cubuk et al.
(2019). Also, for Fashion-MNIST, alongside random horizontal and vertical flips, we integrated auto
augmentations as proposed by Cubuk et al. (2020). For the Chaoyang dataset, data augmentation
was limited to random resized crops of dimensions 224 × 224. For the AgNews dataset, the title
and description were concatenated and truncated to maximum length of 64 tokens. We rely on pre-
trained models for fψk

because of their robustness to noisy labels (Jiang et al., 2020) (e.g., ViT
models were pre-trained on ImageNet-21K, while ResNet-18 and DenseNet-121 models were pre-
trained on ImageNet-1K. Bert model and Bert tokenizer are trained on a large corpora of articles
in self-supervised fashion). Adam optimizer was employed for training fψk

(.) with consensus D̄,
where NAdam was used for training mθk(.) on D̂, each utilizing their respective default learning
rates. Implementations were done in PyTorch and executed on an NVIDIA GeForce RTX 4090
GPU.

D THEORETICAL PROOF OF CONVERGENCE OF PHICO

D.1 CONVERGENCE OF FUZZY K-MEANS

Each annotator j ∈ A is represented by a set of labels that this user has given to instances of the
training set. Assuming that the training set has N instances belonging to one of C classes and each
instance has a label y ∈ {0, 1, 2, ..., C − 1} = C, then, vj is an N dimensional array of integers
denoted by v ∈ CN representing user j’s annotations.

We assume an additive label noise process defined by ỹ = y + ϵ, where ϵ ∈ Z denotes an integer
number generator. For example, if y = 0 and ϵ = 1, then ỹ = 1. Similarly an N -dimensional vector
j is affected by the same process – for instance, if we have vj = [0, 1, 2] and ϵ is [1, 0,−2], this
forms the user j’s noisy vector sj = [1, 1, 0] ∈ CN .

Let {sj}j∈A form the noisy labels from the users in A. The clustering of users with K means can
be written as an optimisation process using the following cost function

f(K, {Lr}Kr=1, {cr}Kr=1) :=

K∑
r=1

∑
sj∈Lr

||sj − cr||2, (9)

whereK denotes the number of cluster centroids, Lr ⊂ {sj}j∈A, contains users assigned to centroid
cr. When K is fixed, minimal cost can be achieved by choosing the clustering that assigns each sj
to the closest centroid following Bottou & Bengio (1994) and Tang & Monteleoni (2017), as in

f(K) := min
{Lr}K

r=1,{cr}K
r=1

f(K, {Lr}Kr=1, {cr}Kr=1) = min
{Lr}K

r=1

K∑
r=1

∑
sj∈Lr

||sj − cr||2. (10)

Bottou & Bengio (1994) and Tang & Monteleoni (2017) present evidence that clustering converges
under fixed cluster numbers (as in equation 10 in Tang & Monteleoni (2017), despite being NP-hard
in general (equation 9 in Tang & Monteleoni (2017)).

The fuzzy K-means is an extension of the classic K-means clustering algorithm, shown above, where
each data point has a degree of belonging to each cluster, rather than a binary membership as in
traditional K-means. More specifically, in fuzzy K-means, we minimise the following cost function,

f(K) := min
{uj,r}j∈A,r=1..K ,{cr}K

r=1

K∑
r=1

∑
j∈A

ubj,r × ||sj − cr||2, (11)

where b > 1 is the fuzziness parameter, and uj,r is the membership degree of sj to cluster cr with
the constraint that

∑K
r=1 uj,r = 1. Hathaway & Bezdek (1986) presents the convergence proof of

the Fuzzy K-means algorithm, showing that the iterative update rules for the membership matrix and
cluster centers lead to the decrease of the objective function and establish conditions for convergence
to a local minimum.
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D.2 CONVERGENCE OF THE MODEL mθ

The three component model architecture is optimised towards the objective function 4, which is,

L
(
{θ∗k}Kk=1

)
= arg min

{θk}K
k=1

1

K × |D̂k| ×G
×

K∑
k=1

∑
(xi,{ŷi,g)}G

g=1)∈D̂k

ℓ (ȳi,mθk(xi, ŷi,g))+

λ× ℓ
(
ŷi,g, (Tk)

⊤ ×mθk(xi, ŷi,g)
)
,

we aim to find {θk}Kk=1 that minimizes L. Hence, the objective function is a sum of K × 2 cross-
entropy losses.

Facts

1. The objective function is differentiable as it is a sum of K × 2 differentiable functions.

2. Smoothness: Given the function L is differentiable, its gradient ∇L is Lipschitz continuous
with constant L. This means for any θ and θ′(Patel et al., 2022),

∥∇L(θ)−∇L(θ′)∥ ≤ L∥θ − θ′∥.

Gradient Descent Algorithm

The update rule for gradient descent is: θ(t+1)
k = θ

(t)
k − α∇L(θ(t)k ), where α is the learning rate.

Convergence Proof

Step 1: Descent Lemma For a smooth function with Lipschitz continuous gradient, the following
inequality holds (Patel et al., 2022; Mahdavi et al., 2013):

L(θ(t+1)
k ) ≤ L(θ(t)k ) +∇L(θ(t)k )T (θ

(t+1)
k − θ

(t)
k ) +

L

2
∥θ(t+1)
k − θ

(t)
k ∥2.

Substitute the gradient descent update rule into this inequality:

θ
(t+1)
k = θ

(t)
k − α∇L(θ(t)k ),

θ
(t+1)
k − θ

(t)
k = −α∇L(θ(t)k ),

∥θ(t+1)
k − θ

(t)
k ∥2 = α2∥∇L(θ(t)k )∥2.

Thus,

L(θ(t+1)
k ) ≤ L(θ(t)k )− α∥∇L(θ(t)k )∥2 + Lα2

2
∥∇L(θ(t)k )∥2.

Step 2: Simplifying and rearranging the inequality, we have:

L(θ(t+1)
k ) ≤ L(θ(t)k )−

(
α− Lα2

2

)
∥∇L(θ(t)k )∥2.

To ensure that the coefficient of ∥∇L(θ(t)k )∥2 is positive, choose α such that 0 < α < 2
L . A common

choice is α = 1
L :

L(θ(t+1)
k ) ≤ L(θ(t)k )− 1

2L
∥∇L(θ(t)k )∥2.

Step 3: Summing the Inequalities over t = 0, 1, . . . , T − 1:

T−1∑
t=0

(
L(θ(t)k )− L(θ(t+1)

k )
)
≥ 1

2L

T−1∑
t=0

∥∇L(θ(t)k )∥2.

Since L(θ(t)k ) is non-increasing,

L(θ(0)k )− L(θ(T )
k ) ≥ 1

2L

T−1∑
t=0

∥∇L(θ(t)k )∥2.
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Step 4: Convergence of the Gradient Norm. By dividing both sides by T :

1

T

T−1∑
t=0

∥∇L(θ(t)k )∥2 ≤
2L(L(θ(0)k )− L(θ(T )

k ))

T
.

As t→ ∞, 1
T

∑T−1
t=0 ∥∇L(θ(t)k )∥2 → 0, which implies that

∥∇L(θ(t)k )∥ → 0 as t→ ∞.

This means that the gradient of L(.) converges to zero as t → ∞. Hence, given that the function
L(.) is smooth and its gradient is Lipschitz continuous, the gradient descent algorithm consists of a
sequence of iterates {θ(t)k } that converges to a stationary point of the objective function L.

Linear combination of convergent functions is also convergent (Binmore, 1982).

D.3 CONVERGENCE OF THE TRAINING PROCESS

An overall p-level hierarchical optimization converges, under sufficient conditions such as sequential
decision making, dependence of subsequent level’s problem on previous level’s problem, non-empty
solution sets of levels and existence of optimal solutions for each level (Anandalingam & Friesz,
1992; Bracken & McGill, 1973; Ren et al., 2021). Accordingly, we can structure PHICO’s two step
training process as a bi-level (p=2) optimization problem, where the first level involves choosing
best profiles K followed by a model training process on each profile K = {1, ..,K}.

Let,

• f(K, {uj,r}j∈A,r=1..K , {cr}Kr=1) =
∑K
r=1

∑
j∈A ubj,r × ||sj − cr||2 is the objective

function for fuzzy-k means clustering (from eq. 11)

• L
(
{θ∗k}Kk=1

)
is the objective function for the model training.

Bi-Level Problem Formulation

Our optimisation consists of a bi-level optimisation problem that first finds the set of annotator noise
profiles using Fuzzy K-Means, which is used to constrain the optimisation of the objective function
4 given the result from the Fuzzy K-Means, as follows:

minimize {θk}K∗
i=1

L
(
{θk}|K

∗|
i=1

)
subject to K∗, {u∗

j,r}j∈A,r=1..K∗ = arg min
K,{uj,r}j∈A,r=1..K ,{cr}K

r=1

f(K, {uj,r}j∈A,r=1..K , {cr}Kr=1)
.

Convergence

Upper level convergence: Given the optimal number of profiles K∗ from the lower level, the deep
learning model’s parameters {θk}K

∗

i=1 are optimized using gradient descent. This optimization con-
verges as shown in the appendix D.2.

Lower level convergence: The fuzzy K-means algorithm converges, as shown in the appendix D.1.

Overall convergence: Since lower level provides a stable constraint to the upper level, and both prob-
lems converge individually, the overall hierarchical optimization problem converges under stated
assumptions for each sub-problem (Anandalingam & Friesz, 1992; Bracken & McGill, 1973).

E STATISTICAL CONFIDENCE OF RESULTS

Table 10 shows the standard deviation and 95% confidence interval of post-alteration accuracy for
real-annotator experiments, under the optimalK from the silhouette score. Results show that PHICO
significantly improve users compared to their original accuracy.
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Table 10: Standard deviation and confidence interval of experiments with real annotators
Dataset K Mean accuracy

after alterations
Standard

deviation (±)
95% confidence

interval
CIFAR10-N 2 0.98913 0.00104 (0.98890, 0.98937)
CIFAR10-H 2 0.99260 0.00240 (0.99250, 0.99271)
Fashion-MNIST-H 2 0.87786 0.00837 (0.87661, 0.87913)
Chaoyang 3 0.92374 0.00388 (0.87438, 0.97312)

F DISTRIBUTION OF DECISIONS MADE BY HUMAN, AI AND HUMAN-AI
COOPERATION

Table 11 shows how decisions from human, base model and joint decisions are distributed at each
experiment conducted in Section 4. This proportions are computed using the testing set. Decision of
human, or the AI model fψk

(.), or the cooperation mθk(.) are divided into correct (✓), if their label
is equal to the target, or wrong (✗), otherwise. According to Table 11, in all experiments, the majority
of correct joint decisions are resulted following both correct human and AI counterparts. On the
contrary, the smallest proportion of incorrect joint decisions are made when both individual parties
are correct. Further, the results reflect the tendency of joint decision being correct when at least one
member of the Human-AI team is correct, as anticipated in a cooperative setting. An interesting
observation is that we can also see cases where the cooperative decision is correct even when both
individual counterparts are wrong. We believe this showcases the capacity of our approach to learn
the joint biases posed by individual parties and intervene in cases where both are weak.

Table 11: Proportion that each combination of Human, AI, or Cooperation is correct (✓) or incorrect
(✗). Columns sum to 1 to indicate all possible combinations.

Human AI
fψk

(.)
Coopera-

tion mθk(.)
CIFAR10-N

%
CIFAR10-H

%
Fashion-

Mnist-H %
Chaoyang

%
✗ ✓ ✓ 5.15 5.59 4.47 3.35
✓ ✗ ✓ 0.65 2.26 15.05 1.82
✓ ✓ ✓ 93.79 91.35 72.13 92.16
✗ ✗ ✓ 0.05 0.05 4.29 0.13
✗ ✓ ✗ 0.13 0.19 0.33 0.49
✓ ✗ ✗ 0.11 0.39 1.38 1.29
✓ ✓ ✗ 0.00 0.00 0.20 0.00
✗ ✗ ✗ 0.12 0.17 2.17 0.76

G MODEL INTERPRETABILITY

This section suggests a way to interpret our model’s decision via visualising profile examples and
use a interpretable decision model. Figures 4, 5 and 6 illustrates profiles from CIFAR-10 simulation,
Fashion-MNIST-H and Chaoyang experiments. Those profile noise visualisations are complemented
with sample images where label noise was found and positively altered by the model.

Mislabelled Airplane as a Bird and positively altered

Mislabelled Bird as an Airplane and positively altered

Mislabelled Automobile as a Truck and positively altered

Mislabelled Truck as a Automobile and positively altered

Mislabelled Deer as a Horse and positively altered

Mislabelled Deer as a Horse and positively altered

Figure 4: Noise matrices when K=3 in CIFAR-10 simulation experiment
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Mislabelled Coat as a Pullover and positively altered

Mislabelled Shirt as a Pullover and positively altered

Mislabelled Shirt as a Coat and positively altered

Mislabelled Pullover as a Coat and positively altered

Mislabelled Pullover as a Shirt and positively altered

Mislabelled Coat as a Pullover and positively altered

Mislabelled Coat as a Pullover and positively altered

Mislabelled Pullover as a T-shirt/Top and positively altered

Mislabelled T-shirt/Top as a Dress and positively altered

Figure 5: Noise matrices when K=3 in Fashion-MNIST-H experiment

Mislabelled Serrated as Normal and positively altered

Mislabelled Adenocarcinoma as Normal and positively altered

Mislabelled  Adenoma as Normal and positively altered

Mislabelled Serrated as Normal and positively altered

Mislabelled Adenocarcinoma as Normal and positively altered

Mislabelled  Adenoma as Normal and positively altered

Mislabelled Serrated as Normal and positively altered

Mislabelled Adenocarcinoma as Normal and positively altered

Mislabelled  Adenoma as Normal and positively altered

Figure 6: Noise matrices when K=3 in Chaoyang experiment

We also conducted an experiment by replacing the decision model in PHICO with a decision tree
model to enable interpretability. The decision tree was trained by concatenating the output logits
from base model and human embedding for the training set as in the Section 3.2.

Experiment was done for K=3 in simulation experiment with CIFAR-10 and trained decision trees
are plot in the figures 7 and 8. It can be seen the decision tree uses the base model’s output fea-
tures (with the prefix ‘b ’) as a decision factor when there is user noise present in a specific class.
Otherwise the tree relies on human input features with the prefix ‘u ’.
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For the profile that has human 
noise in Horse-Deer class pair

For the profile that has human 
noise in Airplane-Bird class pair

As there is human noise
in Horse-Deer class pair,
the tree takes base
model’s input as a
decision factor (features
with prefix ‘b_’ ).

Otherwise, the tree
relies on human input
(features with prefix
‘u_’).

As there is human
noise in Airplane-Bird
class pair, the tree
takes base model’s
input as a decision
factor (features with
prefix ‘b_’ ).

Otherwise, the tree
relies on human input
(features with prefix
‘u_’).

Figure 7: Decision tree behaviour when it is trained on profile with human noise in Horse-Deer class
pair (left) and Airplane-Bird class pair (right).
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As there is human
noise in Truck-
Automobile class pair,
the tree takes base
model’s input as a
decision factor
(features with prefix
‘b_’ ).

Otherwise, the tree
relies on human input
(features with prefix
‘u_’).

For the profile that has human noise 
in Truck-Automobile class pair

Figure 8: Decision tree behaviour when it is
trained on profile with human noise in Truck-
Automobile class pair.

Table 12: Post alteration accuracy variation in
terms of λ that weights the second term of the loss
in equation 4 (with CIFAR-10N).

Backbone
model λ = 0 λ = 0.01 λ = 0.1 λ = 1 λ = 10

ResNet-50 0.9295 0.9437 0.9677 0.9399 0.9291
DenseNet-121 0.9364 0.9501 0.9686 0.9373 0.9306

ViT-B/16 0.9821 0.9815 0.9891 0.9759 0.9695

Table 13: Silhouette score variation as a function
of K for experiments

K Sillhoutte score
CIFAR-10 AgNews CIFAR-10N F-MNIST-H Chaoyang

2 0.3475 0.4489 0.0103 0.0909 0.6606
3 0.5519 0.5759 0.0077 0.0909 0.9999
4 0.3705 0.3692 0.0035 0.0909 -
5 0.1868 0.1835 -1.0635 0.0406 -
6 0.0057 0.0002 0.0043 0.0021 -
7 0.0064 0.0008 -0.0076 0.0909 -
8 0.0019 0.0016 -0.0033 0.0196 -
9 0.0047 0.0011 -0.0155 0.0909 -

10 0.0028 3.669E-05 -0.0072 0.0196 -

H PERFORMANCE AS A FUNCTION OF K

H.1 RESULTS OF DATASETS WITH SIMULATED ANNOTATORS

The first and second rows of Table 14 detail the number of testing users that improved (I), main-
tained (M), or did not improve (NI) with PHICO in the CIFAR-10 and AgNews simulations. Notice
how the number of I users increases and NI users decreases in CIFAR-10, showcasing the best per-
sonalisation when K = 3, which has the highest silhouette score of 0.55195 (silhouette scores in
Table 13). At K = 3, Table 14 shows that all 15 users improved with CIFAR-10, and Table 15
displays that the average accuracy after alteration is larger than the user’s original accuracy. Simi-
larly, AgNews reports its highest post alteration accuracy at K = 3 when silhouette score reaches
max 0.57586. Also, as K decreases, the post alteration accuracy decreases slightly as a result of the
lower number of improved users. Similarly, the simulation results in Table 16 highlights the increase
of A+ when reaching optimal K, accompanied by a decline in negative alterations A−. Addition-
ally, Table 17 shows an increasing alteration rate with K, reflecting the larger proportion of positive
alterations and smaller proportion of negative alterations when reaching optimal K = 3 with both
simulation datasets. The figures 9 and 10 showcase the estimated noise matrices for K ∈ {1, 2, 3}
from CIFAR-10 and AgNews test users. Note that K = 3 in those figures, closely resembles the
noise matrices used to simulate the users in figures 3 and 2.
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K=3

K=2K=1

Figure 9: Estimated noise matrices for each profile when K ∈ {1, 2, 3} from the simulation with
CIFAR-10.

K=3

K=2K=1

Figure 10: Estimated noise matrices for each profile when K ∈ {1, 2, 3} from the simulation with
AgNews.
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H.2 RESULTS OF DATASETS WITH REAL ANNOTATORS

According to Table 14, all profiled users in every experiment have improved their accuracy with
PHICO. Even considering all users, the method tends to improve the performance of the majority of
users. Similarly to the simulated case, the number of improved users increases for the optimal K of
the respective dataset (silhouette scores in Table 13). Table 15 shows that the accuracy after alter-
ations for the profiled users in CIFAR-10N, CIFAR-10H, Fashion-MNIST-H and Chaoyang increase
by least 18%, 5%, 30%, 6%, respectively. Table 16 shows that negative alterations for profiled users
tend to decrease as K > 1. On CIFAR-10N and Fashion-MNIST-H positive alterations increase
with K, but CIFAR-10H and Chaoyang show the opposite trend. Nevertheless, the accuracy for all
datasets increases as a function of K, as shown in Table 15 because of the declining negative alter-
ations. Table 17 shows that PHICO has increasing positive alteration rates compared to decreasing
negative alteration rates as a function of K.

Table 14: Number of users who improved (I), maintained
(M) and did not improve (NI).

Dataset Users K=1 K=2 K=3
I S NI I S NI I S NI

With simulated annotators

CIFAR10 15 5 0 10 9 0 6 15 0 0
15 5 0 10 9 0 6 15 0 0

AgNews 15 15 0 0 15 0 0 15 0 0
15 15 0 0 15 0 0 15 0 0

With real annotators

CIFAR10-N 80 80 0 0 80 0 0 80 0 0
80 80 0 0 80 0 0 80 0 0

CIFAR10-H 2571 2548 0 23 2566 1 4 2567 1 3
2022 2022 0 0 2022 0 0 2022 0 0

Fashion-
MNIST-H

183 182 0 1 183 0 0 183 0 0
182 182 0 0 182 0 0 182 0 0

Chaoyang 3 2 0 1 2 0 1 3 0 0
2 2 0 0 2 0 0 2 0 0

Table 15: Initial accuracy vs the accu-
racy after alterations.

Dataset Original
Accuracy

Accuracy after Alterations
K=1 K=2 K=3

With simulated annotators

CIFAR10 0.84001 0.83478 0.84500 0.87875
0.84001 0.83478 0.84500 0.87875

AgNews 0.59976 0.93695 0.94974 0.98020
0.59976 0.93695 0.94974 0.98020

With real annotators

CIFAR10-N 0.83648 0.98775 0.98913 0.98915
0.83648 0.98775 0.98913 0.98915

CIFAR10-H 0.94873 0.99184 0.99304 0.99318
0.93999 0.99143 0.99260 0.99277

Fashion-
MNIST-H

0.67226 0.86483 0.87849 0.87693
0.66249 0.86432 0.87786 0.87636

Chaoyang 0.90270 0.91937 0.94123 0.94657
0.85818 0.91500 0.92714 0.92374

Table 16: Alterations around optimal K

Dataset K=1 K=2 K=3
A+ A− A+ A− A+ A−

With simulated annotators
CIFAR10 0.8147 0.1614 0.8378 0.1536 0.9437 0.1336
AgNews 0.9028 0.0403 0.9357 0.0409 0.9748 0.0162

With real annotators
CIFAR10-N 0.9528 0.0055 0.9541 0.0040 0.9542 0.0040
CIFAR10-H 0.9419 0.0055 0.9388 0.0041 0.9419 0.0041
FashionM-H 0.7352 0.0814 0.7581 0.0731 0.7544 0.074
Chaoyang 0.7943 0.0648 0.6862 0.0328 0.7377 0.0453

Table 17: Alteration rates around optimal K

Dataset K=1 K=2 K=3
RA+

RA− RA+
RA− RA+

RA−

With simulated annotators
CIFAR10 0.8347 0.1653 0.8451 0.1549 0.8759 0.1240
AgNews 0.9573 0.0427 0.9581 0.0419 0.9836 0.0164

With real annotators
CIFAR10-N 0.9943 0.0057 0.9958 0.0042 0.9958 0.0042
CIFAR10-H 0.9942 0.0058 0.9956 0.0044 0.9956 0.0044
FashionM-H 0.9003 0.0997 0.9121 0.0879 0.9103 0.0897
Chaoyang 0.9246 0.0754 0.9543 0.0457 0.9422 0.0578

The effect of having values ofK that are larger than its optimal and having more profiles was studied
by extending the experiment done with CIFAR-10N dataset with VIT/B-16 base model. The results
in Table 6 indicate that from K = 1 to K = 3, the accuracy increases and, for K > 3, it starts
to decrease. Even though all testing users had their accuracy improved in all experiments, their
accuracy gain has been slightly impacted by K. This demonstrates that having larger Ks beyond
optimal silhouette score does not guarantee the best accuracy gain. Possibly, as K increases, the
number of users per profile during training decreases, meaning that the augmented noisy labels may
over personalise to the users’ biases which may lead to a less generalisable model for testing users.

I PERFORMANCE AS A FUNCTION OF NOISE RATE

The robustness of the approach for different noise rates was studied by extending the simulation
with CIFAR-10 to different noise rates. The obtained results are reported in Table 9. An ImageNet
pre-trained ResNet-18 was used as the backbone for the base model. The same simulation data
preparation explained in Section 4.1 was followed here.
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J THE ABLATION WITH DIFFERENT BACKBONE MODELS AS BASE MODEL

This experiment tests different backbones as the base model on CIFAR-10N dataset. The CIFAR-
10N experiment follows the one described in Section 4.1 with a VIT/B-16 as the base model fψk

(.),
and DenseNet-121 and Resnet-50 as fψk

(.).

The results in Table 8 showcases that different base models improve users in different degrees as ac-
curacy after alterations is different among them. Yet, it consistently surpasses the original accuracy
of users and all the profiled users were improved irrespectively of the base model.

It is important to emphasise that as the fψk
(.) changes, the consensus estimation in Section A

changes. Following that, the number of users chosen for labelling at least 20 images from each
class varies. This also changes the number of users in the test set and the recorded original accuracy
in Table 8. To be specific, the experiments with ResNet-50 and DenseNet-121 were conducted re-
spectively with 155 and 157 users identified for labelling 20 images per class. In the experiment with
ResNet-50, 77 were in the training set and 78 were in the testing set. In the case with DenseNet-121,
it was 78 and 79 in training and testing sets, respectively. The recorded results and user distribution
for the experiment with ViT/B-16 are same as in the main paper.

Further, we extend the comparative analysis in Section 4.2 and use the two backbones with methods
from literature to examine the performance. From the results in Table 7, our approach consistently
outperforms the methods in literature.

K PERFORMANCE AS A FUNCTION OF NOISY LABEL AUGMENTATION G

The effect of the number of times G that noisy labels were augmented in profile D̂k is explored by
extending the CIFAR-10N experiment with VIT/B-16. The results in Table 5 shows that larger G
promotes a slight increase in the users’ post alteration accuracy. Note that K was fixed at 2 for this
experiment.

L TESTING λ IN THE LOSS FUNCTION

Here, we study how the second term in the loss function in equation 4 affects the post alteration
accuracy. We conduct a range of experiments with λ ∈ {0, 0.01, 0.1, 1, 10}. Using CIFAR-10N
dataset, three sets of experiments were conducted using ResNet-50, DenseNet-121 and Bit/B-16 as
base models. Even though all users were improved in every experiment, the results in Table 12
show how post alteration accuracy vary with λ. It is clear that the highest post alteration accuracy is
centered around λ = 0.1 for all 3 base models.
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