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Abstract

Sufficient statistic perturbation (SSP) is a widely used method for differentially private
linear regression. SSP adopts a data-independent approach where privacy noise from a
simple distribution is added to sufficient statistics. However, sufficient statistics can often
be expressed as linear queries and better approximated by data-dependent mechanisms. In
this paper we introduce data-dependent SSP for linear regression based on post-processing
privately released marginals, and find that it outperforms state-of-the-art data-independent
SSP. We extend this result to logistic regression by developing an approximate objective that
can be expressed in terms of sufficient statistics, resulting in a novel and highly competitive
SSP approach for logistic regression. We also make a connection to synthetic data for machine
learning: for models with sufficient statistics, training on synthetic data corresponds to
data-dependent SSP, with the overall utility determined by how well the mechanism answers
these linear queries.

1 Introduction

Differential privacy (DP) (Dwork et al., 2006) is an established mathematical framework for protecting user
privacy while analyzing sensitive data. A differentially private algorithm injects calibrated random noise into
the data analytic process to mask the membership of single records in the data, limiting the information
revealed about them in the output of the privatized algorithm. The literature encompasses numerous methods
for achieving differential privacy across a wide range of machine learning algorithms, including objective
perturbation (Chaudhuri and Monteleoni, 2008; Chaudhuri et al., 2011; Kifer et al., 2012; Jain and Thakurta,
2013), with applications to models trained via empirical risk minimization; gradient perturbation (Bassily
et al., 2014; Abadi et al., 2016), which is commonly used in deep learning and models trained via gradient
descent; one-posterior sampling (Wang et al., 2015; Dimitrakakis et al., 2017) with applications in private
Bayesian inference; and finally, sufficient statistic perturbation (SSP) (Vu and Slavkovic, 2009; McSherry and
Mironov, 2009; Dwork and Smith, 2010; Zhang et al., 2016; Foulds et al., 2016; Wang, 2018; Bernstein and
Sheldon, 2019; Ferrando et al., 2022), with natural applications in exponential family estimation and linear
regression.

SSP adds calibrated random noise to the sufficient statistics of the problem of interest and uses the noisy
sufficient statistics downstream to retrieve the target estimate. It is appealing for a number of reasons.
Sufficient statistics are by definition an information bottleneck, in that they summarize all the information
about the model parameters (Fisher, 1922). For many models, like linear regression and exponential family
distributions, their sensitivity is easy to quantify or bound, simplifying the DP analysis. Finally, they can be
privatized via simple additive mechanisms, like the Laplace or Gaussian mechanism (Dwork et al., 2014).

Existing SSP methods are data-independent, meaning they add noise to the sufficient statistics in a way that
does not depend on the underlying data distribution. In a different branch of DP research, recent work has
shown that data-dependent mechanisms are the most effective for query answering and synthetic data (Hardt
et al., 2012; Gaboardi et al., 2014; Zhang et al., 2017; Aydore et al., 2021; Liu et al., 2021; McKenna et al.,
2022).
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In this paper, we introduce DD-SSP, a data-dependent SSP method that leverages private linear query
answering to release differentially private (DP) sufficient statistics. Its most immediate application is to
linear regression, where finite sufficient statistics exist and, as we demonstrate, can be estimated privately
through simple transformations of DP pairwise marginals. Furthermore, we extend the application of DD-SSP
to models without defined finite sufficient statistics by proposing a novel framework for logistic regression,
where approximate sufficient statistics are derived and released in a data-dependent way to train the model
by optimizing an approximate loss function.

The proposed framework can be used with virtually any DP query answering algorithm. In this paper, we
use AIM (McKenna et al., 2022) as our primary method, but show the overall method is robust to different
choices. The main advantage of AIM is its demonstrated accuracy at preserving marginal queries, albeit
at the cost of restriction to discrete data (a requirement in AIM). We show experimentally that DD-SSP
outperforms the state-of-the-art data-independent SSP method AdaSSP (Wang, 2018) for linear regression,
and for logistic regression tasks, DD-SSP achieves better results than the widely used objective perturbation
baseline. We also compare DD-SSP with DP-SGD (Abadi et al., 2016), known to achieve excellent performance
when hyperparameters are properly fine-tuned. Our results show that the proposed method is competitive
with DP-SGD when the privacy cost of hyperparameter tuning is taken into account.

Finally, we elaborate on the significance of our results with respect to the increasingly popular practice of
training machine learning models on DP synthetic data. Our results support the observation that for these
models training on synthetic data generated by linear-query preserving mechanisms effectively corresponds to
a form of data-dependent SSP.

2 Background

2.1 Differential privacy

Differential privacy (DP) (Dwork et al., 2006) has become the preferred standard for preserving user privacy
in data analysis, and it has been widely adopted by private and governmental organizations. Differential
privacy allows many data computations (including statistical summaries and aggregates, and the training
of various predictive models) to be performed while provably meeting privacy constraints. The concept of
neighboring datasets is integral to differential privacy, which aims to limit the influence of any one individual
on the algorithmic output in order to safeguard personal privacy.
Definition 2.1 (Neighboring datasets). Two datasets D and D′ are considered neighbors (D ∼ D′) if D′

can be created by adding or deleting a single record from D.

Based on the concept of neighboring datasets, we can define the sensitivity of a function:
Definition 2.2 (L2 sensitivity). Given a vector-valued function of the data f : D → Rp, the L2 sensitivity of
f is defined as ∆(f) = maxD∼D′ ∥f(D)− f (D′)∥2.

Differential privacy can be achieved via different mechanisms of addition of calibrated random noise, with
slightly different definitions. In this paper, we adopt (ϵ, δ)-DP, which can be achieved via the Gaussian
Mechanism.
Definition 2.3 ((ϵ, δ)-Differential Privacy). A randomized mechanismM : D → R satisfies (ϵ, δ)-differential
privacy if for any neighbor datasets D ∼ D′ ∈ D, and any subset of possible outputs S ⊆ R

Pr[M(D) ∈ S] ≤ exp(ϵ) Pr [M (D′) ∈ S] + δ

Definition 2.4 (Gaussian mechanism). Let f : D → Rp be a vector-valued function of the input data. The
Gaussian mechanism is given by

M(D) = f(D) + ν

where ν is random noise drawn from N (0, σ2Ip) with variance σ2 = 2 ln(1.25/δ) ·∆(f)2/ϵ2 and ∆(f) is the
L2-sensitivity of f . That is, the Gaussian mechanism adds i.i.d. Gaussian noise to each entry of f(D) with
scale σ dependent on the privacy parameters.
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Proposition 2.5. (Dwork et al., 2014) The Gaussian mechanism in Definition 2.4 satisfies (ϵ, δ)-DP.

Proposition 2.6 (Post-processing property of DP). (Dwork et al., 2014) If M(D) is (ϵ, δ)-DP, then for
any deterministic or randomized function g, g(M(D)) satisfies (ϵ, δ)-DP.

2.2 Data-independent sufficient statistic perturbation

Sufficient Statistic Perturbation (SSP) is a widely used differential privacy mechanism that introduces privacy
noise at the level of summary statistics. For example, differentially private linear regression is commonly
achieved by directly perturbing the sufficient statistics XTX and XT y via an additive noise mechanism, such
as the Gaussian mechanism, where X ∈ Rn×d is the feature matrix and y ∈ Rd is the response vector. The
noise is added independently to each entry of these statistics based on the privacy parameters and the global
sensitivity: the sensitivity of XTX is bounded by ∥X∥2, and that of XT y by ∥X∥ · ∥Y∥, where ∥X∥ and ∥Y∥
are bounds on the feature and target vectors respectively (for a detailed derivation of the sensitivity bounds,
see Appendix D). Specifically, SSP for linear regression is performed by computing the following:

• X̂TX = XTX + νZ1 where Z1 ∈ Rd×d is a symmetric matrix with upper-triangular entries sampled
from N (0, 1), and the noise scale is ν2 = ∥X ∥4 log(1.25/δ)

ϵ2 .

• X̂T y = XT y + υZ2 where Z2 ∼ N (0, Id), and the noise scale is υ2 = ∥X ∥2∥Y∥2 log(1.25/δ)
ϵ2 .

The privatized estimates X̂TX and X̂T y are then used to compute the private estimator θ̂ = ̂(XTX)
−1
X̂T y.

This approach is simple and effective, but treats all entries in the sufficient statistics uniformly, adding
entry-wise noise components calibrated to the same scale that only depends on the data through measures of
global sensitivity. This implies that the noise mechanism does not exploit the structure of the underlying
data to determine how the privacy noise is allocated. We call this mechanism data-independent SSP.

Later in this paper, we will instead leverage data-dependent privacy mechanisms for estimating sufficient
statistics. Data-dependent mechanisms have gained traction in the field of differentially private data generation
as the most effective mechanisms for query answering and synthetic data. The next section introduces the
relevant background on differentially private synthetic data to introduce the context and motivation for our
proposed data-dependent SSP methods.

2.3 Differentially private synthetic data and query-answering mechanisms

Differentially private synthetic data generation aims to produce surrogate data that preserves key statistical
properties of the original data while ensuring privacy (Hardt et al., 2012; Zhang et al., 2017; Xie et al., 2018;
Jordon et al., 2019; McKenna et al., 2019; Rosenblatt et al., 2020; Vietri et al., 2020; Liu et al., 2021; Aydore
et al., 2021; McKenna et al., 2021b; Vietri et al., 2022; McKenna et al., 2022). Rather than perturbing the
data or a downstream model directly, these methods fit a generative model to privatized statistics of the
data, then sample from the model to produce surrogate data. This synthetic data can then be used for a
wide range of analytical tasks without further privacy cost.

The following definitions allow us to formally elaborate on differentially private synthetic data.
Definition 2.7 (Dataset). A dataset D is defined as a collection of n potentially sensitive records. Each
record χ(i) ∈ D is a d-dimensional vector (χ(i)

1 , . . . , χ
(i)
d ).

Definition 2.8 (Domain). The domain of possible values for attribute χ(i)
j is Ωj = {1, . . . ,mj}. The full

domain of possible values for χ(i) is thus Ω = Ω1 × · · · × Ωd which has size
∏

j mj = m.

We will later talk about numerical encodings of attributes (Section 3.1).
Definition 2.9 (Marginals). Let r ⊆ [d] be a subset of features, Ωr =

∏
j∈r Ωj ,mr = |Ωr|, and χr = (χj)j∈r.

The marginal on r is a vector µr ∈ Rmr indexed by domain elements t ∈ Ωr such that each entry is
µr[t] =

∑
χ∈D 1 [χr = t] (i.e., counts).
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Figure 1: Diagram of the SSP data-independent workflow (left) vs the data-dependent linear query answering
mechanism for marginal release/synthetic data workflow (right). Quantities indicated in blue follow privacy
noise injection and are differentially private.

With marginal queries, one record can only contribute a count of one to a single cell of the output vector. For
this reason, the L2 sensitivity of a marginal query Mr is 1, regardless of the attributes in r. This facilitates
the differential privacy analysis for marginal queries.
Definition 2.10 (Workload). A marginal workload W is defined as a set of marginal queries r1, . . . , rK

where rk ⊆ [d].

The goal of workload-based synthetic data generation models to minimize the approximation error on workload
queries.

A widely used framework in this space is the select-measure-reconstruct paradigm (Hay et al., 2009; Li et al.,
2010; Ding et al., 2011; Xiao et al., 2012; Li and Miklau, 2012; Xu et al., 2013; Yaroslavtsev et al., 2013;
Li et al., 2014; Qardaji et al., 2014; Zhang et al., 2014; Li et al., 2015; McKenna et al., 2021a), in which a
workload of marginal queries is selected, privately measured, and then used to reconstruct either the full data
distribution or a synthetic dataset. Many algorithms in this class are data-dependent: the choice of which
queries to measure is based on the data itself, leading to better utility for a fixed privacy budget.

One example of select-measure-reconstruct method, and the one we use primarily in this paper, is
AIM (McKenna et al., 2022). AIM (Adaptive and Iterative Mechanism) is a state-of-the-art data-dependent
method that selects marginal queries to measure via a scoring function that assesses the expected utility of
the measurements based on the data. This data-awareness allows AIM to focus the privacy budget where it
matters most, depending on the data distribution. Note that AIM uses zero-concentrated differential privacy
(zCDP) (Bun and Steinke, 2016), an alternative privacy definition; the Gaussian mechanism as defined in
Section 2.1 satisfies 1

2σ2 -zCDP (Bun and Steinke, 2016). In our experiments, we work with (ϵ, δ)-DP and the
conversion to zCDP is handled internally in AIM.

In our experiments, we use AIM directly to release marginals without sampling synthetic data, treating it as a
general-purpose, data-dependent linear query release mechanism.

3 Methods

In this paper, we propose methods to privately estimate sufficient statistics in a data-dependent way.
Specifically, our methods leverage privately released marginals computed by a data-dependent linear query
answering algorithm to estimate sufficient statistics. We call this set of methods DD-SSP. The main advantage
of DD-SSP is that it is data-dependent. Our approach stems from the insight that, while data-independent
noise addition is a simple and established approach to SSP, many sufficient statistics can be expressed as linear
queries, creating an opportunity to improve utility by using data-dependent query-answering DP mechanisms,
which often achieve higher accuracy than simple additive noise mechanisms (McKenna et al., 2022). In fact,
using private synthetic data to train certain models is already a form of SSP. Figure 1 compares a standard
SSP workflow and our proposed DD-SSP workflows. As seen in the figure, the pipeline of releasing synthetic
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data and then training a model via sufficient statistics can be viewed as a specific way of privatizing sufficient
statistics for model training.

For linear regression, the application is straightforward: the problem has finite sufficient statistics and
we demonstrate that two-way marginal queries are sufficient for their estimation. For other models, finite
sufficient statistics are not available, but a polynomial approximation of the loss functions provides approximate
sufficient statistics. This is the case for logistic regression, where finite sufficient statistics do not exist, but a
Chebyshev polynomial approximation based on Huggins et al. (2017) allows us to propose an approximate
version of the learning objective based on approximate sufficient statistics that can be expressed as linear
queries, again retrievable via two-way marginal tables.

We use the synthetic data mechanism AIM as our private query answering algorithm and modify its imple-
mentation to output marginals directly, without the need to execute the synthetic data generation step.
Depending on the input workload, AIM will privately release marginals that preserve certain linear queries
more accurately. We find that a two-way marginal workload is sufficient for estimating or approximating the
sufficient statistics for both linear and logistic regression. The proposed method is amenable to generalization
beyond these classes of problems and can be potentially extended to others by i) identifying or approximating
their sufficient statistics and ii) customizing the workload passed on as input in AIM accordingly. Since our
proposed methods are based on post-processing DP workload query answers, the differential privacy analysis
is straightforward (Definition 2.6).

3.1 Numerical encoding

We assume discrete (or discretized) input data, which is a common format for tabular data and is required by
AIM and other marginal-based approaches. However, for machine learning, each record χ must be mapped to
a numerical vector z = (x, y) where x ∈ Rp is a feature vector and y ∈ R is a target. While the details of this
encoding are often overlooked, they are important here for two reasons. First, they are needed to tightly
bound ∥x∥, which is used in sensitivity calculations of a number of DP ML methods, with tighter bounds
leading to higher utility. Second, the encoding is a key part of recovering sufficient statistics from marginals.

Let ψj(χj) ∈ Rmj be the one-hot encoding of χj , i.e., the vector with entries ψj,s(χj) = 1[χj = s] for each
s ∈ Ωj . We consider any numerical encoding of the form χj 7→ Ajψj(χj) where Aj ∈ Rpj×mj is a fixed
linear transformation applied to the one-hot vector. This covers two special cases of interest. The first is
the scalar encoding with Aj = vT

j for a vector vj ∈ Rmj that specifies the numerical value for each s ∈ Ωj .
In this case the mapping simplifies to χj 7→ vj(χj). The second special case of interest is when Aj = Ij is
the mj ×mj identity matrix, so the mapping simplifies to χj 7→ Aj(χj) to give the one-hot encoding itself.
Another common variation is a reduced one-hot encoding where Aj = Ĩj ∈ R(mj−1)×mj is equal to Ij with
one row dropped to avoid redundant information in the one-hot encoding. We include a simple example of
the encoding strategy in Appendix B.

The full encoded record is z = (z[j])d
j=1 where z[j] = Ajψj(χj) ∈ Rpj is the encoding of the jth attribute

and these column vectors are concatenated vertically. A single entry of z is selected as the target variable y
leaving a feature vector x of dimension p := (

∑d
j=1 pj)− 1. Later, we will also use indexing expressions like

(·)[j] and (·)[j,k] to refer to blocks of a vector or matrix corresponding to the encoding of the jth and kth
attributes.

Let z(i) = (x(i), y(i)) denote the encoding of record χ(i) and let X ∈ Rn×p be the matrix with ith row equal to
(x(i))T and y ∈ Rn be the vector with ith entry equal to y(i). Many DP ML methods require bounds on the
magnitude of the encoded data. Let ∥X∥ = supx∈X ∥x∥ and ∥Y∥ = supy∈Y |y| be bounds provided by the user
where X ⊂ Rp and Y ⊂ R are guaranteed to contain all possible encoded feature vectors x and target values
y, respectively. For example, a typical bound is ∥X∥ = ∥x+∥ where x+

k ≥ sup |xk| bounds the magnitude of a
single feature. If xk is the scalar encoding of χj we can take x+

k = maxs∈Ωj |vj(s)|. The following proposition
describes how to tightly bound a feature vector that combines scalar features and one-hot encoded features.

Proposition 3.1. Suppose x = (u,w) where u ∈ Ra satisfies ∥u∥ ≤ ∥U∥ and w ∈ Rb contains the one-hot
encodings (either reduced or not reduced) of c attributes. Then ∥X∥ :=

√
∥U∥2 + c is an upper bound on ∥x∥.
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Proof. ∥x∥2 = ∥u∥2 + ∥w∥2 ≤ ∥U∥2 + c where ∥w∥2 ≤ c because w is the concatenation of c vectors each with
at most a single entry of 1 and all other entries equal to 0.

Suppose u consists of scalar features and ∥U∥ is obtained by bounding each one separately as described above.
This bound is tighter than the naive one of

√
∥U∥2 + b that would be obtained by bounding each entry of

the one-hot vectors separately.

3.2 Linear regression

The goal of linear regression is to minimize the sum of squared differences between the observed values y and
predicted values Xθ in a linear model with θ ∈ Rp. The ordinary least squares (OLS) estimator is obtained
by minimizing the squared error loss function ∥y −Xθ∥2. Mathematically, the OLS estimator is given by
θ̂ = (XTX)−1XT y. In this context, the sufficient statistics are T (X, y) = {XTX,XT y}. In DD-SSP, we
approximate T (X, y) using linear queries. Specifically, we show that each entry of XTX and XT y can be
obtained from pairwise marginals. The sufficient statistics we will consider all have the form of empirical
second moments of the encoded attributes.

3.2.1 Sufficient Statistics from Pairwise Marginals

Let Z = [X, y] ∈ Rn×(p+1). The matrix ZTZ has blocks that contain our sufficient statistics of interest:

ZTZ =
[
XTX XT y
yTX yT y

]
. (1)

However, we will see that we can also construct ZTZ directly from marginals.
Proposition 3.2. Let (ZTZ)[j,k] be the block of ZTZ with rows corresponding to the jth attribute encoding
z[j] = Ajψj(χj) and columns corresponding to the kth attribute encoding z[k] = Akψk(χk). Then

(ZTZ)[j,k] = Aj⟨µj,k⟩AT
k

where ⟨µj,k⟩ ∈ Rmj×mk is the (j, k)-marginal shaped as a matrix with (s, t) entry µj,k[s, t] =
∑n

i=1 1[χ(i)
j =

s, χ
(i)
k = t]. Note that according to this definition ⟨µj,j⟩ = diag(µj).

This shows that we can reconstruct the sufficient statistic matrix ZTZ directly from the set of all single-
attribute and pairwise marginals. Note that single-attribute marginals µj can be constructed from any µj,k

with k ̸= j.

Proof. The sufficient statistic matrix can be written as ZTZ =
∑n

i=1 z
(i)(z(i))T . Indexing by blocks gives

(ZTZ)[j,k] =
n∑

i=1
z

(i)
[j] (z(i)

[k])
T

=
n∑

i=1
Ajψj(χ(i)

j )ψk(χ(i)
k )TAT

k

= Aj

( n∑
i=1

ψj(χ(i)
j )ψk(χ(i)

k )T
)
AT

k

= Aj⟨µj,k⟩AT
k ,

In the last line, we used that ψj(χ(i)
j )ψk(χ(i)

k )T is a matrix with (s, t) entry equal to 1[χ(i)
j = s, χ

(i)
k = t], so

summing over all i gives the matrix ⟨µj,k⟩.
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Algorithm 1 outlines how to retrieve approximate sufficient statistics X̃TX and X̃T y from marginals privately
estimated by AIM. This implies we can solve DP linear regression by i) retrieving X̃TX and X̃T y as outlined
in Algorithm 1, and ii) finding θ̂DP = X̃TX

−1
X̃T y.

Algorithm 1 DD-SSP

1: M ← DPQuery(D, ϵ, δ) is the collection of privately computed pairwise marginal tables µj,k for all attribute pairs
(j, k), computed by DP query release algorithm of choice DPQuery.

2: (Z̃T Z)[j,k] ← Aj⟨µj,k⟩AT
k for all attribute pairs (j, k) (see Proposition 3.2)

3: Extract X̃T X and X̃T y from Z̃T Z using the block structure of Equation (1)

Proposition 3.3. DD-SSP is (ϵ, δ)-DP.

The proof follows directly from the (ϵ, δ)-DP properties of the marginal-releasing algorithm (in our case, AIM),
and the fact that all subsequent steps are post-processing of a DP result (Definition 2.6).

3.3 Logistic regression

Logistic regression predicts the probability a binary label y ∈ {−1,+1} takes value +1 as p = 1/(1+exp(−x·θ)),
where θ ∈ Rp is a coefficient vector and x · θ is the dot-product. The log-likelihood function is

ℓ(θ) =
n∑

i=1
ϕ(x(i) · θy(i))

where ϕ(s) := − log(1 + e−s). Optimizing this log-likelihood is a convex optimization problem solvable numer-
ically via standard optimizers. The log-likelihood does not have finite sufficient statistics. However, Huggins
et al. (2017) offers a polynomial strategy to obtain approximate sufficient statistics for generalized linear
models (GLMs), including logistic regression. Kulkarni et al. (2021) used a similar polynomial approximation
for private Bayesian GLMs.

We propose a novel DP logistic regression method that combines two ideas: i) we use a Chebyshev approxi-
mation of the logistic regression log-likelihood based on Huggins et al. (2017), which allows us to write the
objective in terms of approximate sufficient statistics, and then ii) use AIM privately released marginals to
estimate the approximate sufficient statistics without accessing the sensitive data. This gives us the option to
directly optimize an approximate log-likelihood based on privatized linear queries computed by AIM. The
choice of the input workload for AIM depends on the characterization of the approximate log-likelihood. Based
on our derivation below, we find that a suitable workload input for logistic regression is all pairwise marginals.

Huggins et al. (2017) propose to approximate ℓ(θ) by using an degree-M polynomial approximation of the
function ϕ:

ϕ(s) ≈ ϕM (s) :=
M∑

m=0
bm

(M)sm

where b(M)
j are constants. There are different choices for the orthogonal polynomial basis, and as in Huggins

et al. (2017), we focus on Chebyshev polynomials, which provide uniform quality guarantees over a finite
interval [−R,R] for positive R (Figure 2). We can then write

ℓ(θ) ≈
n∑

i=1

M∑
m=0

b(M)
m (x(i) · θy(i))m

Based on the distribution of noisy inner products obtained through objective perturbation (Figure 4,
Appendix C), we choose to work with a degree-2 Chebyshev approximation over the range [−6, 6], leading to
a precise approximation over a range that encompasses most of the observed inner product values.
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Figure 2: Degree 2 Chebyshev approximation of the logit function ϕ, where ϕ(s) := − log(1 + e−s). The inner
products ⟨y(i)x(i), θ⟩ tend to be concentrated in the range [−4, 4] across many datasets (Huggins et al., 2017).
We conservatively choose range [−6, 6] based on the inner DP products of the chosen datasets.

Proposition 3.4. The logistic regression log-likelihood is approximated by second order Chebyshev polynomial
ℓ̃(θ) ≈ nb

(2)
0 + b

(2)
1 θX̃T y + b

(2)
2 · (θT X̃TXθ), where b(2)

0 , b
(2)
1 , b

(2)
2 are constants, and X̃TX and X̃T y can be

retrieved from pairwise marginals as in Proposition 3.2.

The proof is provided in Appendix C. This allows us to define a logistic regression objective where X̃TX and
X̃T y are obtained via Algorithm 1, which is DP by post-processing (Proposition 3.3). The objective can then
be optimized directly via standard (non-private) procedures.

3.4 Connections to synthetic data

Based on the insight that sufficient statistics (or their approximations) can be expressed as linear queries, the
proposed framework highlights a novel connection between differentially private synthetic data generation
and SSP (Figure 1). Query answering algorithms are often used in synthetic data generation procedures.
Many such procedures follow the select-measure-reconstruct approach to synthetic data, where linear queries
are privately estimated from noisy measurements, and integrated into a model from which synthetic data can
be sampled. This process ensures that the output synthetic data supports the selected linear queries. The
synthetic data can then be used downstream to compute any statistic of interest, or in the example of linear
regression, we could fit the model by training on the synthetic data. This workflow differs from DD-SSP only
in that it consolidates the noisy measurements into a model and samples synthetic data from it.

By training select-measure-reconstruct synthetic generative models to preserve the appropriate workload of
queries, synthetic data can therefore be “tuned” for specific machine learning tasks; for example, based on the
findings in 3.2 and 3.3, we expect synthetic data that preserves pairwise marginals to perform well on linear
and logistic regression, as it implicitly computes the relevant sufficient statistics (or approximate sufficient
statistics). These findings provide a new perspective that enhances the understanding and utility of private
synthetic data, especially as related to synthetic data for machine learning tasks.

3.5 Generality of the approach

The proposed approach is amenable to generalization on two fronts: i) the flexibility with respect to the
choice of private linear query answering method, and ii) the applicability to a variety of models.

Query-answering methods are often used in synthetic data generation algorithms. Virtually any private query
answering algorithm, such as Vietri et al. (2020); McKenna et al. (2021b); Aydore et al. (2021), could be
adopted in the context of DD-SSP. To give a concrete example, we run supplementary experiments using
MST (McKenna et al., 2021b) instead of AIM within our framework (Appendix H). Private-PGM can also be
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replaced with different methods for model estimation from the private measurements. In Appendix H, we
show results for experiments where AIM is combined with the mixture inference step from RAP (Aydore et al.,
2021).

The DD-SSP approach can be extended to any model where sufficient statistics can be linked to marginal
queries either directly (as we demonstrate for linear regression in 3.2) or via a polynomial approximation (as
in logistic regression, 3.3). More detailed extensions of the method are discussed in Section 5.

3.6 Baselines

We compare DD-SSP to synthetic data method AIM-Synth, where private measurements are used to estimate
the underlying distribution, and surrogate data is sampled from it. We train AIM-Synth with an input workload
of all pairwise marginals to match the workload utilized for DD-SSP. Since marginal-based synthetic data is
designed to preserve the same linear queries that are sufficient to solve linear regression, or approximately
sufficient for logistic regression, the expectation is that DD-SSP will closely match the performance of
AIM-Synth. The difference between these approaches is whether linear queries for sufficient statistics are
computed directly from marginals estimated by the mechanism, or computed from synthetic data (Figure 1).

We also compare both methods against established DP baselines. Since our methods are based on privately
reconstructing sufficient statistics, for DP linear regression sufficient statistic perturbation (SSP) is the natural
baseline choice. We choose AdaSSP (Wang, 2018) for its competitive performance. AdaSSP uses limited
data-adaptivity to add a ridge penalty based on an estimated bound on the eigenvalues of XTX, but then
adds independent noise to each entry of the sufficient statistics, unlike fully data-adaptive query-answering
mechanisms. The AdaSSP algorithm is detailed in Appendix D. For logistic regression, objective perturbation
(ObjPert) is a widely adopted solution originally proposed by Chaudhuri et al. (2011), and further refined by
Kifer et al. (2012) where it is extended to (ϵ, δ)-DP, with more general applicability and improved guarantees.
Algorithm and details are provided in Appendix E. Both AdaSSP and ObjPert determine how much noise to
add based on ∥X∥, which is the upper bound to the L2-norm of any row of X (Section 3.1). For example, in
AdaSSP, XTX is noise-perturbed proportionally to ∥X∥2. From Proposition 3.1, we can set ∥X∥2 = ∥U∥2 + c
where ∥U∥ is a bound on the numerically-encoded features and c is the number of one-hot-encoded attributes
to obtain a tight sensitivity bound for these baselines.

In addition to our proposed methods, we compare against DP-SGD (Abadi et al., 2016), a widely adopted
algorithm for differentially private training. DP-SGD is highly sensitive to the choice of hyperparameters and
requires extensive tuning to achieve optimal performance. To accurately account for the privacy loss incurred
during hyperparameter tuning, advanced privacy accounting techniques must be applied (Ponomareva et al.,
2023). To illustrate the variability in DP-SGD’s performance, our plots depict a shaded region representing
the range between two versions of DP-SGD: an “optimistic” baseline that disregards the privacy cost of
hyperparameter tuning, artificially inflating performance, and a more realistic version that incorporates this
cost using advanced composition (Steinke, 2022). The effective performance of DP-SGD in practical scenarios,
including with more advanced privacy accounting (Papernot and Steinke, 2021), is expected to lie within this
range.

3.7 Limitations

When choosing AIM as the mechanism for DP marginals, we are limited to working with discrete data, which
is a requirement in AIM itself. Thus, our comparisons to other regression methods are scoped to discrete
numerical data. Future work may consider DD-SSP with other mechanisms that support continuous data
without discretization. For the logistic regression approximation, we use Chebyshev second-order polynomials;
other approximation functions and/or degrees of precision could be evaluated. As shown in section G, DD-SSP
demonstrates overall gains in regression accuracy compared to baseline methods, however this improvement
comes at the cost of increased computational time tied to the complexity involved in privately releasing private
marginals for large domains with high utility. This cost can be significantly reduced by replacing AIM with
faster marginal-releasing methods, which we demonstrate in Appendix H. More detail on the computational
runtime is discussed in Appendix G, including a few accessible strategies to mitigate the computational costs
in real-world applications.

9



Under review as submission to TMLR

10 1 100

10 3

10 2

10 1

M
SE

adult

10 1 100

10 3

10 2

10 1

taxi

10 1 100

10 2

10 1

fire

10 1 100
2 × 10 1

3 × 10 1

4 × 10 1

ACSincome-LIN

10 1 100

7 × 10 1

8 × 10 1

9 × 10 1

AU
C

adult

10 1 1007.4 × 10 1

8 × 10 1

9 × 10 1 ACSincome

10 1 100

5 × 10 1

6 × 10 1

7 × 10 1 ACSmobility

10 1 100

7.5 × 10 1

9 × 10 1

8 × 10 1

ACSemployment

10 1 1005 × 10 1

6 × 10 1

7 × 10 1

ACSPublicCoverage

Public
DD-SSP
AIM-Synth
DP-SGD
AdaSSP

Public
DD-SSP
AIM-Synth
DP-SGD
ObjPert

(a) Linear regression MSE results.
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(b) Logistic regression AUC results.

Figure 3: Performance comparison across linear and logistic regression. Standard error bars are computed
over 5 trials. For DP-SGD, the shaded region spans the range between an optimistic baseline ignoring
hyperparameter tuning cost, and a realistic baseline using advanced composition to account for this cost (this
line is highlighted by star markers). The advanced composition curve starts further to the right as the lowest
ϵ achievable by DP-SGD in these cases is 0.005.
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4 Experiments

In our experiments, we evaluate the effectiveness of DD-SSP on both linear and logistic regression tasks.
For linear regression, our main goal is to demonstrate the effectiveness of data-dependence for SSP. We
therefore compare primarily against AdaSSP, a standard SSP baseline. For reference, we also compare to
the public solution and to DP-SGD (Abadi et al., 2016), a widely used non-SSP method, as a representative
of this class of methods; several other non-SSP approaches have been recently proposed for differentially
private linear regression, including model selection via approximate Tukey depth (Amin et al., 2022), and
iterative private gradient descent (Brown et al., 2024). For SSP, Tang et al. (2024) recently integrated
gradient boosting and clipping with AdaSSP with the primary goal of mitigating the performance impacts
due to data clipping when tight bounds on the range of the data are not known in advance; this is largely
orthogonal to our goal of improving SSP via data-dependence in selecting and measuring queries. For
logistic regression, we benchmark DD-SSP against ObjPert and DP-SGD. Both are widely adopted methods
for logistic regression under differential privacy, with the caveat that DP-SGD has strong dependence on
hyperparameter tuning — as we later further discuss. We also assess the performance of AIM-generated
synthetic data (AIM-Synth), observing that it closely mirrors DD-SSP across tasks, reinforcing our hypothesis
that data-dependent estimation of sufficient statistics underlies the strong performance of marginal-based
synthetic data in machine learning settings.

We compare the Mean Squared Error (MSE) of DP query-based methods DD-SSP and AIM-Synth against the
DP baseline AdaSSP and the public baseline for ϵ ∈ {0.05, 0.1, 0.5, 1.0, 2.0}, with a fixed δ = 10−5. Figure 3
shows that DD-SSP and AIM-Synth have nearly identical performance and both improve significantly upon
AdaSSP on all datasets except ACSIncome, where performance is similar. For logistic regression, DD-SSP
closely matches AIM-Synth and surpasses ObjPert in low-ϵ regimes while being competitive at higher ϵ values.
Assessing DD-SSP vs. DP-SGD is more challenging due to its reliance on hyperparameter fine-tuning. We
represent this variability with a shaded region spanning the case where DP-SGD accounts for the privacy cost
of hyperparameter tuning via advanced composition (Steinke, 2022), and the case where this cost is ignored.
Our results show that DD-SSP is competitive with DP-SGD under advanced composition, with performance
varying across datasets. Additional details on experimental setup, datasets, and implementation can be found
in Appendix G.

Based on these results, we observe the following:

• DD-SSP is a competitive option for DP linear and logistic regression, surpassing data-independent
SSP and ObjPert baselines in specific cases, and being competitive with DP-SGD overall.

• The performance of AIM-Synth suggests that estimating problem-specific data-dependent sufficient
statistics explains the suitability of AIM synthetic data for machine learning tasks. This implies
DD-SSP is effective whenever pairwise marginals are available.

• The approximate DD-SSP method for logistic regression constitutes a novel DP algorithm as an
alternative to privatized ERM procedures.

5 Future work

We imagine extensions to two sets of models. Beyond linear regression, all exponential family distributions,
including graphical models like Naive Bayes, have finite sufficient statistics, and for such models we can devise
similar DD-SSP solutions, or tailor synthetic data, by identifying a workload that supports the estimation of
their sufficient statistics. Additionally, future work can focus on developing approximate loss functions with
finite sufficient statistics for a broader class of other models, including generalized linear models (GLMs),
where our results for logistic regression can be extended to obtain approximate sufficient statistics from
k-way marginals by making a k-degree polynomial approximation to the GLM mapping function following
the reasoning of Huggins et al. (2017). This will open the door to novel DD-SSP methods that directly
minimize the approximate loss functions, and improve utility by adding privacy noise in a data-dependent
way. Additionally, methods targeting encoded workload Aj⟨µj,k⟩AT

k instead of µj,k can be explored and
combined with advanced data-independent mechanisms like the matrix mechanism, potentially leading to a
new class of encoding-aware SSP methods.
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6 Conclusions

We introduce methods for data-dependent sufficient statistic perturbation (DD-SSP). Our methods use
privately released marginal tables to solve linear and logistic regression via sufficient statistics. We find
that DD-SSP performs better than data-independent SSP on linear regression and objective perturbation
for logistic regression, and is competitive with DP-SGD, known to achieve excellent results under fine-tuned
hyperparameter setting.

Notably, the approximate DD-SSP logistic regression algorithm is the first DP logistic regression method that
allows analysts to solve logistic regression via a SSP algorithm, directly minimizing the approximate loss
function. Additionally, we find that the performance of DD-SSP is almost indistinguishable from that of AIM
synthetic data: this suggests that with the appropriate workload, training these machine learning models on
query-based DP synthetic data corresponds to data-dependent SSP.
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Appendix

A AIM

For AIM, we follow the original algorithm in McKenna et al. (2022). AIM uses an intelligent initialization
step to estimate one-way marginals. This results in a model where all one-way marginals are preserved
well, and higher-order marginals can be estimated under an independence assumption. Additionally, AIM
uses a carefully chosen subset of the marginal queries and leverages the observation that lower-dimensional
marginals exhibit a better signal-to-noise ratio than marginals with many attributes and low counts, and at
the same time they can be used to estimate higher-dimensional marginal queries in the workload. Finally, the
quality score function for selecting marginals to measure ensures that the selection is “budget-adaptive”, i.e.
it measures larger dimensional marginals only when the available privacy budget is large enough.

Algorithm 2 AIM (McKenna et al., 2022)
1: Input: Dataset D, workload W , privacy parameter ρ
2: Output: Synthetic Dataset D̃
3: Hyper-Parameters: MAX-SIZE=80MB, T = 16d, α = 0.9
4: σ0 =

√
T/(2 α ρ)

5: ρused = 0
6: t = 0
7: Initialize p̂t (using Algorithm 3)
8: wr =

∑
s∈W cs | r ∩ s |

9: σt+1 ← σ0 ϵt+1 ←
√

8(1− α)ρ/T
10: while ρused < ρ do
11: t = t+ 1
12: ρused ← ρused + 1

8ϵ
2
t + 1

2σ2
t

13: Ct = rt ∈W+ | JunctionTree-SIZE(r1, . . . , rt))
≤ ρused

ρ ·MAX-SIZE
14: select rt ∈ Ct using the exponential mechanism with:

qr(D) = wr

(
∥Mr(D)−Mr(p̂t−1)∥1 −

√
2/π · σt · nr

)
15: measure marginal on rt:

ỹt = Mrt
(D) +N (0, σ2

t I)

16: estimate data distribution using Private-PGM:

p̂t = arg min
p∈S

t∑
i=1

1
σi
∥Mri

(p)− ỹi∥2
2

17: anneal ϵt+1 and σt+1 using Algorithm 4
18: end while
19: generate synthetic data D̃ from p̂t using Private-PGM
20: return D̃
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Algorithm 3 Initialize pt (Subroutine of Algorithm 2) (McKenna et al., 2022)
1: for r ∈ {r ∈W+ | |r| = 1} do
2: t← t+ 1
3: σt ← σ0
4: rt ← r
5: ỹt ←Mr(D) +N (0, σ2

t I)
6: ρused ← ρused + 1

2σ2
t

7: end for
8: p̂t ← argminp∈S

∑t
i=1

1
σi
∥Mri

(p)− ỹi∥2
2

Algorithm 4 Budget Annealing (Subroutine of Algorithm 2) (McKenna et al., 2022)

1: if ∥Mrt(p̂t)−Mrt(p̂t−1)∥1 ≤
√

2
π · σt · nrt then

2: ϵt+1 ← 2 · ϵt
3: σt+1 ← σt/2
4: else
5: ϵt+1 ← ϵt
6: σt+1 ← σt

7: end if
8: if (ρ− ρused) ≤ 2

(
1

2σ2
t+1

+ 1
8ϵ

2
t+1

)
then

9: ϵt+1 ←
√

8 · (1− α) · (ρ− ρused)
10: σt+1 ←

√
1

2·α·(ρ−ρused)
11: end if

B Encoding example

The following example demonstrates the application of the encoding strategy in 3.1. The mapping is:

χj 7→ Ajψj(χj)

For a concrete example, suppose there are 5 levels (i.e., mj = 5) and the feature value is χj = 3, then the
one-hot encoding vector is

ψj(χj) =


0
0
1
0
0


For the numerical encoding we use Aj = vT

j . For example, suppose vT
j = [1, 2, 4, 8, 16], then in our example

we have

χj 7→ vT
j ψj(χj) = [1, 2, 4, 8, 16]


0
0
1
0
0

 = 4

It is easy to see that the numerical value is always equal to vj [χj ], i.e., value in vector vj at index χj . In
other words, the vector vj enumerates the numerical values for each level. For the one-hot encoding case, we
use Aj = Ij , the identity matrix. In our example, this gives

χj 7→ Imjψj(χj) = ψj(χj) =


0
0
1
0
0
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It is clear that this gives the one-hot encoding. The reduced one-hot encoding is similar.

C Logistic Regression log-likelihood approximation

Proof. The log-likelihood for logistic regression can be expressed as

ℓ(θ) =
n∑

i=1
ϕ(x(i) · θy(i))

where ϕ(s) := − log(1 + e−s). Based on Huggins et al. (2017), we can approximate the logistic regression
log-likelihood with a Chebyshev polynomial approximation of degree M :

ϕ(s) ≈ ϕM (s) :=
M∑

m=0
bm

(M)sm

where b(M)
j are constants. Then,

ℓ(θ) ≈
n∑

i=1

M∑
m=0

b(M)
m (x(i) · θy(i))m

If we choose M = 2,

ℓ(θ) ≈
n∑

i=1
b

(2)
0 + b

(2)
1 · (x(i) · θy(i)) + b

(2)
2 · (x(i) · θy(i))2

The quadratic term is

n∑
i=1

(x(i) · θy(i))2 =
n∑

i=1
y(i)2

d∑
j,k=1

x
(i)
j x

(i)
k θjθk =

d∑
j,k=1

θjθk

n∑
i=1

y(i)2
x

(i)
j x

(i)
k

Therefore we can rewrite the approximate log-likelihood as

ℓ(θ) ≈ nb(2)
0 + b

(2)
1

n∑
i=1

x(i) · θy(i) + b
(2)
2

d∑
j,k=1

θjθk

n∑
i=1

y(i)2
x

(i)
j x

(i)
k

≈ nb(2)
0 + b

(2)
1 yTXθ + b

(2)
2

d∑
j,k=1

θjθk

n∑
i=1

x
(i)
j x

(i)
k

≈ nb(2)
0 + b

(2)
1 yTXθ + b

(2)
2 θTXTXθ

where the simplification in the last line follows from the fact that we work with y(i) ∈ {1,−1} and y(i)2 = 1
for any i.

XTX in the third term and yTX can be derived following the same proposed strategies as in linear regression
(Section 3.2), obtaining marginal query-based estimates X̃TX and ỹTX. We can then express the log-likelihood
as

ℓ(θ) ≈ nb(2)
0 + b

(2)
1 ỹTXθ + b

(2)
2 · (θT X̃TXθ)

Figure 4 shows the distribution of the inner DP products for the datasets used in the experiments, supporting
the choice of [−6, 6] for the range of the Chebyshev approximation.
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Figure 4: Distribution of the inner DP products ⟨y(i)x(i), θ̂DP ⟩ for the datasets of interest. θ̂DP is computed
using the objective perturbation method with ϵ = 1 and δ = 10−5. The dashed vertical lines represenent the
[-6, 6] bounds chosen for the Chebyshev approximation.

Algorithm 5 AdaSSP (Wang, 2018)
1: Input: Data X, y. Privacy budget: ϵ, δ. Bounds: ∥X∥, ∥Y∥, ρ ∈ (0, 1) (0.05 in the paper)
2: 1. Calculate the minimum eigenvalue λmin

(
XTX

)
.

3: 2. Privately release λ̃min = max
{
λmin +

√
log(6/δ)

ϵ/3 ∥X∥2Z − log(6/δ)
ϵ/3 ∥X∥2, 0

}
, where Z ∼ N (0, 1).

4: 3. Set λ = max
{

0,
√

d log(6/δ) log(2d2/ρ)∥X ∥2

ϵ/3 − λ̃min

}
.

5: 4. Privately release X̂TX = XTX +
√

log(6/δ)∥X ∥2

ϵ/3 Z for Z ∈ Rd×d is a symmetric matrix and every
element from the upper triangular matrix is sampled from N (0, 1).

6: 5. Privately release X̂T y = XT y +
√

log(6/δ)∥X ∥∥Y∥
ϵ/3 Z for Z ∼ N (0, Id).

7: Output: θ̃ =
(
X̂TX + λI

)−1
X̂T y.

D Linear regression baseline

Algorithm 5 outlines the AdaSSP method for linear regression (Wang, 2018).

To reason about the sensitivity of XTX, consider two neighboring datasets X ∈ Rn×d and X ′ ∈ R(n+1)×d

differing by one data entry v ∈ X , where v is a d× 1 vector. Then,

∆XT X = supX∼X′∥f(X ′)− f(X)∥F

Since X and X ′ only differ by one row (v), then f(X ′)− f(X) = vvT (Sheffet, 2017).

So the sensitivity is maximum over v of ∥vec(vvT )∥ = ∥vvT ∥F . We have
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∆2
XT X = sup

v∈X
∥vvT ∥2

F

= sup
v∈X

d∑
i=1

d∑
j=1

(vivj)2

= sup
v∈X

(
d∑

i=1
v2

i

) d∑
j=1

v2
j


= sup

v∈X
∥v∥4

= ∥X∥4

where ∥X∥ is the greatest possible norm of a vector in the domain X . Therefore,

∆XT X = ∥X∥2.

The sensitivity of XT y can be similarly derived. Given neighboring datasets X ∈ Rn×d, y ∈ Rn, and
X ′ ∈ R(n+1)×d, y′ ∈ Rn+1, where v ∈ X ⊂ Rd is the new row, and w ∈ Y ⊂ R is the new value in y′. Then,

∥f (X ′, y′)− f(X, y)∥ = ∥X ′T y′ −XT y∥ = ∥wv∥

Since ∥X∥ = supx∈X ∥x∥ and ∥Y∥ = supy∈Y |y|, we have

∆XT y = sup
(X,y)∼(X′,y′)

∥f (X ′, y′)− f(X, y)∥

= sup
w∈Y,v∈X

|w| · ∥v∥ = ∥Y∥ · ∥X∥

E Logistic regression baseline

Our DP logistic regression baseline is based on the generalized objective perturbation algorithm in Kifer et al.
(2012) (Algorithm 6). In this section, to match the notation in Kifer et al. (2012), ℓ (θ; z) = log(1+exp(−x·θy))
is the loss for a single datum and L̂(θ;D) = 1

n

∑n
i=1 ℓ(θ; z(i)) is the average loss over the dataset.

Algorithm 6 Generalized Objective Perturbation Mechanism (ObjPert) (Kifer et al., 2012)

Require: dataset D =
{
z(1), . . . , z(n)}, where z(i) = (x(i), y(i)), privacy parameters ϵ and δ (δ = 0 for

ϵ-differential privacy), bound ∥X∥ on the L2 norm of any x entry, convex regularizer r, a convex domain
F ⊆ Rd, convex loss function L̂(θ;D) = 1

n

∑n
i=1 ℓ

(
θ; z(i)), with continuous Hessian, ∥∇ℓ(θ; z)∥ ≤ ∥X∥

(for all z ∈ D and θ ∈ F), and the eigenvalues of ∇2ℓ(θ; z) bounded by ∥X ∥2

4 (for all z and for all θ ∈ F).
1: Set ∆ ≥ ∥X ∥2

2ϵ .

2: Sample b ∈ Rd from ν2(b; ϵ, δ, ∥X∥) = N
(

0, ∥X ∥2(8 log 2
δ +4ϵ)

ϵ2 Id

)
.

3: θ̂DP ≡ arg minθ∈F L̂(θ;D) + 1
nr(θ) + ∆

2n∥θ∥
2 + bT θ

n .

The algorithm requires the following bounds for the gradient and Hessian of ℓ:

∥∇ℓ(θ; z)∥ ≤ ∥X∥

λmax(∇2ℓ(θ; z)) ≤ ∥X∥
2

4

To reason about the sensitivity bounds, let ϕ(s) = log(1 + es). Then we can write ℓ(θ; z) = ϕ(−x · θy).
Following Gower and Bach (2019), it is straightforward to derive that
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ϕ′(s) = es

1 + es
≤ 1

ϕ′′(s) = es

(1 + es)2 ≤
1
4

and clear that both quantities are non-negative. Then the gradient of ℓ is:

∇ℓ(θ; z) = ∇θϕ(−x · θy) = ϕ′(−x · θy) · −yx

The norm is bounded as

∥∇ℓ(θ; z)∥ = |ϕ′(−x · θy)| · |y| · ∥x∥ ≤ ∥X∥

where the inequality holds since |ϕ′(s)| ≤ 1 for all s and |y| = 1.

By differentiating the gradient again and using the fact that y2 = 1, we can derive the Hessian as:

∇2ℓ(θ; z) = ϕ′′(−x · θy)xxT

The maximum eigenvalue is

λmax(∇2ℓ(θ; z)) = ϕ′′(−x · θy)λmax(xxT )
= ϕ′′(−x · θy)∥x∥2

≤ ∥X∥
2

4

In the second line, we used the fact that λmax(xxT ) = ∥x∥2. To see this, note that xxT is rank one and
(xxT )x = ∥x∥2x, therefore x is an eigenvector with eigenvalue ∥x∥2 and this is the largest eigenvalue. In the
last line we used that ∥ϕ′′(s)∥ ≤ 1

4 for all s and that ∥x∥ ≤ ∥X∥.

F Examples of Extensions to GLMs and Higher-Order Approximations

F.1 Degree-k Polynomials from k-way Marginals

In this Section, we show that in general a loss function approximated by a degree-k polynomial can be
computed from the set of all k-way marginals.

Consider a loss function ℓ(θ) =
∑n

i=1 ϕ(x(i), θ) where ϕ(x, θ) is a degree-three polynomial in x. By breaking
the polynomial into monomials, the loss function can be broken into a sum of terms, a generic one of
which is

∑n
i=1 C · x

(i)
a x

(i)
b x

(i)
c for some constant C and indices a, b, c into the encoded feature vector. Recall

that encoded features arise from linear transformations of one-hot encoded attributes via the mappings
χj 7→ Ajψj(χj). Suppose features xa, xb, xc come from attributes χj , χk, χℓ, respectively. Then there are
constant vectors u ∈ Rmj , v ∈ Rmk , w ∈ Rmℓ (each a row of Aj , Ak, Aℓ, respectively) such that

xa = u⊤ψj(χj)
xb = v⊤ψk(χj)
xc = w⊤ψℓ(xℓ)
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We can now rewrite the term from the loss function (ignoring the constant) as
n∑

i=1
x(i)

a x
(i)
b x(i)

c =
n∑

i=1

(
u⊤ψj(χ(i)

j )
)(
v⊤ψk(χ(i)

k )
)(
w⊤ψℓ(χ(i)

ℓ )
)

=
n∑

i=1

( mj∑
r=1

urI[χ(i)
j = r]

)( mk∑
s=1

usI[χ(i)
k = s]

)( mℓ∑
t=1

utI[χ(i)
ℓ = t]

)

=
n∑

i=1

mj∑
r=1

mk∑
s=1

mℓ∑
t=1

urusutI[χ(i)
j = r]I[χ(i)

k = s]I[χ(i)
ℓ = t]

=
mj∑
r=1

mk∑
s=1

mℓ∑
t=1

urusut

n∑
i=1

I[χ(i)
j = r, χ

(i)
k = s, χ

(i)
ℓ = t]

=
mj∑
r=1

mk∑
s=1

mℓ∑
t=1

urusut · ⟨µj,k,ℓ⟩rst

= ⟨u⊗ v ⊗ w , ⟨µj,k,ℓ⟩⟩

In the second-to-last line, we introduced the notation ⟨µj,k,ℓ⟩ ∈ Rmj×mk×mℓ for the array containing the
three-dimensional data marginal, with entries

⟨µj,k,ℓ⟩rst =
n∑

i=1
I[χ(i)

j = r, χ
(i)
k = s, χ

(i)
ℓ = t].

In the last line, we rewrote the sum as an inner product between the constant tensor u ⊗ v ⊗ w, derived
from the feature encoding, and the marginal ⟨µj,k,ℓ⟩, to emphasize the general form of the operation. More
generally, a loss function term that depends on at most k features, like a degree-k monomial, can be rewritten
as a tensor inner product between a constant tensor and a k-way marginal. Thus, if the overall loss function
is a degree-k polynomial, it can be computed from the set of all k-way marginals.

F.2 Poisson Regression (Degree-2 Chebyshev Approximation, Log-Link)

Consider a Poisson GLM with canonical log-link function:

y(i) ∼ Poisson(µ(i)), η(i) = log(µ(i)) = x(i) · θ.

The standard Poisson regression log-likelihood is:

ℓ(θ) =
n∑

i=1

[
y(i)(x(i) · θ)− ex(i)·θ − log(y(i)!)

]
.

Ignoring the constant term log(y(i)!) (which does not depend on θ), we have:

ℓ(θ) ∝
n∑

i=1

[
y(i)(x(i) · θ)− ex(i)·θ

]
.

If we approximate the exponential function es using a second-degree Chebyshev polynomial approximation
around a chosen interval (e.g. [−6, 6]) as

es ≈ c(2)
0 + c

(2)
1 s+ c

(2)
2 s2,

where c(2)
0 , c

(2)
1 , c

(2)
2 are Chebyshev polynomial coefficients determined numerically, then, substituting this

approximation into the Poisson log-likelihood gives:

ℓ̃(θ) ≈
n∑

i=1

[
y(i)(x(i) · θ)−

(
c

(2)
0 + c

(2)
1 (x(i) · θ) + c

(2)
2 (x(i) · θ)2

)]
.
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Expanding explicitly and simplifying, we obtain:

ℓ̃(θ) = (XT y)T θ − c(2)
0 n− c(2)

1 1TXθ − c(2)
2 θT (XTX)θ,

where XTX, XT y, and 1TX can be computed from all pairwise marginals (see Section F.1).

F.3 Logistic Regression (Degree-4 Chebyshev Approximation)

The logistic regression log-likelihood (with labels y(i) ∈ {−1, 1}) is:

ℓ(θ) =
n∑

i=1
log
(

1
1 + e−x(i)·θy(i)

)
= −

n∑
i=1

log
(

1 + e−x(i)·θy(i)
)
.

We approximate the logistic function ϕ(s) = − log(1 + e−s) using a degree-4 Chebyshev polynomial:

ϕ(s) ≈
4∑

m=0
b(4)

m sm,

where the constants b(4)
m are determined numerically by fitting Chebyshev polynomials over a chosen interval

(e.g. [−6, 6]). Substituting this approximation into the log-likelihood, we obtain:

ℓ̃(θ) ≈
n∑

i=1

4∑
m=0

bm

(
x(i) · θy(i)

)m

.

Expanding explicitly, this yields:

ℓ̃(θ) ≈ b0n+ b1θ
T (XT y) + b2θ

T (XTX)θ + b3

n∑
i=1

y(i)(θTx(i))3 + b4

n∑
i=1

(θTx(i))4.

The required sufficient statistics are XT y, XTX,
∑n

i=1 y
(i)(x(i))⊗3, and

∑n
i=1(x(i))⊗4. These can be computed

from 4-way marginals (see Section F.1).

Note that measuring higher-order marginals under differential privacy poses both computational and statistical
challenges. From a computational standpoint, the domain size of a marginal grows exponentially with its order,
making both private measurement and post-processing increasingly expensive. Statistically, higher-order
marginals tend to suffer from lower signal-to-noise ratios, as the added noise (due to higher sensitivity and
larger output space) can overwhelm the utility of the measurement. As noted in the AIM paper (McKenna
et al., 2022), lower-order marginals often provide a better trade-off, and can still be leveraged to estimate
higher-order interactions via structured inference methods, such as graphical models.

G Experiment details

G.1 Datasets and Preprocessing

We use the following datasets:

• Adult (Becker and Kohavi, 1996): The target variable is ‘num-education’ (number of education
years) for linear regression and ‘income>50K’ for logistic regression.

• Fire (Ridgeway et al., 2021): The target variable is ‘Priority’ (of the call).

• Taxi (Grégoire et al., 2021): The target variable is ‘totalamount’ (total fare amount).
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• ACS Datasets (Ding et al., 2021): Data is queried for California (2018). Includes binary classification
tasks for ‘PINCP’ (income above $50k), ‘MIG’ (mobility), ‘ESR’ (employment), and ‘PUBCOV’
(public coverage). ACSincome is also used for linear regression with the target variable ‘PINCP’
(income) discretized into 20 bins.

More detail on the datasets is included in Table 1. Data is shuffled and split into 1,000 test points and up
to 50,000 training points. Non-numerical features are one-hot encoded, dropping the first level to avoid
multi-collinearity, and numerical features are rescaled to [−1, 1] for noise allocation (see Section 3.1 for more
detail on data encoding).

Table 1: Dataset information

Dataset Size # At-
tributes

Attributes Target

Adult 48,842 15 [‘age’, ‘workclass’, ‘fnlwgt’, ‘educa-
tion’, ‘marital-status’, ‘occupation’,
‘relationship’, ‘race’, ‘sex’, ‘capital-
gain’, ‘capital-loss’, ‘hours-per-week’,
‘native-country’, ‘income>50K’,
‘education-num’]

‘income>50K’
(logistic),
‘education-
num’ (linear)

ACSIncome 195,665 9 [‘AGEP’, ‘COW’, ‘SCHL’, ‘MAR’,
‘RELP’, ‘WKHP’, ‘SEX’, ‘RAC1P’,
‘PINCP’]

‘PINCP’

Fire 305,119 15 [‘ALS Unit’, ‘Battalion’, ‘Call Fi-
nal Disposition’, ‘Call Type’, ‘Call
Type Group’, ‘City’, ‘Final Priority’,
‘Fire Prevention District’, ‘Neigh-
borhooods - Analysis Boundaries’,
‘Original Priority’, ‘Station Area’,
‘Supervisor District’, ‘Unit Type’,
‘Zipcode of Incident’, ‘Priority’]

‘Priority’

Taxi 1,048,575 11 [‘VendorID’, ‘passengercount’,
‘tripdistance’, ‘RatecodeID’, ‘PU-
LocationID’, ‘DOLocationID’, ‘pay-
menttype’, ‘fareamount’, ‘tipamount’,
‘tollsamount’, ‘totalamount’]

‘totalamount’

ACSmobility 29,358 20 [‘AGEP’, ‘SCHL’, ‘MAR’, ‘SEX’,
‘DIS’, ‘CIT’, ‘MIL’, ‘ANC’, ‘WKHP’,
‘NATIVITY’, ‘RELP’, ‘DEAR’,
‘DEYE’, ‘DREM’, ‘RAC1P’, ‘GCL’,
‘COW’, ‘ESR’, ‘JWMNP’, ‘PINCP’]

‘MIG’

ACSEmployment 378,817 17 [‘AGEP’, ‘SCHL’, ‘MAR’, ‘RELP’,
‘DIS’, ‘ESP’, ‘CIT’, ‘MIG’, ‘MIL’,
‘ANC’, ‘NATIVITY’, ‘DEAR’,
‘DEYE’, ‘DREM’, ‘SEX’, ‘RAC1P’,
‘ESR’]

‘ESR’

ACSPublicCoverage 138,550 19 [‘AGEP’, ‘SCHL’, ‘MAR’, ‘SEX’,
‘DIS’, ‘ESP’, ‘CIT’, ‘MIG’, ‘MIL’,
‘ANC’, ‘NATIVITY’, ‘DEAR’,
‘DEYE’, ‘DREM’, ‘PINCP’, ‘ESR’,
‘FER’, ‘RAC1P’, ‘PUBCOV’]

‘PUBCOV’
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G.2 Methodology

AIM training: AIM is trained with a model size of 200MB, a maximum of 1,000 iterations, and a workload of
all pairwise marginals. For AdaSSP, sensitivity is calibrated as described in Sections 3.1 and 3.6.

DP-SGD fine tuning and training: DP-SGD’s hyperparameters are fine-tuned by running a gridsearch for
the best parameter. The search space spans the following values:

• Batch size: [n, 1024, 256]

• Gradient clipping norm: [0.01, 0.1, 0.2]

• Number or epochs: [1, 10, 20]

• Learning rate: [0.001, 0.01, 0.1, 1.0]

Advanced composition is used to account for hyperparameter tuning costs as per Theorem 22 in Steinke
(2022). The optimistic baseline ignores this cost entirely.

G.3 Computational runtime

All experiments were conducted on an internal cluster equipped with Xeon Gold 6240 CPUs @ 2.60GHz,
192GB RAM, and 240GB local SSD storage. The runtime of our method is influenced by several factors,
including dataset size, domain size, and the privacy parameter ϵ. Since our method relies on private marginals
released by AIM, its runtime is inherently tied to AIM’s computational demands, which are significantly higher
than those of the DP baselines.

For clarity, we focus the detailed runtime analysis on the Adult dataset as it is representative of general trends
observed across all datasets. On this dataset, AIM runtime increases significantly with ϵ. For linear regression,
AIM requires approximately 8 minutes at ϵ = 0.05, scaling up to 18 hours at ϵ = 2.0. In comparison, the DP
baseline AdaSSP completes the same experiment in approximately 5 seconds regardless of ϵ. Similar trends
are observed for logistic regression, with AIM runtime increasing from 12 minutes to 21 hours as ϵ grows,
while the corresponding DP baseline ObjPert completes these experiments in approximately 2 seconds.

Across other datasets, we observe consistent trends in runtime scaling. For linear regression, AIM runtimes
range from 50 minutes (ACSincome) to 29 hours (Fire), depending on dataset size and complexity. Similarly,
for logistic regression, AIM runtime varies from 10 hours (ACSincome) to 43 hours (ACSPublicCoverage). By
contrast, all DP baselines except DP-SGD complete these experiments in less than 10 seconds for any dataset.
For DP-SGD, the runtime of the hyperparameter search phase varies across datasets, tasks and ϵ between
around 1 hour and 17 hours; once the best hyperparameters have been determined, the runtime of DP-SGD,
taking the case of linear regression on the Adult dataset as example, varies between 2 minutes for ϵ = 0.05
and 10 minutes for ϵ = 2.0.

G.4 Runtime mitigation strategies

While AIM’s runtime is substantial, it is a direct consequence of the complexity involved in accurately
computing private marginals for large domains and high utility. A few factors mitigate the runtime of the
proposed methods: i) AIM is much faster for low ϵ values; ii) AIM model size can be reduced to 100MB
for a significant runtime cut, without significantly sacrificing the accuracy of the method. In the context
of this paper, we choose to prioritize accuracy, which is consistent with the motivation of synthetic data,
where computation is spent up front to release a data set that can be used downstreams in many ways; iii)
other faster query answering mechanisms can be used in place of AIM, such as MST (see 3.5), which runs
in approximately 18 minutes for a full experiment on Adult. Various ways to improve the accuracy vs
running-time trade-offs for use in specific settings can be explored, which is beyond the scope of this paper.
In terms of experimentation (see Section 4), for computational viability we study the variability of our results
across 5 trials.

25



Under review as submission to TMLR

H Additional experiments

DD-SSP can accommodate different DP marginal query releasing methods. For our main results we use AIM
(see Appendix A), which uses Private-PGM (McKenna et al., 2019) for the “generate” step. In this section,
we briefly demonstrate the use of the DD-SSP framework with alternative methods. In particular, we consider
two alternative settings: i) replacing AIM with MST (McKenna et al., 2021b); ii) replacing the Private-PGM
step in AIM with MixtureInference1, a close approximation of the relaxed projection methods in (Aydore
et al., 2021) and (Liu et al., 2021). Results are shown in Figure 5 and Figure 6 respectively.

From the ablation studies in (McKenna et al., 2022), we expect MST to perform well at low ϵ values (high
privacy) and AIM to outperform it at higher ϵ values. MST performs a domain compression operation, and we
hypothesize this benefits some cases (e.g. low ϵ), but hurts in others. Based on the same ablation studies, we
expect Private-PGM to yield lower workload errors with respect to MixtureInference, resulting in better
overall metric scores for the tasks of interest. Consistently with the findings in (McKenna et al., 2022), we
find that AIM using Private-PGM has the most reliable performance overall.
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Figure 5: MST (McKenna et al., 2021b) vs. AIM (McKenna et al., 2022) as a query answering algorithm. Top:
linear regression. Bottom: logistic regression. Standard error bars are computed over 5 trials.

1https://github.com/ryan112358/private-pgm/blob/master/src/mbi/mixture_inference.py
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Figure 6: AIM using MixtureInference (Aydore et al., 2021; Liu et al., 2021) vs. Private-PGM (McKenna
et al., 2019) for model estimation and synthetic data generation. Top: linear regression. Bottom: logistic
regression. Standard error bars computer over 5 trials.
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