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Abstract

Many generative models originally developed in finite-dimensional Euclidean
space have functional generalizations in infinite-dimensional settings. However,
the extension of rectified flow to infinite-dimensional spaces remains unexplored.
In this work, we establish a rigorous functional formulation of rectified flow in an
infinite-dimensional Hilbert space. Our approach builds upon the superposition
principle for continuity equations in an infinite-dimensional space. We further show
that this framework extends naturally to functional flow matching and functional
probability flow ODEs, interpreting them as nonlinear generalizations of rectified
flow. Notably, our extension to functional flow matching removes the restric-
tive measure-theoretic assumptions in the existing theory of Kerrigan et al. [37].
Furthermore, we demonstrate experimentally that our method achieves superior
performance compared to existing functional generative models.

1 Introduction

Generative modeling has witnessed significant advancements, with methods such as flow matching
[50], diffusion models [73, 31, 74], and rectified flows [56] achieving state-of-the-art performance
across various data types, including audio [39, 22], image [15, 35], and video [30, 70].

Many of these techniques were originally developed in finite-dimensional Euclidean spaces and their
extensions to infinite-dimensional settings have garnered increasing attention due to their potential
for greater flexibility and applicability, as seen in functional flow matching [37], functional GAN
[68] and functional diffusion models [20, 76, 5, 62]. However, despite the success of rectified flow in
finite dimensions, its functional generalization remains an open problem.

In this work, we develop a mathematically rigorous framework for rectified flows in general separable
Hilbert spaces. We further show that this framework naturally extends to proposed models of
functional flow matching [37] and function probability flow ODEs [62] in Hilbert spaces, interpreting
them as nonlinear generalizations of rectified flow. Notably, our approach removes the restrictive
measure-theoretic assumptions required in Kerrigan et al. [37]. This theoretical foundation offers
a unified lens for functional generative models. Additionally, we empirically validate functional
rectified flow models and demonstrate their superior performance compared to other functional
generative models.

The remainder of the paper is organized as follows. Section 2 reviews related work on rectified flows
and functional generative models. In Section 3, we present our main theoretical result, which lifts
rectified flows to general Hilbert spaces. Section 4 discusses connections to functional flow matching
and functional probability flow ODE. Architectural choices for functional rectified flow models are
discussed in Section 5. Experimental results across several domains are reported in Section 6. Finally,
Section 7 concludes with a summary of findings and a discussion of limitations and future directions.
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2 Related work

Generative models have significantly advanced in recent years, with methods such as Generative
Adversarial Networks (GANs), diffusion models, and flow matching achieving state-of-the-art results.
GANs, introduced in Goodfellow et al. [23], leverage adversarial training to generate high-quality
samples from complex data distributions. Diffusion models, based on stochastic differential equations,
iteratively remove noise from corrupted data through a learned denoising process, demonstrating
strong generative capabilities [31, 74]. Flow matching constructs a path of conditional Gaussian
distributions to interpolate the data distribution and a reference distribution [50, 8].

Rectified flows, introduced by Liu et al. [56], offer a deterministic alternative to stochastic generative
models by constructing straight transport paths between source and target distributions. In contrast
to diffusion models, which rely on stochastic sampling, rectified flows enable more efficient and
interpretable generation with reduced computational overhead. The associated straightening effect
has been shown to facilitate high-quality generation with very few sampling steps [45]. Further
theoretical development, such as its connection to Optimal Transport, has been explored in Liu [54].
Recent advances have extended rectified flow methods to a broad range of generative tasks, including
image generation and editing [83, 69, 59, 79, 14], 3D content creation [21], text-to-speech synthesis
and editing [25, 52, 26, 80], audio reconstruction [81, 53], video generation [78], and multi-modal
generative modeling [46, 51]. Despite this growing popularity, existing rectified flow models are
still constrained to finite-dimensional spaces. In this work, we address this limitation by extending
rectified flow to general Hilbert spaces, thereby enabling modeling in infinite-dimensional function
spaces.

A key motivation for studying functional generative models is that many data sources are inherently
functional—such as snapshots of time series or solutions to partial differential equations. A prominent
example is neural stochastic differential equations (Neural SDEs), where neural networks are trained
to model path-valued random variables that solve SDEs [38]. However, these models typically assume
that the data follows an underlying SDE structure, as in financial time series [82, 33], which limits
their general applicability. On the other hand, representing finite-dimensional data as continuous
functions offers several advantages: it naturally supports variable resolution, accommodates diverse
data modalities using simple architectures, and enhances memory efficiency [16]. Motivated by
these benefits, recent works have extended generative modeling beyond finite-dimensional Euclidean
spaces to functional settings. Dutordoir et al. [17] and Zhuang et al. [85] adapt existing diffusion
models to functional data by conditioning on discretized pointwise evaluations.

A more general direction involves defining stochastic processes directly in infinite-dimensional Hilbert
spaces, leading to the development of functional diffusion models [36, 20, 5, 60, 48, 49, 65, 27, 62].
These works extend score-based methods by studying diffusion processes over function spaces.
Similarly, functional flow matching [37] generalizes the flow matching framework of Lipman et al.
[50] to infinite-dimensional settings. However, as noted in their work, the analysis of [37] relies on
strong measure-theoretic assumptions that are often difficult to verify in practice. In contrast, we
extend rectified flow to Hilbert spaces under more tractable and verifiable conditions, providing a
rigorous and broadly applicable foundation for functional generative modeling.

3 Rectified flows on Hilbert space

In this section, we extend rectified flows to infinite-dimensional Hilbert spaces, demonstrating the
fundamental property of marginal distribution preservation. Let H be a separable Hilbert space. Given
a probability triplet (Ω,S,P), denoting the sample space, sigma algebra, and probability measure, we
take the perspective that the law of a stochastic process X : [0, 1]× Ω → H is the distribution of the
function-valued random variable defined as ω 7→ X(·, ω). For simplicity, we denote the value of X at
time t ∈ [0, 1] by Xt and the associated marginal measure by µt. A random process X will thus also
be denoted {Xt}t∈[0,1] or simply {Xt}t. Unless otherwise specified, ⟨·, ·⟩ refers to the inner product
in H, and the norm ∥·∥ refers to its induced norm.

3.1 Definitions of rectifiable and rectified flows

Given a process X, the induced rectified flow is a random process {Zt}t∈[0,1] that is defined in terms
a quantity called the expected velocity of X.
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Definition 1. Let X = {Xt}t∈[0,1] be a pathwise continuously differentiable random process on a
separable Hilbert space H. The expected velocity of X is defined as

vX(t, x) = E
[
Ẋt | Xt = x

]
, ∀x ∈ supp(Xt), ∀t ∈ [0, 1]

and is set to zero if x /∈ supp(Xt). Here, Ẋt denotes the time derivative of Xt, and supp(Xt) the
support of the random variable Xt.

Let C1 denote the space of continuously differentiable functions. An initial value problem (IVP)
is a differential equation with a specified initial condition for the unknown function. To ensure the
well-posedness of rectified flows in Hilbert space, we assume that the corresponding IVP admits a
unique solution and a continuous solution map.

Assumption 2. Given a function v : [0, 1]×H → H, the initial value problem

z(t) = u+

∫ t

0

v(s, z(s))ds, u ∈ H, (1)

admits a unique solution z(·) ∈ C1([0, 1];H). Furthermore, the solution map Φ : H → C1([0, 1];H)
mapping from the initial value to the solution path, defined by Φ(u) = z, is a continuous mapping
from (H, ∥·∥H) to (C1([0, 1];H), ∥·∥∞).

In the following assumption, we enforce that vX(t, x) has a finite integral in time to ensure that the
process does not exhibit pathological behavior, such as infinite total drift.

Assumption 3. Given a pathwise continuously differentiable random process X = {Xt}t∈[0,1],∫ 1

0

∫
H

∥∥vX(t, x)∥∥dµt(x)dt <∞

and

E

[
sup
t∈[0,1]

∥∥∥Ẋt

∥∥∥] <∞,

where µt denotes the distribution of Xt ∈ H for each t ∈ [0, 1].

With these notions, we can now define a rectified flow.

Definition 4. We say that a stochastic process X = {Xt}t∈[0,1] is rectifiable if Assumption 2 holds
for vX(t, x) and Assumption 3 holds for X. In this case, the process defined by

Zt = Z0 +

∫ t

0

vX(s, Zs)ds, Z0 ∼ X0, (2)

is called the rectified flow induced by X.

Unlike diffusion models, which rely on stochastic differential equations (SDEs), rectified flows are
defined in terms of a deterministic ordinary differential equation (ODE) guided by vX(t, x).

3.2 The marginal preserving property

A key property of a rectified flow is that it preserves the marginal distributions of the original
stochastic process. This is formalized in the following theorem which generalizes Liu et al. [56] from
a finite-dimensional Euclidean space to a separable Hilbert space H.

Theorem 5. Assume that an H-valued stochastic process {Xt} is rectifiable, and let {Zt} be the

induced rectified flow. Then, for all t ∈ [0, 1], Zt
d
= Xt.

The central challenge in proving the theorem lies in developing the superposition principle within
a general separable Hilbert space setting. This requires establishing several nontrivial technical
results and rigorously connecting the resulting measure-theoretic decomposition to the solution of
Equation (1). We defer the proof to Section A in the appendix.
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Note that Zt derives its randomness entirely from the random initial condition Z0. Intuitively, this
result states that while Zt evolves deterministically given Z0 according to an ODE, it preserves the
marginal distributions as Xt. When Xt is constructed to interpolate between two distributions, where
X0 corresponds to a simple reference distribution (e.g., i.i.d. Gaussian noise) and X1 represents the
target data distribution, then learning the velocity field vX enables sampling from the data distribution
by solving (2) with randomly initialized Z0.

The rectified flow method of Liu et al. [56] corresponds to a specific choice of X = {Xt} given by

Xt = tX1 + (1− t)X0, (3)

where X0 and X1 are independently sampled from the noise and data distributions, respectively. This
formulation was shown to be effective in finite-dimensional Euclidean spaces.

If we define Xt = tX1+(1− t)X0 as in (3), where X0, X1 ∈ H , then Ẋt = X1−X0. The velocity
field vX(t, x), modeled by a neural network vθ, can be trained to minimize

min
θ

∫ 1

0

Ex∼X∥(x1 − x0)− vθ(xt, t)∥2dt, (4)

where x is a realization of the stochastic process and xt is the value of x at time t. Note that the
objective can be approximated by randomly sampled data X1, noise X0, and timestamp t.

For sampling, we numerically integrate the ODE:

Zt = Z0 +

∫ t

0

vθ(s, Zs)ds, Z0 ∼ X0,

allowing us to generate new samples from X1 by evolving from X0 using the learned expected
velocity vθ. This approach is computationally more efficient than stochastic sampling methods used
in diffusion models, as it avoids the nuances of reversing an SDE.

3.3 Properties of rectified flow

The desirable properties of rectified flows (3) in finite-dimensional settings, as discussed in Liu
et al. [56]—including transport cost reduction and the straightening effect—also hold in the infinite-
dimensional Hilbert space setting. These results follow directly from the marginal-preserving property
established in Theorem 5, using arguments that largely mirror those in finite dimensions. As the
extensions mainly involve technical but routine bookkeeping, we defer the detailed statements and
proofs to Section B in the appendix.

4 Connections to other functional models

We place our work in the broader context of functional generative modeling by examining its rela-
tionship to functional flow matching [37] and functional probability flow ODE [62]. Our framework
accommodates interpolation paths of the form:

Xt = αtX1 + βtX0, (5)

where αt, βt are continuously differentiable functions of time t. This generalized parameterization
recovers rectified flow when αt = t, βt = 1− t. We call Equation (5) the nonlinear extension of the
function rectified flow. We show that both functional flow matching [37] and functional probability
flow ODE [62] can be viewed as nonlinear extensions of functional rectified flow within our general
framework.

To facilitate our discussion, we first define the Cameron–Martin space and the notion of a Wiener
process in Hilbert space. Let Q be a trace-class, positive, symmetric operator on H. The associated
Cameron–Martin space is given by HQ := Q

1
2 (H), the range of Q

1
2 , equipped with the inner product

⟨x, y⟩HQ
:=
〈
Q− 1

2x,Q− 1
2 y
〉
H

. A Q-Wiener process Wt is a continuous Gaussian process in H
satisfying W0 = 0 and having independent, stationary increments, with Wt −Ws ∼ N (0, (t− s)Q)
for all 0 ≤ s ≤ t.
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4.1 Comparison with functional flow matching

By examining Equation (6) in Kerrigan et al. [37], we can directly see that Equation (5) subsumes
their proposed flow matching models as special cases. In Table 1, we summarize how the “VP” and
“OT” paths introduced in their work arise as specific instances of (αt, βt).

The framework of Kerrigan et al. [37] relies on a strong measure-theoretic assumption that may
not hold even in finite-dimensional Euclidean space. Suppose there exists a stochastic process
{Xt}t∈[0,1] interpolating X0 (noise) and X1 (data), with µt denoting the marginal law of Xt, and µxt
the conditional law of Xt given X1 = x. Kerrigan et al. [37] assume:

µxt ≪ µt,

i.e., the conditional measure µxt must be absolutely continuous with respect to the marginal µt for
almost every x. As admitted by the authors in [37], this assumption is difficult to satisfy and verify,
and generally fails even in finite-dimensional Euclidean space. If X0 is a trace-class Gaussian
process, this reduces to the requirement that X1 lies in the Cameron–Martin space of the initial
Gaussian measure, i.e., X1 ∈ C

1/2
0 (H) when X0 ∼ N (0, C0). As also noted in Kerrigan et al. [37],

even this condition is highly restrictive and challenging to verify in practice. Although we assume
that the processes are pathwise continuously differentiable, this assumption is more plausible and
readily satisfied in practical settings.

Table 1: Functional flow matching paths proposed in Kerrigan et al. [37] are special cases of (5)

Flow Path αt βt

OT (Optimal Transport) t 1− (1− σmin)t, σmin ∈ (0, 1)

VP (Variance Preserving) arbitrary ∈ [0, 1]
√
1− α2

t

4.2 Comparison with functional probability flow ODE

Throughout this section, we adopt the convention that time t = 0 corresponds to the data distribution
and t = 1 to the noise distribution. This is the reverse of the convention used in the rest of the paper,
and is chosen to align with the standard formulation of score-based generative modeling and SDEs.
This section also references technical concepts (e.g., Q-Wiener process, Cameron-Martin space) that
will be defined in the appendix.

The concurrent work of Na et al. [62] introduces an analogue of the probability flow ODE from Song
et al. [74], adapted to infinite-dimensional Hilbert spaces. Specifically, they consider the following
variance-preserving SDE in H:

dYt = −σt
2
Yt dt+

√
σt dWt, Y0 ∼ Pdata,

where Wt is a Q-Wiener process in H, σt is a bounded, continuous function taking values on R≥0.
Let {ζi} denote an orthonormal basis of H consisting of eigenvectors of Q, and let HQ denote the
corresponding Cameron–Martin space. To support the analysis, we recall the formal definition of the
logarithmic gradient.
Definition 6. A Borel probability measure µ is said to be Fomin differentiable along h ∈ HQ if there
exists a function ρµh ∈ L1(H, µ) such that for all cylinder functions of the form

F (x) = f (⟨ζ1, x⟩, . . . , ⟨ζm, x⟩) , f ∈ C∞
0 (Rm), m ∈ N,

we have ∫
H
∂hF (x)µ(dx) = −

∫
H
F (x) ρµh(x)µ(dx),

where ∂h denotes the Gâteaux differential along h. Let K be a subspace of H. If there exists a
function ρµK : H → H such that

⟨ρµK(x), h⟩K = ρµh(x) for all x ∈ H, h ∈ K,

then ρµK is called the logarithmic gradient of µ along K.
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During training, a score network S(t, Yt) is learned to approximate the logarithmic gradient by
minimizing the objective

∫ 1

0

EY0∼PdataEYt∼µt|Y0

∥∥∥S(t, Yt)− ρ
µt|Y0

HQ
(Yt)

∥∥∥dt,
where µt|Y0

denotes the conditional distribution of Yt given Y0. Let S∗ denote its minimizer.

For sampling, Na et al. [62] propose the following probability flow ODE, to be solved in reverse time
from t = 1 to t = 0:

dYt = −σt
2
(Yt + S∗(t, Yt)) dt, Y1 ∼ N (0, Q). (6)

The following proposition shows how this ODE fits within our rectified flow framework.

Proposition 7. Equation (6) is the rectified flow induced by the process Y ′
t defined as

Y ′
t = η(t)Y ′

0 +
√
κ(t)U,

where η(t) = exp
(
− 1

2

∫ t
0
σs ds

)
, κ(t) =

∫ t
0
exp

(
−
∫ t
s
στdτ

)
σs ds, and Y ′

0 ∼ Pdata, U ∼
N (0, Q) are sampled independently. Equivalently, E[Ẏ ′

t | Y ′
t ] = −σt

2 (Y ′
t + S∗(t, Y ′

t )) .

Thus, the probability flow ODE (6) corresponds to the time-reversal of the nonlinear rectified flow in
Equation (5), with the interpolation weights given by αt = η(1− t) and βt =

√
κ(1− t).

5 Architectures for functional generative modeling

Let H be a Hilbert space of functions from some coordinate space M to R. To implement functional
rectified flows in practice, one must approximate the expected velocity field vX(xt, t) : H× [0, T ] →
H, which is inherently defined over an infinite-dimensional domain. Directly learning such a mapping
is generally intractable. However, if H = L2(M), under the conditions of Theorem 2 in Franzese
et al. [20], any x ∈ H can be fully characterized by its pointwise evaluations {(x[pi], pi)}, where
pi ∈ M . This insight enables the design of networks that act on sampled representations rather
than abstract functional inputs, thus making implementation feasible. Following Franzese et al.
[20] and Kerrigan et al. [37], we consider three practical architectures for this purpose: Implicit
Neural Representations (INRs), Transformers, and Neural Operators. We include this discussion of
architectural choices for completeness but refer the reader to Franzese et al. [20] for a comprehensive
treatment.

The first approach builds on implicit neural representations (INRs) [72] and the model-agnostic
meta-learning (MAML) paradigm [19]. Following the modulation strategy introduced for functional
diffusion processes by Franzese et al. [20], we represent the velocity field vθ(xt, t) with a network
n(ψ, t, θ) : M → R where θ is the shared base parameter and ψ is a sample-specific modulation
vector that is adapted online to encode each xt. Formally,

vθ(xt, t) = n(ψ∗, t, θ), ψ∗ = argmin
ψ

∑
pi

(n(ψ, t, θ)[pi]− xt[pi])
2. (7)

For every xt we initialize ψ = 0 and perform a small number of gradient-descent steps, with θ
fixed, to minimize the residual in (7). During training, the global parameters θ are updated via the
loss (4), whereas ψ is re-optimized from scratch for each xt, enabling the network to have a functional
representation while operating on finite discretizations {xt[pi], pi}.

Our second approach employs transformer architectures [77], treating discretized function evaluations
as sequences with positional information. For each xt, we consider the set of finite discretizations
{xt[pi]} as input features and their corresponding coordinates {pi} as positions. Each xt[pi] is
embedded into a higher-dimensional vector space, and summed with the positional encodings of
pi, resulting in a sequence of embeddings {yi}. This sequence is then processed by a transformer
to obtain {vθ(xt, t)[pi]}. We note that Cao [7] interpret transformers as mappings between Hilbert
spaces, and Kovachki et al. [41] discuss the learned rather than guaranteed nature of resolution
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invariance of transformers. While these theoretical perspectives are relevant, we do not explore them
further and refer interested readers to the original papers for a detailed discussion.

Neural operators [41, 40] offer a principled framework for modeling functions in infinite-dimensional
settings and have demonstrated success in various applications [64, 67]. A neural operator learns a
mapping G : H → H, trained using finite evaluations of functions. Once trained, it maps a uniform
discretization {(x[pi], pi)} to output values at the same locations, producing {G(x)[pi]}. In our
implementation, we directly parameterize the velocity field vθ using a neural operator. Similar to the
transformer-based approach, the positions {pi} are encoded via positional embeddings and appended
to the embeddings of the corresponding {xt[pi]}. Although neural operators typically require inputs to
be defined on fixed, uniformly spaced grids and produce outputs at the same grid locations—limiting
flexibility for irregular or adaptive sampling—they have been shown to be highly effective for PDE
data [37]. Bond-Taylor and Willcocks [5] implement an infinite-dimensional generative model using
a neural operator-based architecture but rely on a specialized diffusion autoencoder [66], making
their approach highly specialized and not applicable to our setting.

6 Experiments

We evaluate the proposed Functional Rectified Flow (FRF) model on three datasets: MNIST (MIT
Licence) [44], CelebA 64× 64 (CC BY-SA 4.0) [57], and the Navier-Stokes dataset (MIT Licence)
[47], using the INR, transformer, and neural operator implementations, respectively. Our goal is
to assess whether extending rectified flow to infinite-dimensional Hilbert spaces yields competitive
or superior performance compared to existing state-of-the-art functional generative models under
different architectural choices. For clarity, we divide the experimental results into two parts: (1)
image data experiments on MNIST and CelebA, and (2) PDE data experiments on the Navier-Stokes
dataset. Additional details on the experiments can be found in Section C of the appendix.

6.1 Image datasets

For image datasets, we focus our comparisons on Functional Diffusion Processes (FDP) [20] and
∞-DIFF [5], which are among the most competitive methods for image generation in functional
settings. To ensure a fair comparison, we adopt the exact same architectural design as Franzese et al.
[20], without introducing any specialized enhancements. FRF is implemented in JAX [6], building
directly on the released codebase of Franzese et al. [20] (Apache-2.0 License). For INR-based models,
modulation codes are optimized using 3 steps of gradient descent per sample. For both MNIST and
CelebA experiments, X0 is sampled from the stationary distribution of the functional SDE (9) in
Franzese et al. [20].

To evaluate generative performance, we consider the Fréchet Inception Distance (FID) [29] and the
FID-CLIP score [42], where lower values indicate higher visual fidelity and closer alignment with
the target data distribution.

6.1.1 INR on MNIST

On MNIST (32 × 32), we benchmark an INR-based FRF model against the Functional Diffusion
Process (FDP) [20]. We specifically adopt the INR architecture to test the effectiveness of FRF
on lightweight models, as INRs naturally have a small parameter footprint while retaining strong
functional approximation capabilities.

As shown in Table 2, our INR-based FRF achieves a lower FID score than FDP while using the same
number of parameters, indicating that functional rectified flow leads to improved sample quality even
with lightweight models.

Figure 1 further illustrates the qualitative advantages of FRF. Notably, the super-resolved samples
produced by our model at both 64 × 64 and 128 × 128 resolutions (Figures (b) and (d)) exhibit
smoother digit contours compared to the naïvely upscaled real MNIST images (Figures (c) and (e)).
This highlights the model’s ability to generate coherent high-resolution samples by leveraging its
continuous functional representation while being trained on a lower resolution.
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Table 2: Results on MNIST (32× 32) using INR.

Method FID (↓) Params
FRF (INR, ours) 0.41 O(0.1M)
FDP (INR) 0.43 O(0.1M)

(a) (b) (c) (d) (e)

Figure 1: Qualitative results on MNIST: (a) samples generated at the original 32× 32 resolution; (b)
super-resolved samples at 64× 64; (c) real MNIST images upscaled to match (b); (d) super-resolved
samples at 128× 128; (e) real MNIST images upscaled to match (d).

6.1.2 Transformer on CelebA

On CelebA (64×64), we evaluate transformer-based FRF models and compare against FDP (both INR
and transformer variants) [20], FD2F [16], and ∞-DIFF [5]. We specifically adopt the transformer
architecture to demonstrate that FRF is capable of generating high-quality and visually compelling
images on complex datasets.

Table 3 shows that FRF with a transformer backbone outperforms other functional generative models
in terms of both FID and FID-CLIP scores, while also being significantly more parameter-efficient
than ∞-DIFF. Figure 2 further illustrates the visual quality of samples generated by FRF. The model
successfully captures rich facial details and produces sharp, high-fidelity images.

Table 3: Results on CelebA (64× 64) using transformer-based architectures.

Method FID (↓) FID-CLIP (↓) Params
FRF (Vision Transformer, ours) 6.63 3.70 O(20M)
FDP (INR) 35.00 12.44 O(1M)
FDP (Vision Transformer) 11.00 6.55 O(20M)
FD2F 40.40 – O(10M)
∞-DIFF – 4.57 O(100M)

6.2 Neural operator on Navier-Stokes dataset

We evaluate the proposed FRF model with a neural operator backbone on the Navier-Stokes dataset, a
benchmark consisting of solutions to the Navier-Stokes equations on a 2D torus. This dataset captures
complex fluid dynamics, making it a challenging testbed for functional generative models. To be
consistent with prior work [37], we use a 1

2 -Matern kernel to sample the initial condition X0. Our
code is built upon the open-sourced codebase of Kerrigan et al. [37] (MIT license).

We compare our model against several baselines: the Denoising Diffusion Operator (DDO) [48]
using the NCSN noise scale, GANO [68], Functional DDPM [36], and Functional Flow Matching
(FFM) [37].

Following Kerrigan et al. [37], we evaluate the model performance by Density MSE, which is
computed by applying pointwise Kernel Density Estimation (KDE) to 1,000 generated and 1,000 real
samples, followed by computing the Mean Squared Error between the resulting estimated densities.
This metric evaluates how well the generated samples reproduce the overall spatial distribution of the
data.

As shown in Table 4, the FRF model achieves the lowest density MSE among all methods, indicating
that the generated samples accurately match the distribution of real samples in the spatial domain.
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Figure 2: Qualitative results of functional rectified flow with vision transformer.

Table 4: MSEs between the density of the real and generated samples of the Navier-Stokes dataset.

Method Density MSE (Mean ± Std)

FRF 2.39 × 10−5 ± 4.45 × 10−6

FFM 4.50× 10−5 ± 1.52× 10−5

DDPM 1.02× 10−4 ± 8.20× 10−6

DDO 9.61× 10−3 ± 1.26× 10−2

GANO 4.16× 10−3 ± 1.82× 10−3

7 Conclusion, limitations and broader impact

We have introduced a functional extension of rectified flow by lifting it to general Hilbert spaces.
Our theoretical results demonstrate that the marginal preserving property is preserved in the infinite-
dimensional setting. This provides a principled and tractable foundation for functional generative
modeling. We demonstrate experimentally that our method achieves superior performance compared
to existing functional generative models. Notably, while most competing approaches develop
specialized architectures tailored to their methods, we demonstrate the flexibility of our framework
by applying it across three distinct model architectures—each originally designed for one of our
competitors. Although our framework is broadly applicable, domain-specific architectures and
inductive biases may still be required for optimal performance in high-complexity tasks.

As with all generative models, risks such as misuse in synthetic media generation remain, including
the potential for creating misleading or harmful content. We encourage responsible use and further
research into interpretability, robustness, and safety in functional generative models to mitigate these
concerns. At the same time, functional generative models offer significant positive societal impacts,
including advancing scientific discovery through improved simulation of complex physical systems
and supporting creative industries with new tools for high-quality content generation.
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A Proofs and remarks

In this section, we present the proofs together with remarks on technical details.

A.1 Remarks on the existence of the velocity field

Under our setting, the existence of vX follows from standard results.
Proposition 8 (Proposition 1.10 of Da Prato and Zabczyk [12]). Assume that E is a separable
Banach space. Let V be a Bochner integrable E-valued random variable defined on (Ω,S,P) and
let G be a σ-field contained in S. There exists a unique, up to a set of P-probability zero, integrable
E-valued random variable R, measurable with respect to G such that∫

A

V dP =

∫
A

RdP, ∀A ∈ G.

The random variable R is denoted as E[V | G] and called the conditional expectation of V given G.

In our case, the state space H is a separable Banach space. Hence, it suffices to assume E∥Ẋt∥ <∞
for integrability. Under this condition, E[Ẋt | σ(Xt)] exists and is σ(Xt)-measurable. By the
Doob–Dynkin lemma, there exists a measurable function vt : H → H such that

E[Ẋt | σ(Xt)] = vt(Xt).

Defining vX(t, x) = vt(x) for x ∈ supp(Xt) and vX(t, x) = 0 otherwise (which affects only a set of
measure zero) yields the desired vector field. For completeness, we recall the Doob–Dynkin lemma:
Lemma 9 (Lemma 1.14 of Kallenberg [34]). Let f, g be measurable functions from (Ω,A) into
measurable spaces (S,S) and (T, T ), where S is Borel. The following are equivalent:

1. f is g-measurable, i.e. σ(f) ⊂ σ(g),

2. there exists a measurable mapping h : T → S such that f = h ◦ g.

This shows that the velocity field vX is well-defined under mild integrability conditions.

A.2 Definitions and technical lemma

In this section, we present definitions and technical lemmas for the invocation of the superposition
principle in Hilbert space. We first review Fréchet differentiability on a normed space.
Definition 10. Let E and F be normed vector spaces, O an open subset of E containing 0. The
derivative of f : E → F at x ∈ O is a continuous linear map Dxf from E to F such that

lim
h→0

f(x+ h)− f(x)−Dxf(h)

∥h∥
= 0

When E = H and F = R, Dxf ∈ H∗ where H∗ is the dual space of H. By the Riesz representation
theorem, there is a unique g ∈ H such that Dxf(·) = ⟨·, g⟩, and we denote such g by ∇f(x). We
define the second-order derivative ∇2f(x) as the derivative of x ∈ H → ∇f(x) ∈ H.
Definition 11. Let H be a separable Hilbert space with orthonormal basis {ei} and φ : H → R.
Define its asymptotic Lipschitz constant Lφ(x) at x ∈ H by

Lφ(x) = lim
ϵ→0+

Lφ(x, ϵ),

where

Lφ(x, ϵ) = sup
u,v∈Bϵ(x)

|φ(u)− φ(v)|
∥u− v∥

.

Notice that Lφ is upper semicontinuous [75].
Lemma 12. If φ : H → R is a twice-differentiable function with bounded second-order derivative,
then Lφ(x) = ∥∇φ(x)∥.
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Proof. Fix ϵ > 0 and x ∈ H. We first show Lφ(x) ≤ ∥∇φ(x)∥.

Let a, b ∈ Bϵ(x) and b ̸= a. By the mean value theorem (Theorem 3.2 of Coleman [10]),
φ(b)− φ(a) = ⟨∇φ(c), b− a⟩

= ⟨∇φ(x), b− a⟩+ ⟨∇φ(c)−∇φ(x), b− a⟩
where c = ta+ (1− t)b for some t ∈ [0, 1]. Hence,

|φ(b)− φ(a)| ≤ ∥∇φ(x)∥∥b− a∥+ ∥∇φ(c)−∇φ(x)∥∥b− a∥
≤ ∥∇φ(x)∥∥b− a∥+ sup

c′∈{t′x+(1−t′)c:t′∈[0,1]}

∥∥∇2φ(c′)
∥∥
H,H∥b− a∥∥c′ − x∥

We obtain the second inequality by applying the mean value inequality (Corollary 3.2 of Coleman
[10]) to ∇φ. Suppose ∇2φ is bounded by a constant B0. Note that both c, c′ ∈ Bϵ(x). Hence,

|φ(b)− φ(a)|
∥b− a∥

≤ ∥∇φ(x)∥+B0ϵ

The choice of a, b is arbitrary, so Lφ(x, ϵ) ≤ ∥∇φ(x)∥+B0ϵ and Lφ(x) ≤ ∥∇φ(x)∥.

Now it remains to show Lφ(x) ≥ ∥∇φ(x)∥. WOLOG, we assume ∇φ(x) ̸= 0 and let v = ∇φ(x)
∥∇φ(x)∥ .

Let yn = x+ 1
nv, zn = x, n ∈ N.

Fix α > 0. Then ∃N ∈ N such that ∀n ≥ N , yn ∈ Bϵ(x) and by definition of Fréchet differentiability∣∣∣∣φ(x+
1

n
v)− φ(x)−

〈
∇φ(x), 1

n
v

〉∣∣∣∣ ≤ α
∥∥∥ v
n

∥∥∥ =
α

n
.

Hence, φ(x+ 1
nv)− φ(x) ≥

〈
∇φ(x), 1

nv
〉
− α

n = 1
n∥∇φ(x)∥ −

α
n .

For yn ∈ Bϵ(x),

Lφ(x, ϵ) ≥
|φ(yn)− φ(zn)|

∥yn − zn∥

=

∣∣φ(x+ 1
nv)− φ(x)

∣∣
1
n

≥
φ(x+ 1

nv)− φ(x)
1
n

≥ ∥∇φ(x)∥ − α.

Since α is arbitrary, Lφ(x, ϵ) ≥ ∥∇φ(x)∥. Therefore, Lφ(x) = ∥∇φ(x)∥.

Definition 13. Let A be the cylindrical functions on H, i.e.,

A =
{
φ ∈ H → R : φ = ϕ ◦ Pd, d is a non-negative integer, ϕ ∈ C∞(Rd) has compact support

}
where Pd(x) = (⟨x, e1⟩, . . . , ⟨x, ed⟩) is a finite dimensional projection and C∞(Rd) is the set of
compactly supported function from Rd to R.

A is an algebra (i.e., a set closed under pointwise linear combinations and products), and a constant
function is trivially an element in A by letting d = 0. By Lemma 12 Lφ(x) = ∥∇φ(x)∥,∀φ ∈ A.
Let vt : H → H, for t ∈ [0, 1] be a vector field. vt defines an operator Vt : A → R acting on elements
in A, i.e., for φ ∈ A, (Vtφ)(x) = ⟨∇φ(x), vt(x)⟩. Hence, Vt satisfies Vt(fg) = fVt(g) + gVt(f).
Also, |(Vtφ)(x)| = |⟨∇φ(x), vt(x)⟩| ≤ ∥vt(x)∥Lφ(x).
We have to show one more lemma to invoke the results of Stepanov and Trevisan [75].
Lemma 14. Let φ be a Lipschitz, bounded function on H × [0, 1], with metric ((x, t), (y, s)) →
(∥x− y∥2 + |t− s|2) 1

2 . Then there is a sequence of uniformly bounded functions {φk} on H× [0, 1]
that are also Lipschitz with uniform Lipschitz constants, such that φk(·, t) ∈ A for t ∈ [0, 1],
limk φk = φ pointwisely, and

lim sup
k

Lφk(·,t)(x) ≤ Lφ(·,t)(x), ∀(x, t) ∈ H × [0, 1].
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Proof. Let {ek} be an orthonormal basis of H. Let Cφ be the Lipschitz constant of φ.

For an integer k > 0, recall that Pk : H → Rk, Pk(x) = (⟨x, e1⟩, ⟨x, e2⟩, . . . , ⟨x, ek⟩). Define
πk(x) : H → H, πk(x) =

∑k
i=1⟨x, ei⟩ei and ψk : Rk × [0, 1] → R, ψk(r, t) = φ(

∑k
i=1 riei, t).

Note that ∥Pk(x)− Pk(y)∥Rk = ∥πk(x)− πk(y)∥H ≤ ∥x− y∥H, and ψk(Pk(x), t) =
φ(πk(x), t).

Also note that

|ψk(r, t)− ψk(r̄, s)| ≤ Cφ

∥∥∥∥∥
k∑
i=1

riei −
k∑
i=1

r̄iei

∥∥∥∥∥
2

H

+ (t− s)2

1/2

= Cφ

(
∥r − r̄∥2Rk + (t− s)2

)1/2
.

So ψk is also Cφ-Lipschitz.

Fix an integer k > 0. We first approximate ψk using a standard mollification approach. Following
Appendix C.5 of Evans [18], we define the standard mollifier function for ϵ > 0:

ηϵ : Rk → R, ηϵ(r) =
1

ϵk
η(
r

ϵ
),

where η : Rk → R ∈ C∞(Rk),

η(r) :=

{
C exp

(
1

|r|2−1

)
if ∥r∥Rk < 1

0 if ∥r∥Rk ≥ 1
,

and the constant C > 0 is selected so that
∫
Rk η = 1. Let Bkϵ (r) be the ϵ-ball in Rk around r and

note that ηϵ is supported on Bkϵ (0) and
∫
Rk ηϵ = 1.

Define the mollification of ψk as hk,ϵ(r, t) :=
∫
Rk ηϵ(y)ψk(r − y, t)dy. Theorem 7 from Appendix

C.5 of Evans [18] asserts that hk,ϵ ∈ C∞(Rk). Note that

|hk,ϵ(r, t)− hk,ϵ(r̄, s)| =
∣∣∣∣∫

Rk

ηϵ(y)(ψk(r − y, t)− ψk(r̄ − y, s))dy

∣∣∣∣
≤
∫
Rk

ηϵ(y)|ψk(r − y, t)− ψk(r̄ − y, s)|dy

≤
∫
Rk

ηϵ(y)Cφ

(
∥r − r̄∥2Rk + (t− s)2

) 1
2

dy

= Cφ

(
∥r − r̄∥2Rk + (t− s)2

) 1
2

,

and

|hk,ϵ(r, t)− ψk(r, t)| =
∣∣∣∣∫

Rk

ηϵ(y)(ψk(r − y, t)− ψk(r, t))dy

∣∣∣∣
≤
∫
Bk

ϵ (0)

ηϵ(y)Cφ∥y∥Rkdy

≤ Cφϵ.

Therefore, hk,ϵ is also Cφ-Lipschitz and uniformly converges to ψk at a rate Cφϵ when ϵ→ 0.

We can then extract a sequence of smooth functions ψk,n approximating ψk by letting ϵn = 1
Cφn

and
ψk,n = hk,ϵn . Note that ψk,n ∈ C∞(Rk) is Cφ-Lipschitz and ∥ψk,n − ψk∥∞ ≤ 1

n .

Let χ : R → R ∈ C∞(R) be a smooth cutoff function such that χ(s) = 1 on s ∈ [−1, 1],
χ(s) ∈ [0, 1] on s ∈ (−4,−1) ∪ (1, 4), and χ(s) = 0 on (−∞,−4] ∪ [4,∞). Note that χ and its
derivatives of any order are supported on [−4, 4].
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We are now ready to define the sequence φk : H× [0, 1] → R by

φk(x, t) = χ

(
∥Pk(x)∥2Rk

k2

)
ψk,k(Pk(x), t).

Hence, φk(·, t) ∈ A since u → χ

(
∥u∥2

Rk
k2

)
and ψk,k are smooth, u → χ

(
∥u∥2

Rk
k2

)
is compactly

supported, and φk depends on x only through Pk(x). It remains to verify the following assertions:

1. φk is uniformly bounded.

2. φk is uniformly Lipschitz.

3. φk converges to φ pointwisely.

4. lim supk Lφk(·,t)(x) ≤ Lφ(·,t)(x), ∀(x, t) ∈ H × [0, 1].

1.
|φk(x, t)| ≤ |ψk,k(Pk(x), t)| ≤ |ψk(Pk(x), t)|+

1

k
≤ ∥φ∥∞ + 1

Given the boundedness of φ, φk(x, t) is uniformly bounded.

2. Note that

∀u ∈ Rd,∇uχ

(
∥u∥2Rk

k2

)
= χ̇

(
∥u∥2Rk

k2

)
2u

k2
,

where χ̇ denotes the derivative of χ, and that ∇uχ

(
∥u∥2

Rk
k2

)
= 0 if ∥u∥2Rk > 4k2. When ∥u∥2Rk ≤

4k2,
∥∥∥∥∇uχ

(
∥u∥2

Rk
k2

)∥∥∥∥
Rk

≤ ∥χ̇∥∞
2
k2 ∥u∥Rk ≤ ∥χ̇∥∞

4
k . Therefore,

|φk(x, t)− φk(y, s)| =

∣∣∣∣∣χ
(
∥Pk(x)∥2Rk

k2

)
ψk,k(Pk(x), t)− χ

(
∥Pk(y)∥2Rk

k2

)
ψk,k(Pk(y), s)

∣∣∣∣∣
≤

∣∣∣∣∣χ
(
∥Pk(x)∥2Rk

k2

)∣∣∣∣∣|ψk,k(Pk(x), t)− ψk,k(Pk(y), s)|

+

∣∣∣∣∣χ
(
∥Pk(x)∥2Rk

k2

)
− χ

(
∥Pk(y)∥2Rk

k2

)∣∣∣∣∣|ψk,k(Pk(y), s)|
≤Cφ

(
∥Pk(x)− Pk(y)∥2Rk + |t− s|2

) 1
2

+ sup
u∈Rk

∥∥∥∥∥∇uχ

(
∥u∥2Rk

k2

)∥∥∥∥∥
Rk

|ψk,k(Pk(y), s)|∥Pk(x)− Pk(y)∥Rk (8)

≤Cφ
(
∥Pk(x)− Pk(y)∥2Rk + |t− s|2

) 1
2

+ ∥χ̇∥∞
4

k
∥Pk(x)− Pk(y)∥Rk(∥φ∥∞ + 1) (9)

≤(Cφ + 4∥χ̇∥∞(∥φ∥∞ + 1))
(
∥Pk(x)− Pk(y)∥2Rk + |t− s|2

) 1
2

≤(Cφ + 4∥χ̇∥∞(∥φ∥∞ + 1))
(
∥x− y∥2H + |t− s|2

) 1
2

,

where we apply mean value theorem in Rk in (8) and the uniform boundedness of k → ψk,k in (9).

3. Fix (x, t) ∈ H× [0, 1]. We can find sufficiently large k such that ∥x∥H < k. So ∥Pk(x)∥2Rk < k2

and χ
(

∥Pk(x)∥2

Rk
k2

)
= 1. Hence,
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|φk(x, t)− φ(x, t)| = |ψk,k(Pk(x), t)− φ(x, t)|
≤ |ψk,k(Pk(x), t)− ψk(Pk(x), t)|+ |ψk(Pk(x), t)− φ(x, t)|
≤ ∥ψk,k − ψk∥∞ + |φ(πk(x), t)− φ(x, t)|

≤ 1

k
+ Cφ∥πk(x)− x∥H.

Take k → ∞ and pointwise convergence follows.

4. Fix (x, t) ∈ H × [0, 1] and ϵ ∈ (0, 12 ). We can find an integer k0 > 1 such that ∥x∥H < k0
2 ,

ϵk0 = 1
Cφk0

< ϵ.

Then ∀u ∈ BH
ϵ (x), ∥u∥H ≤ ∥x∥H + ϵ < k0, where BH

ϵ (x) is the ϵ-ball around x in H. ∀k > k0

and ∀u ∈ BH
ϵ (x), χ

(
∥Pk(u)∥2

Rk
k2

)
= 1. Therefore,

Lφk(·,t)(x, ϵ) = sup
u,v∈BH

ϵ (x)

|φk(u, t)− φk(v, t)|
∥u− v∥H

= sup
u,v∈BH

ϵ (x)

|ψk,k(Pk(u), t)− ψk,k(Pk(v), t)|
∥u− v∥H

= sup
u,v∈BH

ϵ (x)

|ψk,k(Pk(u), t)− ψk,k(Pk(v), t)|
∥Pk(u)− Pk(v)∥Rk

∥Pk(u)− Pk(v)∥Rk

∥u− v∥H

≤ sup
u,v∈BH

ϵ (x)

|ψk,k(Pk(u), t)− ψk,k(Pk(v), t)|
∥Pk(u)− Pk(v)∥Rk

≤ sup
u,v∈Bk

ϵ (Pk(x))

|ψk,k(u, t)− ψk,k(v, t)|
∥u− v∥Rk

(10)

= sup
u,v∈Bk

ϵ (Pk(x))

∣∣∣∫Bk
ϵk

(0)
ηϵk(y)(ψk(u− y, t)− ψk(v − y, t))dy

∣∣∣
∥u− v∥Rk

≤
∫
Bk

ϵk
(0)

ηϵk(y) sup
u,v∈Bk

ϵ (Pk(x))

|ψk(u− y, t)− ψk(v − y, t)|
∥(u− y)− (v − y)∥Rk

dy

≤ sup
u,v∈Bk

ϵ+ϵk
(Pk(x))

|ψk(u, t)− ψk(v, t)|
∥u− v∥Rk

(11)

≤ sup
u,v∈BH

ϵ+ϵk
(πk(x))

|φ(u, t)− φ(v, t)|
∥u− v∥H

(12)

= Lφ(·,t)(πk(x), ϵ+ ϵk)

≤ Lφ(·,t)(πk(x), 2ϵ), (13)

where (10) follows from the fact that ∥Pk(u)− Pk(x)∥Rk ≤ ∥u− x∥H < ϵ, and (11) holds because
(u− y) ∈ Bkϵ+ϵk(Pk(x)). To justify (12), note that ∀u, v ∈ Bkϵ (Pk(x)), we have∥∥∥∥∥

k∑
i=1

uiei − πk(x)

∥∥∥∥∥
H

= ∥u− Pk(x)∥Rk ≤ ϵ,∥∥∥∥∥
k∑
i=1

uiei −
k∑
i=1

viei

∥∥∥∥∥
H

= ∥u− v∥Rk ,

φ

(
k∑
i=1

uiei, t

)
= ψk(u, t), φ

(
k∑
i=1

viei, t

)
= ψk(v, t),
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i.e., ∀u, v ∈ Bkϵ (Pk(x)) we can pick two points from BH
ϵ (πk(x)) such that the fractions in (11) and

(12) achieve the same value. Lastly, (13) follows from our choice of k0.

Therefore, ∀k > k0,
Lφk(·,t)(x, ϵ) ≤ Lφ(·,t)(πk(x), 2ϵ).

Let ϵ→ 0+ and we have
Lφk(·,t)(x) ≤ Lφ(·,t)(πk(x)).

Apply upper-semicontinuity of x→ Lφ(·, t) and we have

lim sup
k

Lφk(·,t)(x) ≤ lim sup
k

Lφ(·,t)(πk(x)) ≤ Lφ(·,t)(x).

A.3 Superposition principles

In this section, we leverage the abstract framework of Theorem 3.4 in Stepanov and Trevisan [75]
to establish the superposition principle in a separable Hilbert space. Intuitively, the principle states
that any narrowly continuous curve of probability measures solving the continuity equation can
be represented as a distribution over paths that solve the associated ODE. In this way, a statement
about marginal laws is transformed into an ODE statement about sample trajectories. The former
specifies the object that neural networks are trained to satisfy implicitly, while the latter specifies the
mechanism through which new data are sampled with a trained model. By working directly with
curves, we avoid introducing a Radon–Nikodym derivative between conditional and marginal laws as
required in the FFM framework [37]. This pathwise view allows us to bypass the absolute-continuity
assumption inherent to FFM.

A.3.1 From continuity equation to ODE solutions

Let C([0, 1];H) be the space of continuous function from [0, 1] to H. Let Et : z ∈ C([0, 1];H) →
z(t) ∈ H be the evaluation map, i.e., Et(z) = z(t). Let (·)# denote the pushforward. Specifically, if
z ∈ C([0, 1];H) has law η, i.e, a probability measure on the spaceC([0, 1];H), then ((Et)#η)(A) =
η(z ∈ C([0, 1];H) : Et(z) = z(t) ∈ A) for a measurable set A in H. Recall that z : [0, 1] → H is
an absolutely continuous curve if and only if z is differentiable almost everywhere on [0, 1] and ż
is in L1([0, 1];H) (Remark 1.1.3 of Ambrosio et al. [2]). We first define the narrow continuity of
measures.
Definition 15. Let {µt} be a family of Borel probability measures on a separable Hilbert space
H, indexed by t ∈ [0, 1]. We say that {µt} is a narrowly continuous curve if and only if the map
t 7→

∫
f dµt is continuous for all bounded continuous functions f : H → R.

We say a probability measure η is concentrated on a set A if η(A) = 1.

Now we move on to invoke Theorem 3.4 of Stepanov and Trevisan [75] to develop the superposition
principle.
Theorem 16. Let {µt} be a narrowly continuous curve of Borel probability measures on the separable
Hilbert space H. Let vt be Borel vector fields such that

∫
[0,1]

∫
H∥vt(x)∥dµtdt <∞. Suppose (vt, µt)

solves the continuity equation in the sense that for all φ ∈ A,

d

dt

∫
φdµt =

∫
⟨∇φ, vt⟩dµt. (14)

There exists a probability measure η over C([0, 1];H) concentrated on absolutely continuous curves
z : [0, 1] → H such that (Et)#η = µt for every t ∈ [0, 1] and one has

d

dt
φ(z(t)) = (Vtφ)(z(t)) (15)

for η-a.e. z and a.e. t ∈ [0, 1], for all φ ∈ A.

Proof. Recall that the operator Vt is defined by (Vtφ)(x) = ⟨∇φ(x), vt(x)⟩. This directly satisfies
condition (3.1) of Stepanov and Trevisan [75].

20



Note that constant functions are members of A.

By Lemma 12, we have |(Vtφ)(x)| = |⟨∇φ(x), vt(x)⟩| ≤ ∥vt(x)∥Lφ(x), which verifies Inequality
(3.2) in Stepanov and Trevisan [75].

The assumption
∫
[0,1]

∫
H∥vt(x)∥dµtdt <∞ corresponds exactly to condition (3.3) of Stepanov and

Trevisan [75].

Condition (3.4) requires that the continuity equation (14) is satisfied by {µt} in the sense of distribu-
tions on [0, 1], which holds by assumption.

Finally, Lemma 14 establishes that assumption A1 in Stepanov and Trevisan [75] is satisfied.

With all required conditions verified, we may invoke the superposition principle, Theorem 3.4 of [75],
so η exists as a finite Borel measure. Notice that 1 = µt(H) = η({z ∈ C([0, 1];H) : z(t) ∈ H}) =
η(C([0, 1];H)). So η is indeed a probability measure.

To apply the superposition principle, we will show that Equation (14) is satisfied by the expected
velocity field vX and the marginal distributions of the process Xt. This will allow us to conclude
that η corresponds to the law of the induced rectified flow. Before proceeding, we reformulate the
ODE (15) into a more familiar form in the following corollary.
Corollary 17. Let {µt} be a narrowly continuous curve of Borel probability measures on the
separable Hilbert space H. Let vt be Borel vector fields such that

∫
[0,1]

∫
H
∥vt(x)∥dµtdt < ∞.

Suppose (vt, µt) solves the continuity equation in a sense that for all φ ∈ A,

d

dt

∫
φdµt =

∫
⟨∇φ, vt⟩dµt.

There exists a probability measure η over C([0, 1];H) concentrated on absolutely continuous curves
z : [0, 1] → H such that (Et)#η = µt for every t ∈ [0, 1] and one has

z(t) = z(0) +

∫ t

0

vs(z(s))ds

for η-a.e. z and ∀t ∈ [0, 1].

Proof. Fix R ∈ R>0. Let χR ∈ C∞(R) such that χR(s) = 1 if |s| ≤ R and χR(s) = 0 if |s| ≥ 2R.
We denote its derivative by χ̇R. Let {ek}∞k=1 be an orthonormal basis of H.

Fix k. Let φk,R(x) = χR(⟨x, ek⟩)⟨x, ek⟩. Note that φk,R ∈ A and if |⟨x, ek⟩| < R,

∇φk,R(x) = χR(⟨x, ek⟩)ek + χ̇R(⟨x, ek⟩)⟨x, ek⟩ek
= ek.

By applying Theorem 16, for η-a.e. z and a.e. t ∈ [0, 1],

d

dt
φk,R(z(t)) = (Vtφk,R)(z(t)).

If |⟨z(t), ek⟩| < R, following the chain rule on Hilbert space (Theorem 2.1 of Coleman [10]),

d

dt
φk,R(z(t)) = ⟨ż(t),∇φk,R(z(t))⟩

= ⟨ż(t), ek⟩, (16)

and

(Vtφk,R)(z(t)) = ⟨∇φk,R(z(t)), vt(z(t))⟩
= ⟨ek, vt(z(t))⟩. (17)

For each fixed k and R, we denote

Nk,R =

{
(z, t) : ż(t) doesn’t exist or

d

dt
φk,R(z(t)) ̸= (Vtφk,R)(z(t))

}
.
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Note Nk,R has measure 0. Let Rn = n and set N∞ := ∪∞
k=1 ∪∞

n=1 Nk,Rn . Hence, N∞, as a
countable union of null sets, is also of measure 0 under η ⊗ λ, where λ is the Lebesgue measure on
[0, 1]. Let (z, t) /∈ N∞. For each k, we can choose n such that Rn = n > |⟨z(t), ek⟩|. By (16) and
(17), for η-a.e. z and a.e. t ∈ [0, 1], ⟨ż(t), ek⟩ = ⟨ek, vt(z(t))⟩ for all positive integers k.

So ż(t) = vt(z(t)) for η-a.e. z and a.e. t ∈ [0, 1]. Therefore, for η-a.e. z, ∀t ∈ [0, 1], z(t) =

z(0) +
∫ t
0
vs(z(s))ds.

A.3.2 Verification of Assumption

Before we move on to the proof of the main theorem, we show that Assumption 2 holds under mild
conditions. Recall that Φ is the solution map defined in Assumption 2. The law of the random process
zt described by ż(t) = vt(z(t)) with initial value z(0) ∼ µ0 is Φ#µ0, i.e., for a Borel measurable
set B ⊂ C([0, 1];H), (Φ#µ0)(B) = µ0

(
Φ−1(B)

)
.

Proposition 18. Let vt(·) be continuous in an open set U ⊃ [0, 1]×H. If there exists a continuous
k(·) ∈ L1((0, 1)) such that

∥vt(x1)− vt(x2)∥ ≤ k(t)∥x1 − x2∥, ∀t ∈ (0, 1), x1, x2 ∈ H,

then Assumption 2 holds.

Proof. The existence and uniqueness are implied by Theorem 16.1 and Theorem 16.2 of [63].

Let ui ∈ H and zi = ui +
∫ t
0
v(s, zi(s))ds, i ∈ 1, 2. Then

∥z1(t)− z2(t)∥H ≤ ∥u1 − u2∥H +

∫ t

0

k(s)∥z1(s)− z2(s)∥Hds.

Applying Gronwall’s inequality, ∀t ∈ [0, 1],

∥z1(t)− z2(t)∥H ≤ ∥u1 − u2∥H exp

(∫ t

0

k(s)ds

)
.

Hence,

sup
t∈[0,1]

∥z1(t)− z2(t)∥H ≤ ∥u1 − u2∥H exp

(∫ 1

0

k(s)ds

)
.

Therefore, the solution map is continuous.

While there is no Lipschitz guarantee for generic neural networks, modern architectures can be
designed to satisfy global Lipschitz conditions. Examples include spectral normalization [61], exact
convolution bounds [71], and Jacobian regularization [24].

A.3.3 The law of ODE solutions

We verify that the law η produced by the superposition principle in Corollary 17 coincides with the
law of the random process described by ż(t) = vt(z(t)) with initial value z(0) ∼ µ0.

Theorem 19. Let vs be a Borel vector field on H and consider the absolutely continuous curves
z : [0, 1] → H satisfying

z(t) = z(0) +

∫ t

0

vs(z(s))ds,∀t ∈ [0, 1]. (18)

Suppose Assumption 2 holds for (s, z) → vs(z) with the solution map denoted by Φ and {µt} is a
narrowly continuous curve of Borel probability measures on the separable Hilbert space H. If there
exists a probability measure η over C([0, 1];H) concentrated on the curves z satisfying (18) such
that (Et)#η = µt for every t ∈ [0, 1], then η = Φ#µ0.
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Proof. Let A ⊂ C([0, 1];H) be a measurable set.

η(A) = η(A ∩ Φ(H)) (19)

= η(
{
γ ∈ Φ(H) : γ(0) ∈ Φ−1(A)

}
)

= η(
{
γ ∈ Φ(H) : E0(γ) ∈ Φ−1(A)

}
)

= ((E0)#η)(Φ
−1(A)) (20)

= µ0(Φ
−1(A))

= Φ#µ0(A)

We have (19) and (20) because η concentrates on the solutions of the ODE, i.e., η is of 0 measure
outside Φ(H) .

A.4 Proof of main theorem

Now we’re ready to prove the main theorem. Given a stochastic process X, we let vX be the expected
velocity defined in Definition 1.
Theorem 20 (Restatement of Theorem 5). Assume X is rectifiable and {Zt} is its induced rectified
flow. Then Zt = Xt in distribution for all t ∈ [0, 1].

Proof. Recall that A is the cylindrical functions on H. Let EX be the integral w.r.t. the path measure
of process X. EXt

is the expectation w.r.t. the marginal Xt. ∀φ ∈ A,

d

dt
EX[φ(Xt)] = lim

h→0

EX[φ(Xt+h)]− EX[φ(Xt)]

h

= lim
h→0

EX

[
φ(Xt+h)− φ(Xt)

h

]
= EX

[
lim
h→0

φ(Xt+h)− φ(Xt)

h

]
(21)

= EX

[
d

dt
φ(Xt)

]
= EX

[〈
∇φ(Xt), Ẋt

〉]
(22)

= EXtEX|Xt

[〈
∇φ(Xt), Ẋt

〉]
= EXt

[〈
∇φ(Xt),EX|Xt

[
Ẋt

]〉]
(23)

= EXt

[〈
∇φ(Xt), v

X(Xt, t)
〉]
.

Note that following the mean-value theorem (Corollary 3.2 of Coleman [10]) and Assumption 3,∣∣∣∣φ(Xt+h)− φ(Xt)

h

∣∣∣∣ ≤ ∥∇φ∥∞

∥∥∥∥Xt+h −Xt

h

∥∥∥∥ ≤ ∥∇φ∥∞ sup
s∈[0,1]

∥∥∥Ẋs

∥∥∥ <∞

So for all h,
∣∣∣φ(Xt+h)−φ(Xt)

h

∣∣∣ is bounded above and (21) follows the dominated convergence theorem
(Theorem E.6. of Cohn [9]). (22) follows the chain rule (Theorem 2.1 of Coleman [10]). (23) is a
direct consequence of Theorem E.11 of Cohn [9].

Let µt denote the marginal distribution of Xt. Then, d
dtEX[φ(Xt)] =

∫ 〈
∇φ(x), vX(x, t)

〉
dµt(x).

One the other hand, d
dtEX[φ(Xt)] = d

dt

∫
φ(x)dµt(x). So (vX(x, t), µt) solves the continuity

equation in Corollary 17. Hence, there exists a probability measure η on C([0, 1];H) concentrated
on absolutely continuous curves such that (Et)#η = µt for every t ∈ [0, 1] and

z(t) = z(0) +

∫ t

0

vX(s, z(s))ds.

Theorem 19 guarantees that η = Φ#µ0, which is the law of the rectified flow {Zt}. Therefore,
(Et)#η = µt implies that Zt = Xt in distribution.
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A.5 Probability flow ODE

In this section, we review Gaussian measures in separable Hilbert spaces as a prerequisite for the
proof of Proposition 7.

A.5.1 Gaussian Measure in Hilbert Space

A linear operator Q on H is called positive if ⟨Qx, x⟩ ≥ 0 for all x ∈ H, and strictly positive if
⟨Qx, x⟩ > 0 for all x ∈ H \ {0}. Let {ζi} be an orthonormal basis of H, and let Q be a positive
bounded linear operator. The trace ofQ is defined as Tr(Q) =

∑∞
k=1⟨Qζk, ζk⟩, which is independent

of the choice of orthonormal basis. A self-adjoint, positive, bounded, linear operator Q is called trace
class if and only if Tr(Q) <∞.

Following Da Prato and Zabczyk [13], a Borel probability measure µ on H is called Gaussian if for
every h ∈ H and Borel set B ⊂ R, the pushforward measure B 7→ µ({x ∈ H : ⟨x, h⟩ ∈ B}) is a
Gaussian measure on R. Any such Gaussian measure on H admits a unique mean vector m ∈ H and
a unique self-adjoint positive bounded linear operator Q such that

Ex∼µ[⟨h, x⟩] = ⟨m,h⟩, and Ex∼µ[⟨h1, x−m⟩⟨h2, x−m⟩] = ⟨Qh1, h2⟩,

for all h, h1, h2 ∈ H [13]. The operator Q is called the covariance operator of a Gaussian measure
on H, and it is always trace class (see Section 2.3.1 of [13]). When Q is a covariance operator, there
exists a complete orthonormal system {ζk}∞k=1 of eigenvectors of Q with corresponding eigenvalues
{λk}∞k=1 [11, 62].

We define the Cameron–Martin space following Pidstrigach et al. [65]. For a Gaussian measure
µ = N (0, Q) on a Hilbert space H with a strictly positive Q, the Cameron–Martin space HQ is
defined as

HQ := Q1/2(H), with inner product ⟨f, g⟩HQ
= ⟨Q−1/2f,Q−1/2g⟩H.

For completeness, we include the definition of an H-valued Q-Wiener process:

Definition 21. Let Q be a trace-class, positive, self-adjoint operator on H. A stochastic process
W = {Wt}t∈[0,T ] taking values in H is called a standard Q-Wiener process if:

1. W0 = 0,

2. W has continuous trajectories,

3. W has independent increments,

4. Wt −Ws ∼ N (0, (t− s)Q) for all 0 ≤ s ≤ t ≤ T .

A.5.2 Proof of Proposition 7

Lemma 22. Let Q be a strictly positive trace-class covariance operator and κ ∈ R>0. Let µ be a
Gaussian measure with mean m and a strictly positive trace-class covariance operator C = κQ.
Then,

ρµHQ
(x) =

m− x

κ

Remark 23. Note that although m− x ∈ H does not necessarily belong to HQ,
〈
ρµHQ

(x), h
〉
HQ

is still well-defined for h ∈ HQ. This has been mentioned briefly in Remark 2 of Helin and Burger
[28] and Remark 8 of Lasanen [43]. To see this in more detail, without loss of generality, assume
m = 0. Let {ζi} be an orthonormal basis of H consisting of eigenvectors of Q, with corresponding
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eigenvalues be {λi}. Let N1, N2 be integers and N2 > N1. Then,

Ez∼µ


∣∣∣∣∣∣
〈

N2∑
i=N1+1

⟨z, ζi⟩H√
λi

ζi, Q
− 1

2h

〉
H

∣∣∣∣∣∣
2


=Ez∼µ

∣∣∣∣∣
〈

N2∑
i=N1+1

⟨z, ζi⟩H√
λi

ζi,

∞∑
i=1

〈
Q− 1

2h, ζi

〉
H
ζi

〉∣∣∣∣∣
2


=Ez∼µ

∣∣∣∣∣
N2∑

i=N1+1

⟨z, ζi⟩H√
λi

〈
Q− 1

2h, ζi

〉
H

∣∣∣∣∣
2


=

N2∑
i,j=N1+1

Ez∼µ

[
⟨z, ζi⟩H⟨z, ζj⟩H√

λiλj

〈
Q− 1

2h, ζi

〉
H

〈
Q− 1

2h, ζj

〉
H

]

=

N2∑
i,j=N1+1

[
⟨Cζi, ζj⟩H√

λiλj

〈
Q− 1

2h, ζi

〉
H

〈
Q− 1

2h, ζj

〉
H

]

=κ

N2∑
i,j=N1+1

[
λi⟨ζi, ζj⟩H√

λiλj

〈
Q− 1

2h, ζi

〉
H

〈
Q− 1

2h, ζj

〉
H

]

=κ

N2∑
i=N1+1

∣∣∣〈Q− 1
2h, ζi

〉
H

∣∣∣2

Note that Q− 1
2h ∈ H. So

∑n
i=1

〈
Q− 1

2h, ζi

〉
H
ζi is Cauchy. Hence,

〈∑n
i=1

⟨z,ζi⟩H√
λi

ζi, Q
− 1

2h
〉
H

is

Cauchy in L2(µ). Hence, for z ∈ H, ⟨z, h⟩HQ
:= limn

〈∑n
i=1

⟨z,ζi⟩H√
λi

ζi, Q
− 1

2h
〉
H

is well-defined

in L2(µ).

Proof. It is sufficient to show∫
H
∂hF (x)dµ(x) = −

∫
H
F (x)

〈
κ−1(m− x), h

〉
HQ

dµ(x) (24)

Recall that {ζi} is an orthonormal basis of H consisting of eigenvectors of Q. Let the corresponding
eigenvalues be {λi}, and F is a cylindrical function. Define the projection operator Pk : HQ →
Rd, Pk(x) = [⟨x, ζ1⟩, . . . , ⟨x, ζk⟩]tr. Let Y = Pk(X) where X ∼ N (0, C) . Then Y ∼ µ(k) :=

N (m(k),Σ(k)) where m(k) ∈ Rk,Σ(k) ∈ Rk×k, m(k)
i = ⟨m, ζi⟩, and Σ

(k)
ij = ⟨Cζj , ζi⟩, following

Lemma 2.2.2 of Bogachev [4] and the characterizations of Gaussian measure on Hilbert space in Na
et al. [62]. We first evaluate the Gâteaux differential ∂hF (x):

∂hF (x) = lim
δ→0

F (x+ δh)− F (x)

δ

= lim
δ→0

f(Pk(x+ δh))− f(Pk(x))

δ

= lim
δ→0

f(Pk(x) + δPk(h))− f(Pk(x))

δ
= ∂Pk(h)f(Pk(x))

= ⟨∇f(Pk(x)), Pk(h)⟩Rk ,

where the last equality follows the property of Gâteaux differential (Chapter 2 appendix, [10]).
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Hence, ∫
H
∂hF (x)dµ(x) =

∫
H
⟨∇f(Pk(x)), Pk(h)⟩Rkdµ(x)

=

∫
Rk

⟨∇f(y), Pk(h)⟩Rkdµ
(k)(y)

=
〈
EY∼µ(k) [∇f(Y )], Pk(h)

〉
Rk .

Recall that Σ(k)
ij = ⟨Cζj , ζi⟩ = λi1i=j and C is strictly positive. So Σ(k) is invertible. By applying

Stein’s Identity [55], we have

EY∼µ(k) [∇f(Y )] = [Σ(k)]−1EY∼µ(k) [f(Y )(Y −m(k))].

Hence, ∫
H
∂hF (x)dµ(x) =

〈
EY∼µ(k) [∇f(Y )], Pk(h)

〉
Rk

=
〈
[Σ(k)]−1EY∼µ(k) [f(Y )(Y −m(k))], Pk(h)

〉
Rk

= EY∼µ(k)

[
f(Y )

〈
[Σ(k)]−1(Y −m(k)), Pk(h)

〉
Rk

]
.

Now that the left-hand side of (24) has been reduced to an expectation of an inner product in Rk, we
apply a similar procedure to the right-hand side. Let πkh =

∑k
i=1⟨h, ζi⟩Hζi and h⊥ := h − πkh.

Then,

EX∼µ

[
F (X)

〈
κ−1(X −m), h

〉
HQ

]
=EX∼µ

[
F (X)

〈
κ−1(X −m), πkh

〉
HQ

]
+ EX∼µ

[
F (X)

〈
κ−1(X −m), h⊥

〉
HQ

]
.

It is sufficient to prove (24) by showing

EY∼µ(k)

[
f(Y )

〈
[Σ(k)]−1(Y −m(k)), Pk(h)

〉
Rk

]
= EX∼µ

[
F (X)

〈
κ−1(X −m), πkh

〉
HQ

]
(25)

and
EX∼µ

[
F (X)

〈
κ−1(X −m), h⊥

〉
HQ

]
= 0. (26)

We first show (25). Let S(k) =
〈
κ−1(X −m), πkh

〉
HQ

. Hence,

S(k) =
〈
κ−1Q− 1

2 (X −m), Q− 1
2πkh

〉
H

=
〈
X −m,κ−1Q−1πkh

〉
H.

Note that Q−1πkh is well defined as it is supported on only a finite number of eigenvectors. So S(k)

is a Gaussian random variable on R, by definition of Gaussian measure on H.

Following the definition of the covariance operator Q (Lemma 2.15 of Da Prato and Zabczyk [13]),

Cov(S(k), Yj −m
(k)
j ) = EX∼µ[

〈
X −m,κ−1Q−1πkh

〉
H⟨X −m, ζj⟩H]

=
〈
κQ(κ−1Q−1)πkh, ζj

〉
H

= ⟨πkh, ζj⟩H
= ⟨h, ζj⟩H.

Hence, we can apply the conditional mean estimator for a joint Gaussian distribution (Theorem 3 of
Holt and Nguyen [32]),

E[S(k) | Y ] = E[S(k)] + [⟨h, ζ1⟩H, . . . , ⟨h, ζk⟩H][Σ(k)]−1(Y −m(k))

=
〈
[Σ(k)]−1(Y −m(k)), Pk(h)

〉
Rk
.
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Note F (X) is measurable by σ(Y ).

EX∼µ[F (X)S(k)] = EY∼µ(k) [E[F (X)S(k) | Y ]]

= EY∼µ(k) [f(Y )E[S(k) | Y ]]

= EY∼µ(k)

[
f(Y )

〈
[Σ(k)]−1(Y −m(k)), Pk(h)

〉
Rk

]
.

It remains to show (26). Similarly, we define S⊥ :=
〈
κ−1(X −m), h⊥

〉
HQ

=〈
κ−1Q− 1

2 (X −m), Q− 1
2h⊥

〉
H

. Then,

S⊥ =

〈
κ−1

∞∑
i=1

⟨X −m, ζi⟩H√
λi

ζi,
∑
i>k

〈
h⊥, ζi

〉
H√

λi
ζi

〉
H

= κ−1
∑
i>k

1

λi
⟨X −m, ζi⟩H

〈
h⊥, ζi

〉
H

For j ≤ k,

Cov(S⊥, Yj −m
(k)
j ) = EX∼µ

[
κ−1

∑
i>k

1

λi
⟨X −m, ζi⟩H

〈
h⊥, ζi

〉
H⟨X −m, ζj⟩H

]

= κ−1
∑
i>k

1

λi

〈
h⊥, ζi

〉
HEX∼µ

[
⟨X −m, ζi⟩H⟨X −m, ζj⟩H

]
= κ−1

∑
i>k

1

λi

〈
h⊥, ζi

〉
H⟨ζi, ζj⟩H

= 0.

Again, by Theorem 3 of Holt and Nguyen [32],

E[S⊥ | Y ] = E[S⊥] + [Cov(S⊥, Y1 −m
(k)
1 ), . . . ,Cov(S⊥, Yk −m

(k)
k )][Σ(k)]−1(Y −m(k)) = 0.

So EX∼µ[F (X)S⊥] = EY∼µ(k) [E[f(Y )S⊥ | Y ]] = EY∼µ(k) [f(Y )E[S⊥ | Y ]] = 0.

Therefore, ∫
H
∂hF (x)dµ(x) = −

∫
H
F (x)

〈
κ−1(m− x), h

〉
HQ

dµ(x).

We move on to prove Proposition 7.

Proof of Proposition 7: Since σt is bounded, the assumptions of Theorem 7.2 of [13] are satisfied,
and therefore the SDE has a unique mild solution, which is a random process {Yt} satisfying

Yt = Y0 +

∫ t

0

−σs
2
Ysds+

∫ t

0

√
σsdWs.

Let Mt = exp (
∫ t
0
σs

2 ds). Let {ζk} be a orthonormal basis of H. By Ito’s lemma (Theorem 4.32
from [13]),

⟨MtYt, ζk⟩ = ⟨M0Y0, ζk⟩+
∫ t

0

⟨Msζk,
√
σsdWs⟩+

∫ t

0

〈
dMs

ds
Ys, ζk

〉
+
〈
Mtζk,−

σs
2
Ys

〉
ds

= ⟨Y0, ζk⟩+
∫ t

0

⟨Msζk,
√
σsdWs⟩

=

〈
Y0 +

∫ t

0

Ms
√
σsdWs, ζk

〉
,
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where the last equality follows Proposition 4.30 from [13].

Therefore, Yt = exp
(
− 1

2

∫ t
0
σsds

)
Y0 +

∫ t
0
exp
(
− 1

2

∫ t
s
στdτ

)√
σsdWs.

Following Proposition 4.28 of [13],

Yt | Y0 ∼ N (η(t)Y0, κ(t)Q),

where η(t) = exp
(
− 1

2

∫ t
0
σsds

)
and κ(t) =

∫ t
0
exp
(
−
∫ t
s
στdτ

)
σsds.

Recall that µt|Y0
is the conditional distribution of Yt|Y0 . Following Lemma 22, we have

ρ
µt|Y0

HQ
(y) =

η(t)Y0 − y

κ(t)
.

Also,
Yt

d
= η(t)Y0 +

√
κ(t)U

where U ∼ N (0, Q).

Recall that
Y ′
t = η(t)Y ′

0 +
√
κ(t)U

where Y ′
0 ∼ Pdata and U ∼ N (0, Q) are sampled independently.

Na et al. [62] aim to solve

min
S:[0,1]×H→H

∫ 1

0

EY0∼PdataEYt∼µt|Y0

∥∥∥S(t, Yt)− ρ
µt|Y0

HQ
(Yt)

∥∥∥2dt,
where S : [0, 1]×H to H is measurable, and in practice parametrized by a neural network. This is
equivalent to

min
S:[0,1]×H→H

∫ 1

0

EY ′
0∼PdataEY ′

t ∼µt|Y ′
0

∥∥∥S(t, Y ′
t )− ρ

µt|Y ′
0

HQ
(Y ′
t )
∥∥∥2dt,

because the joint distribution (Y0, Yt)
d
= (Y ′

0 , Y
′
t ).

This is a minimum mean squared error problem whose solution is the conditional mean

S∗(t, y) = E
[
ρ
µt|Y ′

0

HQ
(Y ′
t ) | Y ′

t = y
]

= E
[
η(t)Y ′

0 − Y ′
t

κ(t)
| Y ′

t = y

]
= E

[
− U√

κ(t)
| Y ′

t = y

]
.

Note that d
dt

√
κ(t) = κ̇(t)

2
√
κ(t)

, η̇(t) = −σt

2 η(t), and

κ(t) = η2(t)

∫ t

0

η−2(s)σsds,

κ̇(t) = 2η(t)η̇(t)

∫ t

0

η−2(s)σsds+ η2(t)
(
η−2(t)σt

)
= −σtη2(t)

∫ t

0

η−2(s)σsds+ σt

= σt(1− κ(t)).
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Hence,

Ẏ ′
t = η̇(t)Y ′

0 +
κ̇(t)

2
√
κ(t)

U

=
(
−σt

2
η(t)

)
Y ′
0 +

σt[1− κ(t)]

2
√
κ(t)

U

= −σt
2

[
η(t)Y ′

0 +
√
κ(t)U

]
+

σt
2

U√
κ(t)

= −σt
2
Y ′
t − σt

2

(
− U√

κ(t)

)
.

Therefore,

Ẏ ′
t = −1

2
σtY

′
t −

1

2
σt(−

U√
κ(t)

).

So equation (6) is equivalent to

dYt = −σt
2
(Yt + S∗(t, Yt))dt = E[Ẏ ′

t | Y ′
t = Yt]dt.

B Convex transport costs and the straightening effect

In finite-dimensional spaces, rectified flows are known to reduce transportation costs and exhibit a
straightening effect, both desirable properties in generative modeling [56]. These properties extend
naturally to the setting of infinite-dimensional Hilbert spaces and follow from the marginal-preserving
property established in Theorem 5. The proofs largely mirror those in the finite-dimensional case
and involve routine but lengthy bookkeeping. We begin by defining the RectFlow(·) and Rectify(·)
operations.

Definition 24. Let X0 and X1 be H-valued random variables. A coupling (X0, X1) is called
rectifiable if its linear interpolation process X = {tX1+ (1− t)X0 : t ∈ [0, 1]} is rectifiable. In
this case, the Z = {Zt : t ∈ [0, 1]} in Equation (2) is called the rectified flow of coupling (X0, X1),
denoted as Z = RectFlow ((X0, X1)), and (Z0, Z1) is called the rectified coupling of (X0, X1),
denoted as (Z0, Z1) = Rectify ((X0, X1)).

For any convex function c, The following theorem establishes that the Rectify(·) operator does not
increase the transport cost E[c(Z1−Z0)], which corresponds to a special case of Monge’s formulation
of optimal transport (Section 1.2 of [1]). It generalizes Theorem 3.5 from [56] to the Hilbert space
setting.

Theorem 25. Let X0, X1 be H-valued random variables such that the pair (X0, X1) is rectifiable,
and define (Z0, Z1) = Rectify(X0, X1). Then for any convex function c : H → R,

E [c(Z1 − Z0)] ≤ E [c(X1 −X0)] .
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Proof.

E [c (Z1 − Z0)] = E
[
c

(∫ 1

0

vX (t, Zt) dt

)]
≤ E

[∫ 1

0

c
(
vX (t, Zt)

)
dt

]
(27)

= E
[∫ 1

0

c
(
vX (t,Xt)

)
dt

]
= E

[∫ 1

0

c (E [(X1 −X0) | Xt]) dt

]
≤ E

[∫ 1

0

E [c (X1 −X0) | Xt] dt

]
(28)

=

∫ 1

0

E [c (X1 −X0)] dt

= E [c (X1 −X0)] ,

where we apply Jensen’s inequality at (27) and (28).

Following [56], we define a coupling (X0, X1) to be straight if it is a fixed point of the Rectify(·)
operation. Such couplings are practically useful, as their associated process is linear and can be
simulated exactly in a single step. As a direct extension of Theorem 3.6 from [56] to the Hilbert
space setting, the following theorem characterizes this property.
Theorem 26. Let X0, X1 be H-valued random variables such that the pair (X0, X1) is rectifiable.
Let Xt = tX1+(1− t)X0 and Z = RectFlow ((X0, X1)). The following statements are equivalent.

1. ∃ a strictly convex function c : H → R, such that E [c (Z1 − Z0)] = E [c (X1 −X0)].

2. (X0, X1) is a fixed point of Rectify(·), that is, (X0, X1) = (Z0, Z1).

3. The rectified flow coincides with the linear interpolation process: X = Z.

4. The paths of the linear interpolation X do not intersect:

V ((X0, X1)) :=

∫ 1

0

E
[
∥X1 −X0 − E [X1 −X0 | Xt]∥2

]
dt = 0.

Note that V ((X0, X1)) = 0 indicates that X1 −X0 = E [X1 −X0 | Xt] almost surely when t ∼
Uniform ([0, 1]), meaning that the lines passing through each Xt is unique, and hence no linear
interpolation paths intersect.

Proof. Clearly, 3 =⇒ 2 =⇒ 1.

1 =⇒ 4: E [c (Z1 − Z0)] = E [c (X1 −X0)] =⇒ the equalities are achieved in inequalities (27)
and (28). Since c is strictly convex, (X1 −X0)|Xt is a constant almost surely in X and t ∈ [0, 1].
So E[X1 −X0|Xt] = E[X1 −X0] almost surely in X and t ∈ [0, 1] and V (X) = 0.

4 =⇒ 3 : V (X) = 0 =⇒ E[X1 −X0|Xt] = E[X1 −X0] almost surely in µt and t ∈ [0, 1]. We
have

∫ s
0
(X1 −X0) dt =

∫ s
0
E [X1 −X0 | Xt] dt =

∫ s
0
vX (t,Xt) dt for s ∈ (0, 1]. Hence,

Xt = X0 +

∫ t

0

(X1 −X0) dt = X0 +

∫ t

0

vX (s,Xs) ds.

By definition, Zt also satisfy

Zt = X0 +

∫ t

0

vX (s,Xt) ds.

By Assumption 2, for any fixed sample ω, the solution is unique, i.e., X(·, ω) = Z(·, ω). So
X = Z.
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We next present a Hilbert space analogue of Theorem 3.7 from Liu et al. [56], which shows that
repeated application of the rectified flow progressively improves the alignment of the coupling, result-
ing in more linear trajectories and reduced path overlap. Following Liu et al. [56], the straightness of
a continuously differentiable process Z = {Zt} is measured by by

S(Z) :=
∫ 1

0

E
[∥∥∥(Z1 − Z0)− Żt

∥∥∥2]dt.
Theorem 27. Let X0, X1 be H-valued random variables such that the pair (X0, X1) is rectifiable.
Let Zk the k-th rectified flow of (X0, X1), that is, Zk+1 = RectFlow

((
Zk0 , Z

k
1

))
and

(
Z0
0 , Z

0
1

)
=

(X0, X1). Assume each
(
Zk0 , Z

k
1

)
is rectifiable for k = 0, . . . ,K. Then

K∑
k=0

S
(
Zk+1

)
+ V

((
Zk0 , Z

k
1

))
≤ E

[
∥X1 −X0∥2

]
.

Hence, if E
[
∥X1 −X0∥2

]
< +∞, we have mink≤K S

(
Zk
)
+ V

((
Zk0 , Z

k
1

))
= O(1/K).

Proof.

∥X1 −X0∥2 = ∥X1 −X0 − E[X1 −X0 | Xt]∥2

+ 2⟨X1 −X0 − E[X1 −X0 | Xt],E[X1 −X0 | Xt]⟩
+ ∥E[X1 −X0 | Xt]∥2.

Then

E∥X1 −X0∥2 = V ((X0, X1)) +

∫ 1

0

E[∥X1 −X0|Xt∥2]dt. (29)

Note ∥∥∥(Z1 − Z0)− Żt

∥∥∥2 = ∥Z1 − Z0∥2 − 2
〈
Z1 − Z0, Żt

〉
+
∥∥∥Żt∥∥∥2.

By moving the integral over t inside the inner product, we get

S(Z) =
∫ 1

0

E
∥∥∥Żt∥∥∥2dt− E∥Z1 − Z0∥2. (30)

By construction, Żt = E[X1−X0|Xt = Zt]. Therefore, E
[∥∥∥Żt∥∥∥2] = E[∥X1 −X0 | Xt∥2]. Hence,

by Equations (29) and (30),

E∥X1 −X0∥2 − E∥Z1 − Z0∥2 = S(Z) + V ((X0, X1))

Applying it to Zk,

E
[∥∥Zk1 − Zk0

∥∥2]− E
[∥∥Zk+1

1 − Zk+1
0

∥∥2] = S
(
Zk+1

)
+ V

((
Zk0 , Z

k
1

))
.

Summing over k leads to the desired inequality.

A practical implication of Theorem 27 is that single-step sampling becomes feasible after several
recursive applications of RectFlow(·).

C Experimental details

This section provides additional results and implementation details that supplement the main
text. We begin with further qualitative results on CelebA to highlight the diversity and fidelity
of samples generated by our method. We then outline the architectural configurations and train-
ing procedures used in our experiments. The code used for our main experiments is available at
https://anonymous.4open.science/r/Functional-Rectified-Flow-C4FC.
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C.1 Additional qualitative results on CelebA

To further illustrate the generative quality of the Functional Rectified Flow (FRF) model, we present
additional samples. Figures 3 through 7 show images generated using the FRF model trained
on CelebA 64 × 64 dataset. These results highlight the model’s ability to consistently produce
high-quality and diverse samples across multiple runs.

Figure 3: Additional CelebA samples generated by FRF.

C.2 Architectural details and hyperparameter choices

C.2.1 INR on MNIST

We follow Franzese et al. [20] and adopt the original INR architecture proposed by Sitzmann et al.
[72]. The network is a fully connected MLP with 8 layers, each containing 128 neurons and using
sinusoidal activations [72]. We implement the modulation-based meta-learning framework as in
Dupont et al. [16] and Finn et al. [19]. The base network parameters are optimized in the outer loop
using the AdaBelief optimizer [84], with a cosine learning rate schedule ending at 10−5. The inner
loop adapts sample-specific modulation vectors via 3 steps of SGD with a learning rate of 10−2.
Training is performed on 8 NVIDIA A40 GPUs with an effective batch size of 64× 8. The model is
trained for 106 steps and takes approximately 3 days.

C.2.2 Transformer on CelebA

We follow Franzese et al. [20] and adopt the UViT backbone introduced in Bao et al. [3]. The model
uses 2D sinusoidal positional embeddings, and we set the patch size to 1, effectively treating each
pixel as a token. Our architecture matches that of Franzese et al. [20], consisting of 7 transformer
layers, each comprising an 8-head self-attention mechanism and a fully connected feedforward
layer. Skip connections are employed following both Franzese et al. [20] and Bao et al. [3]. For
optimization, we use the AdamW optimizer [58] with a cosine warm-up schedule, ending at a learning
rate of 2× 10−4. The weight decay is set to 10−2. Training is conducted for 6× 105 steps with an
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Figure 4: Additional CelebA samples generated by FRF.

Figure 5: Additional CelebA samples generated by FRF.

33



Figure 6: Additional CelebA samples generated by FRF.

Figure 7: Additional CelebA samples generated by FRF.
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effective batch size of 32, and the learning rate is reduced by a factor of 0.1 during the final 105 steps.
The model is trained on 8 NVIDIA A40 GPUs, and the full training takes approximately one week.

C.3 Neural operator on Navier-Stokes dataset

We follow Kerrigan et al. [37] and adopt the Fourier Neural Operator (FNO) architecture proposed
by Kovachki et al. [41]. The network comprises 4 Fourier layers with 32 modes and 64 hidden
channels, along with 256-dimensional lifting and projection layers, mirroring the configuration used
in Kerrigan et al. [37]. Optimization is performed using the Adam optimizer with an initial learning
rate of 5 × 10−4, which is reduced by a factor of 0.1 every 25 epochs. Following Liu et al. [56],
we add a small amount of noise to the input data for smoothing. To mitigate redundancy in the
dataset, we follow Kerrigan et al. [37] and subsample 2× 104 datapoints. The model is trained for
300 epochs with a batch size of 128 on a single NVIDIA A100 MIG device, with the full training
taking approximately three hours.
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