Flow Straight and Fast in Hilbert Space: Functional Rectified Flow

Jianxin Zhang

Electrical Engineering and Computer Science University of Michigan Ann Arbor, MI 48109 jianxinz@umich.edu

Clayton Scott

Electrical Engineering and Computer Science University of Michigan Ann Arbor, MI 48109 clayscot@umich.edu

Abstract

Many generative models originally developed in finite-dimensional Euclidean space have functional generalizations in infinite-dimensional settings. However, the extension of rectified flow to infinite-dimensional spaces remains unexplored. In this work, we establish a rigorous functional formulation of rectified flow in an infinite-dimensional Hilbert space. Our approach builds upon the superposition principle for continuity equations in an infinite-dimensional space. We further show that this framework extends naturally to functional flow matching and functional probability flow ODEs, interpreting them as nonlinear generalizations of rectified flow. Notably, our extension to functional flow matching removes the restrictive measure-theoretic assumptions in the existing theory of Kerrigan et al. [37]. Furthermore, we demonstrate experimentally that our method achieves superior performance compared to existing functional generative models.

1 Introduction

Generative modeling has witnessed significant advancements, with methods such as flow matching [50], diffusion models [73, 31, 74], and rectified flows [56] achieving state-of-the-art performance across various data types, including audio [39, 22], image [15, 35], and video [30, 70].

Many of these techniques were originally developed in finite-dimensional Euclidean spaces and their extensions to infinite-dimensional settings have garnered increasing attention due to their potential for greater flexibility and applicability, as seen in functional flow matching [37], functional GAN [68] and functional diffusion models [20, 76, 5, 62]. However, despite the success of rectified flow in finite dimensions, its functional generalization remains an open problem.

In this work, we develop a mathematically rigorous framework for rectified flows in general separable Hilbert spaces. We further show that this framework naturally extends to proposed models of functional flow matching [37] and function probability flow ODEs [62] in Hilbert spaces, interpreting them as nonlinear generalizations of rectified flow. Notably, our approach removes the restrictive measure-theoretic assumptions required in Kerrigan et al. [37]. This theoretical foundation offers a unified lens for functional generative models. Additionally, we empirically validate functional rectified flow models and demonstrate their superior performance compared to other functional generative models.

The remainder of the paper is organized as follows. Section 2 reviews related work on rectified flows and functional generative models. In Section 3, we present our main theoretical result, which lifts rectified flows to general Hilbert spaces. Section 4 discusses connections to functional flow matching and functional probability flow ODE. Architectural choices for functional rectified flow models are discussed in Section 5. Experimental results across several domains are reported in Section 6. Finally, Section 7 concludes with a summary of findings and a discussion of limitations and future directions.

2 Related work

Generative models have significantly advanced in recent years, with methods such as Generative Adversarial Networks (GANs), diffusion models, and flow matching achieving state-of-the-art results. GANs, introduced in Goodfellow et al. [23], leverage adversarial training to generate high-quality samples from complex data distributions. Diffusion models, based on stochastic differential equations, iteratively remove noise from corrupted data through a learned denoising process, demonstrating strong generative capabilities [31, 74]. Flow matching constructs a path of conditional Gaussian distributions to interpolate the data distribution and a reference distribution [50, 8].

Rectified flows, introduced by Liu et al. [56], offer a deterministic alternative to stochastic generative models by constructing straight transport paths between source and target distributions. In contrast to diffusion models, which rely on stochastic sampling, rectified flows enable more efficient and interpretable generation with reduced computational overhead. The associated straightening effect has been shown to facilitate high-quality generation with very few sampling steps [45]. Further theoretical development, such as its connection to Optimal Transport, has been explored in Liu [54]. Recent advances have extended rectified flow methods to a broad range of generative tasks, including image generation and editing [83, 69, 59, 79, 14], 3D content creation [21], text-to-speech synthesis and editing [25, 52, 26, 80], audio reconstruction [81, 53], video generation [78], and multi-modal generative modeling [46, 51]. Despite this growing popularity, existing rectified flow models are still constrained to finite-dimensional spaces. In this work, we address this limitation by extending rectified flow to general Hilbert spaces, thereby enabling modeling in infinite-dimensional function spaces.

A key motivation for studying functional generative models is that many data sources are inherently functional—such as snapshots of time series or solutions to partial differential equations. A prominent example is neural stochastic differential equations (Neural SDEs), where neural networks are trained to model path-valued random variables that solve SDEs [38]. However, these models typically assume that the data follows an underlying SDE structure, as in financial time series [82, 33], which limits their general applicability. On the other hand, representing finite-dimensional data as continuous functions offers several advantages: it naturally supports variable resolution, accommodates diverse data modalities using simple architectures, and enhances memory efficiency [16]. Motivated by these benefits, recent works have extended generative modeling beyond finite-dimensional Euclidean spaces to functional settings. Dutordoir et al. [17] and Zhuang et al. [85] adapt existing diffusion models to functional data by conditioning on discretized pointwise evaluations.

A more general direction involves defining stochastic processes directly in infinite-dimensional Hilbert spaces, leading to the development of functional diffusion models [36, 20, 5, 60, 48, 49, 65, 27, 62]. These works extend score-based methods by studying diffusion processes over function spaces. Similarly, functional flow matching [37] generalizes the flow matching framework of Lipman et al. [50] to infinite-dimensional settings. However, as noted in their work, the analysis of [37] relies on strong measure-theoretic assumptions that are often difficult to verify in practice. In contrast, we extend rectified flow to Hilbert spaces under more tractable and verifiable conditions, providing a rigorous and broadly applicable foundation for functional generative modeling.

3 Rectified flows on Hilbert space

In this section, we extend rectified flows to infinite-dimensional Hilbert spaces, demonstrating the fundamental property of marginal distribution preservation. Let $\mathcal H$ be a separable Hilbert space. Given a probability triplet $(\Omega, \mathcal S, \mathbb P)$, denoting the sample space, sigma algebra, and probability measure, we take the perspective that the law of a stochastic process $\mathbb X:[0,1]\times\Omega\to\mathcal H$ is the distribution of the function-valued random variable defined as $\omega\mapsto\mathbb X(\cdot,\omega)$. For simplicity, we denote the value of $\mathbb X$ at time $t\in[0,1]$ by X_t and the associated marginal measure by μ_t . A random process $\mathbb X$ will thus also be denoted $\{X_t\}_{t\in[0,1]}$ or simply $\{X_t\}_t$. Unless otherwise specified, $\langle\cdot,\cdot\rangle$ refers to the inner product in $\mathcal H$, and the norm $\|\cdot\|$ refers to its induced norm.

3.1 Definitions of rectifiable and rectified flows

Given a process \mathbb{X} , the induced rectified flow is a random process $\{Z_t\}_{t\in[0,1]}$ that is defined in terms a quantity called the expected velocity of \mathbb{X} .

Definition 1. Let $\mathbb{X} = \{X_t\}_{t \in [0,1]}$ be a pathwise continuously differentiable random process on a separable Hilbert space \mathcal{H} . The expected velocity of \mathbb{X} is defined as

$$v^{\mathbb{X}}(t,x) = \mathbb{E}\Big[\dot{X}_t \mid X_t = x\Big], \quad \forall x \in \text{supp}(X_t), \forall t \in [0,1]$$

and is set to zero if $x \notin \operatorname{supp}(X_t)$. Here, \dot{X}_t denotes the time derivative of X_t , and $\operatorname{supp}(X_t)$ the support of the random variable X_t .

Let C^1 denote the space of continuously differentiable functions. An initial value problem (IVP) is a differential equation with a specified initial condition for the unknown function. To ensure the well-posedness of rectified flows in Hilbert space, we assume that the corresponding IVP admits a unique solution and a continuous solution map.

Assumption 2. Given a function $v:[0,1]\times\mathcal{H}\to\mathcal{H}$, the initial value problem

$$z(t) = u + \int_0^t v(s, z(s))ds, \quad u \in \mathcal{H}, \tag{1}$$

admits a unique solution $z(\cdot) \in C^1([0,1];\mathcal{H})$. Furthermore, the solution map $\Phi: \mathcal{H} \to C^1([0,1];\mathcal{H})$ mapping from the initial value to the solution path, defined by $\Phi(u) = z$, is a continuous mapping from $(\mathcal{H}, \|\cdot\|_{\mathcal{H}})$ to $(C^1([0,1];\mathcal{H}), \|\cdot\|_{\infty})$.

In the following assumption, we enforce that $v^{\mathbb{X}}(t,x)$ has a finite integral in time to ensure that the process does not exhibit pathological behavior, such as infinite total drift.

Assumption 3. Given a pathwise continuously differentiable random process $\mathbb{X} = \{X_t\}_{t \in [0,1]}$,

$$\int_{0}^{1} \int_{\mathcal{U}} \|v^{\mathbb{X}}(t,x)\| d\mu_{t}(x) dt < \infty$$

and

$$\mathbb{E}\left[\sup_{t\in[0,1]}\left\|\dot{X}_{t}\right\|\right]<\infty,$$

where μ_t denotes the distribution of $X_t \in \mathcal{H}$ for each $t \in [0, 1]$.

With these notions, we can now define a rectified flow.

Definition 4. We say that a stochastic process $\mathbb{X} = \{X_t\}_{t \in [0,1]}$ is **rectifiable** if Assumption 2 holds for $v^{\mathbb{X}}(t,x)$ and Assumption 3 holds for \mathbb{X} . In this case, the process defined by

$$Z_t = Z_0 + \int_0^t v^{\mathbb{X}}(s, Z_s) ds, \quad Z_0 \sim X_0,$$
 (2)

is called the **rectified flow** induced by X.

Unlike diffusion models, which rely on stochastic differential equations (SDEs), rectified flows are defined in terms of a deterministic ordinary differential equation (ODE) guided by $v^{\mathbb{X}}(t,x)$.

3.2 The marginal preserving property

A key property of a rectified flow is that it preserves the marginal distributions of the original stochastic process. This is formalized in the following theorem which generalizes Liu et al. [56] from a finite-dimensional Euclidean space to a separable Hilbert space \mathcal{H} .

Theorem 5. Assume that an \mathcal{H} -valued stochastic process $\{X_t\}$ is rectifiable, and let $\{Z_t\}$ be the induced rectified flow. Then, for all $t \in [0,1]$, $Z_t \stackrel{d}{=} X_t$.

The central challenge in proving the theorem lies in developing the superposition principle within a general separable Hilbert space setting. This requires establishing several nontrivial technical results and rigorously connecting the resulting measure-theoretic decomposition to the solution of Equation (1). We defer the proof to Section A in the appendix.

Note that Z_t derives its randomness entirely from the random initial condition Z_0 . Intuitively, this result states that while Z_t evolves deterministically given Z_0 according to an ODE, it preserves the marginal distributions as X_t . When X_t is constructed to interpolate between two distributions, where X_0 corresponds to a simple reference distribution (e.g., i.i.d. Gaussian noise) and X_1 represents the target data distribution, then learning the velocity field $v^{\mathbb{X}}$ enables sampling from the data distribution by solving (2) with randomly initialized Z_0 .

The rectified flow method of Liu et al. [56] corresponds to a specific choice of $\mathbb{X} = \{X_t\}$ given by

$$X_t = tX_1 + (1 - t)X_0, (3)$$

where X_0 and X_1 are independently sampled from the noise and data distributions, respectively. This formulation was shown to be effective in finite-dimensional Euclidean spaces.

If we define $X_t = tX_1 + (1-t)X_0$ as in (3), where $X_0, X_1 \in \mathcal{H}$, then $\dot{X}_t = X_1 - X_0$. The velocity field $v^{\mathbb{X}}(t,x)$, modeled by a neural network v_{θ} , can be trained to minimize

$$\min_{\theta} \int_{0}^{1} \mathbb{E}_{x \sim \mathbb{X}} \|(x_{1} - x_{0}) - v_{\theta}(x_{t}, t)\|^{2} dt, \tag{4}$$

where x is a realization of the stochastic process and x_t is the value of x at time t. Note that the objective can be approximated by randomly sampled data X_1 , noise X_0 , and timestamp t.

For sampling, we numerically integrate the ODE:

$$Z_t = Z_0 + \int_0^t v_\theta(s, Z_s) ds, \quad Z_0 \sim X_0,$$

allowing us to generate new samples from X_1 by evolving from X_0 using the learned expected velocity v_θ . This approach is computationally more efficient than stochastic sampling methods used in diffusion models, as it avoids the nuances of reversing an SDE.

3.3 Properties of rectified flow

The desirable properties of rectified flows (3) in finite-dimensional settings, as discussed in Liu et al. [56]—including transport cost reduction and the straightening effect—also hold in the infinite-dimensional Hilbert space setting. These results follow directly from the marginal-preserving property established in Theorem 5, using arguments that largely mirror those in finite dimensions. As the extensions mainly involve technical but routine bookkeeping, we defer the detailed statements and proofs to Section B in the appendix.

4 Connections to other functional models

We place our work in the broader context of functional generative modeling by examining its relationship to functional flow matching [37] and functional probability flow ODE [62]. Our framework accommodates interpolation paths of the form:

$$X_t = \alpha_t X_1 + \beta_t X_0, \tag{5}$$

where α_t , β_t are continuously differentiable functions of time t. This generalized parameterization recovers rectified flow when $\alpha_t = t$, $\beta_t = 1 - t$. We call Equation (5) the nonlinear extension of the function rectified flow. We show that both functional flow matching [37] and functional probability flow ODE [62] can be viewed as nonlinear extensions of functional rectified flow within our general framework.

To facilitate our discussion, we first define the Cameron–Martin space and the notion of a Wiener process in Hilbert space. Let Q be a trace-class, positive, symmetric operator on \mathcal{H} . The associated Cameron–Martin space is given by $\mathcal{H}_Q := Q^{\frac{1}{2}}(\mathcal{H})$, the range of $Q^{\frac{1}{2}}$, equipped with the inner product $\langle x,y\rangle_{\mathcal{H}_Q} := \left\langle Q^{-\frac{1}{2}}x,Q^{-\frac{1}{2}}y\right\rangle_{\mathcal{H}}$. A Q-Wiener process W_t is a continuous Gaussian process in \mathcal{H} satisfying $W_0=0$ and having independent, stationary increments, with $W_t-W_s\sim\mathcal{N}(0,(t-s)Q)$ for all $0\leq s\leq t$.

4.1 Comparison with functional flow matching

By examining Equation (6) in Kerrigan et al. [37], we can directly see that Equation (5) subsumes their proposed flow matching models as special cases. In Table 1, we summarize how the "VP" and "OT" paths introduced in their work arise as specific instances of (α_t, β_t) .

The framework of Kerrigan et al. [37] relies on a strong measure-theoretic assumption that may not hold even in finite-dimensional Euclidean space. Suppose there exists a stochastic process $\{X_t\}_{t\in[0,1]}$ interpolating X_0 (noise) and X_1 (data), with μ_t denoting the marginal law of X_t , and μ_t^x the conditional law of X_t given $X_1 = x$. Kerrigan et al. [37] assume:

$$\mu_t^x \ll \mu_t$$

i.e., the conditional measure μ_t^x must be absolutely continuous with respect to the marginal μ_t for almost every x. As admitted by the authors in [37], this assumption is **difficult to satisfy and verify, and generally fails even in finite-dimensional Euclidean space**. If X_0 is a trace-class Gaussian process, this reduces to the requirement that X_1 lies in the Cameron–Martin space of the initial Gaussian measure, i.e., $X_1 \in C_0^{1/2}(\mathcal{H})$ when $X_0 \sim \mathcal{N}(0, C_0)$. As also noted in Kerrigan et al. [37], even this condition is **highly restrictive and challenging to verify in practice**. Although we assume that the processes are pathwise continuously differentiable, this assumption is more plausible and readily satisfied in practical settings.

Table 1: Functional flow matching paths proposed in Kerrigan et al. [37] are special cases of (5)

Flow Path	α_t	eta_t
OT (Optimal Transport)	t	$1 - (1 - \sigma_{\min})t, \sigma_{\min} \in (0, 1)$
VP (Variance Preserving)	$\text{arbitrary} \in [0,1]$	$\sqrt{1-lpha_t^2}$

4.2 Comparison with functional probability flow ODE

Throughout this section, we adopt the convention that time t=0 corresponds to the data distribution and t=1 to the noise distribution. This is the reverse of the convention used in the rest of the paper, and is chosen to align with the standard formulation of score-based generative modeling and SDEs. This section also references technical concepts (e.g., Q-Wiener process, Cameron-Martin space) that will be defined in the appendix.

The concurrent work of Na et al. [62] introduces an analogue of the probability flow ODE from Song et al. [74], adapted to infinite-dimensional Hilbert spaces. Specifically, they consider the following variance-preserving SDE in \mathcal{H} :

$$dY_t = -\frac{\sigma_t}{2} Y_t dt + \sqrt{\sigma_t} dW_t, \quad Y_0 \sim P_{\text{data}},$$

where W_t is a Q-Wiener process in \mathcal{H} , σ_t is a bounded, continuous function taking values on $\mathbb{R}_{\geq 0}$. Let $\{\zeta_i\}$ denote an orthonormal basis of \mathcal{H} consisting of eigenvectors of Q, and let \mathcal{H}_Q denote the corresponding Cameron–Martin space. To support the analysis, we recall the formal definition of the logarithmic gradient.

Definition 6. A Borel probability measure μ is said to be Fomin differentiable along $h \in \mathcal{H}_Q$ if there exists a function $\rho_h^{\mu} \in L^1(\mathcal{H}, \mu)$ such that for all cylinder functions of the form

$$F(x) = f(\langle \zeta_1, x \rangle, \dots, \langle \zeta_m, x \rangle), \quad f \in \mathcal{C}_0^{\infty}(\mathbb{R}^m), m \in \mathbb{N},$$

we have

$$\int_{\mathcal{H}} \partial_h F(x) \, \mu(dx) = - \int_{\mathcal{H}} F(x) \, \rho_h^{\mu}(x) \, \mu(dx),$$

where ∂_h denotes the Gâteaux differential along h. Let K be a subspace of H. If there exists a function $\rho_K^{\mu}: \mathcal{H} \to \mathcal{H}$ such that

$$\langle \rho_{\mathcal{K}}^{\mu}(x), h \rangle_{\mathcal{K}} = \rho_{h}^{\mu}(x) \quad \text{for all } x \in \mathcal{H}, h \in \mathcal{K},$$

then $\rho_{\mathcal{K}}^{\mu}$ is called the logarithmic gradient of μ along \mathcal{K} .

During training, a score network $S(t, Y_t)$ is learned to approximate the logarithmic gradient by minimizing the objective

$$\int_0^1 \mathbb{E}_{Y_0 \sim P_{\text{data}}} \mathbb{E}_{Y_t \sim \mu_{t|Y_0}} \left\| S(t, Y_t) - \rho_{\mathcal{H}_Q}^{\mu_{t|Y_0}}(Y_t) \right\| dt,$$

where $\mu_{t|Y_0}$ denotes the conditional distribution of Y_t given Y_0 . Let S^* denote its minimizer.

For sampling, Na et al. [62] propose the following probability flow ODE, to be solved in reverse time from t=1 to t=0:

$$dY_t = -\frac{\sigma_t}{2} (Y_t + S^*(t, Y_t)) dt, \quad Y_1 \sim \mathcal{N}(0, Q).$$
 (6)

The following proposition shows how this ODE fits within our rectified flow framework.

Proposition 7. Equation (6) is the rectified flow induced by the process Y'_t defined as

$$Y_t' = \eta(t) Y_0' + \sqrt{\kappa(t)} U,$$

where
$$\eta(t) = \exp\left(-\frac{1}{2}\int_0^t \sigma_s \, ds\right)$$
, $\kappa(t) = \int_0^t \exp\left(-\int_s^t \sigma_\tau d\tau\right) \sigma_s \, ds$, and $Y_0' \sim P_{\text{data}}$, $U \sim \mathcal{N}(0,Q)$ are sampled independently. Equivalently, $\mathbb{E}[\dot{Y}_t' \mid Y_t'] = -\frac{\sigma_t}{2}\left(Y_t' + S^*(t,Y_t')\right)$.

Thus, the probability flow ODE (6) corresponds to the time-reversal of the nonlinear rectified flow in Equation (5), with the interpolation weights given by $\alpha_t = \eta(1-t)$ and $\beta_t = \sqrt{\kappa(1-t)}$.

5 Architectures for functional generative modeling

Let $\mathcal H$ be a Hilbert space of functions from some coordinate space M to $\mathbb R$. To implement functional rectified flows in practice, one must approximate the expected velocity field $v^{\mathbb X}(x_t,t):\mathcal H\times[0,T]\to\mathcal H$, which is inherently defined over an infinite-dimensional domain. Directly learning such a mapping is generally intractable. However, if $\mathcal H=L_2(M)$, under the conditions of Theorem 2 in Franzese et al. [20], any $x\in\mathcal H$ can be fully characterized by its pointwise evaluations $\{(x[p_i],p_i)\}$, where $p_i\in M$. This insight enables the design of networks that act on sampled representations rather than abstract functional inputs, thus making implementation feasible. Following Franzese et al. [20] and Kerrigan et al. [37], we consider three practical architectures for this purpose: *Implicit Neural Representations* (INRs), *Transformers*, and *Neural Operators*. We include this discussion of architectural choices for completeness but refer the reader to Franzese et al. [20] for a comprehensive treatment.

The first approach builds on *implicit neural representations* (INRs) [72] and the model-agnostic meta-learning (MAML) paradigm [19]. Following the modulation strategy introduced for functional diffusion processes by Franzese et al. [20], we represent the velocity field $v_{\theta}(x_t,t)$ with a network $n(\psi,t,\theta):M\to\mathbb{R}$ where θ is the shared base parameter and ψ is a *sample-specific* modulation vector that is adapted online to encode each x_t . Formally,

$$v_{\theta}(x_t, t) = n(\psi^*, t, \theta), \quad \psi^* = \arg\min_{\psi} \sum_{p_i} (n(\psi, t, \theta)[p_i] - x_t[p_i])^2.$$
 (7)

For every x_t we initialize $\psi = \mathbf{0}$ and perform a small number of gradient-descent steps, with θ fixed, to minimize the residual in (7). During training, the global parameters θ are updated via the loss (4), whereas ψ is re-optimized from scratch for each x_t , enabling the network to have a functional representation while operating on finite discretizations $\{x_t[p_i], p_i\}$.

Our second approach employs transformer architectures [77], treating discretized function evaluations as sequences with positional information. For each x_t , we consider the set of finite discretizations $\{x_t[p_i]\}$ as input features and their corresponding coordinates $\{p_i\}$ as positions. Each $x_t[p_i]$ is embedded into a higher-dimensional vector space, and summed with the positional encodings of p_i , resulting in a sequence of embeddings $\{y_i\}$. This sequence is then processed by a transformer to obtain $\{v_\theta(x_t,t)[p_i]\}$. We note that Cao [7] interpret transformers as mappings between Hilbert spaces, and Kovachki et al. [41] discuss the learned rather than guaranteed nature of resolution

invariance of transformers. While these theoretical perspectives are relevant, we do not explore them further and refer interested readers to the original papers for a detailed discussion.

Neural operators [41, 40] offer a principled framework for modeling functions in infinite-dimensional settings and have demonstrated success in various applications [64, 67]. A neural operator learns a mapping $\mathcal{G}:\mathcal{H}\to\mathcal{H}$, trained using finite evaluations of functions. Once trained, it maps a uniform discretization $\{(x[p_i],p_i)\}$ to output values at the same locations, producing $\{\mathcal{G}(x)[p_i]\}$. In our implementation, we directly parameterize the velocity field v_θ using a neural operator. Similar to the transformer-based approach, the positions $\{p_i\}$ are encoded via positional embeddings and appended to the embeddings of the corresponding $\{x_t[p_i]\}$. Although neural operators typically require inputs to be defined on fixed, uniformly spaced grids and produce outputs at the same grid locations—limiting flexibility for irregular or adaptive sampling—they have been shown to be highly effective for PDE data [37]. Bond-Taylor and Willcocks [5] implement an infinite-dimensional generative model using a neural operator-based architecture but rely on a specialized diffusion autoencoder [66], making their approach highly specialized and not applicable to our setting.

6 Experiments

We evaluate the proposed Functional Rectified Flow (FRF) model on three datasets: MNIST (MIT Licence) [44], CelebA 64×64 (CC BY-SA 4.0) [57], and the Navier-Stokes dataset (MIT Licence) [47], using the INR, transformer, and neural operator implementations, respectively. Our goal is to assess whether extending rectified flow to infinite-dimensional Hilbert spaces yields competitive or superior performance compared to existing state-of-the-art functional generative models under different architectural choices. For clarity, we divide the experimental results into two parts: (1) image data experiments on MNIST and CelebA, and (2) PDE data experiments on the Navier-Stokes dataset. Additional details on the experiments can be found in Section C of the appendix.

6.1 Image datasets

For image datasets, we focus our comparisons on Functional Diffusion Processes (FDP) [20] and ∞ -DIFF [5], which are among the most competitive methods for image generation in functional settings. To ensure a fair comparison, we adopt the exact same architectural design as Franzese et al. [20], without introducing any specialized enhancements. FRF is implemented in JAX [6], building directly on the released codebase of Franzese et al. [20] (Apache-2.0 License). For INR-based models, modulation codes are optimized using 3 steps of gradient descent per sample. For both MNIST and CelebA experiments, X_0 is sampled from the stationary distribution of the functional SDE (9) in Franzese et al. [20].

To evaluate generative performance, we consider the Fréchet Inception Distance (FID) [29] and the FID-CLIP score [42], where lower values indicate higher visual fidelity and closer alignment with the target data distribution.

6.1.1 INR on MNIST

On MNIST (32×32), we benchmark an INR-based FRF model against the Functional Diffusion Process (FDP) [20]. We specifically adopt the INR architecture to test the effectiveness of FRF on lightweight models, as INRs naturally have a small parameter footprint while retaining strong functional approximation capabilities.

As shown in Table 2, our INR-based FRF achieves a lower FID score than FDP while using the same number of parameters, indicating that functional rectified flow leads to improved sample quality even with lightweight models.

Figure 1 further illustrates the qualitative advantages of FRF. Notably, the super-resolved samples produced by our model at both 64×64 and 128×128 resolutions (Figures (b) and (d)) exhibit smoother digit contours compared to the naïvely upscaled real MNIST images (Figures (c) and (e)). This highlights the model's ability to generate coherent high-resolution samples by leveraging its continuous functional representation while being trained on a lower resolution.

Table 2: Results on MNIST (32×32) using INR.

Method	FID (\downarrow)	Params
FRF (INR, ours)	0.41	$\mathcal{O}(0.1\mathrm{M})$
FDP (INR)	0.43	$\mathcal{O}(0.1\mathrm{M})$

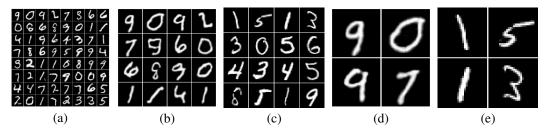


Figure 1: Qualitative results on MNIST: (a) samples generated at the original 32×32 resolution; (b) super-resolved samples at 64×64 ; (c) real MNIST images upscaled to match (b); (d) super-resolved samples at 128×128 ; (e) real MNIST images upscaled to match (d).

6.1.2 Transformer on CelebA

On CelebA (64×64) , we evaluate transformer-based FRF models and compare against FDP (both INR and transformer variants) [20], FD2F [16], and ∞ -DIFF [5]. We specifically adopt the transformer architecture to demonstrate that FRF is capable of generating high-quality and visually compelling images on complex datasets.

Table 3 shows that FRF with a transformer backbone outperforms other functional generative models in terms of both FID and FID-CLIP scores, while also being significantly more parameter-efficient than ∞ -DIFF. Figure 2 further illustrates the visual quality of samples generated by FRF. The model successfully captures rich facial details and produces sharp, high-fidelity images.

Table 3: Results on CelebA (64×64) using transformer-based architectures.

Method	FID (\downarrow)	FID-CLIP (\downarrow)	Params
FRF (Vision Transformer, ours)	6.63	3.70	$\mathcal{O}(20\mathrm{M})$
FDP (INR)	35.00	12.44	$\mathcal{O}(1\mathrm{M})$
FDP (Vision Transformer)	11.00	6.55	$\mathcal{O}(20\mathrm{M})$
FD2F	40.40	_	$\mathcal{O}(10\mathrm{M})$
∞ -DIFF	_	4.57	$\mathcal{O}(100\text{M})$

6.2 Neural operator on Navier-Stokes dataset

We evaluate the proposed FRF model with a neural operator backbone on the Navier-Stokes dataset, a benchmark consisting of solutions to the Navier-Stokes equations on a 2D torus. This dataset captures complex fluid dynamics, making it a challenging testbed for functional generative models. To be consistent with prior work [37], we use a $\frac{1}{2}$ -Matern kernel to sample the initial condition X_0 . Our code is built upon the open-sourced codebase of Kerrigan et al. [37] (MIT license).

We compare our model against several baselines: the Denoising Diffusion Operator (DDO) [48] using the NCSN noise scale, GANO [68], Functional DDPM [36], and Functional Flow Matching (FFM) [37].

Following Kerrigan et al. [37], we evaluate the model performance by *Density MSE*, which is computed by applying pointwise Kernel Density Estimation (KDE) to 1,000 generated and 1,000 real samples, followed by computing the Mean Squared Error between the resulting estimated densities. This metric evaluates how well the generated samples reproduce the overall spatial distribution of the data.

As shown in Table 4, the FRF model achieves the lowest density MSE among all methods, indicating that the generated samples accurately match the distribution of real samples in the spatial domain.

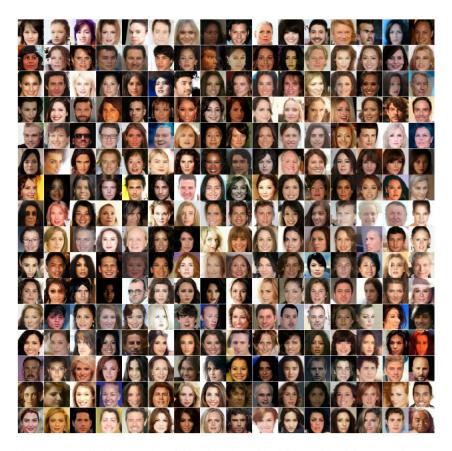


Figure 2: Qualitative results of functional rectified flow with vision transformer.

Table 4: MSEs between the density of the real and generated samples of the Navier-Stokes dataset.

Method	Density MSE (Mean \pm Std)	
FRF	$2.39 \times 10^{-5} \pm 4.45 \times 10^{-6}$	
FFM	$4.50 \times 10^{-5} \pm 1.52 \times 10^{-5}$	
DDPM	$1.02 \times 10^{-4} \pm 8.20 \times 10^{-6}$	
DDO	$9.61 \times 10^{-3} \pm 1.26 \times 10^{-2}$	
GANO	$4.16 \times 10^{-3} \pm 1.82 \times 10^{-3}$	

7 Conclusion, limitations and broader impact

We have introduced a functional extension of rectified flow by lifting it to general Hilbert spaces. Our theoretical results demonstrate that the marginal preserving property is preserved in the infinite-dimensional setting. This provides a principled and tractable foundation for functional generative modeling. We demonstrate experimentally that our method achieves superior performance compared to existing functional generative models. Notably, while most competing approaches develop specialized architectures tailored to their methods, we demonstrate the flexibility of our framework by applying it across three distinct model architectures—each originally designed for one of our competitors. Although our framework is broadly applicable, domain-specific architectures and inductive biases may still be required for optimal performance in high-complexity tasks.

As with all generative models, risks such as misuse in synthetic media generation remain, including the potential for creating misleading or harmful content. We encourage responsible use and further research into interpretability, robustness, and safety in functional generative models to mitigate these concerns. At the same time, functional generative models offer significant positive societal impacts, including advancing scientific discovery through improved simulation of complex physical systems and supporting creative industries with new tools for high-quality content generation.

References

- [1] Ambrosio, L., Brué, E., and Semola, D. (2024). *Lectures on Optimal Transport*. UNITEXT. Springer Cham, 2 edition. eBook published: 28 December 2024; Softcover published: 29 December 2024.
- [2] Ambrosio, L., Gigli, N., and Savaré, G. (2008). *Gradient Flows: In Metric Spaces and in the Space of Probability Measures*. Lectures in Mathematics. ETH Zürich. Birkhäuser Basel, 2 edition. Published: 13 March 2008 (softcover), 29 October 2008 (eBook).
- [3] Bao, F., Nie, S., Xue, K., Cao, Y., Li, C., Su, H., and Zhu, J. (2023). All are worth words: A vit backbone for diffusion models. In *CVPR*.
- [4] Bogachev, V. I. (1998). Gaussian Measures, volume 62 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI. Primary 60B11; Secondary 28C20, 46G12, 60G15, 60H07.
- [5] Bond-Taylor, S. and Willcocks, C. G. (2024). \$\infty\$-diff: Infinite resolution diffusion with subsampled mollified states. In *The Twelfth International Conference on Learning Representations*.
- [6] Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary, C., Maclaurin, D., Necula, G., Paszke, A., VanderPlas, J., Wanderman-Milne, S., et al. (2018). Jax: composable transformations of python+ numpy programs.
- [7] Cao, S. (2021). Choose a transformer: Fourier or galerkin. In Beygelzimer, A., Dauphin, Y., Liang, P., and Vaughan, J. W., editors, *Advances in Neural Information Processing Systems*.
- [8] Chen, R. T. Q., Rubanova, Y., Bettencourt, J., and Duvenaud, D. (2018). Neural ordinary differential equations. In *Advances in Neural Information Processing Systems*, volume 31.
- [9] Cohn, D. L. (2013). Measure Theory, volume XXI, 457 of Birkhäuser Advanced Texts Basler Lehrbücher. Birkhäuser, New York, NY, 2 edition. Springer Science+Business Media New York 2013.
- [10] Coleman, R. (2012). Calculus on Normed Vector Spaces. Universitext. Springer, New York, NY, 1 edition. Published: 24 July 2012 (print), 25 July 2012 (online).
- [11] Conway, J. B. (1990). A Course in Functional Analysis, volume 96 of Graduate Texts in Mathematics. Springer New York, NY, 2 edition. eBook ISBN: 978-1-4757-4383-8; Softcover ISBN: 978-1-4419-3092-7 (2010); Copyright © Springer-Verlag New York 2007.
- [12] Da Prato, G. and Zabczyk, J. (1992). *Probability measures*, page 30–69. Encyclopedia of Mathematics and its Applications. Cambridge University Press.
- [13] Da Prato, G. and Zabczyk, J. (2014). *Stochastic Equations in Infinite Dimensions*. Encyclopedia of Mathematics and its Applications. Cambridge University Press, 2 edition.
- [14] Dalva, Y., Venkatesh, K., and Yanardag, P. (2024). Fluxspace: Disentangled semantic editing in rectified flow transformers. *arXiv* preprint arXiv:2412.09611.
- [15] Dhariwal, P. and Nichol, A. Q. (2021). Diffusion models beat GANs on image synthesis. In Beygelzimer, A., Dauphin, Y., Liang, P., and Vaughan, J. W., editors, *Advances in Neural Information Processing Systems*.
- [16] Dupont, E., Kim, H., Eslami, S. M. A., Rezende, D. J., and Rosenbaum, D. (2022). From data to functa: Your data point is a function and you can treat it like one. In *39th International Conference on Machine Learning (ICML)*.
- [17] Dutordoir, V., Saul, A., Ghahramani, Z., and Simpson, F. (2023). Neural diffusion processes. In International Conference on Machine Learning, pages 8990–9012. PMLR.
- [18] Evans, L. C. (2010). *Partial Differential Equations*, volume 19 of *Graduate Studies in Mathematics*. American Mathematical Society, Providence, RI, 2nd edition.

- [19] Finn, C., Abbeel, P., and Levine, S. (2017). Model-agnostic meta-learning for fast adaptation of deep networks. In *International conference on machine learning*, pages 1126–1135. PMLR.
- [20] Franzese, G., Corallo, G., Rossi, S., Heinonen, M., Filippone, M., and Michiardi, P. (2023). Continuous-time functional diffusion processes. In *Thirty-seventh Conference on Neural Information Processing Systems*.
- [21] Go, H., Park, B., Jang, J., Kim, J.-Y., Kwon, S., and Kim, C. (2024). Splatflow: Multi-view rectified flow model for 3d gaussian splatting synthesis. *arXiv preprint arXiv:2411.16443*.
- [22] Goel, K., Gu, A., Donahue, C., and Ré, C. (2022). It's raw! audio generation with state-space models. *International Conference on Machine Learning (ICML)*.
- [23] Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y. (2014). Generative adversarial networks.
- [24] Gouk, H., Frank, E., Pfahringer, B., and Cree, M. J. (2021). Regularisation of neural networks by enforcing lipschitz continuity. *Machine Learning*, 110(2):393–416.
- [25] Guan, W., Su, Q., Zhou, H., Miao, S., Xie, X., Li, L., and Hong, Q. (2024). Reflow-tts: A rectified flow model for high-fidelity text-to-speech. In ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 10501–10505. IEEE.
- [26] Guo, Y., Du, C., Ma, Z., Chen, X., and Yu, K. (2024). Voiceflow: Efficient text-to-speech with rectified flow matching. In *ICASSP 2024-2024 IEEE International Conference on Acoustics*, Speech and Signal Processing (ICASSP), pages 11121–11125. IEEE.
- [27] Hagemann, P., Mildenberger, S., Ruthotto, L., Steidl, G., and Yang, N. T. (2023). Multilevel diffusion: Infinite dimensional score-based diffusion models for image generation. arXiv preprint arXiv:2303.04772.
- [28] Helin, T. and Burger, M. (2015). Maximum a posteriori probability estimates in infinite-dimensional bayesian inverse problems. *Inverse Problems*, 31(8):085009.
- [29] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., and Hochreiter, S. (2017). Gans trained by a two time-scale update rule converge to a local nash equilibrium. *Advances in neural information processing systems*, 30.
- [30] Ho, J., Chan, W., Saharia, C., Whang, J., Gao, R., Gritsenko, A., Kingma, D. P., Poole, B., Norouzi, M., Fleet, D. J., and Salimans, T. (2022). Imagen video: High definition video generation with diffusion models.
- [31] Ho, J., Jain, A., and Abbeel, P. (2020). Denoising diffusion probabilistic models. *arXiv preprint* arxiv:2006.11239.
- [32] Holt, W. and Nguyen, D. (2023). Essential aspects of bayesian data imputation. SSRN. Available at SSRN: https://ssrn.com/abstract=4494314 or http://dx.doi.org/10.2139/ssrn. 4494314.
- [33] Issa, Z., Horvath, B., Lemercier, M., and Salvi, C. (2023). Non-adversarial training of neural SDEs with signature kernel scores. In *Thirty-seventh Conference on Neural Information Processing Systems*.
- [34] Kallenberg, O. (2021). *Foundations of Modern Probability*. Number 75 in Probability Theory and Stochastic Modelling. Springer Cham, 3 edition.
- [35] Kang, M., Zhu, J.-Y., Zhang, R., Park, J., Shechtman, E., Paris, S., and Park, T. (2023). Scaling up gans for text-to-image synthesis. In 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 10124–10134.
- [36] Kerrigan, G., Ley, J., and Smyth, P. (2023). Diffusion generative models in infinite dimensions. In Ruiz, F., Dy, J., and van de Meent, J.-W., editors, *Proceedings of The 26th International Conference on Artificial Intelligence and Statistics*, volume 206 of *Proceedings of Machine Learning Research*, pages 9538–9563. PMLR.

- [37] Kerrigan, G., Migliorini, G., and Smyth, P. (2024). Functional flow matching. In *The 27th International Conference on AI and Statistics (AISTATS)*.
- [38] Kidger, P., Foster, J., Li, X., Oberhauser, H., and Lyons, T. (2021). Neural sdes as infinite-dimensional gans.
- [39] Kong, Z., Ping, W., Huang, J., Zhao, K., and Catanzaro, B. (2021). Diffwave: A versatile diffusion model for audio synthesis. In *International Conference on Learning Representations*.
- [40] Kossaifi, J., Kovachki, N., Li, Z., Pitt, D., Liu-Schiaffini, M., George, R. J., Bonev, B., Aziz-zadenesheli, K., Berner, J., and Anandkumar, A. (2024). A library for learning neural operators.
- [41] Kovachki, N. B., Li, Z., Liu, B., Azizzadenesheli, K., Bhattacharya, K., Stuart, A. M., and Anandkumar, A. (2021). Neural operator: Learning maps between function spaces. *CoRR*, abs/2108.08481.
- [42] Kynkäänniemi, T., Karras, T., Aittala, M., Aila, T., and Lehtinen, J. (2023). The role of imagenet classes in fréchet inception distance. In *Proc. ICLR*.
- [43] Lasanen, S. (2012). Non-gaussian statistical inverse problems. part i: Posterior distributions. *Inverse Problems and Imaging*, 6:215–266.
- [44] LeCun, Y., Cortes, C., and Burges, C. (2010). MNIST handwritten digit database. http://yann.lecun.com/exdb/mnist. ATT Labs [Online].
- [45] Lee, S., Lin, Z., and Fanti, G. (2024). Improving the training of rectified flows. *Advances in Neural Information Processing Systems*, 37:63082–63109.
- [46] Li, S., Kallidromitis, K., Gokul, A., Liao, Z., Kato, Y., Kozuka, K., and Grover, A. (2024). Omniflow: Any-to-any generation with multi-modal rectified flows. *arXiv preprint arXiv:2412.01169*.
- [47] Li, Z., Liu-Schiaffini, M., Kovachki, N. B., Azizzadenesheli, K., Liu, B., Bhattacharya, K., Stuart, A., and Anandkumar, A. (2022). Learning chaotic dynamics in dissipative systems. In Oh, A. H., Agarwal, A., Belgrave, D., and Cho, K., editors, *Advances in Neural Information Processing Systems*.
- [48] Lim, J. H., Kovachki, N. B., Baptista, R., Beckham, C., Azizzadenesheli, K., Kossaifi, J., Voleti, V., Song, J., Kreis, K., Kautz, J., et al. (2023a). Score-based diffusion models in function space. arXiv preprint arXiv:2302.07400.
- [49] Lim, S., Yoon, E., Byun, T., Kang, T., Kim, S., Lee, K., and Choi, S. (2023b). Score-based generative modeling through stochastic evolution equations in hilbert spaces. In *Thirty-seventh Conference on Neural Information Processing Systems*.
- [50] Lipman, Y., Chen, R. T. Q., Ben-Hamu, H., Nickel, M., and Le, M. (2023). Flow matching for generative modeling. In *The Eleventh International Conference on Learning Representations*.
- [51] Liu, H., Lan, G. L., Mei, X., Ni, Z., Kumar, A., Nagaraja, V., Wang, W., Plumbley, M. D., Shi, Y., and Chandra, V. (2024a). Syncflow: Toward temporally aligned joint audio-video generation from text.
- [52] Liu, H., Wang, J., Huang, R., Liu, Y., Lu, H., Xue, W., and Zhao, Z. (2024b). Flashaudio: Rectified flows for fast and high-fidelity text-to-audio generation. *arXiv preprint arXiv:2410.12266*.
- [53] Liu, P., Dai, D., and Wu, Z. (2024c). Rfwave: Multi-band rectified flow for audio waveform reconstruction. *arXiv preprint arXiv:2403.05010*.
- [54] Liu, Q. (2022). Rectified flow: A marginal preserving approach to optimal transport. *arXiv* preprint arXiv:2209.14577.
- [55] Liu, Q. and Wang, D. (2016). Stein variational gradient descent: a general purpose bayesian inference algorithm. In *Proceedings of the 30th International Conference on Neural Information Processing Systems*, NIPS'16, page 2378–2386, Red Hook, NY, USA. Curran Associates Inc.

- [56] Liu, X., Gong, C., and Liu, Q. (2022). Flow straight and fast: Learning to generate and transfer data with rectified flow. *arXiv preprint arXiv:2209.03003*.
- [57] Liu, Z., Luo, P., Wang, X., and Tang, X. (2015). Deep Learning Face Attributes in the Wild . In 2015 IEEE International Conference on Computer Vision (ICCV), pages 3730–3738, Los Alamitos, CA, USA. IEEE Computer Society.
- [58] Loshchilov, I. and Hutter, F. (2019). Decoupled weight decay regularization.
- [59] Ma, Y., Liu, X., Chen, X., Liu, W., Wu, C., Wu, Z., Pan, Z., Xie, Z., Zhang, H., Zhao, L., et al. (2024). Janusflow: Harmonizing autoregression and rectified flow for unified multimodal understanding and generation. *arXiv* preprint arXiv:2411.07975.
- [60] Mittal, S., Lajoie, G., Bauer, S., and Mehrjou, A. (2022). From points to functions: Infinite-dimensional representations in diffusion models. In *ICLR Workshop on Deep Generative Models for Highly Structured Data*.
- [61] Miyato, T., Kataoka, T., Koyama, M., and Yoshida, Y. (2018). Spectral normalization for generative adversarial networks. In *International Conference on Learning Representations*.
- [62] Na, K., Lee, J., Yun, S.-Y., and Lim, S. (2025). Probability-flow ODE in infinite-dimensional function spaces. In *ICLR* 2025 Workshop on Deep Generative Model in Machine Learning: Theory, *Principle and Efficacy*.
- [63] Pata, V. (2019). Fixed Point Theorems and Applications. UNITEXT. Springer Cham, 1 edition.
- [64] Peng, W., Qin, S., Yang, S., Wang, J., Liu, X., and Wang, L. L. (2024). Fourier neural operator for real-time simulation of 3d dynamic urban microclimate. *Building and Environment*, 248:111063.
- [65] Pidstrigach, J., Marzouk, Y., Reich, S., and Wang, S. (2024). Infinite-dimensional diffusion models. J. Mach. Learn. Res., 25(1).
- [66] Preechakul, K., Chatthee, N., Wizadwongsa, S., and Suwajanakorn, S. (2022). Diffusion autoencoders: Toward a meaningful and decodable representation. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pages 10619–10629.
- [67] Qin, S., Zhan, D., Geng, D., Peng, W., Tian, G., Shi, Y., Gao, N., Liu, X., and Wang, L. L. (2025). Modeling multivariable high-resolution 3d urban microclimate using localized fourier neural operator. *Building and Environment*, 273:112668.
- [68] Rahman, M. A., Florez, M. A., Anandkumar, A., Ross, Z. E., and Azizzadenesheli, K. (2022). Generative adversarial neural operators. *Transactions on Machine Learning Research*.
- [69] Rout, L., Chen, Y., Ruiz, N., Caramanis, C., Shakkottai, S., and Chu, W.-S. (2024). Semantic image inversion and editing using rectified stochastic differential equations. arXiv preprint arXiv:2410.10792.
- [70] Saharia, C., Chan, W., Saxena, S., Li, L., Whang, J., Denton, E., Ghasemipour, S. K. S., Gontijo-Lopes, R., Ayan, B. K., Salimans, T., Ho, J., Fleet, D. J., and Norouzi, M. (2022). Photorealistic text-to-image diffusion models with deep language understanding. In Oh, A. H., Agarwal, A., Belgrave, D., and Cho, K., editors, *Advances in Neural Information Processing Systems*.
- [71] Sedghi, H., Gupta, V., and Long, P. M. (2019). The singular values of convolutional layers. In *International Conference on Learning Representations*.
- [72] Sitzmann, V., Martel, J., Bergman, A., Lindell, D., and Wetzstein, G. (2020). Implicit neural representations with periodic activation functions. *Advances in neural information processing* systems, 33:7462–7473.
- [73] Song, Y. and Ermon, S. (2020). Improved techniques for training score-based generative models. *Advances in neural information processing systems*, 33:12438–12448.

- [74] Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Ermon, S., and Poole, B. (2021). Score-based generative modeling through stochastic differential equations. In *International Conference on Learning Representations*.
- [75] Stepanov, E. and Trevisan, D. (2017). Three superposition principles: Currents, continuity equations and curves of measures. *Journal of Functional Analysis*, 272(3):1044–1103.
- [76] Sun, H., Yu, L., Dai, B., Schuurmans, D., and Dai, H. (2023). Score-based continuous-time discrete diffusion models. In *The Eleventh International Conference on Learning Representations*.
- [77] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L. u., and Polosukhin, I. (2017). Attention is all you need. In Guyon, I., Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., and Garnett, R., editors, *Advances in Neural Information Processing Systems*, volume 30. Curran Associates, Inc.
- [78] Wu, Z., Siarohin, A., Menapace, W., Skorokhodov, I., Fang, Y., Chordia, V., Gilitschenski, I., and Tulyakov, S. (2024). Mind the time: Temporally-controlled multi-event video generation. *arXiv preprint arXiv:2412.05263*.
- [79] Yang, X., Chen, C., Yang, X., Liu, F., and Lin, G. (2024). Text-to-image rectified flow as plug-and-play priors. *arXiv preprint arXiv:2406.03293*.
- [80] Yin, H., Wang, K., Yang, H., Huang, H., and Silamu, W. (2025). Robust and efficient text-based speech editing using noise conditioning and rectified flow. In ICASSP 2025-2025 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 1–5. IEEE.
- [81] Yuan, Y., Liu, X., Liu, H., Plumbley, M. D., and Wang, W. (2025). Flowsep: Language-queried sound separation with rectified flow matching. In *ICASSP 2025-2025 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, pages 1–5. IEEE.
- [82] Zhang, J., Viktorov, J., Jung, D., and Pitler, E. (2025). Efficient training of neural stochastic differential equations by matching finite dimensional distributions. In *The Thirteenth International Conference on Learning Representations*.
- [83] Zhu, Y., Zhao, W., Li, A., Tang, Y., Zhou, J., and Lu, J. (2024). Flowie: Efficient image enhancement via rectified flow. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 13–22.
- [84] Zhuang, J., Tang, T., Ding, Y., Tatikonda, S. C., Dvornek, N., Papademetris, X., and Duncan, J. (2020). Adabelief optimizer: Adapting stepsizes by the belief in observed gradients. *Advances in Neural Information Processing Systems*, 33.
- [85] Zhuang, P., Abnar, S., Gu, J., Schwing, A., Susskind, J. M., and Bautista, M. Á. (2023). Diffusion probabilistic fields. In *The Eleventh International Conference on Learning Representations*.

A Proofs and remarks

In this section, we present the proofs together with remarks on technical details.

A.1 Remarks on the existence of the velocity field

Under our setting, the existence of $v^{\mathbb{X}}$ follows from standard results.

Proposition 8 (Proposition 1.10 of Da Prato and Zabczyk [12]). Assume that E is a separable Banach space. Let V be a Bochner integrable E-valued random variable defined on $(\Omega, \mathcal{S}, \mathbb{P})$ and let \mathcal{G} be a σ -field contained in \mathcal{S} . There exists a unique, up to a set of \mathbb{P} -probability zero, integrable E-valued random variable R, measurable with respect to \mathcal{G} such that

$$\int_{A} V \, d\mathbb{P} = \int_{A} R \, d\mathbb{P}, \quad \forall A \in \mathcal{G}.$$

The random variable R is denoted as $\mathbb{E}[V \mid \mathcal{G}]$ and called the conditional expectation of V given \mathcal{G} .

In our case, the state space $\mathcal H$ is a separable Banach space. Hence, it suffices to assume $\mathbb E\|\dot X_t\|<\infty$ for integrability. Under this condition, $\mathbb E[\dot X_t\mid\sigma(X_t)]$ exists and is $\sigma(X_t)$ -measurable. By the Doob–Dynkin lemma, there exists a measurable function $v_t:\mathcal H\to\mathcal H$ such that

$$\mathbb{E}[\dot{X}_t \mid \sigma(X_t)] = v_t(X_t).$$

Defining $v^{\mathbb{X}}(t,x) = v_t(x)$ for $x \in \text{supp}(X_t)$ and $v^{\mathbb{X}}(t,x) = 0$ otherwise (which affects only a set of measure zero) yields the desired vector field. For completeness, we recall the Doob–Dynkin lemma:

Lemma 9 (Lemma 1.14 of Kallenberg [34]). Let f, g be measurable functions from (Ω, A) into measurable spaces (S, S) and (T, T), where S is Borel. The following are equivalent:

- 1. f is g-measurable, i.e. $\sigma(f) \subset \sigma(g)$,
- 2. there exists a measurable mapping $h: T \to S$ such that $f = h \circ g$.

This shows that the velocity field $v^{\mathbb{X}}$ is well-defined under mild integrability conditions.

A.2 Definitions and technical lemma

In this section, we present definitions and technical lemmas for the invocation of the superposition principle in Hilbert space. We first review Fréchet differentiability on a normed space.

Definition 10. Let E and F be normed vector spaces, O an open subset of E containing O. The derivative of F is a continuous linear map F from F to F such that

$$\lim_{h \to 0} \frac{f(x+h) - f(x) - D_x f(h)}{\|h\|} = 0$$

When $E = \mathcal{H}$ and $F = \mathbb{R}$, $D_x f \in \mathcal{H}^*$ where \mathcal{H}^* is the dual space of \mathcal{H} . By the Riesz representation theorem, there is a unique $g \in \mathcal{H}$ such that $D_x f(\cdot) = \langle \cdot, g \rangle$, and we denote such g by $\nabla f(x)$. We define the second-order derivative $\nabla^2 f(x)$ as the derivative of $x \in \mathcal{H} \to \nabla f(x) \in \mathcal{H}$.

Definition 11. Let \mathcal{H} be a separable Hilbert space with orthonormal basis $\{e_i\}$ and $\varphi: \mathcal{H} \to \mathbb{R}$. Define its asymptotic Lipschitz constant $L_{\varphi}(x)$ at $x \in \mathcal{H}$ by

$$L_{\varphi}(x) = \lim_{\epsilon \to 0^+} L_{\varphi}(x, \epsilon),$$

where

$$L_{\varphi}(x,\epsilon) = \sup_{u,v \in B_{\epsilon}(x)} \frac{|\varphi(u) - \varphi(v)|}{\|u - v\|}.$$

Notice that L_{φ} is upper semicontinuous [75].

Lemma 12. If $\varphi : \mathcal{H} \to \mathbb{R}$ is a twice-differentiable function with bounded second-order derivative, then $L_{\varphi}(x) = \|\nabla \varphi(x)\|$.

Proof. Fix $\epsilon > 0$ and $x \in \mathcal{H}$. We first show $L_{\varphi}(x) \leq \|\nabla \varphi(x)\|$.

Let $a, b \in B_{\epsilon}(x)$ and $b \neq a$. By the mean value theorem (Theorem 3.2 of Coleman [10]),

$$\begin{split} \varphi(b) - \varphi(a) &= \langle \nabla \varphi(c), b - a \rangle \\ &= \langle \nabla \varphi(x), b - a \rangle + \langle \nabla \varphi(c) - \nabla \varphi(x), b - a \rangle \end{split}$$

where c = ta + (1 - t)b for some $t \in [0, 1]$. Hence,

$$\begin{split} |\varphi(b) - \varphi(a)| &\leq \|\nabla \varphi(x)\| \|b - a\| + \|\nabla \varphi(c) - \nabla \varphi(x)\| \|b - a\| \\ &\leq \|\nabla \varphi(x)\| \|b - a\| + \sup_{c' \in \{t'x + (1 - t')c: t' \in [0, 1]\}} \|\nabla^2 \varphi(c')\|_{\mathcal{H}, \mathcal{H}} \|b - a\| \|c' - x\| \end{split}$$

We obtain the second inequality by applying the mean value inequality (Corollary 3.2 of Coleman [10]) to $\nabla \varphi$. Suppose $\nabla^2 \varphi$ is bounded by a constant B_0 . Note that both $c, c' \in B_{\epsilon}(x)$. Hence,

$$\frac{|\varphi(b) - \varphi(a)|}{\|b - a\|} \le \|\nabla \varphi(x)\| + B_0 \epsilon$$

The choice of a, b is arbitrary, so $L_{\varphi}(x, \epsilon) \leq \|\nabla \varphi(x)\| + B_0 \epsilon$ and $L_{\varphi}(x) \leq \|\nabla \varphi(x)\|$.

Now it remains to show $L_{\varphi}(x) \geq \|\nabla \varphi(x)\|$. WOLOG, we assume $\nabla \varphi(x) \neq 0$ and let $v = \frac{\nabla \varphi(x)}{\|\nabla \varphi(x)\|}$. Let $y_n = x + \frac{1}{n}v, z_n = x, n \in \mathbb{N}$.

Fix $\alpha > 0$. Then $\exists N \in \mathbb{N}$ such that $\forall n \geq N, y_n \in B_{\epsilon}(x)$ and by definition of Fréchet differentiability

$$\left| \varphi(x + \frac{1}{n}v) - \varphi(x) - \left\langle \nabla \varphi(x), \frac{1}{n}v \right\rangle \right| \le \alpha \left\| \frac{v}{n} \right\| = \frac{\alpha}{n}.$$

Hence, $\varphi(x+\frac{1}{n}v)-\varphi(x)\geq \left\langle \nabla\varphi(x),\frac{1}{n}v\right\rangle -\frac{\alpha}{n}=\frac{1}{n}\|\nabla\varphi(x)\|-\frac{\alpha}{n}.$

For $y_n \in B_{\epsilon}(x)$,

$$L_{\varphi}(x,\epsilon) \ge \frac{|\varphi(y_n) - \varphi(z_n)|}{\|y_n - z_n\|}$$

$$= \frac{|\varphi(x + \frac{1}{n}v) - \varphi(x)|}{\frac{1}{n}}$$

$$\ge \frac{\varphi(x + \frac{1}{n}v) - \varphi(x)}{\frac{1}{n}}$$

$$\ge \|\nabla \varphi(x)\| - \alpha.$$

Since α is arbitrary, $L_{\varphi}(x, \epsilon) \geq \|\nabla \varphi(x)\|$. Therefore, $L_{\varphi}(x) = \|\nabla \varphi(x)\|$.

Definition 13. Let A be the cylindrical functions on H, i.e.,

 $\mathcal{A} = \{ \varphi \in \mathcal{H} \to \mathbb{R} : \varphi = \phi \circ P_d, d \text{ is a non-negative integer}, \phi \in C^{\infty}(\mathbb{R}^d) \text{ has compact support} \}$ where $P_d(x) = (\langle x, e_1 \rangle, \dots, \langle x, e_d \rangle)$ is a finite dimensional projection and $C^{\infty}(\mathbb{R}^d)$ is the set of compactly supported function from \mathbb{R}^d to \mathbb{R} .

 \mathcal{A} is an algebra (i.e., a set closed under pointwise linear combinations and products), and a constant function is trivially an element in \mathcal{A} by letting d=0. By Lemma 12 $L_{\varphi}(x)=\|\nabla \varphi(x)\|, \forall \varphi \in \mathcal{A}$. Let $v_t:\mathcal{H}\to\mathcal{H}$, for $t\in[0,1]$ be a vector field. v_t defines an operator $V_t:\mathcal{A}\to\mathbb{R}$ acting on elements in \mathcal{A} , i.e., for $\varphi\in\mathcal{A}$, $(V_t\varphi)(x)=\langle\nabla\varphi(x),v_t(x)\rangle$. Hence, V_t satisfies $V_t(fg)=fV_t(g)+gV_t(f)$. Also, $|(V_t\varphi)(x)|=|\langle\nabla\varphi(x),v_t(x)\rangle|\leq ||v_t(x)||L_{\varphi}(x)$.

We have to show one more lemma to invoke the results of Stepanov and Trevisan [75].

Lemma 14. Let φ be a Lipschitz, bounded function on $\mathcal{H} \times [0,1]$, with metric $((x,t),(y,s)) \to (\|x-y\|^2 + |t-s|^2)^{\frac{1}{2}}$. Then there is a sequence of uniformly bounded functions $\{\varphi_k\}$ on $\mathcal{H} \times [0,1]$ that are also Lipschitz with uniform Lipschitz constants, such that $\varphi_k(\cdot,t) \in \mathcal{A}$ for $t \in [0,1]$, $\lim_k \varphi_k = \varphi$ pointwisely, and

$$\lim \sup_{k} L_{\varphi_k(\cdot,t)}(x) \le L_{\varphi(\cdot,t)}(x), \forall (x,t) \in \mathcal{H} \times [0,1].$$

Proof. Let $\{e_k\}$ be an orthonormal basis of \mathcal{H} . Let C_{φ} be the Lipschitz constant of φ .

For an integer k>0, recall that $P_k:\mathcal{H}\to\mathbb{R}^k$, $P_k(x)=(\langle x,e_1\rangle,\langle x,e_2\rangle,\ldots,\langle x,e_k\rangle)$. Define $\pi_k(x):\mathcal{H}\to\mathcal{H}$, $\pi_k(x)=\sum_{i=1}^k\langle x,e_i\rangle e_i$ and $\psi_k:\mathbb{R}^k\times[0,1]\to\mathbb{R}$, $\psi_k(r,t)=\varphi(\sum_{i=1}^kr_ie_i,t)$. Note that $\|P_k(x)-P_k(y)\|_{\mathbb{R}^k}=\|\pi_k(x)-\pi_k(y)\|_{\mathcal{H}}\leq \|x-y\|_{\mathcal{H}}$, and $\psi_k(P_k(x),t)=\varphi(\pi_k(x),t)$.

Also note that

$$|\psi_k(r,t) - \psi_k(\bar{r},s)| \le C_{\varphi} \left(\left\| \sum_{i=1}^k r_i e_i - \sum_{i=1}^k \bar{r}_i e_i \right\|_{\mathcal{H}}^2 + (t-s)^2 \right)^{1/2}$$

$$= C_{\varphi} \left(\left\| r - \bar{r} \right\|_{\mathbb{R}^k}^2 + (t-s)^2 \right)^{1/2}.$$

So ψ_k is also C_{φ} -Lipschitz.

Fix an integer k > 0. We first approximate ψ_k using a standard mollification approach. Following Appendix C.5 of Evans [18], we define the standard mollifier function for $\epsilon > 0$:

$$\eta_{\epsilon}: \mathbb{R}^k \to \mathbb{R}, \eta_{\epsilon}(r) = \frac{1}{\epsilon^k} \eta(\frac{r}{\epsilon}),$$

where $\eta: \mathbb{R}^k \to \mathbb{R} \in C^{\infty}(\mathbb{R}^k)$,

$$\eta(r) := \begin{cases} C \exp\left(\frac{1}{|r|^2 - 1}\right) & \text{if } ||r||_{\mathbb{R}^k} < 1\\ 0 & \text{if } ||r||_{\mathbb{R}^k} \ge 1 \end{cases},$$

and the constant C>0 is selected so that $\int_{\mathbb{R}^k} \eta=1$. Let $B^k_{\epsilon}(r)$ be the ϵ -ball in \mathbb{R}^k around r and note that η_{ϵ} is supported on $B^k_{\epsilon}(0)$ and $\int_{\mathbb{R}^k} \eta_{\epsilon}=1$.

Define the mollification of ψ_k as $h_{k,\epsilon}(r,t) := \int_{\mathbb{R}^k} \eta_{\epsilon}(y) \psi_k(r-y,t) dy$. Theorem 7 from Appendix C.5 of Evans [18] asserts that $h_{k,\epsilon} \in C^{\infty}(\mathbb{R}^k)$. Note that

$$|h_{k,\epsilon}(r,t) - h_{k,\epsilon}(\bar{r},s)| = \left| \int_{\mathbb{R}^k} \eta_{\epsilon}(y) (\psi_k(r-y,t) - \psi_k(\bar{r}-y,s)) dy \right|$$

$$\leq \int_{\mathbb{R}^k} \eta_{\epsilon}(y) |\psi_k(r-y,t) - \psi_k(\bar{r}-y,s)| dy$$

$$\leq \int_{\mathbb{R}^k} \eta_{\epsilon}(y) C_{\varphi} \left(\|r - \bar{r}\|_{\mathbb{R}^k}^2 + (t-s)^2 \right)^{\frac{1}{2}} dy$$

$$= C_{\varphi} \left(\|r - \bar{r}\|_{\mathbb{R}^k}^2 + (t-s)^2 \right)^{\frac{1}{2}},$$

and

$$|h_{k,\epsilon}(r,t) - \psi_k(r,t)| = \left| \int_{\mathbb{R}^k} \eta_{\epsilon}(y) (\psi_k(r-y,t) - \psi_k(r,t)) dy \right|$$

$$\leq \int_{B_{\epsilon}^k(0)} \eta_{\epsilon}(y) C_{\varphi} ||y||_{\mathbb{R}^k} dy$$

$$\leq C_{\varphi} \epsilon.$$

Therefore, $h_{k,\epsilon}$ is also C_{φ} -Lipschitz and uniformly converges to ψ_k at a rate $C_{\varphi}\epsilon$ when $\epsilon \to 0$.

We can then extract a sequence of smooth functions $\psi_{k,n}$ approximating ψ_k by letting $\epsilon_n = \frac{1}{C_{\varphi}n}$ and $\psi_{k,n} = h_{k,\epsilon_n}$. Note that $\psi_{k,n} \in C^{\infty}(\mathbb{R}^k)$ is C_{φ} -Lipschitz and $\|\psi_{k,n} - \psi_k\|_{\infty} \leq \frac{1}{n}$.

Let $\chi: \mathbb{R} \to \mathbb{R} \in C^{\infty}(\mathbb{R})$ be a smooth cutoff function such that $\chi(s) = 1$ on $s \in [-1, 1]$, $\chi(s) \in [0, 1]$ on $s \in (-4, -1) \cup (1, 4)$, and $\chi(s) = 0$ on $(-\infty, -4] \cup [4, \infty)$. Note that χ and its derivatives of any order are supported on [-4, 4].

We are now ready to define the sequence $\varphi_k : \mathcal{H} \times [0,1] \to \mathbb{R}$ by

$$\varphi_k(x,t) = \chi\left(\frac{\|P_k(x)\|_{\mathbb{R}^k}^2}{k^2}\right)\psi_{k,k}(P_k(x),t).$$

Hence, $\varphi_k(\cdot,t) \in \mathcal{A}$ since $u \to \chi\left(\frac{\|u\|_{\mathbb{R}^k}^2}{k^2}\right)$ and $\psi_{k,k}$ are smooth, $u \to \chi\left(\frac{\|u\|_{\mathbb{R}^k}^2}{k^2}\right)$ is compactly supported, and φ_k depends on x only through $P_k(x)$. It remains to verify the following assertions:

- 1. φ_k is uniformly bounded.
- 2. φ_k is uniformly Lipschitz.
- 3. φ_k converges to φ pointwisely.
- 4. $\limsup_{k} L_{\varphi_k(\cdot,t)}(x) \leq L_{\varphi(\cdot,t)}(x), \forall (x,t) \in \mathcal{H} \times [0,1].$

1.

$$|\varphi_k(x,t)| \le |\psi_{k,k}(P_k(x),t)| \le |\psi_k(P_k(x),t)| + \frac{1}{k} \le ||\varphi||_{\infty} + 1$$

Given the boundedness of φ , $\varphi_k(x,t)$ is uniformly bounded.

2. Note that

$$\forall u \in \mathbb{R}^d, \nabla_u \chi \left(\frac{\|u\|_{\mathbb{R}^k}^2}{k^2} \right) = \dot{\chi} \left(\frac{\|u\|_{\mathbb{R}^k}^2}{k^2} \right) \frac{2u}{k^2},$$

where $\dot{\chi}$ denotes the derivative of χ , and that $\nabla_u \chi \left(\frac{\|u\|_{\mathbb{R}^k}^2}{k^2} \right) = 0$ if $\|u\|_{\mathbb{R}^k}^2 > 4k^2$. When $\|u\|_{\mathbb{R}^k}^2 \le 4k^2$, $\|\nabla_u \chi \left(\frac{\|u\|_{\mathbb{R}^k}^2}{k^2} \right)\|_{\mathbb{R}^k} \le \|\dot{\chi}\|_{\infty} \frac{2}{k^2} \|u\|_{\mathbb{R}^k} \le \|\dot{\chi}\|_{\infty} \frac{4}{k}$. Therefore,

$$\begin{aligned} |\varphi_{k}(x,t) - \varphi_{k}(y,s)| &= \left| \chi \left(\frac{\|P_{k}(x)\|_{\mathbb{R}^{k}}^{2}}{k^{2}} \right) \psi_{k,k}(P_{k}(x),t) - \chi \left(\frac{\|P_{k}(y)\|_{\mathbb{R}^{k}}^{2}}{k^{2}} \right) \psi_{k,k}(P_{k}(y),s) \right| \\ &\leq \left| \chi \left(\frac{\|P_{k}(x)\|_{\mathbb{R}^{k}}^{2}}{k^{2}} \right) \left| |\psi_{k,k}(P_{k}(x),t) - \psi_{k,k}(P_{k}(y),s)| \right| \\ &+ \left| \chi \left(\frac{\|P_{k}(x)\|_{\mathbb{R}^{k}}^{2}}{k^{2}} \right) - \chi \left(\frac{\|P_{k}(y)\|_{\mathbb{R}^{k}}^{2}}{k^{2}} \right) \right| |\psi_{k,k}(P_{k}(y),s)| \\ &\leq C_{\varphi} \left(\|P_{k}(x) - P_{k}(y)\|_{\mathbb{R}^{k}}^{2} + |t - s|^{2} \right)^{\frac{1}{2}} \\ &+ \sup_{u \in \mathbb{R}^{k}} \left\| \nabla_{u}\chi \left(\frac{\|u\|_{\mathbb{R}^{k}}^{2}}{k^{2}} \right) \right\|_{\mathbb{R}^{k}} |\psi_{k,k}(P_{k}(y),s)| \|P_{k}(x) - P_{k}(y)\|_{\mathbb{R}^{k}} & (8) \\ &\leq C_{\varphi} \left(\|P_{k}(x) - P_{k}(y)\|_{\mathbb{R}^{k}}^{2} + |t - s|^{2} \right)^{\frac{1}{2}} \\ &+ \|\dot{\chi}\|_{\infty} \frac{4}{k} \|P_{k}(x) - P_{k}(y)\|_{\mathbb{R}^{k}} (\|\varphi\|_{\infty} + 1) \\ &\leq (C_{\varphi} + 4\|\dot{\chi}\|_{\infty} (\|\varphi\|_{\infty} + 1)) \left(\|P_{k}(x) - P_{k}(y)\|_{\mathbb{R}^{k}}^{2} + |t - s|^{2} \right)^{\frac{1}{2}} \\ &\leq (C_{\varphi} + 4\|\dot{\chi}\|_{\infty} (\|\varphi\|_{\infty} + 1)) \left(\|x - y\|_{\mathcal{H}}^{2} + |t - s|^{2} \right)^{\frac{1}{2}}, \end{aligned}$$

where we apply mean value theorem in \mathbb{R}^k in (8) and the uniform boundedness of $k \to \psi_{k,k}$ in (9).

3. Fix $(x,t) \in \mathcal{H} \times [0,1]$. We can find sufficiently large k such that $||x||_{\mathcal{H}} < k$. So $||P_k(x)||_{\mathbb{R}^k}^2 < k^2$ and $\chi\left(\frac{||P_k(x)||_{\mathbb{R}^k}^2}{k^2}\right) = 1$. Hence,

$$\begin{aligned} |\varphi_{k}(x,t) - \varphi(x,t)| &= |\psi_{k,k}(P_{k}(x),t) - \varphi(x,t)| \\ &\leq |\psi_{k,k}(P_{k}(x),t) - \psi_{k}(P_{k}(x),t)| + |\psi_{k}(P_{k}(x),t) - \varphi(x,t)| \\ &\leq ||\psi_{k,k} - \psi_{k}||_{\infty} + |\varphi(\pi_{k}(x),t) - \varphi(x,t)| \\ &\leq \frac{1}{k} + C_{\varphi} ||\pi_{k}(x) - x||_{\mathcal{H}}. \end{aligned}$$

Take $k \to \infty$ and pointwise convergence follows.

4. Fix $(x,t) \in \mathcal{H} \times [0,1]$ and $\epsilon \in (0,\frac{1}{2})$. We can find an integer $k_0 > 1$ such that $||x||_{\mathcal{H}} < \frac{k_0}{2}$, $\epsilon_{k_0} = \frac{1}{C_o k_0} < \epsilon$.

Then $\forall u \in B_{\epsilon}^{\mathcal{H}}(x)$, $\|u\|_{\mathcal{H}} \leq \|x\|_{\mathcal{H}} + \epsilon < k_0$, where $B_{\epsilon}^{\mathcal{H}}(x)$ is the ϵ -ball around x in \mathcal{H} . $\forall k > k_0$ and $\forall u \in B_{\epsilon}^{\mathcal{H}}(x)$, $\chi\left(\frac{\|P_k(u)\|_{\mathbb{R}^k}^2}{k^2}\right) = 1$. Therefore,

$$L_{\varphi_{k}(\cdot,t)}(x,\epsilon) = \sup_{u,v \in B_{\epsilon}^{\mathcal{H}}(x)} \frac{|\varphi_{k}(u,t) - \varphi_{k}(v,t)|}{\|u - v\|_{\mathcal{H}}}$$

$$= \sup_{u,v \in B_{\epsilon}^{\mathcal{H}}(x)} \frac{|\psi_{k,k}(P_{k}(u),t) - \psi_{k,k}(P_{k}(v),t)|}{\|u - v\|_{\mathcal{H}}}$$

$$= \sup_{u,v \in B_{\epsilon}^{\mathcal{H}}(x)} \frac{|\psi_{k,k}(P_{k}(u),t) - \psi_{k,k}(P_{k}(v),t)|}{\|P_{k}(u) - P_{k}(v)\|_{\mathbb{R}^{k}}} \frac{|P_{k}(u) - P_{k}(v)|_{\mathbb{R}^{k}}}{\|u - v\|_{\mathcal{H}}}$$

$$\leq \sup_{u,v \in B_{\epsilon}^{\mathcal{H}}(x)} \frac{|\psi_{k,k}(P_{k}(u),t) - \psi_{k,k}(P_{k}(v),t)|}{\|P_{k}(u) - P_{k}(v)\|_{\mathbb{R}^{k}}}$$

$$\leq \sup_{u,v \in B_{\epsilon}^{k}(P_{k}(x))} \frac{|\psi_{k,k}(u,t) - \psi_{k,k}(v,t)|}{\|u - v\|_{\mathbb{R}^{k}}}$$

$$= \sup_{u,v \in B_{\epsilon}^{k}(P_{k}(x))} \frac{|\int_{B_{\epsilon_{k}}(0)} \eta_{\epsilon_{k}}(y)(\psi_{k}(u - y, t) - \psi_{k}(v - y, t))dy|}{\|u - v\|_{\mathbb{R}^{k}}}$$

$$\leq \int_{B_{\epsilon_{k}}(0)} \eta_{\epsilon_{k}}(y) \sup_{u,v \in B_{\epsilon}^{k}(P_{k}(x))} \frac{|\psi_{k}(u - y, t) - \psi_{k}(v - y, t)|}{\|(u - y) - (v - y)\|_{\mathbb{R}^{k}}}dy$$

$$\leq \sup_{u,v \in B_{\epsilon+\epsilon_{k}}^{k}} \frac{|\psi_{k}(u,t) - \psi_{k}(v,t)|}{\|u - v\|_{\mathbb{R}^{k}}}$$

$$\leq \sup_{u,v \in B_{\epsilon+\epsilon_{k}}^{k}(\pi_{k}(x))} \frac{|\psi_{k}(u,t) - \psi_{k}(v,t)|}{\|u - v\|_{\mathbb{R}^{k}}}$$

$$\leq \sup_{u,v \in B_{\epsilon+\epsilon_{k}}^{k}(\pi_{k}(x))} \frac{|\varphi(u,t) - \varphi(v,t)|}{\|u - v\|_{\mathcal{H}}}$$

$$\leq L_{\varphi(\cdot,t)}(\pi_{k}(x), \epsilon + \epsilon_{k})$$

$$\leq L_{\varphi(\cdot,t)}(\pi_{k}(x), 2\epsilon),$$
(13)

where (10) follows from the fact that $\|P_k(u) - P_k(x)\|_{\mathbb{R}^k} \le \|u - x\|_{\mathcal{H}} < \epsilon$, and (11) holds because $(u - y) \in B^k_{\epsilon + \epsilon_k}(P_k(x))$. To justify (12), note that $\forall u, v \in B^k_{\epsilon}(P_k(x))$, we have

$$\left\| \sum_{i=1}^{k} u_i e_i - \pi_k(x) \right\|_{\mathcal{H}} = \|u - P_k(x)\|_{\mathbb{R}^k} \le \epsilon,$$

$$\left\| \sum_{i=1}^{k} u_i e_i - \sum_{i=1}^{k} v_i e_i \right\|_{\mathcal{H}} = \|u - v\|_{\mathbb{R}^k},$$

$$\varphi\left(\sum_{i=1}^{k} u_i e_i, t\right) = \psi_k(u, t), \varphi\left(\sum_{i=1}^{k} v_i e_i, t\right) = \psi_k(v, t),$$

i.e., $\forall u, v \in B_{\epsilon}^k(P_k(x))$ we can pick two points from $B_{\epsilon}^{\mathcal{H}}(\pi_k(x))$ such that the fractions in (11) and (12) achieve the same value. Lastly, (13) follows from our choice of k_0 .

Therefore, $\forall k > k_0$,

$$L_{\varphi_k(\cdot,t)}(x,\epsilon) \le L_{\varphi(\cdot,t)}(\pi_k(x),2\epsilon).$$

Let $\epsilon \to 0^+$ and we have

$$L_{\varphi_k(\cdot,t)}(x) \le L_{\varphi(\cdot,t)}(\pi_k(x)).$$

Apply upper-semicontinuity of $x \to L_{\varphi}(\cdot, t)$ and we have

$$\limsup_{k} L_{\varphi_{k}(\cdot,t)}(x) \leq \limsup_{k} L_{\varphi(\cdot,t)}(\pi_{k}(x)) \leq L_{\varphi(\cdot,t)}(x).$$

A.3 Superposition principles

In this section, we leverage the abstract framework of Theorem 3.4 in Stepanov and Trevisan [75] to establish the superposition principle in a separable Hilbert space. Intuitively, the principle states that any narrowly continuous curve of probability measures solving the continuity equation can be represented as a distribution over paths that solve the associated ODE. In this way, a statement about marginal laws is transformed into an ODE statement about sample trajectories. The former specifies the object that neural networks are trained to satisfy implicitly, while the latter specifies the mechanism through which new data are sampled with a trained model. By working directly with curves, we avoid introducing a Radon–Nikodym derivative between conditional and marginal laws as required in the FFM framework [37]. This pathwise view allows us to bypass the absolute-continuity assumption inherent to FFM.

A.3.1 From continuity equation to ODE solutions

Let $C([0,1];\mathcal{H})$ be the space of continuous function from [0,1] to \mathcal{H} . Let $E_t:z\in C([0,1];\mathcal{H})\to z(t)\in \mathcal{H}$ be the evaluation map, i.e., $E_t(z)=z(t)$. Let $(\cdot)_\#$ denote the pushforward. Specifically, if $z\in C([0,1];\mathcal{H})$ has law η , i.e, a probability measure on the space $C([0,1];\mathcal{H})$, then $((E_t)_\#\eta)(A)=\eta(z\in C([0,1];\mathcal{H}):E_t(z)=z(t)\in A)$ for a measurable set A in \mathcal{H} . Recall that $z:[0,1]\to \mathcal{H}$ is an absolutely continuous curve if and only if z is differentiable almost everywhere on [0,1] and \dot{z} is in $L_1([0,1];\mathcal{H})$ (Remark 1.1.3 of Ambrosio et al. [2]). We first define the narrow continuity of measures

Definition 15. Let $\{\mu_t\}$ be a family of Borel probability measures on a separable Hilbert space \mathcal{H} , indexed by $t \in [0,1]$. We say that $\{\mu_t\}$ is a narrowly continuous curve if and only if the map $t \mapsto \int f d\mu_t$ is continuous for all bounded continuous functions $f : \mathcal{H} \to \mathbb{R}$.

We say a probability measure η is concentrated on a set A if $\eta(A) = 1$.

Now we move on to invoke Theorem 3.4 of Stepanov and Trevisan [75] to develop the superposition principle.

Theorem 16. Let $\{\mu_t\}$ be a narrowly continuous curve of Borel probability measures on the separable Hilbert space \mathcal{H} . Let v_t be Borel vector fields such that $\int_{[0,1]} \int_{\mathcal{H}} ||v_t(x)|| d\mu_t dt < \infty$. Suppose (v_t, μ_t) solves the continuity equation in the sense that for all $\varphi \in \mathcal{A}$,

$$\frac{d}{dt} \int \varphi d\mu_t = \int \langle \nabla \varphi, v_t \rangle d\mu_t. \tag{14}$$

There exists a probability measure η over $C([0,1];\mathcal{H})$ concentrated on absolutely continuous curves $z:[0,1]\to\mathcal{H}$ such that $(E_t)_{\#}\eta=\mu_t$ for every $t\in[0,1]$ and one has

$$\frac{d}{dt}\varphi(z(t)) = (V_t\varphi)(z(t)) \tag{15}$$

for η -a.e. z and a.e. $t \in [0,1]$, for all $\varphi \in A$.

Proof. Recall that the operator V_t is defined by $(V_t\varphi)(x) = \langle \nabla \varphi(x), v_t(x) \rangle$. This directly satisfies condition (3.1) of Stepanov and Trevisan [75].

Note that constant functions are members of A.

By Lemma 12, we have $|(V_t\varphi)(x)| = |\langle \nabla \varphi(x), v_t(x) \rangle| \le ||v_t(x)|| L_{\varphi}(x)$, which verifies Inequality (3.2) in Stepanov and Trevisan [75].

The assumption $\int_{[0,1]} \int_{\mathcal{H}} ||v_t(x)|| d\mu_t dt < \infty$ corresponds exactly to condition (3.3) of Stepanov and Trevisan [75].

Condition (3.4) requires that the continuity equation (14) is satisfied by $\{\mu_t\}$ in the sense of distributions on [0,1], which holds by assumption.

Finally, Lemma 14 establishes that assumption A_1 in Stepanov and Trevisan [75] is satisfied.

With all required conditions verified, we may invoke the superposition principle, Theorem 3.4 of [75], so η exists as a finite Borel measure. Notice that $1 = \mu_t(\mathcal{H}) = \eta(\{z \in C([0,1];\mathcal{H}) : z(t) \in \mathcal{H}\}) = \eta(C([0,1];\mathcal{H}))$. So η is indeed a probability measure.

To apply the superposition principle, we will show that Equation (14) is satisfied by the expected velocity field $v^{\mathbb{X}}$ and the marginal distributions of the process X_t . This will allow us to conclude that η corresponds to the law of the induced rectified flow. Before proceeding, we reformulate the ODE (15) into a more familiar form in the following corollary.

Corollary 17. Let $\{\mu_t\}$ be a narrowly continuous curve of Borel probability measures on the separable Hilbert space \mathcal{H} . Let v_t be Borel vector fields such that $\int_{[0,1]} \int_H ||v_t(x)|| d\mu_t dt < \infty$. Suppose (v_t, μ_t) solves the continuity equation in a sense that for all $\varphi \in \mathcal{A}$,

$$\frac{d}{dt} \int \varphi d\mu_t = \int \langle \nabla \varphi, v_t \rangle d\mu_t.$$

There exists a probability measure η over $C([0,1];\mathcal{H})$ concentrated on absolutely continuous curves $z:[0,1]\to\mathcal{H}$ such that $(E_t)_{\#}\eta=\mu_t$ for every $t\in[0,1]$ and one has

$$z(t) = z(0) + \int_0^t v_s(z(s))ds$$

for η -a.e. z and $\forall t \in [0, 1]$.

Proof. Fix $R \in \mathbb{R}_{>0}$. Let $\chi_R \in C^{\infty}(\mathbb{R})$ such that $\chi_R(s) = 1$ if $|s| \leq R$ and $\chi_R(s) = 0$ if $|s| \geq 2R$. We denote its derivative by $\dot{\chi}_R$. Let $\{e_k\}_{k=1}^{\infty}$ be an orthonormal basis of \mathcal{H} .

Fix k. Let $\varphi_{k,R}(x) = \chi_R(\langle x, e_k \rangle) \langle x, e_k \rangle$. Note that $\varphi_{k,R} \in \mathcal{A}$ and if $|\langle x, e_k \rangle| < R$,

$$\nabla \varphi_{k,R}(x) = \chi_R(\langle x, e_k \rangle) e_k + \dot{\chi}_R(\langle x, e_k \rangle) \langle x, e_k \rangle e_k$$
$$= e_k.$$

By applying Theorem 16, for η -a.e. z and a.e. $t \in [0,1]$,

$$\frac{d}{dt}\varphi_{k,R}(z(t)) = (V_t\varphi_{k,R})(z(t)).$$

If $|\langle z(t), e_k \rangle| < R$, following the chain rule on Hilbert space (Theorem 2.1 of Coleman [10]),

$$\frac{d}{dt}\varphi_{k,R}(z(t)) = \langle \dot{z}(t), \nabla \varphi_{k,R}(z(t)) \rangle
= \langle \dot{z}(t), e_k \rangle,$$
(16)

and

$$(V_t \varphi_{k,R})(z(t)) = \langle \nabla \varphi_{k,R}(z(t)), v_t(z(t)) \rangle$$

= $\langle e_k, v_t(z(t)) \rangle$. (17)

For each fixed k and R, we denote

$$N_{k,R} = \bigg\{ (z,t) : \dot{z}(t) \text{ doesn't exist or } \frac{d}{dt} \varphi_{k,R}(z(t)) \neq (V_t \varphi_{k,R})(z(t)) \bigg\}.$$

Note $N_{k,R}$ has measure 0. Let $R_n=n$ and set $N_\infty:=\bigcup_{k=1}^\infty\bigcup_{n=1}^\infty N_{k,R_n}$. Hence, N_∞ , as a countable union of null sets, is also of measure 0 under $\eta\otimes\lambda$, where λ is the Lebesgue measure on [0,1]. Let $(z,t)\notin N_\infty$. For each k, we can choose n such that $R_n=n>|\langle z(t),e_k\rangle|$. By (16) and (17), for η -a.e. z and a.e. $t\in[0,1]$, $\langle\dot{z}(t),e_k\rangle=\langle e_k,v_t(z(t))\rangle$ for all positive integers k.

So
$$\dot{z}(t) = v_t(z(t))$$
 for η -a.e. z and $a.e.$ $t \in [0,1]$. Therefore, for η -a.e. z , $\forall t \in [0,1], z(t) = z(0) + \int_0^t v_s(z(s)) ds$.

A.3.2 Verification of Assumption

Before we move on to the proof of the main theorem, we show that Assumption 2 holds under mild conditions. Recall that Φ is the solution map defined in Assumption 2. The law of the random process z_t described by $\dot{z}(t) = v_t(z(t))$ with initial value $z(0) \sim \mu_0$ is $\Phi_{\#}\mu_0$, *i.e.*, for a Borel measurable set $B \subset C([0,1];\mathcal{H})$, $(\Phi_{\#}\mu_0)(B) = \mu_0(\Phi^{-1}(B))$.

Proposition 18. Let $v_t(\cdot)$ be continuous in an open set $\mathcal{U} \supset [0,1] \times \mathcal{H}$. If there exists a continuous $k(\cdot) \in L^1((0,1))$ such that

$$||v_t(x_1) - v_t(x_2)|| \le k(t)||x_1 - x_2||, \forall t \in (0, 1), x_1, x_2 \in \mathcal{H},$$

then Assumption 2 holds.

Proof. The existence and uniqueness are implied by Theorem 16.1 and Theorem 16.2 of [63].

Let $u_i \in \mathcal{H}$ and $z_i = u_i + \int_0^t v(s, z_i(s)) ds$, $i \in \{1, 2\}$. Then

$$||z_1(t) - z_2(t)||_{\mathcal{H}} \le ||u_1 - u_2||_{\mathcal{H}} + \int_0^t k(s)||z_1(s) - z_2(s)||_{\mathcal{H}} ds.$$

Applying Gronwall's inequality, $\forall t \in [0, 1]$,

$$||z_1(t) - z_2(t)||_{\mathcal{H}} \le ||u_1 - u_2||_{\mathcal{H}} \exp\left(\int_0^t k(s)ds\right).$$

Hence.

$$\sup_{t \in [0,1]} \|z_1(t) - z_2(t)\|_{\mathcal{H}} \le \|u_1 - u_2\|_{\mathcal{H}} \exp\left(\int_0^1 k(s)ds\right).$$

Therefore, the solution map is continuous.

While there is no Lipschitz guarantee for generic neural networks, modern architectures can be designed to satisfy global Lipschitz conditions. Examples include spectral normalization [61], exact convolution bounds [71], and Jacobian regularization [24].

A.3.3 The law of ODE solutions

We verify that the law η produced by the superposition principle in Corollary 17 coincides with the law of the random process described by $\dot{z}(t) = v_t(z(t))$ with initial value $z(0) \sim \mu_0$.

Theorem 19. Let v_s be a Borel vector field on \mathcal{H} and consider the absolutely continuous curves $z:[0,1]\to\mathcal{H}$ satisfying

$$z(t) = z(0) + \int_0^t v_s(z(s))ds, \forall t \in [0, 1].$$
(18)

Suppose Assumption 2 holds for $(s,z) \to v_s(z)$ with the solution map denoted by Φ and $\{\mu_t\}$ is a narrowly continuous curve of Borel probability measures on the separable Hilbert space \mathcal{H} . If there exists a probability measure η over $C([0,1];\mathcal{H})$ concentrated on the curves z satisfying (18) such that $(E_t)_{\#}\eta = \mu_t$ for every $t \in [0,1]$, then $\eta = \Phi_{\#}\mu_0$.

Proof. Let $A \subset C([0,1]; \mathcal{H})$ be a measurable set.

$$\eta(A) = \eta(A \cap \Phi(\mathcal{H})) \tag{19}$$

$$= \eta(\{\gamma \in \Phi(\mathcal{H}) : \gamma(0) \in \Phi^{-1}(A)\})$$

$$= \eta(\{\gamma \in \Phi(\mathcal{H}) : E_0(\gamma) \in \Phi^{-1}(A)\})$$

$$= ((E_0)_{\#}\eta)(\Phi^{-1}(A))$$

$$= \mu_0(\Phi^{-1}(A))$$

$$= \Phi_{\#}\mu_0(A)$$

We have (19) and (20) because η concentrates on the solutions of the ODE, *i.e.*, η is of 0 measure outside $\Phi(\mathcal{H})$.

A.4 Proof of main theorem

Now we're ready to prove the main theorem. Given a stochastic process \mathbb{X} , we let $v^{\mathbb{X}}$ be the expected velocity defined in Definition 1.

Theorem 20 (Restatement of Theorem 5). Assume X is rectifiable and $\{Z_t\}$ is its induced rectified flow. Then $Z_t = X_t$ in distribution for all $t \in [0, 1]$.

Proof. Recall that A is the cylindrical functions on \mathcal{H} . Let $\mathbb{E}_{\mathbb{X}}$ be the integral w.r.t. the path measure of process \mathbb{X} . \mathbb{E}_{X_t} is the expectation w.r.t. the marginal X_t . $\forall \varphi \in \mathcal{A}$,

$$\frac{d}{dt} \mathbb{E}_{\mathbb{X}}[\varphi(X_{t})] = \lim_{h \to 0} \frac{\mathbb{E}_{\mathbb{X}}[\varphi(X_{t+h})] - \mathbb{E}_{\mathbb{X}}[\varphi(X_{t})]}{h}$$

$$= \lim_{h \to 0} \mathbb{E}_{\mathbb{X}} \left[\frac{\varphi(X_{t+h}) - \varphi(X_{t})}{h} \right]$$

$$= \mathbb{E}_{\mathbb{X}} \left[\lim_{h \to 0} \frac{\varphi(X_{t+h}) - \varphi(X_{t})}{h} \right]$$

$$= \mathbb{E}_{\mathbb{X}} \left[\frac{d}{dt} \varphi(X_{t}) \right]$$

$$= \mathbb{E}_{\mathbb{X}} \left[\left\langle \nabla \varphi(X_{t}), \dot{X}_{t} \right\rangle \right]$$

$$= \mathbb{E}_{X_{t}} \mathbb{E}_{\mathbb{X}|X_{t}} \left[\left\langle \nabla \varphi(X_{t}), \dot{X}_{t} \right\rangle \right]$$

$$= \mathbb{E}_{X_{t}} \left[\left\langle \nabla \varphi(X_{t}), \mathbb{E}_{\mathbb{X}|X_{t}} \left[\dot{X}_{t} \right] \right\rangle \right]$$

$$= \mathbb{E}_{X_{t}} \left[\left\langle \nabla \varphi(X_{t}), v^{\mathbb{X}}(X_{t}, t) \right\rangle \right].$$
(21)

Note that following the mean-value theorem (Corollary 3.2 of Coleman [10]) and Assumption 3,

$$\left| \frac{\varphi(X_{t+h}) - \varphi(X_t)}{h} \right| \le \|\nabla \varphi\|_{\infty} \left\| \frac{X_{t+h} - X_t}{h} \right\| \le \|\nabla \varphi\|_{\infty} \sup_{s \in [0,1]} \left| \dot{X}_s \right| < \infty$$

So for all h, $\left| \frac{\varphi(X_{t+h}) - \varphi(X_t)}{h} \right|$ is bounded above and (21) follows the dominated convergence theorem (Theorem E.6. of Cohn [9]). (22) follows the chain rule (Theorem 2.1 of Coleman [10]). (23) is a direct consequence of Theorem E.11 of Cohn [9].

Let μ_t denote the marginal distribution of X_t . Then, $\frac{d}{dt}\mathbb{E}_{\mathbb{X}}[\varphi(X_t)] = \int \langle \nabla \varphi(x), v^{\mathbb{X}}(x,t) \rangle d\mu_t(x)$. One the other hand, $\frac{d}{dt}\mathbb{E}_{\mathbb{X}}[\varphi(X_t)] = \frac{d}{dt}\int \varphi(x)d\mu_t(x)$. So $(v^{\mathbb{X}}(x,t),\mu_t)$ solves the continuity equation in Corollary 17. Hence, there exists a probability measure η on $C([0,1];\mathcal{H})$ concentrated on absolutely continuous curves such that $(E_t)_{\#}\eta = \mu_t$ for every $t \in [0,1]$ and

$$z(t) = z(0) + \int_0^t v^{\mathbb{X}}(s, z(s))ds.$$

Theorem 19 guarantees that $\eta = \Phi_{\#}\mu_0$, which is the law of the rectified flow $\{Z_t\}$. Therefore, $(E_t)_{\#}\eta = \mu_t$ implies that $Z_t = X_t$ in distribution.

A.5 Probability flow ODE

In this section, we review Gaussian measures in separable Hilbert spaces as a prerequisite for the proof of Proposition 7.

A.5.1 Gaussian Measure in Hilbert Space

A linear operator Q on \mathcal{H} is called *positive* if $\langle Qx,x\rangle\geq 0$ for all $x\in\mathcal{H}$, and *strictly positive* if $\langle Qx,x\rangle>0$ for all $x\in\mathcal{H}\setminus\{0\}$. Let $\{\zeta_i\}$ be an orthonormal basis of \mathcal{H} , and let Q be a positive bounded linear operator. The trace of Q is defined as $\mathrm{Tr}(Q)=\sum_{k=1}^{\infty}\langle Q\zeta_k,\zeta_k\rangle$, which is independent of the choice of orthonormal basis. A self-adjoint, positive, bounded, linear operator Q is called *trace class* if and only if $\mathrm{Tr}(Q)<\infty$.

Following Da Prato and Zabczyk [13], a Borel probability measure μ on \mathcal{H} is called *Gaussian* if for every $h \in \mathcal{H}$ and Borel set $B \subset \mathbb{R}$, the pushforward measure $B \mapsto \mu(\{x \in \mathcal{H} : \langle x, h \rangle \in B\})$ is a Gaussian measure on \mathbb{R} . Any such Gaussian measure on \mathcal{H} admits a unique mean vector $m \in \mathcal{H}$ and a unique self-adjoint positive bounded linear operator Q such that

$$\mathbb{E}_{x \sim \mu}[\langle h, x \rangle] = \langle m, h \rangle, \quad \text{and} \quad \mathbb{E}_{x \sim \mu}[\langle h_1, x - m \rangle \langle h_2, x - m \rangle] = \langle Qh_1, h_2 \rangle,$$

for all $h, h_1, h_2 \in \mathcal{H}$ [13]. The operator Q is called the *covariance operator* of a Gaussian measure on \mathcal{H} , and it is always trace class (see Section 2.3.1 of [13]). When Q is a covariance operator, there exists a complete orthonormal system $\{\zeta_k\}_{k=1}^{\infty}$ of eigenvectors of Q with corresponding eigenvalues $\{\lambda_k\}_{k=1}^{\infty}$ [11, 62].

We define the Cameron–Martin space following Pidstrigach et al. [65]. For a Gaussian measure $\mu = \mathcal{N}(0,Q)$ on a Hilbert space \mathcal{H} with a strictly positive Q, the Cameron–Martin space \mathcal{H}_Q is defined as

$$\mathcal{H}_Q \coloneqq Q^{1/2}(\mathcal{H}), \quad \text{with inner product} \quad \langle f, g \rangle_{\mathcal{H}_Q} = \langle Q^{-1/2} f, Q^{-1/2} g \rangle_{\mathcal{H}}.$$

For completeness, we include the definition of an \mathcal{H} -valued Q-Wiener process:

Definition 21. Let Q be a trace-class, positive, self-adjoint operator on \mathcal{H} . A stochastic process $W = \{W_t\}_{t \in [0,T]}$ taking values in \mathcal{H} is called a standard Q-Wiener process if:

- 1. $W_0 = 0$,
- 2. W has continuous trajectories,
- 3. W has independent increments,
- 4. $W_t W_s \sim \mathcal{N}(0, (t-s)Q)$ for all $0 \le s \le t \le T$.

A.5.2 Proof of Proposition 7

Lemma 22. Let Q be a strictly positive trace-class covariance operator and $\kappa \in \mathbb{R}_{>0}$. Let μ be a Gaussian measure with mean m and a strictly positive trace-class covariance operator $C = \kappa Q$. Then,

$$\rho_{\mathcal{H}_Q}^{\mu}(x) = \frac{m-x}{\kappa}$$

Remark 23. Note that although $m-x \in \mathcal{H}$ does not necessarily belong to \mathcal{H}_Q , $\left\langle \rho_{\mathcal{H}_Q}^{\mu}(x), h \right\rangle_{\mathcal{H}_Q}$ is still well-defined for $h \in \mathcal{H}_Q$. This has been mentioned briefly in Remark 2 of Helin and Burger [28] and Remark 8 of Lasanen [43]. To see this in more detail, without loss of generality, assume m=0. Let $\{\zeta_i\}$ be an orthonormal basis of \mathcal{H} consisting of eigenvectors of Q, with corresponding

eigenvalues be $\{\lambda_i\}$. Let N_1, N_2 be integers and $N_2 > N_1$. Then,

$$\begin{split} &\mathbb{E}_{z \sim \mu} \left[\left| \left\langle \sum_{i=N_1+1}^{N_2} \frac{\langle z, \zeta_i \rangle_{\mathcal{H}}}{\sqrt{\lambda_i}} \zeta_i, Q^{-\frac{1}{2}} h \right\rangle_{\mathcal{H}} \right|^2 \right] \\ &= \mathbb{E}_{z \sim \mu} \left[\left| \left\langle \sum_{i=N_1+1}^{N_2} \frac{\langle z, \zeta_i \rangle_{\mathcal{H}}}{\sqrt{\lambda_i}} \zeta_i, \sum_{i=1}^{\infty} \left\langle Q^{-\frac{1}{2}} h, \zeta_i \right\rangle_{\mathcal{H}} \zeta_i \right\rangle \right|^2 \right] \\ &= \mathbb{E}_{z \sim \mu} \left[\left| \sum_{i=N_1+1}^{N_2} \frac{\langle z, \zeta_i \rangle_{\mathcal{H}}}{\sqrt{\lambda_i}} \left\langle Q^{-\frac{1}{2}} h, \zeta_i \right\rangle_{\mathcal{H}} \right|^2 \right] \\ &= \sum_{i,j=N_1+1}^{N_2} \mathbb{E}_{z \sim \mu} \left[\frac{\langle z, \zeta_i \rangle_{\mathcal{H}} \langle z, \zeta_j \rangle_{\mathcal{H}}}{\sqrt{\lambda_i \lambda_j}} \left\langle Q^{-\frac{1}{2}} h, \zeta_i \right\rangle_{\mathcal{H}} \left\langle Q^{-\frac{1}{2}} h, \zeta_j \right\rangle_{\mathcal{H}} \right] \\ &= \sum_{i,j=N_1+1}^{N_2} \left[\frac{\left\langle C\zeta_i, \zeta_j \right\rangle_{\mathcal{H}}}{\sqrt{\lambda_i \lambda_j}} \left\langle Q^{-\frac{1}{2}} h, \zeta_i \right\rangle_{\mathcal{H}} \left\langle Q^{-\frac{1}{2}} h, \zeta_j \right\rangle_{\mathcal{H}} \right] \\ &= \kappa \sum_{i,j=N_1+1}^{N_2} \left[\frac{\lambda_i \langle \zeta_i, \zeta_j \rangle_{\mathcal{H}}}{\sqrt{\lambda_i \lambda_j}} \left\langle Q^{-\frac{1}{2}} h, \zeta_i \right\rangle_{\mathcal{H}} \left\langle Q^{-\frac{1}{2}} h, \zeta_j \right\rangle_{\mathcal{H}} \right] \\ &= \kappa \sum_{i=N_1+1}^{N_2} \left| \left\langle Q^{-\frac{1}{2}} h, \zeta_i \right\rangle_{\mathcal{H}} \right|^2 \end{split}$$

Note that $Q^{-\frac{1}{2}}h \in \mathcal{H}$. So $\sum_{i=1}^{n} \left\langle Q^{-\frac{1}{2}}h, \zeta_{i} \right\rangle_{\mathcal{H}} \zeta_{i}$ is Cauchy. Hence, $\left\langle \sum_{i=1}^{n} \frac{\langle z, \zeta_{i} \rangle_{\mathcal{H}}}{\sqrt{\lambda_{i}}} \zeta_{i}, Q^{-\frac{1}{2}}h \right\rangle_{\mathcal{H}}$ is Cauchy in $L_{2}(\mu)$. Hence, for $z \in \mathcal{H}$, $\langle z, h \rangle_{\mathcal{H}_{Q}} := \lim_{n} \left\langle \sum_{i=1}^{n} \frac{\langle z, \zeta_{i} \rangle_{\mathcal{H}}}{\sqrt{\lambda_{i}}} \zeta_{i}, Q^{-\frac{1}{2}}h \right\rangle_{\mathcal{H}}$ is well-defined in $L_{2}(\mu)$.

Proof. It is sufficient to show

$$\int_{\mathcal{H}} \partial_h F(x) d\mu(x) = -\int_{\mathcal{H}} F(x) \langle \kappa^{-1}(m-x), h \rangle_{\mathcal{H}_Q} d\mu(x)$$
 (24)

Recall that $\{\zeta_i\}$ is an orthonormal basis of \mathcal{H} consisting of eigenvectors of Q. Let the corresponding eigenvalues be $\{\lambda_i\}$, and F is a cylindrical function. Define the projection operator $P_k: \mathcal{H}_Q \to \mathbb{R}^d, P_k(x) = [\langle x, \zeta_1 \rangle, \ldots, \langle x, \zeta_k \rangle]^{tr}$. Let $Y = P_k(X)$ where $X \sim \mathcal{N}(0, C)$. Then $Y \sim \mu^{(k)} \coloneqq \mathcal{N}(m^{(k)}, \Sigma^{(k)})$ where $m^{(k)} \in \mathbb{R}^k, \Sigma^{(k)} \in \mathbb{R}^{k \times k}, m_i^{(k)} = \langle m, \zeta_i \rangle$, and $\Sigma_{ij}^{(k)} = \langle C\zeta_j, \zeta_i \rangle$, following Lemma 2.2.2 of Bogachev [4] and the characterizations of Gaussian measure on Hilbert space in Na et al. [62]. We first evaluate the Gâteaux differential $\partial_h F(x)$:

$$\partial_h F(x) = \lim_{\delta \to 0} \frac{F(x + \delta h) - F(x)}{\delta}$$

$$= \lim_{\delta \to 0} \frac{f(P_k(x + \delta h)) - f(P_k(x))}{\delta}$$

$$= \lim_{\delta \to 0} \frac{f(P_k(x) + \delta P_k(h)) - f(P_k(x))}{\delta}$$

$$= \partial_{P_k(h)} f(P_k(x))$$

$$= \langle \nabla f(P_k(x)), P_k(h) \rangle_{\mathbb{R}^k},$$

where the last equality follows the property of Gâteaux differential (Chapter 2 appendix, [10]).

Hence,

$$\int_{\mathcal{H}} \partial_h F(x) d\mu(x) = \int_{\mathcal{H}} \langle \nabla f(P_k(x)), P_k(h) \rangle_{\mathbb{R}^k} d\mu(x)
= \int_{\mathbb{R}^k} \langle \nabla f(y), P_k(h) \rangle_{\mathbb{R}^k} d\mu^{(k)}(y)
= \langle \mathbb{E}_{Y \sim \mu^{(k)}} [\nabla f(Y)], P_k(h) \rangle_{\mathbb{R}^k}.$$

Recall that $\Sigma_{ij}^{(k)}=\langle C\zeta_j,\zeta_i\rangle=\lambda_i\mathbbm{1}_{i=j}$ and C is strictly positive. So $\Sigma^{(k)}$ is invertible. By applying Stein's Identity [55], we have

$$\mathbb{E}_{Y \sim \mu^{(k)}}[\nabla f(Y)] = [\Sigma^{(k)}]^{-1} \mathbb{E}_{Y \sim \mu^{(k)}}[f(Y)(Y - m^{(k)})].$$

Hence.

$$\begin{split} \int_{\mathcal{H}} \partial_h F(x) d\mu(x) &= \left\langle \mathbb{E}_{Y \sim \mu^{(k)}} [\nabla f(Y)], P_k(h) \right\rangle_{\mathbb{R}^k} \\ &= \left\langle [\Sigma^{(k)}]^{-1} \mathbb{E}_{Y \sim \mu^{(k)}} [f(Y)(Y - m^{(k)})], P_k(h) \right\rangle_{\mathbb{R}^k} \\ &= \mathbb{E}_{Y \sim \mu^{(k)}} \Big[f(Y) \Big\langle [\Sigma^{(k)}]^{-1} (Y - m^{(k)}), P_k(h) \Big\rangle_{\mathbb{R}^k} \Big]. \end{split}$$

Now that the left-hand side of (24) has been reduced to an expectation of an inner product in \mathbb{R}^k , we apply a similar procedure to the right-hand side. Let $\pi_k h = \sum_{i=1}^k \langle h, \zeta_i \rangle_{\mathcal{H}} \zeta_i$ and $h^{\perp} := h - \pi_k h$. Then,

$$\mathbb{E}_{X \sim \mu} \Big[F(X) \big\langle \kappa^{-1}(X - m), h \big\rangle_{\mathcal{H}_Q} \Big]$$

$$= \mathbb{E}_{X \sim \mu} \Big[F(X) \big\langle \kappa^{-1}(X - m), \pi_k h \big\rangle_{\mathcal{H}_Q} \Big] + \mathbb{E}_{X \sim \mu} \Big[F(X) \big\langle \kappa^{-1}(X - m), h^{\perp} \big\rangle_{\mathcal{H}_Q} \Big].$$

It is sufficient to prove (24) by showing

$$\mathbb{E}_{Y \sim \mu^{(k)}} \left[f(Y) \left\langle [\Sigma^{(k)}]^{-1} (Y - m^{(k)}), P_k(h) \right\rangle_{\mathbb{R}^k} \right] = \mathbb{E}_{X \sim \mu} \left[F(X) \left\langle \kappa^{-1} (X - m), \pi_k h \right\rangle_{\mathcal{H}_Q} \right]$$
(25)

and

$$\mathbb{E}_{X \sim \mu} \left[F(X) \left\langle \kappa^{-1} (X - m), h^{\perp} \right\rangle_{\mathcal{H}_{Q}} \right] = 0.$$
 (26)

We first show (25). Let $S^{(k)} = \left\langle \kappa^{-1}(X-m), \pi_k h \right\rangle_{\mathcal{H}_O}$. Hence,

$$S^{(k)} = \left\langle \kappa^{-1} Q^{-\frac{1}{2}} (X - m), Q^{-\frac{1}{2}} \pi_k h \right\rangle_{\mathcal{H}}$$
$$= \left\langle X - m, \kappa^{-1} Q^{-1} \pi_k h \right\rangle_{\mathcal{H}}.$$

Note that $Q^{-1}\pi_k h$ is well defined as it is supported on only a finite number of eigenvectors. So $S^{(k)}$ is a Gaussian random variable on \mathbb{R} , by definition of Gaussian measure on \mathcal{H} .

Following the definition of the covariance operator Q (Lemma 2.15 of Da Prato and Zabczyk [13]),

$$\operatorname{Cov}(S^{(k)}, Y_j - m_j^{(k)}) = \mathbb{E}_{X \sim \mu} [\langle X - m, \kappa^{-1} Q^{-1} \pi_k h \rangle_{\mathcal{H}} \langle X - m, \zeta_j \rangle_{\mathcal{H}}]$$

$$= \langle \kappa Q(\kappa^{-1} Q^{-1}) \pi_k h, \zeta_j \rangle_{\mathcal{H}}$$

$$= \langle \pi_k h, \zeta_j \rangle_{\mathcal{H}}$$

$$= \langle h, \zeta_j \rangle_{\mathcal{H}}.$$

Hence, we can apply the conditional mean estimator for a joint Gaussian distribution (Theorem 3 of Holt and Nguyen [32]),

$$\mathbb{E}[S^{(k)} \mid Y] = \mathbb{E}[S^{(k)}] + [\langle h, \zeta_1 \rangle_{\mathcal{H}}, \dots, \langle h, \zeta_k \rangle_{\mathcal{H}}] [\Sigma^{(k)}]^{-1} (Y - m^{(k)})$$
$$= \left\langle [\Sigma^{(k)}]^{-1} (Y - m^{(k)}), P_k(h) \right\rangle_{\mathbb{R}^k}.$$

Note F(X) is measurable by $\sigma(Y)$.

$$\begin{split} \mathbb{E}_{X \sim \mu}[F(X)S^{(k)}] &= \mathbb{E}_{Y \sim \mu^{(k)}} \left[\mathbb{E}[F(X)S^{(k)} \mid Y] \right] \\ &= \mathbb{E}_{Y \sim \mu^{(k)}} \left[f(Y)\mathbb{E}[S^{(k)} \mid Y] \right] \\ &= \mathbb{E}_{Y \sim \mu^{(k)}} \left[f(Y) \Big\langle [\Sigma^{(k)}]^{-1} (Y - m^{(k)}), P_k(h) \Big\rangle_{\mathbb{R}^k} \right]. \end{split}$$

It remains to show (26). Similarly, we define $S^{\perp} := \langle \kappa^{-1}(X-m), h^{\perp} \rangle_{\mathcal{H}_Q} = \langle \kappa^{-1}Q^{-\frac{1}{2}}(X-m), Q^{-\frac{1}{2}}h^{\perp} \rangle_{\mathcal{H}}$. Then,

$$S^{\perp} = \left\langle \kappa^{-1} \sum_{i=1}^{\infty} \frac{\langle X - m, \zeta_i \rangle_{\mathcal{H}}}{\sqrt{\lambda_i}} \zeta_i, \sum_{i>k} \frac{\left\langle h^{\perp}, \zeta_i \right\rangle_{\mathcal{H}}}{\sqrt{\lambda_i}} \zeta_i \right\rangle_{\mathcal{H}}$$
$$= \kappa^{-1} \sum_{i>k} \frac{1}{\lambda_i} \langle X - m, \zeta_i \rangle_{\mathcal{H}} \langle h^{\perp}, \zeta_i \rangle_{\mathcal{H}}$$

For $j \leq k$,

$$\begin{split} \operatorname{Cov}(S^{\perp}, Y_j - m_j^{(k)}) &= \mathbb{E}_{X \sim \mu} \left[\kappa^{-1} \sum_{i > k} \frac{1}{\lambda_i} \langle X - m, \zeta_i \rangle_{\mathcal{H}} \langle h^{\perp}, \zeta_i \rangle_{\mathcal{H}} \langle X - m, \zeta_j \rangle_{\mathcal{H}} \right] \\ &= \kappa^{-1} \sum_{i > k} \frac{1}{\lambda_i} \langle h^{\perp}, \zeta_i \rangle_{\mathcal{H}} \mathbb{E}_{X \sim \mu} \left[\langle X - m, \zeta_i \rangle_{\mathcal{H}} \langle X - m, \zeta_j \rangle_{\mathcal{H}} \right] \\ &= \kappa^{-1} \sum_{i > k} \frac{1}{\lambda_i} \langle h^{\perp}, \zeta_i \rangle_{\mathcal{H}} \langle \zeta_i, \zeta_j \rangle_{\mathcal{H}} \\ &= 0. \end{split}$$

Again, by Theorem 3 of Holt and Nguyen [32],

$$\begin{split} \mathbb{E}[S^{\perp} \mid Y] &= \mathbb{E}[S^{\perp}] + [\text{Cov}(S^{\perp}, Y_1 - m_1^{(k)}), \dots, \text{Cov}(S^{\perp}, Y_k - m_k^{(k)})][\Sigma^{(k)}]^{-1}(Y - m^{(k)}) = 0. \\ \text{So } \mathbb{E}_{X \sim \mu}[F(X)S^{\perp}] &= \mathbb{E}_{Y \sim \mu^{(k)}}[\mathbb{E}[f(Y)S^{\perp} \mid Y]] = \mathbb{E}_{Y \sim \mu^{(k)}}[f(Y)\mathbb{E}[S^{\perp} \mid Y]] = 0. \end{split}$$

Therefore,

$$\int_{\mathcal{H}} \partial_h F(x) d\mu(x) = -\int_{\mathcal{H}} F(x) \langle \kappa^{-1}(m-x), h \rangle_{\mathcal{H}_Q} d\mu(x).$$

We move on to prove Proposition 7.

Proof of Proposition 7: Since σ_t is bounded, the assumptions of Theorem 7.2 of [13] are satisfied, and therefore the SDE has a unique *mild* solution, which is a random process $\{Y_t\}$ satisfying

$$Y_t = Y_0 + \int_0^t -\frac{\sigma_s}{2} Y_s ds + \int_0^t \sqrt{\sigma_s} dW_s.$$

Let $M_t = \exp\left(\int_0^t \frac{\sigma_s}{2} ds\right)$. Let $\{\zeta_k\}$ be a orthonormal basis of \mathcal{H} . By Ito's lemma (Theorem 4.32 from [13]),

$$\begin{split} \langle M_t Y_t, \zeta_k \rangle &= \langle M_0 Y_0, \zeta_k \rangle + \int_0^t \langle M_s \zeta_k, \sqrt{\sigma_s} dW_s \rangle + \int_0^t \left\langle \frac{dM_s}{ds} Y_s, \zeta_k \right\rangle + \left\langle M_t \zeta_k, -\frac{\sigma_s}{2} Y_s \right\rangle ds \\ &= \langle Y_0, \zeta_k \rangle + \int_0^t \langle M_s \zeta_k, \sqrt{\sigma_s} dW_s \rangle \\ &= \left\langle Y_0 + \int_0^t M_s \sqrt{\sigma_s} dW_s, \zeta_k \right\rangle, \end{split}$$

where the last equality follows Proposition 4.30 from [13].

Therefore,
$$Y_t = \exp\left(-\frac{1}{2}\int_0^t \sigma_s ds\right) Y_0 + \int_0^t \exp\left(-\frac{1}{2}\int_s^t \sigma_\tau d\tau\right) \sqrt{\sigma_s} dW_s$$
.

Following Proposition 4.28 of [13],

$$Y_t \mid Y_0 \sim \mathcal{N}(\eta(t)Y_0, \kappa(t)Q),$$

where
$$\eta(t) = \exp\left(-\frac{1}{2}\int_0^t \sigma_s ds\right)$$
 and $\kappa(t) = \int_0^t \exp\left(-\int_s^t \sigma_\tau d\tau\right) \sigma_s ds$.

Recall that $\mu_{t|Y_0}$ is the conditional distribution of $Y_t|Y_0$. Following Lemma 22, we have

$$\rho_{\mathcal{H}_Q}^{\mu_{t|Y_0}}(y) = \frac{\eta(t)Y_0 - y}{\kappa(t)}.$$

Also,

$$Y_t \stackrel{d}{=} \eta(t)Y_0 + \sqrt{\kappa(t)}U$$

where $U \sim \mathcal{N}(0, Q)$.

Recall that

$$Y_t' = \eta(t)Y_0' + \sqrt{\kappa(t)}U$$

where $Y_0' \sim P_{\text{data}}$ and $U \sim \mathcal{N}(0,Q)$ are sampled independently.

Na et al. [62] aim to solve

$$\min_{S:[0,1]\times\mathcal{H}\rightarrow\mathcal{H}}\int_{0}^{1}\mathbb{E}_{Y_{0}\sim P_{\mathrm{data}}}\mathbb{E}_{Y_{t}\sim\mu_{t}\mid Y_{0}}\left\|S(t,Y_{t})-\rho_{\mathcal{H}_{Q}}^{\mu_{t}\mid Y_{0}}(Y_{t})\right\|^{2}dt,$$

where $S:[0,1]\times\mathcal{H}$ to \mathcal{H} is measurable, and in practice parametrized by a neural network. This is equivalent to

$$\min_{S:[0,1]\times\mathcal{H}\rightarrow\mathcal{H}}\int_0^1\mathbb{E}_{Y_0'\sim P_{\text{data}}}\mathbb{E}_{Y_t'\sim \mu_{t|Y_0'}}\Big\|S(t,Y_t')-\rho_{\mathcal{H}_Q}^{\mu_{t|Y_0'}}(Y_t')\Big\|^2dt,$$

because the joint distribution $(Y_0, Y_t) \stackrel{d}{=} (Y_0', Y_t')$.

This is a minimum mean squared error problem whose solution is the conditional mean

$$S^*(t,y) = \mathbb{E}\left[\rho_{\mathcal{H}_Q}^{\mu_{t|Y_0'}}(Y_t') \mid Y_t' = y\right]$$
$$= \mathbb{E}\left[\frac{\eta(t)Y_0' - Y_t'}{\kappa(t)} \mid Y_t' = y\right]$$
$$= \mathbb{E}\left[-\frac{U}{\sqrt{\kappa(t)}} \mid Y_t' = y\right].$$

Note that $\frac{d}{dt}\sqrt{\kappa(t)}=\frac{\dot{\kappa}(t)}{2\sqrt{\kappa(t)}},$ $\dot{\eta}(t)=-\frac{\sigma_t}{2}\eta(t),$ and

$$\kappa(t) = \eta^{2}(t) \int_{0}^{t} \eta^{-2}(s) \sigma_{s} ds,$$

$$\dot{\kappa}(t) = 2\eta(t)\dot{\eta}(t) \int_{0}^{t} \eta^{-2}(s) \sigma_{s} ds + \eta^{2}(t) (\eta^{-2}(t)\sigma_{t})$$

$$= -\sigma_{t} \eta^{2}(t) \int_{0}^{t} \eta^{-2}(s) \sigma_{s} ds + \sigma_{t}$$

$$= \sigma_{t} (1 - \kappa(t)).$$

Hence,

$$\begin{split} \dot{Y}_t' &= \dot{\eta}(t) \, Y_0' + \frac{\dot{\kappa}(t)}{2\sqrt{\kappa(t)}} \, U \\ &= \left(-\frac{\sigma_t}{2} \, \eta(t) \right) Y_0' \, + \, \frac{\sigma_t [1-\kappa(t)]}{2\sqrt{\kappa(t)}} \, U \\ &= -\frac{\sigma_t}{2} \left[\eta(t) \, Y_0' + \sqrt{\kappa(t)} \, U \right] \, + \, \frac{\sigma_t}{2} \, \frac{U}{\sqrt{\kappa(t)}} \\ &= -\frac{\sigma_t}{2} \, Y_t' \, - \, \frac{\sigma_t}{2} \Big(-\frac{U}{\sqrt{\kappa(t)}} \Big). \end{split}$$

Therefore,

$$\dot{Y}_t' = -\frac{1}{2}\sigma_t Y_t' - \frac{1}{2}\sigma_t \left(-\frac{U}{\sqrt{\kappa(t)}}\right).$$

So equation (6) is equivalent to

$$dY_t = -\frac{\sigma_t}{2}(Y_t + S^*(t, Y_t))dt = \mathbb{E}[\dot{Y}_t' \mid Y_t' = Y_t]dt.$$

B Convex transport costs and the straightening effect

In finite-dimensional spaces, rectified flows are known to reduce transportation costs and exhibit a straightening effect, both desirable properties in generative modeling [56]. These properties extend naturally to the setting of infinite-dimensional Hilbert spaces and follow from the marginal-preserving property established in Theorem 5. The proofs largely mirror those in the finite-dimensional case and involve routine but lengthy bookkeeping. We begin by defining the $\mathrm{RectFlow}(\cdot)$ and $\mathrm{Rectify}(\cdot)$ operations.

Definition 24. Let X_0 and X_1 be \mathcal{H} -valued random variables. A coupling (X_0, X_1) is called rectifiable if its linear interpolation process $\mathbb{X} = \{tX_1 + (1-t)X_0 : t \in [0,1]\}$ is rectifiable. In this case, the $\mathbb{Z} = \{Z_t : t \in [0,1]\}$ in Equation (2) is called the **rectified flow** of coupling (X_0, X_1) , denoted as $\mathbb{Z} = \operatorname{RectFlow}((X_0, X_1))$, and (Z_0, Z_1) is called the rectified coupling of (X_0, X_1) , denoted as $(Z_0, Z_1) = \operatorname{Rectify}((X_0, X_1))$.

For any convex function c, The following theorem establishes that the $\operatorname{Rectify}(\cdot)$ operator does not increase the transport $\operatorname{cost} \mathbb{E}[c(Z_1 - Z_0)]$, which corresponds to a special case of Monge's formulation of optimal transport (Section 1.2 of [1]). It generalizes Theorem 3.5 from [56] to the Hilbert space setting.

Theorem 25. Let X_0, X_1 be \mathcal{H} -valued random variables such that the pair (X_0, X_1) is rectifiable, and define $(Z_0, Z_1) = \text{Rectify}(X_0, X_1)$. Then for any convex function $c : \mathcal{H} \to \mathbb{R}$,

$$\mathbb{E}\left[c(Z_1-Z_0)\right] \leq \mathbb{E}\left[c(X_1-X_0)\right].$$

Proof.

$$\mathbb{E}\left[c\left(Z_{1}-Z_{0}\right)\right] = \mathbb{E}\left[c\left(\int_{0}^{1}v^{\mathbb{X}}\left(t,Z_{t}\right)dt\right)\right]$$

$$\leq \mathbb{E}\left[\int_{0}^{1}c\left(v^{\mathbb{X}}\left(t,Z_{t}\right)\right)dt\right]$$

$$= \mathbb{E}\left[\int_{0}^{1}c\left(v^{\mathbb{X}}\left(t,X_{t}\right)\right)dt\right]$$

$$= \mathbb{E}\left[\int_{0}^{1}c\left(\mathbb{E}\left[\left(X_{1}-X_{0}\right)\mid X_{t}\right]\right)dt\right]$$

$$\leq \mathbb{E}\left[\int_{0}^{1}\mathbb{E}\left[c\left(X_{1}-X_{0}\right)\mid X_{t}\right]dt\right]$$

$$= \int_{0}^{1}\mathbb{E}\left[c\left(X_{1}-X_{0}\right)\right]dt$$

$$= \mathbb{E}\left[c\left(X_{1}-X_{0}\right)\right],$$
(27)

where we apply Jensen's inequality at (27) and (28).

Following [56], we define a coupling (X_0, X_1) to be *straight* if it is a fixed point of the Rectify (\cdot) operation. Such couplings are practically useful, as their associated process is linear and can be simulated exactly in a single step. As a direct extension of Theorem 3.6 from [56] to the Hilbert space setting, the following theorem characterizes this property.

Theorem 26. Let X_0, X_1 be \mathcal{H} -valued random variables such that the pair (X_0, X_1) is rectifiable. Let $X_t = tX_1 + (1-t)X_0$ and $\mathbb{Z} = \operatorname{RectFlow}\left((X_0, X_1)\right)$. The following statements are equivalent.

- 1. \exists a strictly convex function $c: \mathcal{H} \to \mathbb{R}$, such that $\mathbb{E}[c(Z_1 Z_0)] = \mathbb{E}[c(X_1 X_0)]$.
- 2. (X_0, X_1) is a fixed point of Rectify (\cdot) , that is, $(X_0, X_1) = (Z_0, Z_1)$.
- 3. The rectified flow coincides with the linear interpolation process: $\mathbb{X} = \mathbb{Z}$.
- 4. The paths of the linear interpolation \mathbb{X} do not intersect:

$$V((X_0, X_1)) := \int_0^1 \mathbb{E}\left[\|X_1 - X_0 - \mathbb{E}\left[X_1 - X_0 \mid X_t\right]\|^2 \right] dt = 0.$$

Note that $V((X_0, X_1)) = 0$ indicates that $X_1 - X_0 = \mathbb{E}[X_1 - X_0 \mid X_t]$ almost surely when $t \sim Uniform([0, 1])$, meaning that the lines passing through each X_t is unique, and hence no linear interpolation paths intersect.

Proof. Clearly, $3 \implies 2 \implies 1$.

 $1 \Longrightarrow 4$: $\mathbb{E}\left[c\left(Z_1-Z_0\right)\right] = \mathbb{E}\left[c\left(X_1-X_0\right)\right] \Longrightarrow$ the equalities are achieved in inequalities (27) and (28). Since c is strictly convex, $(X_1-X_0)|X_t$ is a constant almost surely in \mathbb{X} and $t\in[0,1]$. So $\mathbb{E}[X_1-X_0|X_t]=\mathbb{E}[X_1-X_0]$ almost surely in \mathbb{X} and $t\in[0,1]$ and $V(\mathbb{X})=0$.

 $4 \Longrightarrow 3: V(\mathbb{X}) = 0 \Longrightarrow \mathbb{E}[X_1 - X_0 | X_t] = \mathbb{E}[X_1 - X_0] \text{ almost surely in } \mu_t \text{ and } t \in [0,1]. \text{ We have } \int_0^s (X_1 - X_0) \, \mathrm{d}t = \int_0^s \mathbb{E}\left[X_1 - X_0 \mid X_t\right] \, \mathrm{d}t = \int_0^s v^{\mathbb{X}}\left(t, X_t\right) \, \mathrm{d}t \text{ for } s \in (0,1]. \text{ Hence,}$

$$X_t = X_0 + \int_0^t (X_1 - X_0) dt = X_0 + \int_0^t v^{\mathbb{X}}(s, X_s) ds.$$

By definition, Z_t also satisfy

$$Z_t = X_0 + \int_0^t v^{\mathbb{X}}(s, X_t) \, \mathrm{d}s.$$

By Assumption 2, for any fixed sample ω , the solution is unique, i.e., $\mathbb{X}(\cdot,\omega)=\mathbb{Z}(\cdot,\omega)$. So $\mathbb{X}=\mathbb{Z}$.

We next present a Hilbert space analogue of Theorem 3.7 from Liu et al. [56], which shows that repeated application of the rectified flow progressively improves the alignment of the coupling, resulting in more linear trajectories and reduced path overlap. Following Liu et al. [56], the straightness of a continuously differentiable process $\mathbb{Z} = \{Z_t\}$ is measured by by

$$S(\mathbb{Z}) := \int_0^1 \mathbb{E} \left[\left\| (Z_1 - Z_0) - \dot{Z}_t \right\|^2 \right] dt.$$

Theorem 27. Let X_0, X_1 be \mathcal{H} -valued random variables such that the pair (X_0, X_1) is rectifiable. Let \mathbb{Z}^k the k-th rectified flow of (X_0, X_1) , that is, $\mathbb{Z}^{k+1} = \operatorname{RectFlow}\left(\left(Z_0^k, Z_1^k\right)\right)$ and $\left(Z_0^0, Z_1^0\right) = (X_0, X_1)$. Assume each $\left(Z_0^k, Z_1^k\right)$ is rectifiable for $k = 0, \ldots, K$. Then

$$\sum_{k=0}^{K} S(\mathbb{Z}^{k+1}) + V((Z_0^k, Z_1^k)) \le \mathbb{E}\left[\|X_1 - X_0\|^2\right].$$

Hence, if $\mathbb{E}\left[\left\|X_{1}-X_{0}\right\|^{2}\right]<+\infty$, we have $\min_{k\leq K}S\left(\mathbb{Z}^{k}\right)+V\left(\left(Z_{0}^{k},Z_{1}^{k}\right)\right)=O(1/K)$.

Proof.

$$||X_{1} - X_{0}||^{2} = ||X_{1} - X_{0} - \mathbb{E}[X_{1} - X_{0} \mid X_{t}]||^{2} + 2\langle X_{1} - X_{0} - \mathbb{E}[X_{1} - X_{0} \mid X_{t}], \mathbb{E}[X_{1} - X_{0} \mid X_{t}]\rangle + ||\mathbb{E}[X_{1} - X_{0} \mid X_{t}]||^{2}.$$

Then

$$\mathbb{E}||X_1 - X_0||^2 = V((X_0, X_1)) + \int_0^1 \mathbb{E}[||X_1 - X_0|X_t||^2] dt.$$
 (29)

Note

$$\left\| (Z_1 - Z_0) - \dot{Z}_t \right\|^2 = \left\| Z_1 - Z_0 \right\|^2 - 2 \left\langle Z_1 - Z_0, \dot{Z}_t \right\rangle + \left\| \dot{Z}_t \right\|^2.$$

By moving the integral over t inside the inner product, we get

$$S(\mathbb{Z}) = \int_0^1 \mathbb{E} \|\dot{Z}_t\|^2 dt - \mathbb{E} \|Z_1 - Z_0\|^2.$$
 (30)

By construction, $\dot{Z}_t = \mathbb{E}[X_1 - X_0 | X_t = Z_t]$. Therefore, $\mathbb{E}\left[\left\|\dot{Z}_t\right\|^2\right] = \mathbb{E}[\left\|X_1 - X_0 | X_t\right\|^2]$. Hence, by Equations (29) and (30),

$$\mathbb{E}||X_1 - X_0||^2 - \mathbb{E}||Z_1 - Z_0||^2 = S(\mathbb{Z}) + V((X_0, X_1))$$

Applying it to \mathbb{Z}^k ,

$$\mathbb{E}\left[\left\|Z_{1}^{k}-Z_{0}^{k}\right\|^{2}\right]-\mathbb{E}\left[\left\|Z_{1}^{k+1}-Z_{0}^{k+1}\right\|^{2}\right]=S\left(\mathbb{Z}^{k+1}\right)+V\left(\left(Z_{0}^{k},Z_{1}^{k}\right)\right).$$

Summing over k leads to the desired inequality.

A practical implication of Theorem 27 is that single-step sampling becomes feasible after several recursive applications of $\operatorname{RectFlow}(\cdot)$.

C Experimental details

This section provides additional results and implementation details that supplement the main text. We begin with further qualitative results on CelebA to highlight the diversity and fidelity of samples generated by our method. We then outline the architectural configurations and training procedures used in our experiments. The code used for our main experiments is available at https://anonymous.4open.science/r/Functional-Rectified-Flow-C4FC.

C.1 Additional qualitative results on CelebA

To further illustrate the generative quality of the Functional Rectified Flow (FRF) model, we present additional samples. Figures 3 through 7 show images generated using the FRF model trained on CelebA 64×64 dataset. These results highlight the model's ability to consistently produce high-quality and diverse samples across multiple runs.

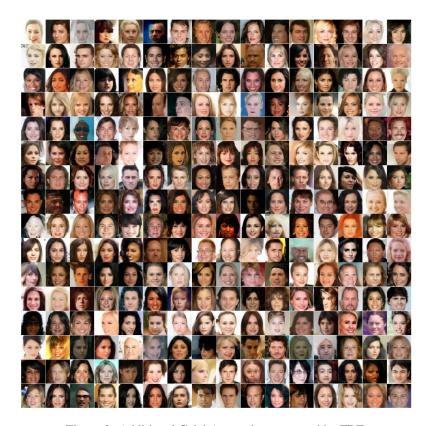


Figure 3: Additional CelebA samples generated by FRF.

C.2 Architectural details and hyperparameter choices

C.2.1 INR on MNIST

We follow Franzese et al. [20] and adopt the original INR architecture proposed by Sitzmann et al. [72]. The network is a fully connected MLP with 8 layers, each containing 128 neurons and using sinusoidal activations [72]. We implement the modulation-based meta-learning framework as in Dupont et al. [16] and Finn et al. [19]. The base network parameters are optimized in the outer loop using the AdaBelief optimizer [84], with a cosine learning rate schedule ending at 10^{-5} . The inner loop adapts sample-specific modulation vectors via 3 steps of SGD with a learning rate of 10^{-2} . Training is performed on 8 NVIDIA A40 GPUs with an effective batch size of 64×8 . The model is trained for 10^6 steps and takes approximately 3 days.

C.2.2 Transformer on CelebA

We follow Franzese et al. [20] and adopt the UViT backbone introduced in Bao et al. [3]. The model uses 2D sinusoidal positional embeddings, and we set the patch size to 1, effectively treating each pixel as a token. Our architecture matches that of Franzese et al. [20], consisting of 7 transformer layers, each comprising an 8-head self-attention mechanism and a fully connected feedforward layer. Skip connections are employed following both Franzese et al. [20] and Bao et al. [3]. For optimization, we use the AdamW optimizer [58] with a cosine warm-up schedule, ending at a learning rate of 2×10^{-4} . The weight decay is set to 10^{-2} . Training is conducted for 6×10^{5} steps with an

Figure 4: Additional CelebA samples generated by FRF.

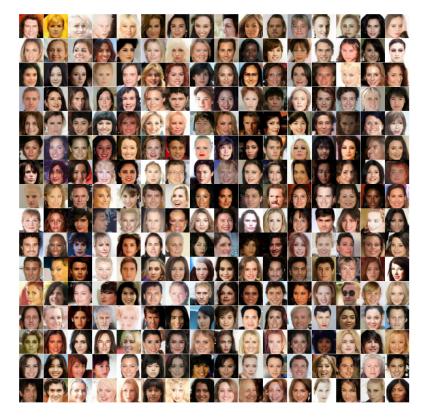


Figure 5: Additional CelebA samples generated by FRF.

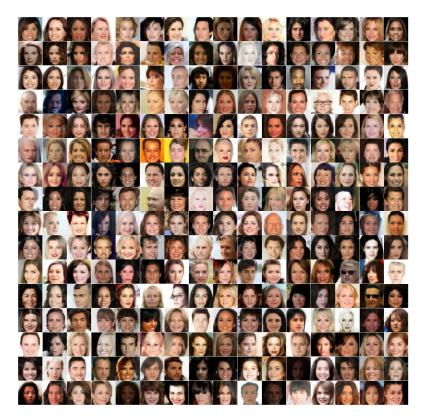


Figure 6: Additional CelebA samples generated by FRF.



Figure 7: Additional CelebA samples generated by FRF.

effective batch size of 32, and the learning rate is reduced by a factor of 0.1 during the final 10^5 steps. The model is trained on 8 NVIDIA A40 GPUs, and the full training takes approximately one week.

C.3 Neural operator on Navier-Stokes dataset

We follow Kerrigan et al. [37] and adopt the Fourier Neural Operator (FNO) architecture proposed by Kovachki et al. [41]. The network comprises 4 Fourier layers with 32 modes and 64 hidden channels, along with 256-dimensional lifting and projection layers, mirroring the configuration used in Kerrigan et al. [37]. Optimization is performed using the Adam optimizer with an initial learning rate of 5×10^{-4} , which is reduced by a factor of 0.1 every 25 epochs. Following Liu et al. [56], we add a small amount of noise to the input data for smoothing. To mitigate redundancy in the dataset, we follow Kerrigan et al. [37] and subsample 2×10^4 datapoints. The model is trained for 300 epochs with a batch size of 128 on a single NVIDIA A100 MIG device, with the full training taking approximately three hours.