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Abstract

In the classical Reinforcement Learning from Hu-
man Feedback (RLHF) framework, Proximal Pol-
icy Optimization (PPO) is employed to learn from
sparse, sentence-level rewards—a challenging
scenario in traditional deep reinforcement learn-
ing. Despite the great successes of PPO in the
alignment of state-of-the-art closed-source large
language models (LLMs), its open-source imple-
mentation is still largely sub-optimal, as widely
reported by numerous research studies. To ad-
dress these issues, we introduce a framework that
models RLHF problems as a Markov decision pro-
cess (MDP), enabling the capture of fine-grained
token-wise information. Furthermore, we pro-
vide theoretical insights that demonstrate the ad-
vantage of our MDP framework over the previ-
ous sentence-level bandit formulation. Under this
framework, we introduce an algorithm, dubbed
as Reinforced Token Optimization (RTO), which
learns the token-wise reward function from prefer-
ence data and performs policy optimization based
on this learned token-wise reward signal. Theo-
retically, RTO is proven to have the capability of
finding the near-optimal policy sample-efficiently.
For its practical implementation, RTO integrates
Direct Preference Optimization (DPO) and PPO.
DPO, originally derived from sparse sentence
rewards, surprisingly provides us with a token-
wise characterization of response quality, which
is seamlessly incorporated into our subsequent
PPO training stage. Extensive real-world align-
ment experiments verify the effectiveness of the
proposed approach.
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1. Introduction
Reinforcement Learning from Human Feedback (RLHF)
has emerged as a key technique for aligning foundation mod-
els with human values and preferences (Christiano et al.,
2017; Ziegler et al., 2019). It has been pivotal in enabling
Large Language Models (LLMs) to produce more help-
ful, harmless, and honest responses (Bai et al., 2022), as
demonstrated in significant applications such as ChatGPT
(OpenAI, 2023), Claude (Anthropic, 2023), and Gemini
(Team et al., 2023). The classical RLHF pipeline (Ziegler
et al., 2019; Ouyang et al., 2022) consists of two steps: (i)
Reward training from human feedback, where the learner
learns the reward function based on preference data, typi-
cally through Maximum Likelihood Estimation (MLE). (ii)
Reward-based RL training, where the learner employs the
seminal deep RL algorithm Proximal Policy Optimization
(PPO; Schulman et al., 2017) to optimize the reward learned
in the previous step.

Despite the success of this framework in the aforementioned
powerful closed-source LLMs, the training of PPO is known
to be unstable and sample-inefficient (Choshen et al., 2019)
compared to supervised learning. PPO frequently fails to
maintain a consistent average response length or experiences
sudden drops in reward value. Moreover, the superior per-
formance of PPO also relies on the code-level optimization
and an appropriate configuration of the hyper-parameters
(Engstrom et al., 2020), while the training stability issue
further prohibits us from achieving the best performance of
the PPO. So far, the success of PPO has not been widely
reproduced, especially in the open-source community with
rather limited resources. While researchers have made ef-
forts to propose alternative approaches to the PPO algorithm,
with notable examples like rejection sampling fine-tuning
(Dong et al., 2023; Gulcehre et al., 2023), direct preference
learning algorithms (Rafailov et al., 2023; Zhao et al., 2023;
Azar et al., 2023), there is little evidence that these newly
proposed approaches alone can make the state-of-the-art
LLMs. Therefore, improving the performance of the PPO
algorithm in the context of RLHF is still an important re-
search direction that is largely under-explored.

After examining the open-source implementation of PPO,
we identify that one potential reason for the sub-optimal per-
formance of PPO is the mismatch between the formulation
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of RLHF and the nature of PPO. Specifically, in the existing
framework (Ouyang et al., 2022; Bai et al., 2022), RLHF is
formulated as a bandit, where the entire response sentence is
considered to be an action, and the reward is sentence-level,
evaluating only the overall quality of the response. However,
PPO is designed for multi-step RL problems modeled as
Markov decision processes (MDPs), requiring a token-wise
reward assignment to each step. In typical implementations
of PPO (e.g., the TRL package from huggingface1), besides
the regularization reward function assigned to each token to
ensure the fine-tuned LLM stays close to the supervised fine-
tuning (SFT) model, the learned sentence-level reward is
only distributed to the last token, while other tokens receive
zero learned reward. See (2.3) for the formal mathemati-
cal description. Clearly, there is a separation in terms of
the assignment strategies of the regularization reward and
the learned reward. Meanwhile, while it is generally be-
lieved that a fine-grained characterization with token-wise
feedback can provide more information, in practice, it is
also challenging to collect effective token-wise feedback for
human conversations and use it in the MLE process. Conse-
quently, the construction of token-wise reward signals also
remains largely under-explored in the literature of RLHF.

Our Contributions. We aim to address the aforemen-
tioned issues by developing an RLHF framework with a
fine-grained token-wise reward characterization, establish-
ing the mathematical foundation, and advancing practical
algorithmic designs. Our contributions are summarized as
follows.

• We propose a framework that models RLHF as an MDP,
offering a more precise token-wise characterization of
the LLM’s generation process. Furthermore, we provide
theoretical insights into why the token-wise MDP formu-
lation is superior to the previous sentence-level bandit
formulation.

• Under the MDP formulation of RLHF, we introduce Rein-
forced Token Optimization (RTO), which extracts token-
wise reward signals from offline preference data and sub-
sequently performs RL training with respect to the learned
token-wise rewards. Using MLE as the token-wise re-
ward learning oracle, we prove that RTO can learn a near-
optimal policy in a sample-efficient manner.

• Moving toward the practical implementation of RTO, we
adopt a novel token-wise reward extraction approach
from direct preference optimization (DPO; Rafailov et al.,
2023). By assigning this DPO-based token-wise reward
function to each token and then optimizing with PPO, RTO
outperforms existing baselines such as PPO and DPO in
the task of dialogue.

In summary, under the MDP formulation of RLHF, we de-
velop a new principled RLHF algorithm, RTO, that leverages

1https://github.com/huggingface/trl

token-wise reward signals derived from offline preference
data using DPO, and subsequently performs PPO training
to optimize the token-wise rewards. The pipeline of RTO is
visualized in Figure 1.
Related Works. We have discussed the mostly related work
PPO (Schulman et al., 2017) and DPO (Rafailov et al., 2023)
in the introduction. More related works on RLHF is deferred
to Appendix A.
Notation. Given a set X , we denote the collection of dis-
tributions over X by ∆(X ). We use 1{·} to denote the
indicator function. For any positive integer h, we use the
notation y1:h to denote the sequence {y1, y2, . . . , yh}.

2. Preliminaries
In this section, we introduce the standard RLHF paradigm.
Let x ∈ X denote the prompt sampled from a distribution
ρ ∈ ∆(X ), and y = (y1, y2, . . . , yh, . . . ) be the correspond-
ing response, which is a sequence of tokens generated by
LLMs, where yi represents the i-th token. In practice, it
is widely assumed (Christiano et al., 2017; Ziegler et al.,
2019; Bai et al., 2022; Ouyang et al., 2022; Touvron et al.,
2023) that the preference signal is generated according to
the Bradley-Terry (BT) model (Bradley and Terry, 1952):

P(y1 ≻ y2|x, y1, y2)

=
exp(r(x, y1))

exp(r(x, y1)) + exp(r(x, y2))

=σ
(
r(x, y1)− r(x, y2)

)
,

(2.1)

where σ(z) = 1/(1+exp(−z)) is the sigmoid function, and
r is a ground-truth reward function defined at the sentence
level. In other words, the reward function r only evaluates
the overall performance of the entire response. The classical
RLHF pipeline (Ziegler et al., 2019; Ouyang et al., 2022)
typically consists of two steps: reward training from human
feedback and reward-based RL training. In the first step,
the learner is given a dataset D = {(x, yw, yl)}, where
yw denotes the preferred response over the yl. The reward
function is learned through Maximal Likelihood Estimation
(MLE) on this dataset D:

rMLE = argmax
r

E(x,yw,yl)∼D
[
log

(
σ(r(x, yw)−r(x, yl))

)]
.

(2.2)
In the second step, the learned reward rMLE from the
previous step is optimized while ensuring that the updated
language model (LLM) does not deviate significantly
from the reference model πref , usually selected as a
supervised fine-tuned (SFT) LLM. This is because reward
optimization along usually leads to reward hacking
(Casper et al., 2023), meaning that the LLM will utilize
the imperfection of the reward model and chase for a
high reward but with a poor performance at the same
time. Formally, the LLM is optimized with respect to the
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Figure 1. In the MDP framework of RLHF, RTO uses DPO to derive a token-level reward function and then applies PPO to enhance it.
This approach is significantly different from the traditional RLHF process, which employs PPO to improve sentence-level rewards under
the bandit framework.

learned reward rMLE with a KL-regularized term: π̂ =

argmaxπ Ex∼ρ,y∼π(·|x)[rMLE(x, y) − β log π(y | x)
πref (y | x) ],

where β > 0 is an appropriate KL penalty coefficient. This
KL-regularized target is widely adopted in practice (Chris-
tiano et al., 2017; Ziegler et al., 2019; Ouyang et al., 2022;
Bai et al., 2022; Rafailov et al., 2023) to balance reward
optimization and the goal of staying close to the reference
policy. Another primary technical reason is that this reg-
ularization ensures that the framework admits a stochastic
optimal policy, as compared to the deterministic greedy
reward maximizer. The policy optimization step is typically
achieved by PPO (Schulman et al., 2017), a seminal deep
RL algorithm for solving multi-step decision-making prob-
lems and its implementation requires a reward signal at each
step (corresponding to each token in the context of LLMs).
To this end, given a prompt x and a response y = y1:H
containing H tokens, existing open-source implementations
of PPO assign the sentence-level reward rMLE(x, y) to the
last token and optimize the following reward:

rppo(x, y1:h) =


0− β log π(yh | x,y1:h−1)

πref (yh | x,y1:h−1)

if h ≤ H − 1,

rMLE(x, y)− β log π(yh | x,y1:h−1)
πref (yh | x,y1:h−1)

if h = H,
(2.3)

where π is the current policy to be improved. However, it
is well known that sparse rewards can make learning more
difficult compared to dense rewards (Andrychowicz et al.,
2017). One natural solution is to design dense token-wise
rewards used for PPO training, but this is beyond the scope
of the current bandit formulation for RLHF and motivates us
to provide a framework with more fine-grained token-wise
characterization that enables the use of token-wise rewards.

3. Formulation for RLHF: From Bandit to
MDP

In this section, we introduce our MDP formulation for
RLHF and demonstrate its advantages.

3.1. MDP Formulation for RLHF

We model the RLHF problem as a Markov decision process
(MDP), which is denoted as a tupleM = (S,A,P, r, ρ,H).

Here S is the state space,A is the action space,P : S×A →
∆(S) is the transition kernel, r denotes the reward function,
ρ signifies the initial state distribution and H is the maximal
number of interaction steps. A (Markov) policy in MDPs
π : S → ∆(A) is a mapping from state to a distribution over
actions. The interaction between the environmentM and
the agent can be described as follows. Initially, the starting
state s1 is sampled from the initial distribution ρ. At the h-th
step, the agent observes the state sh and selects an action
ah based on its policy. The environment then transits to the
next state sh+1 ∼ P(· | sh, ah). This interaction continues
until a certain ending condition is satisfied, which will be
triggered within H steps.

In the standard text generation process of LLMs, each state
sh = (x, y1:h−1) includes the prompt x and all response
tokens produced up to that point. Each action ah = yh repre-
sents a token from the vocabulary. The transition kernel P is
usually known and deterministic, meaning that given tokens
sh = (x, y1:h−1) and ah = yh, the environment will transi-
tion to sh+1 = (x, y1:h). The policy π maps all the observed
tokens so far to a distribution over the vocabulary. It is im-
portant to note that the policy captures the autoregressive na-
ture of LLMs, i.e., π(y1:h |x) =

∏h
i=1 π(yi |x, y1:h−1) for

any h. Moreover, r : S ×A → R represents the token-wise
reward. The maximum number of tokens that can be gen-
erated, H , characterizes the length limit for LLM outputs.
Each generated text ends with a special end-of-sentence
token EoS, which terminates the generation process.

In our MDP formulation for RLHF, we also model the pref-
erence signal using BT model (Bradley and Terry, 1952).
In specific, for any trajectory pair τ1 = {(s1h, a1h)}Hh=1 and
τ2 = {(s2h, a2h)}Hh=1

2, the probability P(τ1 ≻ τ2) of τ1 is
preferred over τ2 is specified by

exp(
∑H

h=1 r(s
1
h, a

1
h))

exp(
∑H

h=1 r(s
1
h, a

1
h)) + exp(

∑H
h=1 r(s

2
h, a

2
h))

=σ

( H∑
h=1

r(s1h, a
1
h)−

H∑
h=1

r(s2h, a
2
h)

)
.

(3.1)

2In fact, these two trajectories can have different lengths less
than H . These trajectories can be extended to length H by assum-
ing that the state ending with EoS is absorbing and yields zero
reward. For simplicity, the following theoretical discussion may
focus on length-H trajectories.
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Compared to literature that formulates the RLHF problem
as a contextual dueling bandit, a subtle difference is that
the policy in the contextual dueling bandit maps a prompt
to a distribution over sentences, which does not capture
the autoregressive nature of LLMs. In contrast, our MDP
formulation precisely captures this nature. We defer the
discussion of these two types of policies in Section E.2.
More importantly, the main difference is that the reward
function in the MDP formulation is defined on a token level,
which contrasts significantly with the sentence-level reward
in the contextual dueling bandit. We discuss the advantages
of token-level rewards in Section 3.2.

Learning Objective. Different from classical RL literature,
where the sole goal is to maximize the reward function,
the objective of RLHF is to maximize the reward function
while ensuring that the learned policy does not deviate too
much from the reference model (e.g., SFT model) too much.
Inspired by this and the formulation of entropy-regularized
MDPs (Williams and Peng, 1991; Ziebart, 2010), for any
policy π, we define its corresponding regularized value-
function by

V π
β (s; r)

=Eπ

[ ∞∑
h=1

(
r(sh, ah)− β · log π(ah | sh)

πref(ah | sh)

)∣∣∣∣s1 = s

]
,

(3.2)
where the expectation Eπ is taken with respect to the ran-

domness incurred by the policy π. Here the summation ends
when a certain condition is met. In particular, since we as-
sume that the maximal length of the generated responses of
LLMs is at most H , the summation in (3.2) is taken at most
H steps. In the remaining part of this paper, we may use∑∞

h=1 and
∑H

h=1 interchangeably, as they mostly have the
same meaning. The regularized Q-function Qπ

β of a policy
π is related to the regularized value function V π

β as
Qπ

β(s, a; r) = rβ(s, a) + Es′∼P(· | s,a)[V
π
β (s′; r)],

V π
β (s; r) = Ea∼π(· | s)[−β log π(a | s) +Qπ

β(s, a; r)],
(3.3)

where we denote rβ(s, a) = r(s, a) + β log πref(a | s).
Moreover, when it is clear from the context, we may
omit the dependency of the ground-truth reward func-
tion r in Qπ

β(s, a; r), V
π
β (s; r) and use the shorthand

Qπ
β(s, a), V

π
β (s). The regularized optimal policy π∗

β is the
policy that maximizes the regularized value function defined
in (3.2), and its corresponding optimal Q-function and value
function are denoted as Q∗

β and V ∗
β , respectively. By (3.3),

it can be shown that
π∗
β(a | s) = exp{(Q∗

β(s, a)− V ∗
β (s))/β}. (3.4)

Our learning objective is to find a near-optimal policy π̂
minimizing the following suboptimality gap:

SubOpt(π̂) = Es∼ρ[V
∗
β (s)− V π̂

β (s)] = V ∗
β (ρ)− V π̂

β (ρ),

(3.5)

where we use the shorthand V π
β (ρ) = Es∼ρ[V

π
β (s)] for

any policy π. We define the state and state-action visita-
tion measure as dπ(s) = Es1∼ρ[

∑∞
h=1 P(st = s | s1)] and

dπ(s, a) = Es1∼ρ[
∑∞

h=1 P(sh = s, ah = a | s1)]. We also
use the shorthand d∗ = dπ

∗
β to for simplicity.

3.2. Advantages of Token-Wise MDP over
Sentence-Wise Bandit

Intuitively, the distinction between token-based and
trajectory-based rewards reflects the difference between
sparse and dense reward settings. In the sparse reward
scenario, exploration proves to be more challenging. To
illustrate this, we focus on the deterministic MDP with
an action set size of A = |A|. We employ an autore-
gressive policy π∗ to represent the policy of a powerful
LLM, such as GPT-4. Fixing a prompt x, given responses
(y1 = y11:H , y2 = y21:H), the evaluation provided by π∗ is
P(y1 ≻ y2 |x, y1, y2) = π∗(y1 | x)

π∗(y1 | x)+π∗(y2 | x) . By compar-
ing this with the BT models of bandit in (2.1) and of our
MDP formulation in (3.1), we observe that the sentence-
wise reward rs and token-wise as rt can be specified by

rs(x, y) = log π∗(y |x),
rt((x, y1:h−1), yh) = log π∗(yh |x, y1:h−1).

(3.6)

Intuitively, the responses that powerful LLMs tend to choose
have higher rewards. In addition, we have rs(x, y) =∑H

h=1 rt((x, y1:h−1), yh). We also make the following nat-
ural assumption.

Assumption 3.1. There exists a response y = y1:H satisfy-
ing π∗(y |x) ≥ A−ξ.

By the pigeon-hole principle, there must be a response y
such that π∗(y |x) ≥ A−H , implying that ξ ≤ H . In
practice, ξ is usually much smaller than H because the lan-
guage model tends to choose the optimal response rather
than making a random guess. Now, we define the inter-
action protocol and the sample complexity. The learner
can determine a response y = y1:H and receive either
rs(x, y) or {rt((x, y1:h−1), yh)}Hh=1, depending on whether
the sentence-level reward or the token-wise reward is used.
The sample complexity is defined as the number of re-
sponses and corresponding reward signals that need to be
gathered to find the optimal response y∗ = y∗1:H with length
H .
Theorem 3.2. Suppose Assumption 3.1 holds. In the setting
where only the sentence-wise reward rs in (3.6) is acces-
sible, finding the optimal response y∗ requires a sample
complexity of AH . However, if token-reward signals rt in
(3.6) are available, there exists an algorithm that can find
the optimal policy with sample complexity Amin{ξ+1,H}.
Our algorithm is elimination-based and the detailed proof
is deferred to Appendix B. A simplified example is given
in Figure 2. Since ξ ≪ H typically holds in practice, the
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Figure 2. An illustration of our efficient learning algorithm for the token-wise reward setting with A = 2, H = 3, and ξ = 1. Here ∗ and
† represent real numbers between 0 and 1/8. We do not specify their exact values as they do not influence the optimal path. All special
nodes need to be eliminated are colored red, while other nodes are blue, with the optimal leaf node 1/2 emphasized in dark blue. Each
node y1:h is labelled with π∗(y1:h |x). If a non-optimal path (response) is selected, one red node in N will be identified, and all paths
containing this node will be deleted. Here we visualize the process of choosing a path ending with ∗, †, and 1/4, respectively. At most
Amin{ξ+1,H} = 4 samples are needed to identify the optimal response.

gap between AH and Amin{ξ+1,H} is deemed large. Hence,
Theorem 3.2 reveals the significant separation of sample
complexity between two types of reward signals, providing
theoretical insights into the superiority of the token-wise
MDP formulation over the sentence-wise bandit formulation
of RLHF.

4. Reinforced Token Optimization
Under the MDP framework in Section 3, we develop the
Reinforced Token Optimization (RTO) algorithmic frame-
work. At a high level, RTO consists of two main steps: (i)
token-wise reward learning, where RTO learns a token-wise
reward based on the preference data; and (ii) optimizing
token-wise reward through RL training methods such as
PPO.

4.1. Theoretical Version with Sample Complexity
Guarantee

We focus on the offline setting and assume the access to
an offline dataset D = {(τw, τ l)} that contains several
trajectory pairs, where τw = {(swh , awh )}Hh=1 is preferred
over τ l = {(slh, alh)}Hh=1. Each pair of trajectories shares
the same initial state/prompt (i.e., sw1 = sl1), but differs
in the subsequent tokens. We also assume that the reward
function is linear, and our following results are ready to be
extended to general function approximation (Chen et al.,
2022; Zhan et al., 2023a).

Assumption 4.1 (Linear Reward). We assume that the re-
ward function r is linear, i.e., r(s, a) = ϕ(s, a)⊤θ∗ for
some known feature ϕ : S × A → Rd and unknown vec-
tor θ∗ ∈ Rd. We also assume that ∥ϕ(·, ·)∥2 ≤ L and
∥θ∗∥2 ≤ B.

Following the standard reward learning pipeline (Ouyang
et al., 2022), we learn the reward function via maximum
likelihood estimation (MLE). Specifically, if we parametrize
the reward function by θ, then the MLE is given by

θMLE = argmax
∥θ∥2≤B

LD(θ),

where LD(θ) =
∑

(τw,τ l)∈D[
log

(
σ
( H∑
h=1

rθ(s
w
h , a

w
h )−

H∑
h=1

rθ(s
l
h, a

l
h)
))]

.

(4.1)

Inspired by previous literature in offline RL (Jin et al., 2021;
Rashidinejad et al., 2021; Xiong et al., 2022; Zhu et al.,
2023; Zhan et al., 2023a), given the MLE θMLE, we con-
struct the pessimistic token-wise reward estimation as

r̂(s, a) = ϕ(s, a)⊤θMLE − ϱ · ∥ϕ(s, a)∥Σ−1
D
, (4.2)

where ΣD =
∑

(τ1,τ2)∈D[
∑H

h=1(ϕ(s
1
h, a

1
h) −

ϕ(s2h, a
2
h))(

∑H
h=1(ϕ(s

1
h, a

1
h) − ϕ(s2h, a

2
h)))

⊤] + λId,
λ > 0 is a tuning parameter, and ϱ is a problem-dependent
coefficient will be specified in Theorem 4.2 and (C.2).
Finally, RTO outputs the optimal policy π̂ with respect
to r̂, i.e., π̂ = argmaxπ V

π
β (s; r̂) for any s ∈ S. The

pseudocode of RTO is given in Algorithm 1. The following
theorem provides theoretical guarantee for RTO, and the
proof is deferred to Appendix C.

Theorem 4.2. Suppose Assumption 4.1 holds. For β > 0,
λ > 0, δ ∈ (0, 1), if we choose ϱ = Õ(

√
d) (see (C.2)),

then the output policy π̂ of Algorithm 1 satisfies

SubOpt(π̂) ≤ 2ϱ · E(s,a)∼d∗
[
∥ϕ(s, a)∥Σ−1

D

]
− β · Es∼d∗

[
KL

(
π∗
β(· | s)∥π̂(· | s)

)]
.

(4.3)

The first term in Theorem 4.2 measures how well the offline
dataset covers the trajectory generated by the policy π∗

β .
Typically, this term decreases at a rate of |D|−1/2 under the
mild partial coverage assumption (Jin et al., 2021; Uehara
and Sun, 2021; Xiong et al., 2022; Zhu et al., 2023; Zhan
et al., 2023a), where |D| is the size of the offline dataset.
The second KL term is always negative, and it arises from
the goal of learning a regularized value. We also remark
that our algorithm relies on the known transition kernel to
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Algorithm 1 Reinforced Token Optimization (Theoretical Version)
1: Input: Offline dataset D, λ > 0, β > 0, and problem dependent coefficient ϱ.
2: Compute θMLE based on D by maximizing the loglikelihood given in (4.1).
3: Calculate the pessimistic reward r̂ via (4.2). ▷ token-wise reward learning
4: Compute the corresponding optimal policy π̂ with respect to r̂. ▷ optimizing token-wise reward
5: Output: policy π̂.

compute the exact optimal policy with respect to r̂. While
this is natural in the context of large language models, we
provide insights on how to extend our findings to stochastic
regularized MDPs and the variant of our RTO algorithm in
Appendix D.

There have also been previous works (Pacchiano et al., 2021;
Chen et al., 2022; Wang et al., 2023; Li et al., 2023b; Zhan
et al., 2023a) studying RLHF under the MDP framework,
also known as dueling RL and preference-based RL. How-
ever, these works do not consider the KL constraint, which is
an essential component of RLHF. Furthermore, they do not
explicitly emphasize the superiority of the MDP framework
over the contextual dueling bandit problem in the context
of LLMs, and their proposed algorithms lack practical im-
plementation. In contrast, we will provide a practical imple-
mentation of our algorithm, demonstrating the practicality
of our approach.

4.2. Practical Implementation

In this subsection, we shift our focus to developing a prac-
tical version of RTO. The key challenge in implementing
RTO in Algorithm 1 lies in learning the token-wise reward
to be optimized from the offline data. In the most popular
frameworks outlined in Instruct-GPT (Ouyang et al., 2022),
Claude (Bai et al., 2022), and LLaMA2 (Touvron et al.,
2023) projects replace the last layer of the LLM with a lin-
ear layer for a scalar output and maximize the log-likelihood
as in (2.2). However, this approach gives only a sentence-
level reward. To bridge the gap in the literature, we present
our practical version of RTO in Algorithm 2, which features
a novel calculation of token-wise reward. Our key observa-
tion is that, given a trajectory τ = {(sh, ah)}Hh=1, we have

H∑
h=1

β log
π∗
β(ah | sh)

πref(ah | sh)

=

H∑
h=1

(
Q∗

β(sh, ah)− V ∗
β (sh)− log πref(ah | sh)

)
=

H∑
h=1

r(sh, ah)− V ∗
β (s1)

+

H−1∑
h=1

(
Es′∼P(· | sh,ah)[V

∗
β (s′)]− V ∗

β (sh+1)
)

︸ ︷︷ ︸
(⋆)

,

where the first equality uses π∗
β(a | s) = exp{(Q∗

β(s, a)−
V ∗
β (s))/β} in (3.4), and the second equality follows from

the fact that Qπ
β(s, a) = rβ(s, a)+Es′∼P(· | s,a)[V

π
β (s′)] in

(3.3) with rβ(s, a) = r(s, a) + β log πref(a | s). We focus
on the typical LLM generation scenario where the transition
kernel is deterministic. Then we have (⋆) = 0 in (4.4),
yielding that

H∑
h=1

r(sh, ah) =

H∑
h=1

β log
π∗
β(ah | sh)

πref(ah | sh)
+ V ∗

β (s1).

Building upon this result and combining it with the def-
inition of the BT model in (3.1), for any trajectory pair
{τ j = {(sjh, a

j
h)}Hh=1}2j=1 satisfying s11 = s21, we have

P(τ1 ≻ τ2) =σ

( H∑
h=1

r(s1h, a
1
h)−

H∑
h=1

r(s2h, a
2
h)

)

=σ

( H∑
h=1

β log
π∗
β(a

1
h | s1h)

πref(a1
h | s1h)

−
H∑

h=1

β log
π∗
β(a

2
h | s2h)

πref(a2
h | s2h)

)
.

(4.4)
An interesting observation is that, based on the autore-

gressive nature of policies, (4.4) aligns with the learning
objective of DPO proposed by Rafailov et al. (2023), but
under the token-level MDP instead of the sentence-level ban-
dit setup. Similar to the bandit setting where the learning
objective is equivalent to a BT model with sentence-wise
reward r∗(x, y) = β log

π∗
β(y | x)

πref (y | x) (Rafailov et al., 2023),
(4.4) shows that the learning objective in token-wise MDP
equivalents to a BT model with a token-wise reward func-
tion

r∗(sh = (x, y1:h−1), ah = yh)

=β log
π∗
β(ah | sh)

πref(ah | sh)
= β log

π∗
β(yh |x, y1:h−1)

πref(yh |x, y1:h−1)
,

(4.5)

where x is the prompt, y1:h−1 is the tokens generated so far,
and yh is the token chosen at the current step. In contrast
to the previous PPO implementation with sparse reward in
(2.3), we will assign the token-wise reward function defined
in (4.5) to each step. Formally, for any h, we define

β1 log
π∗
β(yh |x, y1:h−1)

πref(yh |x, y1:h−1)
− β2 log

π(yh |x, y1:h−1)

πref(yh |x, y1:h−1)

≈ β1 log
πdpo(yh |x, y1:h−1)

πref(yh |x, y1:h−1)
− β2 log

π(yh |x, y1:h−1)

πref(yh |x, y1:h−1)

:= rrto((x, y1:h−1), yh)
(4.6)

as the token-wise reward used by RTO, where β1 and β2 are
tuning parameters, and π is the current policy to be updated.
In the last step of (4.6), we use πdpo, the policy learned by
DPO, as a proxy for the unknown π∗

β . Finally, we employ
PPO to optimize the token-wise reward rrto in (4.6).
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Algorithm 2 Reinforced Token Optimization (Practical Version)
1: Input: Dataset D, parameters β1, β2 > 0, DPO algorithm DPO, and PPO trainer PPO-Update.
2: Compute πdpo ← DPO(D) and let π0 = πref as the reference model.
3: for t = 1, . . . , T do
4: Get a batch of samples Dt from the dataset D but we only keep the prompts.
5: For each prompt x ∈ Dt, generate a response y ∼ πt−1(· |x).
6: Calculate the token-wise reward rrto for each pair (x, y) by ▷ token-wise reward learning

rrto((x, y1:h−1), yh) = β1 log
πdpo(yh |x, y1:h−1)

πref(yh |x, y1:h−1)
− β2 log

πt−1(yh |x, y1:h−1)

πref(yh |x, y1:h−1)
.

7: πt ← PPO-Update(πt−1, rrto, {(x, y)}x∈Dt
). ▷ optimizing token-wise reward

8: end for
9: Output: policy πT .

5. Experiments
In this section, we conduct real-world alignment experi-
ments to verify the effectiveness of RTO. We provide the
experimental setups and experimental results in Sections 5.1
and 5.2, respectively.

5.1. Experimental Setups
▷ Tasks and Data. We consider two text generation tasks,
including the Dialogue Generation (Bai et al., 2022) and
Summarization task (Völske et al., 2017). Given a text
sequence representing dialogue history between the user
and the assistant, the goal of the Dialogue Generation
task is to generate a helpful response as the answer. For
this purpose, we utilize the helpful subset of the Anthropic
Helpful and Harmless (HH-RLHF) dialogue dataset3 (Bai
et al., 2022). For the Summarization task, we employ the
Reddit TL;DR summarization dataset4 (Völske et al., 2017),
and the model is required to generate a concise summary
for a given post from the Reddit forum. To facilitate readers,
we provide examples of the HH-RLHF and TL;DR datasets
in Appendix G.1.

▷ Model and Baselines. We employ the open-sourced Pythia-
2.8B model (Biderman et al., 2023) as the backbone for all
experiments. We select four methods as baselines. The first
baseline, SFT (i.e., πref ), fine-tunes the language model
using the human-preferred responses only. Building upon
this SFT model, we further train a DPO model, which fine-
tunes the SFT model using the positive/negative preference
data. Besides these two RL-free algorithms, we compare
two RLHF algorithms relying on RL training. The first one
is the standard PPO algorithm, which directly optimizes
sentence-level reward in (2.3) from the SFT model. For an
ablation study, we also consider a PPO variant as a baseline
where the sentence-level reward is provided by the DPO
objective, defined as follows:

3https://huggingface.co/datasets/Anthropic/hh-rlhf
4https://huggingface.co/datasets/openai/summarize from feedback

rdppo(x, y1:h) =


0− β2 log

π(yh | x,y1:h−1)
πref (yh | x,y1:h−1)

if h ≤ H − 1,

β1 log
π(y | x)

πref (y | x) − β2 log
π(yh | x,y1:h−1)

πref (yh | x,y1:h−1)

if h = H,
(5.1)

where (x, y = y1:H) is the prompt-response pair, π is the
current policy, and (β1, β2) are tuning hyperparameters. In
other words, we use the DPO to extract a sentence-level
reward from the preference data, assign it to the last token,
and fine-tune the model using the PPO algorithm. We refer
to this baseline as DPPO. For our proposed RTO, we use
the DPO model to derive a token-wise reward model (4.6),
and train the policy to align human preference using PPO,
as detailed in Algorithm 2. The training configurations of
all aforementioned models are given in Appendix G.2.

▷ Evaluation. We primarily assess the alignment perfor-
mance of various methods using GPT-4. The GPT-4 eval-
uation harnesses the capabilities of GPT-4 itself and has
been shown to align well with human evaluations (Rafailov
et al., 2023). For the same prompt, we provide GPT-4 with
two responses generated by two different models and ask it
to determine which one is superior. We then calculate the
win rates, following (Rafailov et al., 2023). The prompts
for GPT-4 evaluation of both HH-RLHF and TL;DR are
presented in Appendix G.3. For each GPT-4 evaluation, we
use 100 samples. In addition to GPT-4 evaluation, we also
employ oracle reward evaluation for HH-RLHF. For this,
we employ an open-sourced reward model 5 as the oracle,
which is trained from Mistral-7B (Jiang et al., 2023) and
achieves one of the highest accuracy on the Anthropic Help-
ful and Harmless dialogue task (Bai et al., 2022). Given 400
prompts, we generate the responses using all baselines and
calculate the average rewards of the responses by the oracle
reward model.5https://huggingface.co/weqweasdas/RM-Mistral-7B
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Win Rate RTO DPO SFT PPO DPPO
RTO 0.50 0.51 0.56 0.52 0.56
DPO 0.49 0.50 0.52 0.54 0.51
SFT 0.44 0.48 0.50 0.41 0.46
PPO 0.48 0.46 0.59 0.50 0.52

DPPO 0.44 0.49 0.54 0.48 0.50

Table 1(a): HH-RLHF win rates evaluated by GPT-4.
Win Rate RTO DPO SFT PPO DPPO

RTO 0.50 0.61 0.67 0.67 0.67
DPO 0.39 0.50 0.58 0.59 0.50
SFT 0.33 0.42 0.50 0.59 0.49
PPO 0.33 0.41 0.41 0.50 0.40

DPPO 0.33 0.50 0.51 0.60 0.50
Table 1(b): TL;DR win rates evaluated by GPT-4

Table 1. Win rates between each pair of models evaluated by GPT-
4. The value in line i column j represents the win rate of the model
in row i against the model in column j.

5.2. Experimental Results

The experiment results of our proposed method and base-
lines on HH-RLHF are detailed in Table 1(a) and Figure 3(c).
This table meticulously presents the win rates between dif-
ferent models, assessed through both the oracle model and
the GPT-4. From these results, we can see that the model
trained by RTO achieves win rates over 50% against all
other baselines, especially compared to DPO, evaluated by
both the oracle reward model and GPT-4. This highlights
the effectiveness of the RTO algorithm in alignment tasks.
Furthermore, the model trained by RTO gets a win rate of
56% evaluated by GPT-4 over the DPPO algorithm. This
implies that the token-wise reward mechanism significantly
improves the performance of the RL algorithm in training
models. Table 1(b) presents the performance of our method
on the TL;DR dataset. We can see that the model trained
by RTO outperforms all other baselines. Specifically, we
achieve a win rate of 61% over the DPO algorithm eval-
uated by GPT-4. This illustrates the effectiveness of the
RTO algorithm in a real-world text summarization task. The
optimizing process curves of RTO and DPPO are given in
Appendix F. All these empirical findings demonstrate the
token-wise reward mechanism’s advantage in improving
model performance.
▷ Ablation Studies on Temperatures. We compare the model
trained by RTO to other baselines on both datasets across
different temperatures. The win rates of these comparisons,
as the temperature varies, are presented in Figures 3(a) and
3(b). We can observe that the RTO model consistently out-
performs the other baselines, highlighting its robustness
across different temperatures.

6. Conclusion
In this work, we suggest that the suboptimal performance
of open-source implementations of PPO may be attributed
to their reliance on sentence-level rewards, which neglect
valuable token-wise information. To tackle this problem
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Figure 3. Subfigures (a) and (b) show the win rates of RTO across
different sampling temperatures, while Subfigure (c) visualizes the
mean reward of different baselines evaluated by the oracle model.
caused by the limitations of the previous bandit framework
for RLHF, we propose an MDP formulation for RLHF that
better characterizes token-wise information, along with theo-
retical insights demonstrating its superiority. Building upon
this formulation, we introduce a novel algorithm called Re-
inforced Token Optimization (RTO), which leverages token-
wise rewards to improve the policy. RTO is shown to be
both provably sample-efficient and practical. Our practical
implementation involves a novel token-wise reward learning
approach via DPO, followed by optimization using PPO.
This innovative combination of DPO and PPO allows RTO
to effectively utilize token-level information and signifi-
cantly improve the performance of baselines. Furthermore,
our research opens up several intriguing future research di-
rections, such as designing alternative methods for learning
token-wise rewards beyond DPO and exploring other effec-
tive algorithms for optimizing token-level rewards besides
PPO.

8



DPO Meets PPO: Reinforced Token Optimization for RLHF

References
Agarwal, A., Kakade, S. M., Lee, J. D. and Mahajan, G.

(2021). On the theory of policy gradient methods: Opti-
mality, approximation, and distribution shift. The Journal
of Machine Learning Research, 22 4431–4506.

Ahmadian, A., Cremer, C., Gallé, M., Fadaee, M.,
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A. Related Works
We review the works that are mostly related to our project in this subsection. Due to the space constraint, we refer interested
readers to the survey (Casper et al., 2023) for a more comprehensive overview of RLHF.

RLHF algorithm. The classic RLHF framework is established in Christiano et al. (2017); Ziegler et al. (2019) and further
developed in Ouyang et al. (2022); Bai et al. (2022), where the latter can be viewed as the results of the preliminary versions
of Chat-GPT and Claude. PPO (Schulman et al., 2017) is the default choice for all these projects and its effectiveness has
been showcased in the resulting revolutionary foundation language models. However, as we mentioned in the introduction,
tuning the PPO algorithm to its best performance requires extensive efforts and resources are often unavailable to the
open-source community. Motivated by this, researchers have made efforts to develop alternative approaches to the PPO
algorithm. As a direct extension of the best-of-n inference (Nakano et al., 2021), rejection sampling fine-tuning is proposed
by Dong et al. (2023); Gulcehre et al. (2023); Wang et al. (2024), which prompts the LLM to generate n responses per
prompt and uses a learned reward function to rank the responses and fine-tune the model on those with high rewards.
Besides, inspired by the reward-conditioned training in RL literature (Chen et al., 2021), Hu et al. (2023); Yang et al. (2024a)
develop conditional SFT to avoid the reward learning. Another line of work aims to skip the reward modeling step and
may be referred to as the direct preference learning approach (Zhao et al., 2023; Rafailov et al., 2023; Azar et al., 2023;
Tang et al., 2024). Among them, the direct preference optimization (DPO) algorithm is the most popular one, mostly due
to its innovative idea: your language model is secretly a reward model. In particular, according to the reward benchmark
(Lambert et al., 2024), the DPO-aligned algorithm often admits a competing ranking accuracy as a reward function. We will
formally discuss the principle of DPO in Appendix E.1, which also partly motivates our methods. After these, there are also
many tasks that consider the variants of this direct preference learning approach by increasing the training steps (Xiong
et al., 2023; Hoang Tran, 2024) and consider the more general preference signal sources (Ye et al., 2024; Rosset et al., 2024).
Although all these recently proposed algorithms achieve promising results, there is little evidence that these algorithms alone
without PPO can make state-of-the-art LLMs. Therefore, understanding PPO and improving its performance in the context
of foundation model alignment is still an important research direction.

Theoretical study of RLHF. The theoretical study of RLHF may date back to the dueling bandit and dueling RL (e.g.,
Yue et al., 2012; Saha, 2021; Faury et al., 2020; Bengs et al., 2021; Pacchiano et al., 2021; Chen et al., 2022; Zhu et al.,
2023; Wang et al., 2023; Zhan et al., 2023a;b), where the reward maximization problem is considered in the face of
preference signals, instead of the absolute reward signals. However, the reward maximization framework admits a greedy
and deterministic optimal policy, which deviates from the principle of generative AI. Meanwhile, instead of the original
reward function, the most widely used learning target is a Kullback-Leibler (KL)-regularized one. In recognition of the
above issues, Xiong et al. (2023) first formally formulates the RLHF as the reverse-KL constrained contextual bandit in
offline, online, and hybrid settings, and proposes sample-efficient algorithms in different settings accordingly. Beyond the
reward-based framework under the Bradley-Terry model, Azar et al. (2023); Ye et al. (2024) consider the RLHF under a
general preference oracle, and motivate the algorithmic design in a KL-regularized minimax game between two LLMs.
In particular, Azar et al. (2023) proposes the first sample-efficient planning algorithm, and Ye et al. (2024) designs the
sample-efficient learning algorithms in offline and online settings. Notably, as these studies of the KL-regularized framework
align with the practical applications closely, the theoretical insights naturally motivate practically powerful algorithms
like GSHF (Xiong et al., 2023), Nash-MD (Azar et al., 2023), and DNO (Rosset et al., 2024). However, we remark that
Xiong et al. (2023); Azar et al. (2023); Ye et al. (2024) are still confined to the bandit setting, thus differing from the MDP
formulation presented in this paper.

Improving PPO in the context of RLHF. Although some works (e.g., Uesato et al., 2022; Lightman et al., 2023; Yang
et al., 2024b) use token-wise or step-wise information to enhance the performance of LLMs, such as their reasoning ability,
we will not discuss them in detail here. Instead, we will focus on comparing our work with others that aim to improve
the PPO in RLHF. In particular, Li et al. (2023a) and Ahmadian et al. (2024) state that the PPO is not the best fit for
RLHF because of the sentence-level reward and deterministic transition, and argue that the reinforce-style (Williams, 1992)
algorithms perform better. Wu et al. (2024) proposes to construct several separate reward functions for different goals and
use the linear combination of them to guide the PPO training, but the separate models are still confined to the sentence level.
Similarly, Jang et al. (2023) extends the PPO to the multi-objective optimization scenario, but still uses the sentence-level
modeling. Chan et al. (2024) shares similar insights that aim to improve PPO via a dense reward. They still follow the
two-staged RLHF framework to model the reward function via MLE of the Bradley-Terry model and assume that the learned

13



DPO Meets PPO: Reinforced Token Optimization for RLHF

reward is based on the transformer (Vaswani et al., 2017). Then, they propose to use the attention value to redistribute the
final scalar reward on a token level. In comparison, while sharing similar insights about using a token-wise reward, our
techniques to obtain the dense signal and mathematical motivation are fundamentally different.

Concurrent work. During the preparation of this work, there is a concurrent and independent work (Rafailov et al., 2024)
that also provides a token-wise MDP formulation for RLHF. Their work shares the same insight as ours, namely that “DPO
implicitly optimizes the token-wise reward”. Based on this insight, they improve the efficiency of search-based algorithms.
In contrast, we propose a new algorithm RTO that leverages the token-wise reward functions to enhance the performance
of PPO. In addition, our work provides a theoretical foundation for the unique advantages of token-wise MDP and its
sample-efficient learning.

B. Proof of Theorem 3.2
Proof of Theorem 3.2. If only the sentence-level reward rs is available, the learner must try every possible response and
determine the optimal one by ranking the collected sentence-level reward signals, resulting in a sample complexity of AH .
Instead, we consider a binary tree with depth H + 1, where each node is indexed by some token sequence y1:h and has A
children {(y1:h, yh+1)}yh+1∈A. All AH leaf nodes denote a unique prompt-response pair (x, y1:H). We define two disjoint
node sets:

N =
{
y1:h : π∗(y1:h |x) < A−ξ, π∗(y1:h−1 |x) ≥ A−ξ

}
, N ∗{y1:H : π∗(y1:H |x) ≥ A−ξ

}
. (B.1)

Our key observations are that (i) each path must contain a node in N or N ∗, (ii) the path containing the node in N is
suboptimal; and (iii) |N ∪ N ∗| ≤ Aξ+1. The exploration strategy is to query a new path that does not contain the nodes in
N ∪N ′ that have been visited. Since each query of a new path (response with length H) can identify a new additional node
in N ∪N ∗, after at least Aξ+1 queries, we collect a set of paths where each node in N ∪N ∗ belongs to one of the paths.
Finally, ranking all gathered rewards of the node in N ∗ identifies the optimal y∗ = y∗1:H . Together with the fact that there
exists as most AH nodes, we finish the proof of Theorem 3.2. To facilitate understanding, we visualize a simplified learning
process in Figure 2.

C. Proof of Theorem 4.2
Recall that the visitation measure of policy π is

dπ(s) = Es1∼ρ

[ ∞∑
h=1

P(st = s | s1)
]
, dπ(s, a) = Es1∼ρ

[ ∞∑
h=1

P(sh = s, ah = a | s1)
]
. (C.1)

Under this notation, we can rewrite the value function in (3.2) as

V π
β (ρ) = E(s,a)∼dπ

[
r(s, a)−KL

(
π(· | s)∥πref(· | s)

)]
.

For simplicity, we will use the shorthand d∗ = dπ
∗
β .

Proof of Theorem 4.2. Our proof relies on the following standard MLE analysis.

Lemma C.1 (MLE Analysis). It holds with probability 1− δ that

∥θMLE − θ∗∥ΣD ≤ ϱ := C ·
√

d log(1/δ)

Υ
+ λB2, (C.2)

where C is an absolute constant and Υ = 1/(2 + exp(−2HLB) + exp(2HLB)).

Proof. See e.g., Faury et al. (2020); Pacchiano et al. (2021); Zhu et al. (2023) for a detailed proof.
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Back to the proof of Theorem 4.2, we first decompose the suboptimality gap defined in (3.5) as

SubOpt(π̂) = V ∗
β (ρ; r)− V π̂

β (ρ; r)

= E(s,a)∼d∗
[
r(s, a)− β ·KL

(
π∗
β(· | s)∥πref(· | s)

)]
−
(
E(s,a)∼dπ̂

[
r(s, a)− β ·KL

(
π̂(· | s)∥πref(· | s)

)])
= E(s,a)∼d∗ [r(s, a)− r̂(s, a)]︸ ︷︷ ︸

Term(i)

+E(s,a)∼dπ̂ [r̂(s, a)− r(s, a)]︸ ︷︷ ︸
Term(ii)

+V
π∗
β

β (ρ; r̂)− V π̂
β (ρ; r̂)︸ ︷︷ ︸

Term(iii)

. (C.3)

Then we analyze these three terms respectively.

Term (i). Recall that the pessimistic reward r̂ defined in (4.2) takes the form

r̂(s, a) = ϕ(s, a)⊤θMLE − ϱ · ∥ϕ(s, a)∥Σ−1
D
.

Then we can rewrite Term (i) in (C.3) as

Term(i) = E(s,a)∼d∗
[
ϕ(s, a)⊤(θ∗ − θMLE) + ϱ · ∥ϕ(s, a)∥Σ−1

D

]
≤ E(s,a)∼d∗

[
∥ϕ(s, a)∥Σ−1

D
· ∥θ∗ − θMLE∥ΣD + ϱ · ∥ϕ(s, a)∥Σ−1

D

]
≤ 2ϱ · E(s,a)∼d∗

[
∥ϕ(s, a)∥Σ−1

D

]
, (C.4)

where the first inequality is obtained by Cauchy-Schwarz inequality, and the last inequality follows from Lemma C.1.

Term (ii). Similar to the derivation of (C.4), we have

Term(ii) = E(s,a)∼dπ̂

[
ϕ(s, a)⊤(θMLE − θ∗)− ϱ · ∥ϕ(s, a)∥Σ−1

D

]
≤ E(s,a)∼dπ̂

[
∥ϕ(s, a)∥Σ−1

D
· ∥θMLE − θ∗∥ΣD − ϱ · ∥ϕ(s, a)∥Σ−1

D

]
≤ 0, (C.5)

where the first inequality uses Cauchy-Schwarz inequality, and the last inequality is implied by Lemma C.1.

Term (iii). To handle this term, we introduce the following performance difference lemma for MDP with KL constraint.

Lemma C.2 (Performance Different Lemma). For any reward function r and policy pair (π, π′), it holds that

V π
β (ρ; r)− V π′

β (ρ; r) = E(s,a)∼dπ [Qπ′

β (s, a; r)− V π′

β (s; r)− β log π(a | s)].

Proof. See Appendix C.1 for a detailed proof.

When β = 0, the regularized MDP becomes the standard MDP, and Lemma C.2 reduces to the standard performance
difference lemma (Kakade and Langford, 2002). Applying Lemma C.2 to Term (iii) in (C.3), we have

Term(iii) = E(s,a)∼d∗ [Qπ̂
β(s, a; r̂)− V π̂

β (s; r̂)− β log π∗
β(a | s)]

= E(s,a)∼d∗ [β log π̂(a | s)− β log π∗
β(a | s)]

= −β · Es∼d∗
[
KL

(
π∗
β(· | s)∥π̂(· | s)

)]
, (C.6)

where the second equality follows from the fact that π̂ is the optimal policy with respect to V π
β (s; r̂) and the expression of

optimal policy π̂(a | s) = exp{(Qπ̂
β(s, a; r̂)− V π̂

β (s; r̂))/β} in (3.4), and the last equality is obtained by the definition of
KL divergence.
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Finishing the Proof. Plugging (C.4), (C.5), and (C.6) into (C.3), we obtain that

SubOpt(π̂) ≤ 2ϱ · E(s,a)∼d∗
[
∥ϕ(s, a)∥Σ−1

D

]
− β · Es∼d∗

[
KL

(
π∗
β(· | s)∥π̂(· | s)

)]
,

which finishes the proof of Theorem 4.2.

Remark C.3. If we do not have access to the exact optimal policy π̂ with respect to r̂, we can use the policy optimization
algorithms to find a near-optimal optimal policy π̃. In such case, Term (iii) in (C.5) becomes V

π∗
β

β (ρ; r̂) − V π̃
β (ρ; r̂) =

V
π∗
β

β (ρ; r̂)− V π̂
β (ρ; r̂) + V π̂

β (ρ; r̂)− V π̃
β (ρ; r̂), and we need to handle the additional error term V π̂

β (ρ; r̂)− V π̃
β (ρ; r̂). This

type of error analysis has been established for NPG (Agarwal et al., 2021; Cen et al., 2022) and PPO (Cai et al., 2020; Wu
et al., 2022; Zhong and Zhang, 2024).

C.1. Proof of Lemma C.2

Proof of Lemma C.2. Without loss of generality, we assume that the initial state is a fixed state s1 ∈ S. For simplicity, we
also omit the dependency of r in the regularized Q-function and value function. First, we have

V π
β (s1)− V π′

β (s1) = V π
β (s1)− Ea1∼π(· | s1)

[
rβ(s1, a1) + Es2∼P(· | s1,a1)[V

π′

β (s2)]
]︸ ︷︷ ︸

(⋆)

+ Ea1∼π(· | s1)[Q
π′

β (s1, a1)]− V π′

β (s1)︸ ︷︷ ︸
(⋆⋆)

,
(C.7)

where we uses the equality Qπ′

β (s1, a1) = rβ(s1, a1) + Es2∼P(· | s1,a1)[V
π′

β (s2)] in (3.3) with rβ(s, a) = r(s, a) +
β log πref(a | s). By (3.3), we further have

V π
β (s1) = Ea1∼π(· | s1)[−β log π(a1 | s1) +Qπ

β(s1, a1)]

= Ea1∼π(· | s1)
[
− β log π(a1 | s1) + rβ(s1, a1) + Es2∼P(· | s1,a1)[V

π
β (s2)]

]
.

Plugging this into Term (⋆) of (C.7), we have

(⋆) = Ea1∼π(· | s1)
[
− β log π(a1 | s1)

+ Es2∼P(· | s1,a1)[V
π
β (s2)]

]
− Ea1∼π(· | s1)

[
Es2∼P(· | s1,a1)[V

π′

β (s2)]
]

= Ea1∼π(· | s1)[−β log π(a1 | s1)] + Es2∼dπ
2
[V π

β (s2)− V π′

β (s2)], (C.8)

where we use dπh(s) to denote the visitation measure at the h−th step. Meanwhile, we rewrite (⋆⋆) in (C.7) as

(⋆⋆) = Ea1∼π(· | s1)[Q
π′

β (s1, a1)− V π′

β (s1)]. (C.9)

Plugging (C.8) and (C.9) into (C.7), we have

V π
β (s1)− V π′

β (s1) = Es2∼dπ
2
[V π

β (s2)− V π′

β (s2)] + E(s1,a1)∼dπ
1
[Qπ′

β (s1, a1)− V π′

β (s1)− β log π(a1 | s1)]
= · · ·

=

∞∑
h=1

E(sh,ah)∼dπ
h
[Qπ′

β (sh, ah)− V π′

β (sh)− β log π(ah | sh)]

= E(s,a)∼dπ [Qπ′

β (s, a)− V π′

β (s)− β log π(a | s)],

where we use E(sh,ah)∼dπ
h

to denote Esh∼dπ
h,ah∼π(· | sh) and the definition of dπ in (C.1). Therefore, we conclude the proof

of Lemma C.2.

16



DPO Meets PPO: Reinforced Token Optimization for RLHF

D. Variants of Reinforced Token Optimization
Different from Algorithm 1 where the learner constructs a pessimistic reward estimation and then outputs its corresponding
optimal policy. Indeed, we can also perform pessimistic planning with respect to the value function to find the near-optimal
policy:

π̂ = argmax
π

min
θ∈Θ

{
(E(s,a)∼dπ [ϕ(s, a)])⊤θ − β · Es∼dπ

[
KL

(
π(· | s)∥πref(· | s)

)]}
, (D.1)

where Θ = {∥θ∥2 ≤ B : ∥θ − θMLE∥ΣD ≤ ϱ} and θMLE is given in (4.1). Here ϱ is the problem-dependent constant
in (C.2) and ΣD =

∑
(τ1,τ2)∈D[

∑H
h=1(ϕ(s

1
h, a

1
h)− ϕ(s2h, a

2
h))(

∑H
h=1(ϕ(s

1
h, a

1
h)− ϕ(s2h, a

2
h)))

⊤] + λId is the covariance
matrix. For policy π̂ in (D.1), we have the following theoretical guarantee.

Theorem D.1. Suppose Assumption 4.1 holds. For β > 0, λ > 0, δ ∈ (0, 1), if we choose ϱ = Õ(
√
d) (see (C.2)), then the

output policy π̂ of (D.1) satisfies

SubOpt(π̂) ≤ 2ϱ · ∥E(s,a)∼d∗ [ϕ(s, a)]∥Σ−1
D
.

Proof of Theorem D.1. For ease of presentation, we define

V̂ π
β (ρ) = min

θ∈Θ

{
(E(s,a)∼dπ [ϕ(s, a)])⊤θ − β · Es∼dπ

[
KL

(
π(· | s)∥πref(· | s)

)]}
.

By Lemma C.1, we know that θ∗ ∈ Θ with probability 1− δ. This implies that

V̂ π̂
β (ρ) ≤ (E(s,a)∼dπ̂ [ϕ(s, a)])⊤θ∗ − β · Es∼dπ̂

[
KL

(
π̂(· | s)∥πref(· | s)

)]
= V π̂

β (ρ). (D.2)

Meanwhile, by (D.1), we have

V̂
π∗
β

β (ρ) ≤ V̂ π̂
β (ρ). (D.3)

Combining (D.2) and (D.3), we obtain

V̂
π∗
β

β (ρ) ≤ V π̂
β (ρ).

Plugging this into the definition of the suboptimality gap in (3.5), we have

SubOpt(π̂) = V ∗
β (ρ)− V π̂

β (ρ) ≤ V ∗
β (ρ)− V̂

π∗
β

β (ρ)

Now we introduce the notation of θ̂:

θ̂ = argmin
θ∈Θ

{
(E(s,a)∼d∗ [ϕ(s, a)])⊤θ − β · Es∼d∗

[
KL

(
π∗
β(· | s)∥πref(· | s)

)]}
.

Under this notation, we further obtain that

SubOpt(π̂) ≤ E(s,a)∼d∗ [(θ∗ − θ̂)⊤ϕ(s, a)]

= E(s,a)∼d∗ [(θ∗ − θMLE)
⊤ϕ(s, a)] + E(s,a)∼d∗ [(θMLE − θ̂)⊤ϕ(s, a)]

≤
(
∥θMLE − θ∗∥ΣD + ∥θMLE − θ̂∥ΣD

)
· ∥E(s,a)∼d∗ [ϕ(s, a)]∥Σ−1

D

≤ 2ϱ · ∥E(s,a)∼d∗ [ϕ(s, a)]∥Σ−1
D
,

where the second inequality uses Cauchy-Schwarz inequality, and the last inequality is obtained by Lemma C.1. Therefore,
we conclude the proof of Theorem D.1.

Remark D.2 (Extension to Unknown Transitions). In (D.1), we assume that the transition kernel is known so that we
can compute the state distribution dπ induced by the policy π. Although this is natural in LLMs, we briefly sketch the
extension to the unknown transition setting. Following Zhan et al. (2023a), which is inspired by previous works on standard
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reward-based RL theory (Uehara and Sun, 2021; Liu et al., 2022; Zhong et al., 2022; Liu et al., 2023; Huang et al., 2024),
we can also construct a confidence set for the transition kernel

ΘP =

{
P :

∑
(τ1,τ2)∈D

2∑
i=1

logP (τ i) ≥ max
P̃

∑
(τ1,τ2)∈D

2∑
i=1

log P̃ (τ i)− ζ

}
,

where P (τ) is the probability of observing the trajectory τ under the transition P and ζ is a tuning parameter. With a proper
choice of ζ , one can also show that P ∈ ΘP with high probability. Then we can perform the following pessimistic planning

π̂ = argmax
π

min
θ∈Θ,P∈ΘP

{
(E(s,a)∼dπ

P
[ϕ(s, a)])⊤θ − β · Es∼dπ

P

[
KL

(
π(· | s)∥πref(· | s)

)]}
,

where dπP denotes the state distribution induced by policy π under the environment P . Combining the analysis of Theorem D.1
and previous work on offline RL (Uehara and Sun, 2021; Zhan et al., 2023a), we can also establish a similar result to
Theorem D.1, but with an additional estimation error for the transition kernel part. As this part is standard and not the focus
of our work, we omit it for simplicity.

E. Additional Discussions
E.1. Direct Preference Optimization

Direct Preference Optimization (DPO) is a representative algorithm of the direct preference learning algorithm (Rafailov
et al., 2023; Zhao et al., 2023; Azar et al., 2023; Tang et al., 2024). From a high level, these type of algorithms aim to skip
the reward modeling and learn directly from the preference data, hence the name direct preference learning. In this section,
we introduce the mathematical principle of DPO for completeness.

We first recall that in the original two-staged learning paradigm, we aim to optimize the following KL-regularized target:

π̂ = argmax
π

Ex∼ρ,y∼π(·|x)

[
rMLE(x, y)− β log

π(y |x)
πref(y |x)

]
, (E.1)

where rMLE is the MLE of the BT model on the offline preference dataset D obtained via

rMLE = argmax
r

∑
(x,yw,yl)∈D

log σ
(
r(x, yw)− r(x, yl)

)
. (E.2)

One notable feature of this KL-constrained optimization problem is that it admits a closed-form solution, as summarized in
the following lemma.
Lemma E.1 (Solution of KL-regularized Optimization (Proposition 7.16 and Theorem 15.3 of Zhang (2023))). Given a loss
functional with respect to π(· |x), written as

Ey∼π(· | x)

[
− r(x, y)− β log

πref(y |x)
π(y |x)

]
= β ·KL

(
π(y |x)

∥∥∥πref(y |x) exp
( 1

β
r(x, y)

))
,

the minimizer of the loss functional is πr(y |x) ∝ πref(y |x) exp
(

1
β r(x, y)

)
, also known as Gibbs distribution.

Therefore, for any fixed reward function r, it leads to a closed-form policy:

πr(y |x) =
1

Z(x)
πref(y |x) exp

( 1

β
r(x, y)

)
,

where Z(x) =
∑

y′ πref(y
′ |x) exp( 1β r(x, y

′)) is the normalization constant. Then, we can solve the reward as

r(x, y) = β log
πr(y |x)
πref(y |x)

+ β logZ(x). (E.3)

We can plug (E.3) into (E.2) to get

π̂ = argmax
πr

∑
(x,yw,yl)∈D

log σ

(
β log

πr(y
w |x)

πref(yw |x)
− β log

πr(y
l |x)

πref(yl |x)

)
. (E.4)
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Clearly, if r is the solution of (E.2), the πr is the solution of (E.4). On the other hand, if π is optimal for the DPO target in
(E.4), then, the induced implicit reward β log π(y | x)

πref (y | x) is optimal for (E.2).

Interestingly, while the DPO is derived from the sentence-level reward function and BT model, the implicit reward naturally
gives a token-wise characterization of the prompt-response pair and can be leveraged as a dense reward signal for the PPO
training.

E.2. Autoregressive Policy

For the policy defined in a contextual dueling bandit setting, it maps from a prompt to a complete sentence. For ease of
presentation, we call this type of policy the predetermined policy since it determines the entire sentence regardless of the
generation process. In contrast, the Markov policy defined in the MDP formulation generates responses autoregressively: it
considers not only the prompt but also the tokens generated so far. By definition, the Markov policy is at least as good as the
policy that determines the whole sentence based solely on the prompt. In deterministic MDPs, the optimal action sequence
is predetermined given the initial state, which demonstrates the equivalence of these two types of policies. However, for
stochastic MDPs, the Markov policy is strictly more expressive than the predetermined policy. The transition can be
stochastic for various reasons. For example, if the LLM uses an external search engine, the next state sh+1 depends not
only on the current tokens (x, y1:h) but also on the text generated by the external search engine π′(· |x, y1:h), making it
stochastic. Moreover, RLHF may have applications in other scenarios, such as robotics (Christiano et al., 2017), where the
transition kernel is stochastic. To clarify, we distinguish these two types of policies in the following proposition.

Proposition E.2. There exists an MDP such that the value of any predetermined policy is at least 0.5 less than that of
optimal Markov/autoregressive policy.

Proof. We construct an MDPM with state space S = {s0, s1, s2}, action spaceA = {a1, a2}, horizon H = 2, fixed initial
state s0. The reward r and transition kernel P are given by

r(si, aj) = 1{i = j}, P(s1 | s0, aj) = P(s2 | s0, aj) = 0.5, ∀(i, j) ∈ {0, 1, 2} × {1, 2}.

It is straightforward to see that the optimal autoregressive policy achieves a value of 1. In contrast, any predetermined policy
only achieves a value of 0.5. This completes the proof.

F. Additional Experimental Results
Optimization Process Curves. To further investigate the benefits of the token-wise reward mechanism in the optimization
process, we compare the estimated reward during the training period in Figure 4(a) and Figure 4(b). In both figures, the
x-axis represents the training iterations. The y-axis represents the reward given by the implicit reward model derived from
the DPO model (the reward model used in training) per batch. As we can see, in one epoch (roughly corresponds to 160 PPO
training iterations in Figure 4(a) and 240 in Figure 4(b)), the reward of the model trained by RTO on HH-RLHF can achieve
about 0.1, while the reward of the model trained by DPPO is roughly −0.25; similarly, the reward of the model trained
by RTO on TL;DR can achieve about 0.4, while the reward of the model trained by DPPO is roughly −0.2. The results
demonstrate that the token-wise reward mechanism significantly enhances the training process, leading to a remarkably
higher reward.
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Figure 4. The reward curve of DPPO and RTO during training. The reward is given by the implicit reward model β log
πdpo(y | x)
πref (x | y)

optimized by DPO. The x-axis represents the training steps, and the y-axis represents the reward values. Figure 4(a) shows the reward
curve of HH-RLHF, and figure 4(b) shows the reward curve of TL;DR.

G. Additional Experimental Details
G.1. Examples of Datasets

G.1.1. A SAMPLE OF THE HH-RLHF DATASET

Prompt:

Human: What does ugly Christmas sweater mean?

Assistant:

Chosen response: The ugly Christmas sweater is a popular meme that’s become pretty big over the past few
years. The concept is simple: you buy a cheap ugly Christmas sweater, you wear it on Christmas day, and you
post a photo of yourself in the sweater on social media with some funny caption or message.

Rejected response: It means something that a person might wear as a Christmas sweater. And by “Christmas
sweater”, I assume you mean a sweater that people might wear around Christmas time, and not a regular sweater
worn in the winter, and not a wool sweater.
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G.1.2. A SAMPLE OF THE TL;DR DATASET

Prompt:

SUBREDDIT: r/AskReddit
TITLE: Reddit, what event drove you to cry in the bathroom at work?
POST: Yesterday, I finally became that girl who goes into the bathroom to cry while at work.

I work at a domestic violence shelter, and normally I’m pretty capable of brushing things off. I’m
somewhat ashamed to say that it was not secondhand truama that led me to weep in the bathroom stall like a
little girl, but my coworkers. It had been a rough day, which are pretty normal around here, but it was a tolerable
level of rougness. My patience was wearing thin and I just wanted to go to the support group for advocates and
take a breather.

Unfortunately, my coworker decided at that time to demand that I clean one of the recently vacated
rooms. Not just clean it, but DEEP clean it. I’m not talking clean-it-like-your-parents-are-coming-home-after-a-
weekend-away type clean. I mean, she wanted it hospital-grade clean. She wanted to be able to perform surgery
on any surface of that room. The checklist she gave me- handwritten of course- had at least thirty tasks on it.
For a dorm-sized room.

I lost it, guys. I just completely lost my shit. I told her that I would be happy to help clean that
room, but she was absolutely off her rocker if she thought I was going to spend the next four hours cleaning by
myself. She was incensed at my apparent refusal, and though I tried to reiterate that I would do it, but not alone,
she started screaming for the lead advocate to put me in my place.

Well, the lead advocate just didn’t want to deal with the situation and told me to just do it. I was
absolutely frustrated, appalled, and overwhelmed. And so...I went into the bathroom and cried. Then I went and
cleaned the stupid room.
TL;DR:

Chosen response: I was stressed, my lazy coworker demanded I clean every speck of dust from a room alone,
I lost my shit, my supervisor sided with my coworker.

Rejected response: Coworker thinks it’s okay to ask me to clean a room she thinks is a dumpster, so I cried.
Then I cleaned it.

G.2. Training Configurations

We provide the training configuration of SFT, DPO, PPO, DPPO, and RTO below. All training can be done on 4 NVIDIA
Tesla A40 48G GPUs. In the table of the training configuration of the standard PPO algorithm, we also present the
configuration of training the reward model used in the PPO algorithm.

G.2.1. TRAINING CONFIGURATIONS OF HH-RLHF

SFT

Optimizer AdamW
Learning Rate 1e-5

Batch Size 32
Epochs 1

Table 2. Configurations for supervise fine-tuning.

DPO

Optimizer AdamW
Learning Rate 5e-6

KL Coefficient (β) 0.1
Batch Size 32

Epochs 1

Table 3. Configurations for DPO.
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PPO

Optimizer (PPO) Adam
Optimizer (Reward Model) AdamW

Mini Batch Size in PPO 16
Init KL Coefficient (β) 0.1
Learning Rate (PPO) 5e-6

Learning Rate (Reward Model) 5e-5
Batch Size Per PPO Iteration 256

Epochs of PPO Update Per Iteration 2
Batch Size (Reward Model) 128

Training Epochs (PPO and Reward Model) 1
Maximum Sequence Length 512

Table 4. Configurations for standard PPO. We also present the configuration of training the reward model used in the PPO algorithm in
this table.

RTO and DPPO

Optimizer Adam
Learning Rate 5e-6

Training Epochs 1
Mini Batch Size in PPO 16
DPO KL Coefficient β1 0.1

Init KL Coefficient β2 (RTO) 0.03
Init KL Coefficient β2 (DPPO) 0.05
Batch Size Per PPO Iteration 256
Maximum Sequence Length 512

Epochs of PPO Update Per Iteration 2

Table 5. Configurations for RTO and DPPO.

G.2.2. TRAINING CONFIGURATIONS OF TL;DR

SFT

Optimizer AdamW
Learning Rate 1e-5

Batch Size 32
Epochs 1

Table 6. Configurations for supervise fine-tuning.

DPO

Optimizer AdamW
Learning Rate 5e-6

KL Coefficient (β) 0.1
Batch Size 32

Epochs 1

Table 7. Configurations for DPO.

G.3. Evaluation Details

Evaluation via Oracle Reward Model: We employ the implicit reward model, derived from the DPO model, as the
Oracle reward model. This evaluation is conducted for both dialogue generation and summarization tasks. To assess the
performance across models, we use top-p sampling and set p = 0.99 and temperature τ = 0.9 to generate completions for
400 prompts from the test set. These samples are then compared based on their rewards to calculate the win rate of one
model over another.

22



DPO Meets PPO: Reinforced Token Optimization for RLHF

PPO

Optimizer (PPO) Adam
Optimizer (Reward Model) AdamW

Mini Batch Size in PPO 16
Init KL Coefficient (β) 0.05
Learning Rate (PPO) 3e-6

Learning Rate (Reward Model) 3e-6
Batch Size Per PPO Iteration 256

Epochs of PPO Update Per Iteration 2
Batch Size (Reward Model) 128

Training Epochs (PPO and Reward Model) 1
Maximum Sequence Length 512

Table 8. Configurations for standard PPO. We also present the configuration of training the reward model used in the PPO algorithm in
this table.

RTO and DPPO

Optimizer Adam
Learning Rate 3e-6

Training Epochs 1
Mini Batch Size in PPO 16
DPO KL Coefficient β1 0.1

Init KL Coefficient β2 (RTO) 0.05
Init KL Coefficient β2 (DPPO) 0.05
Batch Size Per PPO Iteration 256
Maximum Sequence Length 512

Epochs of PPO Update Per Iteration 2

Table 9. Configurations for RTO and DPPO.

Evaluation via GPT-4: Following the previous work (Rafailov et al., 2023), for evaluations utilizing GPT-4, completions
are sampled by top-p sampling method with temperature of τ = 0.9 and p = 0.99 for 100 prompts. To mitigate any
positional bias inherent in GPT-4’s responses, we ensure that the order of completions within each pair is randomized. The
version of the GPT-4 we used is GPT-4-0613, and the specific prompt utilized for GPT-4 evaluation is detailed as follows.
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Prompt for GPT-4 evaluation in dialogue generation task.

For the following query to a chatbot, which response is more helpful?
Query: <the user query>
Response A: <either the test method or baseline>
Response B: <the other response>
FIRST, provide a one-sentence comparison of the two responses and explain which you feel is more helpful. SECOND,
on a new line, state only ”A” or ”B” to indicate which response is more helpful. Your response should use the format:
Comparison: <one-sentence comparison and explanation>
More helpful: <"A" or "B">

Table 10. Prompt for GPT-4 evaluation in dialogue generation task.

Prompt for GPT-4 evaluation in summarization task.

Which of the following summaries does a better job of summarizing the most important points in the given forum post,
without including unimportant or irrelevant details? A good summary is both precise and concise.
Post: <the forum post>
Summary A: <either the test method or baseline>
Summary B: <the other summarization>
FIRST provide a one-sentence comparison of the two summaries, explaining which you prefer and why. SECOND, on a
new line, state only ”A” or ”B” to indicate your choice. Your response should use the format:
Comparison: <one-sentence comparison and explanation>
Comparison:
Preferred: <"A" or "B">

Table 11. Prompt for GPT-4 evaluation in summarization task.
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