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ABSTRACT

Adversarial Training (AT), the method of finetuning a deep learning model with
adversarially generated examples, is the most reliable form of making a model
robust against future adversarial perturbations. However, AT is substantially ex-
pensive than standard training as it requires several full forward and backward
passes to compute adversarial examples. In this paper, we introduce SMAAT, an
efficient AT method that uses only adversarial examples generated in the last layer
to finetune encoder-based large language models. The basis of our approach are
the following three observations (i) the intrinsic dimensionality of the embedding
space spanned by different layers of a deep model is substantially lower than the
explicit dimensionality of the token embeddings; (ii) Encoder-based language
models exhibit a monotonic behavior in their intrinsic dimensionality, i.e., deeper
layers (closer to the output) have much lower intrinsic dimensionality than the
shallow layers (closer to the input); (iii) off-manifold examples tend to persist
across layers, i.e., an image of an off-manifold example generated in a shallow
layer continues to remain off-manifold with respect to the embedding space of the
later layers. We empirically demonstrate the effectiveness of SMAAT and show that
it increases robustness by 8.6%, 15.7%, and 28.8% for BERT and 6.0%, 5.8%, and
19.0% for RoBERTa over the previous state-of-the-art results on AGNEWS, IMDB,
and YELP, respectively. These improvements are achieved while maintaining
comparable generalization and reducing the computational cost to approximately
1/3 to 1/4 of the GPU times required by the Projected Gradient Descent algorithm.

1 INTRODUCTION
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Figure 1: Evaluation on AGNEWS
dataset using BERT. SMAAT achieves
SOTA results on robustness and scalabil-
ity while maintaining comparable clean
accuracy to standard training. The size
of the marker is proportional to the run-
time.

Adversarial training (AT) has been shown to be the most
effective approach for learning deep neural network mod-
els that are robust to perturbations to the input (Bai et al.,
2021; Kurakin et al., 2017). AT is formulated as a min-
max optimization problem where the outer minimization
is over the parameter space and the inner-maximization
searches for the worst-case input space perturbation. For
deep learning models, the inner maximization is solved
approximately using several iterations of the projected gra-
dient descent method (PGD, Madry et al. (2017)). PGD is
expensive as it requires forward and backward passes over
the full length of the network. Thus, P iterations of PGD
would require P additional forward and backward passes.
As deep models, in particular language models, are becom-
ing increasingly larger (Devlin et al., 2018; Brown et al.,
2020), the cost of AT is becoming prohibitive (Schmidt
et al., 2018), potentially leading to models being released
in the wild without robustification against adversarial at-
tacks.

Recently, a growing body of work has been focusing on
making AT scalable. Specifically, several approaches have been proposed to eliminate the overhead
cost of generating adversarial examples (AEs), by recycling the gradient information computed when
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Figure 2: Overview of SMAAT. First, SMAAT searches for the layer with the highest index l∗ where
preceding layers have monotonically decreasing intrinsic dimension. Perturbations to l∗ result in
the shortest PGD forward-backward chains (more scalability) and the highest proportion of off-
manifold AEs (more robustness by the manifold conjecture). Next, SMAAT trains the network
adversarially by generating samples from l∗ as opposed to l = 1, as classically. This results in
O(K(n− l∗)(max({di}l

∗−1
i=1 )− dl∗)) gain in run-time complexity per training iteration.

updating model parameters to generate the perturbations.In particular, FreeAT Shafahi et al. (2019)
combines parameter updates and ascent steps for input perturbation. Similarly, YOPO (Zhang et al.,
2019) accumulates gradients over ascent steps. Such approaches, however, suffer from the “stale
gradient” problem (Dutta et al., 2018), where the samples do not guarantee to optimize neither of the
min or max programs. Similarly, FreeLB (Zhu et al., 2020) proposes a better solution with updating
the parameters with the accumulated gradients at every step of PGD. This however still results in
additional training iterations. Further optimizations include AT with 1-step PGD, i.e., fast gradient
sign method (FGSM), with random initialization (Wong et al., 2020).

Instead of reducing the number of PGD steps, we propose SMAAT which achieves scalability by
reducing the length of the PGD forward-backward passes. SMAAT is inspired by the following obser-
vations: (i) The latent representations used by the layers in encoder-based language models (LMs)
reside on data manifolds with lower dimensionality than the overall dimension of the embedding
space; (ii) AT with off-manifold examples results in better robustness while AT with on-manifold
examples results in better generalization (Minh & Luu, 2022); (iii) adversarial examples are likely to
leave the underlying low-dimensional data manifold Ethayarajh (2019); Shamir et al. (2021); Gilmer
et al. (2018); and (iv) LMs exhibit a monotonically decreasing intrinsic dimension (ID) behavior
where layers deep in the network have much lower ID than the shallow layers. Here, ID is the
manifold dimensionality of the layer. SMAAT builds on these findings and identifies the layer with
the lowest intrinsic dimension to generate AEs. This leads to (1) better scalability as it reduces the
PGD forward-backward chains length from n (number of layers) to n− l, where l is the layer with
the lowest dimensional manifold, and (2) higher robustness as the selected layer is likely to result in
the highest proportion of off-manifold AEs.

We adversarially train BERT-base (Devlin et al., 2018) and RoBERTa-base (Liu et al., 2019) models
on three NLP tasks, i.e., AGNEWS, IMDB and YELP. SMAAT achieves state-of-the-art (SOTA)
results on all tasks across two metrics: (1) run-time and (2) robustness, while maintaining comparable
clean accuracy to standard training (e.g., Figure 1). SMAAT enhances robustness by 8.6%, 15.7%,
and 28.8% for BERT and 6.0%, 5.8%, and 19.0% for RoBERTa over the previous SOTA results on
AGNEWS, IMDB, and YELP tasks, respectively. This is achieved while maintaining clean accuracy.
Moreover, SMAAT requires only ≈1/3-1/4 of the GPU time used by PGD during training.

2 RELATED WORK

Adversarial training aims at robustifying a model against small perturbations to the input that are
imperceptible to humans but can result in a wrong prediction. This is achieved by training the model
to correctly classify perturbed versions of the data samples - AEs. In the text domain, AEs can be
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generated at different granularity levels; (1) by adding, deleting or replacing characters (Gao et al.,
2018; Ebrahimi et al., 2017; Li et al., 2018), (2) by word substitution (Ren et al., 2019b; Li et al.,
2020b; Garg & Ramakrishnan, 2020; Alzantot et al., 2018) (3) by manipulation of entire sentences
(Jia & Liang, 2017; Iyyer et al., 2018; Zhao et al., 2017) or (4) by perturbing the embeddings (Altinisik
et al., 2022). Formally, AT is framed as a robust optimization program. Specifically, it seeks to find
the optimal parameters θ∗ of a classifier fθ(x) that are robust to perturbations δ within a norm ball,
i.e.,

min
θ

E(x,y)∼D
[
max
∥δ∥≤ϵ

ℓ(fθ(x+ δ), y)
]
, (1)

where ℓ is a loss function (e.g., cross-entropy loss) and D = {x, y}|D|
i=1 is the training data. (Madry

et al., 2017) show that this saddle-point problem can be solved reliably with SGD for the outer
minimization and with PGD (Madry et al., 2017) for the inner maximization. PGD starts at randomly
initialized perturbations in the ϵ-ball and iteratively applies a gradient ascent update followed by a
projecting onto the ball P times, i.e., ∀p ∈ [1, p],

δ(p) = Π∥δ∥≤ϵ

(
δ(p−1) + α∇xℓ(f(x+ δ(p−1)), y)

)
, (2)

where Π∥δ∥≤ϵ is the projection operator into the P -ball and α is the learning rate. P -step PGD
adversarial training is an order of magnitude more expensive than standard robust training as the
P -step PGD requires P forward-backward passes through the network, while the standard SGD
update requires only one. Next, we review work on curbing this overhead for more scalable AT.

Scalable AT. Different optimizations have been proposed to mitigate the cost of the additional
P forward-backward passes for AEs generation, including (i) replacing multi-step PGD with a
single-step FGSM, enabling simultaneous update of model weights and input perturbation through a
single backward pass (Shafahi et al., 2019); (ii) omitting redundant computations during PGD-based
backpropagation for additional speedup (Zhang et al., 2019); (iii) combining FGSM adversarial
training with random initialization to overcome multi-step PGD (Wong et al., 2020); and (iv) early
stopping of the training procedure (Rice et al., 2020). These approaches aim at mitigating the
complexity of PGD computation but also come with limitations. For instance, the approach in
(i) is vulnerable to ‘stale gradients’ (Dutta et al., 2018), i.e., the samples do not guarantee the
optimization of both the min and max programs. To address this, FreeLB (Zhu et al., 2020) proposes
accumulating model parameter gradients over multiple batches. However, due to the limited number
of fine-tuning epochs, FreeLB also necessitates multiple steps of PGD, resulting in several rounds
of backpropagation. In our work, we achieve scalability through an alternative method, i.e., by
leveraging the manifold conjecture to reduce the length of backward-forward chains in PGD.

Manifold-based defenses. The manifold hypothesis stands as one of the most compelling explana-
tions for the susceptibility of deep neural networks to adversarial samples (Tanay & Griffin, 2016;
Gilmer et al., 2018; Shamir et al., 2021). This hypothesis fundamentally posits that data resides on
a low-dimensional manifold within a high-dimensional representation space, and that a network,
during training, learns to approximate this manifold. Consequently, an off-manifold sample, deviating
from this foundational manifold, leads to undefined behavior in the network. The off-manifold has
inspired a novel line of defenses against adversarial attacks on images (Samangouei et al., 2018;
Meng & Chen, 2017; Song et al., 2017). Mainly, these methods first approximate the data manifold
via eigenvector decomposition (Xiao et al., 2022) or by learning a latent-space generative model
(e.g., GAN (Samangouei et al., 2018), VAE (Schott et al., 2018)). Then, at test time, they project
AEs to the manifold before classification. (Minh & Luu, 2022) report a similar phenomenon in the
contextualized embedding space induced by pre-trained LMs and show that analogous manifold-based
defense techniques lead to improved generalization and robustness. While these approaches leverage
the manifold conjecture for test-time defense, we use it during training to improve scalability and
eventually robustness. Our work is inspired by the observation that different layers of a deep neural
network exhibit diverse intrinsic dimensions (ID). Specifically, LMs demonstrate a monotonically
decreasing characteristic. Our approach leverages this observation by recognizing that AEs at a layer
with low ID will also be AEs at previous layers with higher ID. SMAAT builds upon these insights
and identifies the layer with the lowest ID to generate AEs. This not only enhances robustness
by simplifying the generation of off-manifold AEs but also improves scalability through shorter
forward-backward chains for PGD.
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3 APPROACH

Achieving robustness through AT relies on training with as many off-manifold AEs as possible.
Further, AT can be individually applied to each layer of a network to achieve better robustness. This
would, however, significantly hinder the scalability of a method. The key idea behind SMAAT is
to generate strong AEs with the lowest computational cost. Our main intuition is that some layers
of a network may capture most of the AEs. Thus, the AT cost can be minimized by identifying
those layers and hardening them. Our hypothesis is that when the intrinsic dimension of feature
representation monotonically decreases across layers, the layer with the lowest intrinsic dimension
will include the majority of AEs from previous layers. In order to maintain high robustness with
scalability, SMAAT chooses to perturb the highest layer with the lowest intrinsic dimension, which
leads to shorter gradient-based attack forward-backward chains and accelerates AE generation as
illustrated in Fig. 2.

3.1 PROBLEM FORMULATION

Consider a deep neural network classifier fθ with n layers and parameters θ = {θ(i)}ni=1. Given a
dataset D = {xi, yi}|D|

i=1, our goal is to efficiently search for the parameters θ of a classifier fθ that
result in the highest robustness under the worst-case perturbation δ∗ ∈ {∥δ∥ < ϵ} applied to the input.
Building upon the manifold conjecture, which posits that AT with off-manifold examples enhances
robustness, whereas AT with on-manifold examples improves generalization, as discussed in Stutz et
al.’s work (Stutz et al., 2019), we can augment the AT objective as follows:

min
θ

E(x,y)∼D
[
max
∥δ∥≤ϵ

ℓ(fθ(x+ δ), y)
]

s.t. (x+ δ) is off-manifold. (3)

Nonetheless, this formulation is conservative as it overlooks the input space of the intermediate layers.
In other words, AEs that are off-manifold in any layer contribute to improved robustness, we propose
a relaxation to the ojective above:

min
θ

E(x,y)∼D
[
max
∥δ∥≤ϵ

ℓ(fθ(x+ δ), y)
]

s.t. fθ[0,l](x+ δ) is off-manifold in lth layer ,∃l ∈ [0, n]. (4)

where fθ[i,j] denotes the nested transformation spanning layers i to j, i.e., fθ[i,j] = fθ(i) ◦ · · · ◦ fθ(j)

and fθ denotes fθ[0,L] . An AE can be deemed off-manifold in lth layer if its projection error onto the
corresponding manifold of the representation space is large. Assuming that the manifold generated
between layers is linear and can be approximated using Singular Value Decomposition (SVD), the
projection error for AEs can be straightforwardly computed. The SVD basis vectors obtained in
the input space of lth layer form an orthonormal set as they are obtained by normalizing the top
eigenvectors of the symmetric matrix fθ[0,l−1](X)fθ[0,l−1](X)T . With Ul representing this basis, the

projection error of the sample fθ[0,l−1](x) can be computed as
(
fθ[0,l−1](x)− Ukl

l Ukl

l

T
fθ[0,l−1](x)

)
where Ukl

l represents the corresponding eigenvectors of the top-kl eigenvalues required for projecting
training samples with limited error in lth layer. Thus, we can assert that, ∀x∈D:

fθ[0,l−1](x+δ) is off-manifold ⇔∥(I−Ukl

l Ukl

l

T
)(fθ[0,l−1](x+δ))∥>0⇔∥(I−Ukl

l Ukl

l

T
)δl∥>0,

(5)
where δl is the perturbation to the lth layer within the ϵl-norm ball, with ϵl≤|λmax{Jf

θ[0,l−1]
(x)}|ϵ

(see Appendix B). The last equivalences holds as, by default, fθ[0,l−1](x) is on-manifold, i.e.,

(Ukl

l Ukl

l

T
)fθ[0,l−1](x) ≈ 0.

3.2 SCALABLE MANIFOLD AWARE ADVERSARIAL TRAINING

To achieve the best possible robustness, our objective is to identify the optimal layer, denoted as l∗,
which encompasses all off-manifold AEs from previous layers. Simultaneously, we aim to select l∗
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to be closer to the output to enhance scalability. Formally, the optimum layer satisfies:

l∗ = max
i

{
i ∈ [1, n]

∣∣∣∀x ∈ D : fθ[0,i−1](x+δ) is off-manifold in the (i− 1)thlayer ⇒

fθ[0,i](x+δ) is off-manifold in the ith layer
}
.

(6)

In case of a linear manifold (Eq. 5), the combinatorial program above becomes:

l∗ = max
i

{
i ∈ [1, n]

∣∣∣∀x ∈ D :
∣∣∣∥(I − U

ki−1

i−1 U
ki−1

T

i−1 )δi−1∥ > 0 ⇒ ∥(I − Uki
i Uki

i

T
)δi∥ > 0

}
.

(7)

To satisfy Eq. 7, a sufficient condition is as follows:

l∗ = max
i

{
i ∈ [1, n]

∣∣∣∀x ∈ D :
∣∣∣∥(I − U

ki−1

i−1 U
ki−1

T

i−1 )δi−1∥ < ∥(I − Uki
i Uki

i

T
)δi∥

}
. (8)

Theorem 3.1 If f is differentiable with Lipschitz continuous gradients, and the intrinsic dimension
across layers i ∈ [1, n] satisfies ki−1 < ki, it follows that

∥(I − U
ki−1

i−1 U
ki−1

T

i−1 )δi−1∥ < ∥(I − Uki
i Uki

i

T
)δi∥. (9)

Proof Sketch: When we constrain the δi with the Jacobian of the previous layer input (as detailed in
Appendix B), and under the assumption that f is differentiable with Lipschitz continuous gradients,
the projection error becomes dependent on the quantity ∥(I − U

ki−1

i−1 U
ki−1

T

i−1 )∥ which is inversely
proportional to the dimension of matrix U

ki−1

i−1 (as explained in Appendix C).

Hence, following Theorem 3.1, since the ID of the layer l can be defined by kl, for a given layer l of
the network, if the ID of the input space exceeds the ID of the output space, off-manifold AEs in the
input space of l will remain off-manifold at the output of l. In light of this, the objective in Eq. 4 can
be relaxed as follows:

min
θ

E(x,y)∼D
[
max
∥δ∥≤ϵ

ℓ(fθ(x+ δ), y)
]

s.t. fθ[0,l](x+ δ)is off-manifold in lth layer ,∃l ∈ [l∗, n].

s.t. ID(i− 1)>ID(i); ∀i < l∗,
(10)

where ID(i) is the intrinsic dimension of ith layer.

Essentially, this equation reduces the dependency on the layers before l∗ by assessing whether the
samples are off-manifold or not in layer l∗ and the subsequent layers. Under the assumption that,
for each AE, f(x+ δ) has a close sample in layer l∗ such that fθ0,l∗−1(x+ δ) ≈ fθ0,l∗−1(x) + δl∗ ,
AT can effectively operate in layer l∗. Based on this, the objective of SMAAT can be expressed as
follows:

min
θ

E(x,y)∼D

[
max

l∗∈[1,n],∥δl∗∥≤ϵ∗l

ℓ
(
fθ[l∗,n]

(
fθ[0,l∗−1](x) + δ∗l

)
, y
)]

,

s.t. ID(i− 1)>ID(i); ∀i < l∗,
(11)

In essence, SMAAT applies AT in the upper layers to ensure scalability while preserving off-manifold
AEs from the lower layers. The retention of AEs in the upper layer relies on the prior layers displaying
a monotonically decreasing intrinsic dimension behavior. With this condition met, SMAAT effectively
reduces the length of the forward-backward chain required for PGD. The following section empirically
investigates the validity of this constraint for NLP models.

3.3 EMPIRICAL SEARCH FOR THE OPTIMAL LAYER l∗

We empirically tackle the inner maximization program over layer l at the start of training and maintain
it consistently for all samples, as all layers with l < l∗ are treated as frozen. In order to pinpoint
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Figure 3: Examination of the intrinsic dimensionality of (a) BERT and (b) RoBERTa layers reveals
that the final layers in both models exhibit remarkably low intrinsic dimensionality.

the optimal layer l∗ that meets the condition in Eq. 11, we conduct an empirical examination of the
ID across the layers of the network. It has been observed that transformer-based NLP models often
exhibit a monotonically decreasing trend in ID across their layers (Ethayarajh, 2019). To validate
this behavior, we have generated plots of the ID for BERT (Devlin et al., 2018) and RoBERTa (Liu
et al., 2019) models across their respective layers. Although various techniques can be employed to
measure the ID of a network (Facco et al., 2017; Ceruti et al., 2012; Johnsson et al., 2014; Campadelli
et al., 2015), in accordance with our earlier assumptions on the linearity of data manifold, we utilized
SVD. The ID of a layer is determined as the point at which the average projection error becomes less
than a specified threshold as defined below:

ID(l) = min
k

{
∑

x∈D 1− cos(fθ0,l(x), Ukl

l Ukl

l

T
fθ0,l(x))

∥D∥
< thr}. (12)

Here, the function cos() represents the cosine similarity between the original and projected samples,
and thr denotes the specified threshold value. For the duration of this paper, we use thr = 0.1.

In Fig. 3, we empirically obtain the ID of BERT and RoBERTa models across different layers using
IMDB, AGNEWS, and YELP datasets. Consistent with the literature, the conditions in Theorem 3.1
are met when setting l∗ = n. This signifies that SMAAT can effectively operate the last layer of these
models. Analysis on vision and decoder models can be seen in Appendix Sections D and E.

3.4 COMPLEXITY

SMAAT proceeds in two steps. In the first step, it finds the optimal layer l∗ to perturb which is
done once per model and per task. and incur marginal overhead. Next, SMAAT adversarially trains
l∗th layer of the model by generating AEs from layer l∗ instead of from the input layer. When
K-step PGD attack is used, this results in K forward-backward passes with length (n − l∗ + 1)
instead of n. The run-time of every forward/backward pass depends on the layer dimensionality,
i.e., O(dl−1 × dl) for the lth layer. Overall, the complexity of one SMAAT forward-backward is
O((n− l∗ +1)maxl∈[l∗,n](dl)

2)). As a result, SMAAT is more efficient than classical AT by a factor

of O
(
k × l∗ × (maxi∈[1,n] (di)

2 −maxj∈[l∗,n] (dj)
2)
)

. In the case of BERT and ROBERT, l∗ is

equal to = n. The total run-time can be simplified to O(k× (dn)
2) where dn is the number of classes.

Typical NLP tasks consist of less than five classes (Wang et al., 2018a) which makes the factor of
classes small enough to be negligible. Hence, SMAAT enhances the efficiency of the AEs generation
process by a factor of l ×O(max(dl)). This improvement practically eliminates the cost of the AE
generation process.

4 EVALUATION

We evaluate SMAAT using three tasks across two models. We employ the established evaluation
setting commonly used by previous baseline methods.
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Table 1: Robustness and generalization results on AGNEWS, IMDB, and YELP datasets. We
report the clean accuracy (CA) and the robust accuracy under PWWS (PW), TextFooler (TF), and
Bert-Attack (BA) attacks, along with the average robust accuracy (AR) across the three attacks. To
facilitate comparison, we have added a Best Score row to each model, indicating the highest score
from the baselines for each column. The best performance for each model is highlighted in bold.

Model Defense AGNEWS IMDB YELP
CA PW TF BA AR CA PW TF BA AR CA PW TF BA AR

B
E

R
T

Standard 94.5 36.9 28.1 37.5 34.2 92.2 15.0 5.8 5.4 8.7 97.0 12.2 6.5 5.3 8.0

ASCC 91.6 32.8 31.4 32.1 32.1 88.5 15.1 12.4 11.2 12.9 91.5 19.4 15.7 12.2 15.8
DNE 94.1 34.0 33.6 52.3 40.0 90.0 25.7 23.0 20.6 23.1 94.0 33.3 31.2 43.8 36.1

FreeLB++ 95.1 47.9 51.5 41.8 47.1 93.2 12.5 45.3 39.9 32.6 95.6 19.3 8.8 3.7 10.6

SAFER 94.4 39.3 35.5 42.3 39.0 92.3 41.4 39.1 30.7 37.1 95.4 29.8 25.8 23.7 26.4
TMD 94.3 70.0 50.0 55.2 58.4 92.2 38.7 44.2 33.7 38.9 95.2 36.8 40.9 28.6 35.4
RSMI 92.7 76.1 63.2 NA1 NA 92.2 58.7 56.4 NA1 NA 95.4 45.3 52.3 NA1 NA

Best Score 95.1 76.1 63.2 55.2 64.8 93.2 58.7 56.4 39.9 51.7 97.0 45.3 52.3 43.8 47.1

SMAAT (Ours) 94.6 73.5 72.2 74.7 73.5 92.2 63.6 77.9 60.8 67.4 97.0 77.1 77.9 72.8 75.9

R
oB

E
R

Ta

Standard 94.7 30.6 23.9 37.1 30.5 94.0 8.7 2.1 0.6 3.8 97.9 23.1 14.9 9.0 15.7

ASCC 92.6 48.1 41.0 49.1 46.1 92.6 23.1 13.5 11.8 16.1 95.4 15.0 8.6 4.5 9.4
DNE 94.9 58.0 46.5 54.5 53.0 94.2 48.8 26.9 16.0 30.6 96.8 64.4 64.0 45.2 57.9

FreeLB++ 95.6 61.0 49.8 56.6 55.8 94.3 33.6 14.6 6.1 18.1 97.0 38.6 46.0 35.2 39.9

SAFER 94.6 68.9 49.3 46.1 54.8 93.9 52.8 47.1 40.6 46.8 96.6 65.6 67.9 48.3 60.6
TMD 95.0 68.3 54.0 56.7 59.7 93.3 60.5 66.8 51.6 59.6 96.6 68.9 70.9 51.0 63.6
RSMI 94.3 81.9 74.1 NA1 NA 93.0 76.2 73.4 NA1 NA 96.3 68.9 65.9 NA1 NA

Best Score 95.6 81.9 74.1 56.7 70.9 94.3 76.2 73.4 51.6 67.1 97.0 68.9 70.9 51.0 63.6

SMAAT (Ours) 94.6 75.6 75.1 79.9 76.9 93.5 77.1 78.5 63.2 72.9 98.0 85.4 86.4 76.0 82.6

4.1 EXPERIMENTAL SETTINGS

Datasets. We use three classification benchmarks: (1) AGNEWS (Zhang et al., 2015b), (2) IMDB
(Maas et al., 2011), and (3) YELP (Zhang et al., 2015a). AGNEWS contains over 120k samples
across four categories: World, Sports, Business, and Sci/Tech. IMDB consists of 50k movie reviews
with binary sentiment labels. Due to resource limitations, we use a subset of 63k samples from YELP
binary sentiment classification dataset.
Base model. We use BERT-base-cased (Devlin et al., 2019) and RoBERTa-base-cased (Liu et al.,
2019) which are 12 layered models.
Adversarial Attacks. We assess the robustness of our approach against three word substitution
based input space attacks: (1) PWWS (Ren et al., 2019a) (synonym based), (2) TextFooler (Jin et al.,
2020) (neighbor based), and (3) BERT-Attack (Li et al., 2020a) (masked language model based). All
attacks are conducted using the TextAttack framework (Morris et al., 2020) and following the settings
introduced by Li et al. (2021a).
Baselines. We compare SMAAT to several baselines including standard (non-adversarial) training, and
six baselines from three families of defenses: (1) Input space AT (ASCC, (Dong et al., 2021), DNE
(Zhou et al., 2021)), (2) Embedding space AT (FreeLB++ (Li et al., 2021a)), and (3) Certified defenses
(SAFER (Ye et al., 2020), TMD (Minh & Luu, 2022), RSMI (Minh & Luu, 2022)). FreeLB++ focuses
on scalability and robustness by minimizing the number of PGD steps and applying AT in the initial
layer. TMD leverages manifold features by projecting samples back to the manifold in the last layer.
Implementation details. As explained above, we generate AEs in the last layer. Specifically, we
perturb the [CLS] embeddings before the classifier layer (hl). We train the last layer of fθ for ten
epochs with varying attack strength ϵ from 0.1 to 0.8 and learning rate τ = 0.1. Notably, these ϵ and
τ values are higher than those typically used in standard AT, as we are only training the network with
one layer. For more details about the experimental setup, please refer to Appendix Sec. F.

4.2 RESULTS

Robustness and generalization results Table 1 compares the results of baselines and SMAAT on
robustness and generalization whereas generalization is measured as the performance difference be-

1As mentioned in the original paper, the current implementation of RSMI takes around 2k times more time
than the TextFooler algorithm to generate a single adversarial example with BERT-Attack. Due to this significant
time difference, it becomes unfeasible to test RSMI with BERT-Attack.
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tween an adversarially trained system and the clean accuracy (CA). On average, SMAAT demonstrates
superior robustness over both datasets. Specifically, it achieves an improvement of 8.6%, 15.7%, and
28.8% over the best score for the BERT model, and 6.0%, 5.8%, and 19.0% for the RoBERTa model
on the AGNEWS, IMDB, and YELP datasets, respectively. This observation supports the insight that
shifting to higher layers under the constraint of monotonically decreasing ranks leads to increased
robustness. Note that FreeLB++, which perturbs the first layer, showed the best generalization in four
out of six cases, as it produces mostly on-manifold examples (the first layer has a high dimension,
as illustrated in Fig. 3). SMAAT maintains generalization in five out of six cases and only shows 0.5
drop in performance in the case of RoBERTa with the IMDB dataset.

TMD is another manifold-aware AT method that directly estimates the manifold and projects the input
samples onto it prior to classification. This may result in inaccuracies due to manifold-estimation
errors. SMAAT consistently performed better than TMD by a large margin. From an attack perspective,
RSMI demonstrates superior robustness against PWWS, a synonym-based word substitution attack,
in both models. This phenomenon can be attributed to the behavior of the masked inference (MI)
component in RSMI, which mimics a synonym-substitution based defense approach without requiring
an explicit synonym set, as noted in the original paper (Minh & Luu, 2022).

Table 2: Run-time results on IMDB dataset. Mean and standard deviation are computed over ten runs.
We observed similar results across other tasks and models.

Standard ASCC DNE FreeLB++ SAFER RSMI SMAAT

Training (min/epoch) 5.1 ±0.1 25.7 ±0.3 15.2 ±0.9 15.6 ±0.5 8.2 ±0.6 15.4 ±0.3 5.2 ±0.2
Inference (msec/sample) 2.4 ±0.1 41.4 ±0.2 4.0 ±0.2 2.4 ±0.0 2.4 ±0.0 5.6 ±0.4 2.4 ±0.1

Runtime efficiency. In Table 2, we provide details on the training time per epoch and inference
time per instance for the IMDB dataset using the BERT model. We focus on reporting these values
for BERT since both models share the same architecture, with the main difference lying in their
pre-training processes. SMAAT have comparable efficiency to standard training and is on average,
3 times faster during training and 4.6 times more efficient during testing. This is due to the fact
that SMAAT performs AT in the last layer which results in short backpropagation chains when
creating AEs. This stands in contrast to methods like FreeLB++, which inject noise in the first layer,
leading to the computation of longer AEs’ backpropagation chains at every iteration. Even when we
substitute FreeLB++ with FGSM-based scalable AT methods, which have previously been shown to
underperform FreeLB (Zhu et al., 2020; Li et al., 2021a), their runtime remains less efficient than
that of SMAAT since they require a full-depth backpropagation to create AEs. Additionally, certified
defense baselines (SAFER, RSMI) and input space attacks (ASCC, DNE) are also time-consuming
as they either require mapping samples into the manifold or performing an extensive search over
word substitutes.
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Figure 4: Effect of AT at different layers.
Robustness improves as AT is applied to
higher layers.

AT on Intermediate Layers. The key idea behind
SMAAT is that if a model exhibits monotonically decreas-
ing ID behavior, AEs generated in higher layers encompass
those from the previous layers. Therefore, higher-layers
are expected to yield improved robustness. To empirically
validate this, we apply AT to layers 0, 2, 4, 6, 8, 10, 11, and
12. During training, for each layer we conduct a separate
grid search for hyperparameters, by varying the learning
rate from 0.01 to 0.00001 and ϵ from 0.1 to 0.001. We
keep the number of PGD steps to three 3 and the number
of training epochs to 5.

We employ the BERT model on the YELP dataset, as-
sessing both the model’s generalization on clean samples
and its robustness using the TextFooler attack. The results
depicted in Fig. 4 unambiguously demonstrate that ap-
plying AT in the higher layers yields superior robustness
compared to the initial layers. Moreover, our analysis of
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Table 3: The average robustness results of the standard, FreeLB++, and SMAAT models when
subjected to the targeted-PGD attack and the targeted “feature-level” attack on the AGNEWS, IMDB,
and YELP datasets. The results clearly demonstrate that SMAAT enhances model robustness in the
face of targeted PGD based attacks.

Model BERT RoBERTa
AGNEWS IMDB YELP AGNEWS IMDB YELP

Standard 8.2 0.1 6.9 40.0 19.3 79.2
FreeLB++ 20.1 10.6 20.2 62.4 46.7 76.4

SMAAT (Ours) 49.9 18.0 28.4 77.1 59.4 83.5

the manifold behavior of AEs reveals that AEs deviate further from the manifold as we progress to
higher layers (refer to Appendix H for detailed insights).

Effect of the attack. In Table 1, the attack techniques evaluated primarily employ word swapping to
create AEs. To further assess the effectiveness of SMAAT against more potent attacks, we apply the
PGD attack directly to the token embeddings. The PGD attack is more powerful because it doesn’t
require mapping embeddings back to the input space, as other attacks do (Guo et al., 2021). We
use a 50-step targeted PGD attack with the ϵ value set to 0.003. Additionally, following (Tramer
et al., 2020), we applied a more aggressive attack by combining PGD with the “feature-level” attack
(Sabour et al., 2015). This attack targets intermediate layer representations of other classes, posing
a potent challenge to SMAAT, which focuses on robustifying the last layer. For comparison, we
select FreeLB++, another technique designed for scalable AT. However, it differs from SMAAT in its
approach, as it operates in the initial layers rather than the higher ones. The results in Table 3 show
that the efficacy of SMAAT is not limited to word swapping based attacks, and it is also effective
against the more powerful PGD attack. Supplementary results on GLUE and advGLUE benchmarks
provide further evidence of SMAAT’s effectiveness. Refer to Appendix G for detailed information.

5 CONCLUSION

In this paper, we introduce a manifold-aware approach designed to enhance the scalability, and
robustness of adversarially trained deep neural networks while maintaining generalization. Our
approach involves generating adversarial examples in higher layers, guided by their monotonically
decreasing rank behavior. This strategy enables faster synthesis with shorter backpropagation chains
and enhances robustness by capturing off-manifold data. As a result, we achieve state-of-the-
art performance on several tasks, excelling in both runtime efficiency and robustness, all while
maintaining comparable levels of generalization.

LIMITATIONS

Incompatibility with Vision Models: SMAAT cannot be equally effective on vision models because
they lack monotonically decreasing ID behavior. Vision models typically exhibit a “hunchback shape”
behavior in terms of intrinsic dimension, characterized by an initial increase followed by a gradual
decrease in ID towards the final layers (Ansuini et al., 2019). A more detailed analysis of vision
models can be found in Appendix D.
Encoder Model Focus: All experiments conducted in this study assume encoder models and primarily
focus on classification tasks. Extending SMAAT to other architectures such as decoder-only and
encoder-decoder models could provide valuable insights into its adaptability across various model
architectures. Our preliminary assessment on the decode-only LLAMA-2 model indicates a similarity
in its ID behavior to vision models. Additional results can be found in Appendix E.
Lack of Out-of-Distribution Evaluation: While the primary focus of this work is on robustness
and generalization concerning AEs and clean samples, evaluating the approach’s performance on
out-of-distribution data could offer a different perspective on its effectiveness.
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A SUPPLEMENTARY MATERIAL

We propose SMAAT an adversarial training algorithm that doesn’t only optimize for better robust-
ness/generalization as performed conventionally, but also for scalability.

B PROOF: PERTURBATION LIMIT

Under the assumption that f is differentiable, we prove δl is limited by ϵl:

fθ[1,l−1](x+ δ) ≈ fθ[1,l−1](x) + δl

s.t.∥δl∥ ≤ ϵl

Since f is continuous and differentiable, we use Taylor expansion to approximate fθ[1,l−1](x + δ)
on the interval [x, x + δ]: fθ[1,l−1](x + δ) = fθ[1,l−1](x) + Jf

θ[1,l−1]
(x)δ, where Jf

θ[1,l−1]
(x) =

∂f
θ[1,l−1] (x)

∂x .

We denote by δl perturbation in the feature space of fθ[1,l−1] and δl = Jf
θ[1,l−1]

δ. Since the ∥δ∥ < ϵ:
∥δl∥ < ∥λmax{Jf

θ[1,l−1]
(x)}∥ϵ = ϵl,

where λmax is the maximum eigenvalue.

C PROOF: THEOREM 3.1

If f is differentiable with Lipschitz continuous gradients.

ki−1 > ki → {∥(I − U
ki−1

i−1 U
ki−1

i−1

T
)δi−1∥ < ∥(I − Uki

i Uki
i

T
)δi∥} (13)

For ease of exposition, we prove the contrapositive of Equation 13. That is:

{∥(I − U
ki−1

i−1 U
ki−1

i−1

T
)δi−1∥ > ∥(I − Uki

i Uki
i

T
)δi∥} → ki−1 < ki (14)

First, we substitute δi with the upper bound |λmax{Jf
θ[1,i−1]

(x)}|ϵ value as

{∥(I − U
ki−1

i−1 U
ki−1

i−1

T
)∥λmax{Jf

θ[1,i−2]
(x)}|ϵ > ∥(I − Uki

i Uki
i

T
)∥λmax{Jf

θ[1,i−1]
(x)}|ϵ}

⇒
∥(I − U

ki−1

i−1 U
ki−1

i−1

T
)∥

∥(I − Uki
i Uki

i

T
)∥

>
∥λmax{∥Jf

θ[1,i−1]
(x)∥}ϵ∥

∥λmax{∥Jf
θ[1,i−2]

(x)∥}ϵ∥

(15)

Under the assumption f has Lipschitz continuous gradients, since the numerator of the last term in

Eq. (15) involves one more layer than the denominator,
∥λmax{∥Jf

θ[1,i−1]
(x)∥}ϵ∥

∥λmax{∥Jf
θ[1,i−2]

(x)∥}ϵ∥ > 1. Hence,

∥(I − U
ki−1

i−1 U
ki−1

i−1

T
)∥ > ∥(I − Uki

i Uki
i

T
)∥. (16)

Since I is the full rank matrix:

⇒∥Uki−1

i−1 U
ki−1

i−1

T
∥ < ∥Uki

i Uki
i

T
∥,

⇒ki−1 < ki

15



Under review as a conference paper at ICLR 2024

2 4 6 8 10 12
Layer Depth (l)

0

50

100

150

200

250

La
ye

r I
nt

rin
sic

 D
im

. (
k
l)

(a) ViT

0 5 10 15 20 25 30
Layer Depth (l)

0

100

200

300

400

500

La
ye

r I
nt

rin
sic

 D
im

. (
k
l)

(b) LLAMA-2

Figure 5: Examination of the ID of (a) the ViT model trained on the CIFAR-10 dataset and (b) the
LLAMA-2-7b model trained on the SST-2 dataset. The results indicate that for these models, AT
needs to be applied in the initial layers.

Table 4: Robustness and generalization results of the LLAMA-2 model on the SST-2 dataset with
standard, FreeLB++, and SMAAT training. The results indicate that SMAAT does not provide a
robustness advantage over the standard approach on the LLAMA-2 model.

Dataset Standard FreeLB++ SMAAT (Ours)

SST-2 95.5 95.1 95.1
Adversarial SST-2 69.3 69.9 69.2

D APPLICATION OF SMAAT ON VISION MODELS

To verify the “hunchback shape” behavior observed in (Ansuini et al., 2019) for vision models,
characterized by an initial increase followed by a gradual decrease in ID towards the final layers,
we train a Vision Transformer (ViT) (Dosovitskiy et al., 2020) on the CIFAR-10 dataset. The result
depicted in Fig. 5(a) confirms this behavior. The observed pattern suggests that l∗ corresponds to
the initial layers for vision models. This finding is in line with YOPO (Zhang et al., 2019), which
emphasizes the critical role of the initial layers for AT in vision models, and our approach provides
an explanation for the significance of these layers. Nevertheless, to ensure validity of our hypothesis
we apply AT exclusively to the last layer of the ViT model on the CIFAR-10 dataset. As expected,
our results do not demonstrate any improvements in the model’s robustness.

E APPLICATION OF SMAAT ON LLAMA2

After gaining attention for their effectiveness in text generation, decoder models have become a focus
in the literature. In this context, we assess the application of SMAAT on LLAMA-2-7b (Touvron
et al., 2023). For this, we train an 8-bit quantized LLAMA model with QLoRA (Dettmers et al.,
2023) adaptors on the SST-2 dataset using the SFTTrainer library from HuggingFace (Sup). Given
that the initial step of SMAAT involves analyzing the ID of the layers to determine l∗ in Eq. 11, we
obtain this behavior using the last token representation of each propmt. The measured ID of network
layers are presented in Fig. 5(b). This result suggest that the optimal layer for applying AT is the first
layer, l∗ = 1, similar to the ViT model. For the compression, we could only extend our experiments
for the FreeLB++ method in addition to SMAAT since implementing all the attacks in Table 1 on
the LLAMA-2 model requires changing the design of most of those techniques. More specifically,
the certified robustness-based approaches, such as RSMI and SAFER, rely on random masking of
input tokens which does not directly apply to causal language models like LLAMA-2. Additionally,
for the data augmentation-based approaches like ASCC and DNE, the computational cost would
be prohibitively high. The results are presented in Table 4. Our measurements revealed that both
FreeLB++ and SMAAT yielded 95% and 69% accuracy on SST-2 and its adversarial version, which
was the result obtained on the standard (vanilla) method. This shows that under this setting neither
method offers a robustness advantage over the standard.
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F EXPERIMENTS

In the following, we provide more details about the experiments.
Datasets. We evaluate SMAATon three datasets: AG-News Corpus (AGNEWS) (Zhang et al., 2015b),
Internet Movie Database (IMDB) (Maas et al., 2011), and Yelp Review Polarity (YELP) (Zhang
et al., 2015a). The AGNEWS dataset contains over 120000 samples, each belonging to one of the
four labels: World, Sports, Business, Sci/Tech. The IMDB dataset contains 50000 data samples of
movie reviews with binary labels for negative and positive sentiments. The YELP dataset contains
nearly 600000 samples of highly polar Yelp reviews with binary labels. However, due to limitations
in computing resources, we only use a subset of 63000 samples of the YELP dataset. In addition, we
randomly sample 10% of the training set for validation in all datasets. For testing, we use a subset
of 1000 test samples from each dataset, following previous work practices. The AGNEWS dataset
contains over 120k samples, categorized into four classes: World, Sports, Business, and Sci/Tech.
The IMDB dataset consists of 50k movie reviews, each labeled with binary sentiments (positive or
negative).
Base model. We employed the BERTbase-cased (Devlin et al., 2019) and RoBERTabase-cased (Liu et al.,
2019) models in our experiments. To conduct the evaluations, we utilized the fine-tuned models
provided by TextAttack from HuggingFace for most datasets, except for the RoBERTa base model
fine-tuned for YELP dataset. For the YELP dataset, we created a fine-tuned RoBERTa model by
training it for 2 epochs with a learning rate of τ = 1e− 05 and a batch size of 32.
Adversarial Attacks. which include the following constraints: (1) The maximum percentage of
modified words is set to 0.3 for AGNEWS, 0.1 for IMDB and YELP datasets, respectively. (2) For
word replacement, a maximum of 50 candidates are considered for each word. (3) The semantic
similarity, measured using the Universal Sentence Encoder (Cer et al., 2018), between the original
input and the generated adversarial example must exceed 0.84. PWWS uses word synonyms,
TextFooler applies nearest neighbor search in counter-fitting embeddings (Mrkšić et al., 2016), and
BERT-Attack utilizes BERT masked language model to generate candidate words.
Baselines. For input space adversarial training, we consider Adversarial Sparse Convex Combination
(ASCC) (Dong et al., 2021) and Dirichlet Neighborhood Ensemble (DNE) (Zhou et al., 2021). These
methods model the perturbation space as the convex hull of word synonyms.

ASCC incorporates an entropy-based sparsity regularizer to capture word substitution geometry
more effectively, while DNE expands the convex hull to encompass all synonyms of each word’s
synonyms, combining Dirichlet sampling and adversarial training to enhance model robustness. In
our investigation of embedding space adversarial training, recognized as the most impactful technique
for enhancing generalization (Li et al., 2021b), we conduct a thorough analysis of FreeLB++ (Li
et al., 2021a) which employs gradient-guided perturbations centered around the most susceptible data
points.

For certified defenses, we evaluate SAFER (Ye et al., 2020), TMD (Minh & Luu, 2022), and RSMI
(Minh & Luu, 2022). SAFER constructs a set of randomized inputs by performing random synonym
substitutions and using the statistical properties of predicted labels to certify robustness. TMD
employs infoGAN () to project adversarial examples to the data manifold in the last layer to address
the manifold issue. RMSI combines these ideas by applying importance-based masking to tokens and
leveraging randomized smoothing in each layer.

Implementation details. To train the last layer of fθ with adversarial samples, we create adversarial
samples using 5-step PGD attacks. During training, we use epsilon values of 0.1, 0.1, and 0.8 for the
YELP, AGNEWS, and IMDB datasets, respectively, for the BERT models. For the RoBERTa models,
we employ epsilon values of 0.1, 0.6, and 0.03. All models are trained 10 epochs with a learning rate
of τ = 0.1.

G RESULTS ON GLUE AND ADVGLUE BENCHMARK

The GLUE benchmark (Wang et al., 2018b) is a comprehensive evaluation suite featuring seven
diverse NLP tasks to assess model performance. The AdvGLUE benchmark (Wang et al., 2021)
is an extension of GLUE, incorporating 17 distinct textual adversarial attacks, covering word-level
transformations, sentence-level manipulations, and human-written AEs. This extension ensures a
thorough evaluation encompassing various adversarial linguistic phenomena. For our assessment, we
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Table 5: Average accuracy of the standard, FreeLB++ and SMAAT models on GLUE and AdvGLUE
datasets. The results clearly demonstrate that SMAAT enhances model generalization (GLUE results)
and robustness (AdvGLUE results).

Dataset BERT RoBERTa
Standard FreeLB++ SMAAT (Ours) Standard FreeLB++ SMAAT (Ours)

GLUE 85.9 86.3 86.3 89.3 89.6 89.7
AdvGLUE 39.5 42.5 45.1 27.5 37.1 39.6

employ the evaluation sets of four datasets across three different tasks: Sentiment Analysis (SST-2),
Duplicate Question Detection (QQP), and Natural Language Inference (QNLI, RTE).

For our evaluation, we compare SMAAT against standard2 BERT and RoBERTa models and their
FreeLB++ incorporated versions. In the case of SMAAT, we conducted a grid search for the learning
rate, ranging from 0.1 to 0.001, and the ϵ value, ranging from 0.8 to 0.01, with 3-PGD steps. As
indicated in Table 5, SMAAT exhibits a robustness enhancement of 5.6% and 2.6% for BERT, and
12.1% and 2.5% for RoBERTa, in comparison to the standard and FreeLB++ models, respectively,
while maintaining comparable generalization.

H MANIFOLD BEHAVIOR OF AES

To empirically validate Theorem 3.1, which posits that if the layers exhibit monotonically decreasing
ranks, the projection error increases as we move to higher layers. We measure the projection error
of both clean samples and AEs across the layers. For AEs, we employ examples generated using
TextFooler and PGD attacks from the test set. We leverage the cosine distance metric between the
samples and their corresponding representations in the manifold to measure the projection error.
Subsequently, we normalize the average projection error of AEs in training set, test set, TextFooler
set, and PGD set while using the error of the training set as a reference.

The results in Fig. 6 show that the projection error increases for AEs, which is in line with Theorem
3.1. While there are small drops for some layers, these drops can be related to errors in the manifold
estimation.

2We use the fine-tuned model from https://huggingface.co/JeremiahZ
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Figure 6: Normalized average projection errors on the AGNEWS, IMDB, and YELP datasets for (a)
BERT model and (b) RoBERTa model. As suggested by Theorem 1, the projection error consistently
rises for AEs as we progress to higher layers, owing to the layers’ monotonically increasing rank.
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