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Abstract

Deep clustering, an unsupervised technique inde-
pendent of labels, necessitates tailored supervi-
sion for model training. Prior methods explore
supervision like similarity and pseudo labels, yet
overlook individual sample training analysis. Our
study correlates sample stability during unsuper-
vised training with clustering accuracy and net-
work memorization on a per-sample basis. Un-
stable representations across epochs often lead
to mispredictions, indicating difficulty in memo-
rization and atypicality. Leveraging these find-
ings, we introduce supervision signals for the
first time based on sample stability at the rep-
resentation level. Our proposed strategy serves
as a versatile tool to enhance various deep clus-
tering techniques. Experiments across bench-
mark datasets showcase that incorporating sam-
ple stability into training can improve the perfor-
mance of deep clustering. The code is available at
https://github.com/LZX-001/LFSS.

1. Introduction
Deep clustering trains a deep neural network in an unsu-
pervised manner to assign appropriate labels to samples.
Unlike supervised learning, where the ground truth labels
are used to guide model optimization, deep clustering lacks
such labels to aid network training. Consequently, suit-
able supervision signals must be derived from the data it-
self to enable deep clustering models to extract meaningful
features, yield discriminative high-dimensional represen-
tations, and achieve accurate clustering (Lu et al., 2024).

1School of Computer Science and Engineering, Southeast Uni-
versity, Nanjing 210096, China 2Key Laboratory of New Gener-
ation Artificial Intelligence Technology and Its Interdisciplinary
Applications (Southeast University), Ministry of Education, China
3School of Computing Information Sciences, Saint Francis Univer-
sity, Hong Kong, China 4Department of Computer Science, City
University of Hong Kong, Hong Kong, China. Correspondence to:
Yuheng Jia <yhjia@seu.edu.cn>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

Prior studies have utilized various supervision signals such
as autoencoder reconstruction (Xie et al., 2016; Li et al.,
2018; Yang et al., 2017), sample similarity and neighbor
relationship (Chang et al., 2017; Ji et al., 2019; Tao et al.,
2021; Li et al., 2024; Huang et al., 2019; 2023), and pseudo
labels (Van Gansbeke et al., 2020; Niu et al., 2022; Tian
et al., 2017; Cai et al., 2023). Recent advancements in self-
supervised learning (Grill et al., 2020; He et al., 2020; Chen
et al., 2020) have prompted many deep clustering methods
to explore contrastive learning for generating clustering-
compatible representations (Huang et al., 2023; Li et al.,
2022; 2021b; Yu et al., 2023). Despite the effectiveness
of these supervision signals in enhancing clustering per-
formance, current research often overlooks the learning
progress of individual samples during network training.

Throughout training, the representations of the same input
sample may vary across epochs due to ongoing weight up-
dates. We propose a new metric called sample stability,
which is defined the cosine similarity of representations
for the same input across two consecutive epochs in the
model, to represent the learning progress of individual sam-
ples. Through extensive experiments, we consistently ob-
serve that samples with the most unstable representations
are prone to incorrect clustering (see Observation 1). In
addition, we find that unstable samples exhibit non-random
long-term instability during training (see Observation 2).
Further examination reveals that consistently unstable sam-
ples are typically atypical and rare compared to stable coun-
terparts, indicating their difficulty in model memorization
(see Observation 3). These observations hold true across
multiple self-supervised learning and deep clustering meth-
ods, as well as across various datasets and epochs, detailed
in Section 2. The above insights underscore the utility of
sample stability in evaluating individual sample training
progress. Thus, we pioneer the use of sample stability to
construct supervision signals and introduce a novel deep
clustering method LFSS (Learning From Sample Stability).
Our approach incorporates a predecessor network to track
previous epoch weights and assess sample stability. More-
over, based on the contrastive learning paradigm (Chen et al.,
2020), we employ sample stability from both the instance
level and the cluster level.

In summary, this work makes the following key contribu-
tions:
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(a) CIFAR-10, 200-th epoch (b) CIFAR-10, 400-th epoch (c) CIFAR-10, 600-th epoch (d) CIFAR-10, 800-th epoch

(e) CIFAR-20, 200-th epoch (f) CIFAR-20, 400-th epoch (g) CIFAR-20, 600-th epoch (h) CIFAR-20, 800-th epoch
Figure 1. Connection between sample stability and clustering prediction accuracy on CIFAR-10 and CIFAR-20. Four methods under
various epochs: SimCLR (blue), BYOL (black), ProPos (yellow), IDFD (green) are shown. It is clear that unstable samples are more
likely to be predicted incorrectly. All subfigures share the same legend.

• For the first time, we identify the strong correlation
between sample stability, clustering prediction, and
network memorization in the context of unsupervised
model training. Notably, unstable samples are prone
to erroneous predictions, and we establish a clear link
between sample stability and network memorization.
Our extensive experiments across various methods and
datasets validate these findings and reinforce our per-
spectives.

• We pioneer the utilization of sample stability at the
representation level as a guiding signal in deep cluster-
ing. While recent approaches have introduced diverse
supervision signals to enhance deep clustering, they
often overlook the evolution of individual samples dur-
ing training. Recognizing that sample stability can
effectively reflect training quality in an unsupervised
setting, we harness it as a guiding signal, introducing a
novel deep clustering methodology at both the instance
and cluster levels.

• We assess the clustering performance of LFSS across
multiple widely utilized datasets and benchmark it
against state-of-the-art techniques. Our experimental
results unequivocally showcase the efficacy of our ap-
proach. Furthermore, we illustrate that our method can
be seamlessly integrated to enhance the performance
of existing approaches, serving as a valuable plugin.

2. Our Insights
In this section, we delve into the common phenomena across
different unsupervised deep clustering methods. Based on

the observations from substantial experiments, we elucidate
the relationships of sample stability with both clustering
prediction and network memorization for the first time.
In unsupervised learning, labels are not accessible, and
accordingly, we cannot use the accuracy of label prediction
to evaluate the training status of a single sample. To this
end, we exploit the high-dimensional representations of
samples in the embedding space, and use the variations at the
representation level as the criterion for assessing the training
status of a sample. Specifically, we define sample stability
of a sample as the cosine similarity of the representations of
the same sample across two consecutive epochs. Assume
f(·) is the deep neural network, and x is an input sample,
then sample stability in the t-th epoch can be represented as
follow:

s(f, x, t) =
(f t(x))T f t−1(x)

∥f t(x))∥∥f t−1(x)∥
, (1)

where f t(·) denotes the network at the t-th epoch, and ∥ · ∥
denotes ℓ2 norm. In other words, lower sample stability
indicates that the representation of a sample is unstable
during specific epochs in the training process. Based on the
above definition, we have the following three observations.

Observation 1: Unstable samples are more likely to be
predicted incorrectly. We observe that sample stability is
closely associated with clustering prediction. To validate it,
we train several representative unsupervised learning mod-
els: SimCLR (Chen et al., 2020) and BYOL (Grill et al.,
2020) are two prevalent contrastive learning paradigms and
the cornerstones of recent deep clustering methods; ProPos
(Huang et al., 2023) and IDFD (Tao et al., 2021) are rep-
resentative and state-of-the-art deep clustering methods in
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recent years. We adopt ResNets (He et al., 2016) as the
backbone. We adopt K-means (Hartigan & Wong, 1979) to
cluster as it is the most commonly employed clustering algo-
rithm in deep clustering (Huang et al., 2023; Tao et al., 2021;
Li et al., 2023; Niu et al., 2022). We train the models and
record the sample stability at different epochs. We divide all
samples into 10 bins based on their stability, from smallest
to largest. For statistical fairness, the number of samples in
each bin should be similar to avoid outliers. So each bin has
10% of the samples. We present the results on the CIFAR-10
and CIFAR-20 (Krizhevsky, 2009) in Figure 1. Experiments
on ImageNet-10 (Chang et al., 2017), Tiny-ImageNet (Le
& Yang, 2015) and ImageNet-1K (Deng et al., 2009) are
presented in Appendix A. We can observe that under all
conditions (across different datasets, methods, and epochs),
unstable samples are more likely to be predicted incorrectly
than stable samples. This suggests that unstable samples
are often poorly learned and difficult to be grouped into a
specific class. More observations and discussions can be
found in Appendix A.

Table 1. Recurrence counts of unstable samples on CIFAR-10.
Some samples exhibit long-term instability.

Count SimCLR BYOL ProPos IDFD Random

Count = 1 11169 10325 8593 10159 17496
Count = 2 3834 3771 3791 3981 2916
Count = 3 1377 1499 1774 1517 216
Count = 4 258 409 626 332 6

Observation 2: Some samples exhibit long-term insta-
bility in the training process. To verify whether the diffi-
culty in accurately predicting unstable samples is due to the
samples themselves rather than the networks, we conduct
additional experiments by tracking unstable samples over
multiple epochs. Specifically, we count the recurrence of
the top 10% unstable samples at the 200-th, 400-th, 600-th,
and 800-th epochs on CIFAR-10. As a reference, we also
randomly assign 10% samples as the most unstable samples
at each epoch and count their recurrences. As shown in
Table 1, we observe that some unstable samples reappear
repeatedly at different epochs. Moreover, the numbers of
samples experiencing instability only once for deep cluster-
ing methods are observed to be lower than what would be
expected under random conditions. Conversely, the num-
bers of samples manifesting multiple instabilities signifi-
cantly exceed the expectations based on random chance.
The above phenomena suggest that some unstable samples
are persistently unstable (long-term instability) rather than
being sporadically. Results on other datasets are shown in
Appendix B.

Observation 3: Sample stability is closely associated
with network memorization. As shown in Table 1, some
samples fail to learn stable representations during model

Figure 2. Visualization results of SimCLR on stable and unstable
samples from ImageNet-10. We can observe that unstable samples
tend to be visually more complex or unusual. Such samples can be
considered atypical or rare, making them hard to memorize, while
the stable samples are often typical and conventional.

training. Such samples can be considered difficult for the
network to memorize. We further investigate the character-
istics of those unstable samples by training SimCLR (Chen
et al., 2020) on the ImageNet-10 dataset. Specifically, we
track the top 10% stable and the top 10% unstable samples
at the 200-th, 400-th, 600-th, and 800-th training epochs.
We select samples that consistently appear in three or four
of these training epochs and consider them to be the repre-
sentative examples of long-term stable or unstable instances.
As shown in Figure 2, we can observe that long-term stable
samples are often typical and conventional, with complete
presentations and distinctive features, while long-term un-
stable samples appear to be rare and atypical, such as, oddly
decorated oranges, a trailer truck in a rearview mirror, a
penguin in unusual lighting. Compared to stable samples
that are easily recognizable by human eyes, unstable sam-
ples are visually more complex, with unusual perspectives,
incomplete or abnormal compositions, or they may not be
the main focus of the image. Such rare or atypical samples
are difficult for the network to memorize due to their lack
of representativeness.

3. Related Work
3.1. Contrastive Learning

Contrastive learning is an effective self-supervised learning
approach (Gui et al., 2024; Wu et al., 2018). Recently, many
well-known contrastive learning approaches were proposed
(Grill et al., 2020; He et al., 2020; Chen et al., 2020; Caron
et al., 2020; Chen & He, 2021; Zbontar et al., 2021; Bardes
et al., 2022). Among them, the methods based on negative
sample pairs have gained widespread influence. Specifically,
each sample undergoes data augmentation to produce dif-
ferent views. The views from the same sample are regarded
as positive samples, while others are negative samples. By
minimizing the distance between positive samples and max-
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imizing the distance between negative samples in the latent
space, effective representations are learned. Considering
NT-Xent loss (Normalized Temperature-scaled Cross En-
tropy Loss) in SimCLR (Chen et al., 2020), in a dataset of
size N , each sample is augmented twice and this results in
2N views. Let zi be the representation of the i-th view. The
NT-Xent loss can be formulated as follows:

LNT-Xent = − 1

2N

2N∑
i=1

log
exp(sim(zi, z

+
i )/τ)∑2N

k=1 1[k ̸=i] exp(sim(zi, zk)/τ)
, (2)

where sim(u, v) = uT v/∥u∥∥v∥ is the cosine similarity of
representation u and v, τ is a temperature parameter and
1[k ̸=i] returns 1 when k ̸= i else 0. z+i is the positive sample
of zi. Eq. (2) serves to pull positive samples closer while
pushing negative samples further apart, thereby learning
appropriate representations.

Apart from contrastive learning methods that require nega-
tive samples, some self-distillation methods can effectively
train models using only positive samples (Grill et al., 2020;
Chen & He, 2021). These methods often contrast represen-
tations produced by asymmetric networks. Considering ft
is a target network, fo is an online network and h is a predic-
tion head, the loss in a self-distillation method is typically
constructed as:

Lsd =
1

N

N∑
i=1

2− 2 · sim(ft(xi), h(fo(x
+
i )), (3)

where xi and x+
i are augmented versions of the i-th sample.

3.2. Deep Clustering

Deep clustering aims to train deep neural networks in the
absence of labels to perform clustering tasks. Compared to
supervised learning, it can significantly save time and labor
in label annotation. Although labels are not required, super-
vision signals are still needed to provide feedback for model
training. Therefore, various supervision signals have been
proposed to guide model training (Xie et al., 2016; Li et al.,
2018; Yang et al., 2017; Chang et al., 2017; Ji et al., 2019;
Tao et al., 2021; Jia et al., 2021; Peng et al., 2022; Li et al.,
2024; Liu et al., 2024; Jia et al., 2025). Specifically, some
pseudo-labeling approaches leverage prediction consistency
across different epochs or models to filter unreliable training
samples (Mahon & Lukasiewicz, 2023; 2021). However,
the stability of samples at the representation level remains
underexplored. In recent years, due to the advancements
in contrastive learning (He et al., 2020; Grill et al., 2020;
Chen et al., 2020), contrastive learning has been extensively
adopted in deep clustering, leading to excellent clustering
performance (Huang et al., 2023; Li et al., 2022; 2021b; Yu
et al., 2023; Qi et al., 2024; Li & Jia, 2025).

3.3. Network Memorization

A deep neural network (DNN) is a universal approximator
that can represent any function when its capacity is suffi-
ciently large (Hornik et al., 1989; Cybenko, 1989). Some
researchers study the learning mechanisms in networks, par-
ticularly how networks memorize samples, especially atyp-
ical ones, in the training progress (Maini et al., 2023). In
supervised learning, previous researches (Maennel et al.,
2020; Arpit et al., 2017; Zhang et al., 2017; Maini et al.,
2023) have revealed that DNNs can memorize samples with
random labels. By comparing training with real labels and
random labels, they explain how networks memorize. Also,
previous works (Feldman, 2020; Feldman & Zhang, 2020)
demonstrated that memorizing rare and atypical samples is
crucial for achieving close-to-optimal generalization error
in supervised classification tasks. In unsupervised learning,
how to identify and memorize rare and atypical samples is
worth studying. However, there is only a limited body of
related works in this field (Hooker et al., 2019; Jiang et al.,
2021), further explorations are needed.

4. Proposed Method
Based on the observations discussed in Section 2, we illus-
trate that the stability of samples can serve as an indicator
of the training advancement of each sample. Samples that
exhibit instability are prone to erroneous clustering and are
challenging for the network to memorize. Consequently,
we can utilize sample stability as a guiding signal to steer
the training of models in deep clustering. In this paper, we
propose a novel deep clustering methodology called LFSS
(Learning From Sample Stability), which capitalizes on sam-
ple stability signals from both the instance and cluster levels,
in conjunction with self-distillation.

As shown in Figure 3, we adopt an asymmetric network
structure as in (Grill et al., 2020). ft and fo denote the target
network and online network, respectively. fp is the proposed
predecessor network for measuring sample stability. h is
an MLP predictor head. The stop-gradient operation is
applied to both ft and fp. ft is momentum updated from fo
with θt = mθt + (1 −m)θo, where m ∈ [0, 1] is a target
decay rate, θ∗ denotes parameters in the network f∗ and the
asterisk (∗) is a wildcard character. fp is directly copied
from ft in the last epoch. Given a dataset of size N :{xi}Ni=1,
each sample xi is augmented twice to generate two views:
xt
i and xo

i , intended for input into ft and fo respectively. The
overall loss of LFSS comprises three components: instance-
level loss for LFSS LI , cluster-level loss for LFSS LC , and
self-distillation with noise loss LS .

Instance-level loss for LFSS. We construct an instance-
level supervision signal with sample stability. As introduced
in Observation 1, sample with unstable representations are
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Figure 3. The network architecture of LFSS. Each input is aug-
mented into two views (xo

i and xt
i), which are then fed into the

networks (fp, ft and fo) as inputs. Only the online network fo
and the predictor head h are involved in gradient backpropagation.
The target network ft is momentum updated from fo, and the
predecessor network fp is copied from ft in the latest epoch and
is used to measure sample stability. Based on the outputs from dif-
ferent networks, we measure the three components in the objective
function, including instance-level loss LI , cluster-level loss LC ,
and self-distillation with noise loss LS .

likely to be clustered incorrectly. However, forcing the rep-
resentations from two consecutive epochs to be as close as
possible could potentially impede the training progress. To
balance stability and model training, our approach aims to
penalize excessive variations of representations while ensur-
ing that these penalties do not harm the overall evolution
and improvement of the model. Therefore, we extend the
NT-Xent loss and formulate the instance-level LFSS loss as:

LI = − 1

N

N∑
i=1

log
exp(sim(fo(x

o
i ), fp(x

o
i ))/τ)∑N

k=1 1[k ̸=i] exp(sim(fo(xo
i ), fp(x

o
k))/τ)

. (4)

In Eq. (4), the output representations of the same sample
in two consecutive epochs: fo(xo

i ) and fp(x
o
i ), form posi-

tive sample pairs, while those from different samples form
negative sample pairs. The positive samples output by the
predecessor network result in larger losses for unstable sam-
ples, whereas negative samples prevent the network from
staying the same and benefit model training.

Cluster-level loss for LFSS. In clustering, cluster centers
can describe the main characteristics of their corresponding
clusters. Discriminative cluster centers help generate better

sample partitioning. To this end, we apply contrastive learn-
ing on the cluster level to obtain more discriminative cluster
centers. We assume that the cluster number K is known
as a priori, and adopt K-means (Hartigan & Wong, 1979)
to obtain the clustering partitions. The center for the i-th
cluster can be obtained as follow:

c∗i =

∑
j∈Ci

f∗(x
∗
j )

∥
∑

j∈Ci
f∗(x∗

j )∥
, (5)

where c∗i is the center of i-th cluster, obtained from the
representations output by network f∗, and Ci is the set
of sample indices belonging to the i-th cluster. Note that
we perform clustering on the original samples instead of
augmented ones to form {Ci}Ki=1.

As unstable samples are more likely to be grouped in the
incorrect clusters, excluding them can lead to more accu-
rate cluster centers. Thus, we exclude the most unstable
instances in the dataset with an unstable ratio δ ∈ [0, 1].
Ns = ⌊N ∗ (1 − δ)⌋ indicates the number of remaining
stable samples and the set S contains indices of these re-
maining stable samples:

S = argsort(sim(ft(xi), fp(xi)))[−Ns :], (6)

where argsort(·) is a function that returns an array represent-
ing the indices of the input elements sorted in ascending
order. [−Ns :] returns the last Ns elements in the array. In
this way, we record the stable samples in the set S. Ex-
cluding the most unstable samples, we can obtain more
representative cluster centers in the below protocol:

c∗i =

∑
j∈Ci∪S f∗(x

∗
j )

∥
∑

j∈Ci∪S f∗(x∗
j )∥

. (7)

Inspired by (Huang et al., 2023), we integrate cluster centers
into contrastive learning. Specifically, we treat centers from
the same clusters as positive pairs and those from different
clusters as negative pairs:

LC = − 1

K

K∑
i=1

log
exp(sim(coi , c

t
i))/τ)∑K

k=1 1[k ̸=i] exp(sim(coi , c
t
k)/τ)

. (8)

In each epoch, we first conduct K-means (Hartigan & Wong,
1979) globally for cluster assignments and then select stable
samples in Eq. (6). The cluster centers in Eq. (8) are
computed in a batch-wise manner.

Self-distillation with noise. In addition to the aforemen-
tioned methods that leverage sample stability, inspired by
(Kingma & Welling, 2014; Huang et al., 2023), we adopt
a self-distillation approach to learn robust representations
by exploiting the noise. Specifically, we add random noise
to the output of the online network fo, which serves as the
input to the predictor head h. The method is implemented
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Algorithm 1 Proposed LFSS

Input: Dataset X of size N , epoch number T , batch
size b, cluster num K, hyper-parameter λ, η, σ and δ,
online network fo, target network ft, predictor head h,
predecessor network fp.
Output: Clusters {Ci}Ki=1

for t = 1 to T do
sample a batch {xi}bi=1 from X
augment xi to generate xt

i and xo
i

compute self-distillation with noise LS using Eq. (9)
compute instance-level loss for LFSS LI using Eq. (4)
if i > η then

compute sample stability and select stable samples
using Eq. (6)
compute cluster centers using Eq. (7)
compute cluster-level loss for LFSS LC using Eq.
(8)

end if
update fo and h by minimizing Eq. (10)
update fp by directly copying ft
update ft using momentum update

end for
Apply K-means to obtain Clusters {Ci}Ki=1

as below:

LS =
1

N

N∑
i=1

2− 2 · sim(ft(x
t
i), h(fo(x

o
i ) + σξ)), (9)

where σ > 0 is a hyper-parameter indicating the intensity of
noise and ξ is a noise vector whose elements are drawn in-
dependently from the standard normal distribution N (0, 1).
By minimizing Eq. (9), we can learn more robust represen-
tations, which is beneficial for clustering.

Model Training and Clustering Prediction. The overall
objective function for LFSS is

L = LS + λ(LI + LC), (10)

where LS, LI and LC are losses in self-distillation with noise,
instance-level LFSS and cluster-level LFSS, respectively.
we set λ as a trade-off hyper-parameter to balance two coun-
terparts. To obtain suitable cluster centers, we will first
train the neural network for η epochs using only LS and LI

as a warm-up stage, and then use the complete loss in Eq.
(10) for the remaining epochs. After the model training is
completed, we apply K-means (Hartigan & Wong, 1979)
to obtain the clustering results. The overall procedure is
summarized in Algorithm 1.

5. Experiments
In this section, we evaluate the proposed LFSS by compar-
ing it with 15 state-of-the-art deep clustering approaches

on five commonly used datasets, and two more challenging
large-scale datasets.

5.1. Datasets

We conduct experiments on multiple commonly used
datasets, including CIFAR-10 (Krizhevsky, 2009), CIFAR-
20 (Krizhevsky, 2009), STL-10 (Coates et al., 2011),
ImageNet-10 (Chang et al., 2017), ImageNet-Dogs (Chang
et al., 2017), Tiny-ImageNet (Le & Yang, 2015) and
ImageNet-1K (Deng et al., 2009). CIFAR-20 is CIFAR-100
using 20 super-classes for evaluation. We train models on
STL-10 with extra unlabeled data. ImageNet-10, ImageNet-
Dogs and Tiny-ImageNet are subsets of ImageNet-1K, con-
taining 10, 15, 200 classes respectively. A summary of the
datasets used for evaluation is shown in Table 2.

Table 2. A summary of benchmark datasets used for evaluation.

Dataset #Samples #Clusters Image Size
CIFAR-10 60,000 10 32×32×3
CIFAR-20 60,000 20 32×32×3

STL-10 13,000 10 96×96×3
ImageNet-10 13,000 10 96×96×3

ImageNet-Dogs 19,500 15 96×96×3
Tiny-ImageNet 100,000 200 64×64×3
ImageNet-1K 1,281,167 1,000 224×224×3

5.2. Implementation Details

We adopt ResNet-18 as the backbone unless specifically
specified. We train the models for 1,000 epochs with a batch
size of 256, unless noted otherwise. We report the results of
the last epoch, using three commonly used metrics: cluster-
ing accuracy (ACC), normalized mutual information (NMI),
adjusted rand index (ARI). We adopt the stochastic gradi-
ent descent (SGD) optimizer and the cosine decay learning
rate schedule to effectively train our model. Besides, we
adopt data augmentation methods following (Chen et al.,
2020). We empirically set the trade-off hyper-parameter λ
in Eq. (10) to 0.1 for all experiments unless otherwise spec-
ified. We set the unstable ratio δ to 0.1 for all experiments
to exclude the most unstable samples in cluster-level loss
for LFSS, as indicated by the results in Observation 1. We
set the warmup epoch number η to 200 for CIFAR-10 and
ImageNet-10, 500 for CIFAR-20, STL-10 and ImageNet-
Dogs. The noise intensity in Eq. (9) σ is set to 0.01 for STL-
10 and ImageNet-10, 0.001 for CIFAR-10, CIFAR-20 and
ImageNet-Dogs. The analysis of these hyper-parameters
is presented in Appendix E. We adopt K-means (Hartigan
& Wong, 1979) to obtain clustering results and report the
average results of 10 trials to avoid the impact of random
initialization in K-means. All experiments are conducted
based on PyTorch and all models are trained on an NVIDIA
RTX 4090 GPU. Other training specifics can be found in
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Table 3. Comparisons with various methods on clustering performance (in percent %) across five benchmarks datasets.

CIFAR-10 CIFAR-20 STL-10 ImageNet-10 ImageNet-Dogs

Methods NMI ACC ARI NMI ACC ARI NMI ACC ARI NMI ACC ARI NMI ACC ARI

IIC 51.3 61.7 41.1 - 25.7 - 43.1 49.9 29.5 - - - - - -
DCCM 49.6 62.3 40.8 28.5 32.7 17.3 37.6 48.2 26.2 60.8 71.0 55.5 32.1 38.3 18.2
PICA 56.1 64.5 46.7 29.6 32.2 15.9 - - - 78.2 85.0 73.3 33.6 32.4 17.9
SCAN 79.7 88.3 77.2 48.6 50.7 33.3 69.8 80.9 64.6 - - - - - -
NMM 74.8 84.3 70.9 48.4 47.7 31.6 69.4 80.8 65.0 - - - - - -
CC 70.5 79.0 63.7 43.1 42.9 26.6 76.4 85.0 72.6 85.9 89.3 82.2 44.5 42.9 27.4
MiCE 73.7 83.5 69.8 43.6 44.0 28.0 63.5 75.2 57.5 - - - 42.3 43.9 28.6
GCC 76.4 85.6 72.8 47.2 47.2 30.5 68.4 78.8 63.1 84.2 90.1 82.2 49.0 52.6 36.2
PCL 80.2 87.4 76.6 52.8 52.6 36.3 71.8 81.0 67.0 84.1 90.7 82.2 44.0 41.2 29.9
TCC 79.0 90.6 73.3 47.9 49.1 31.2 73.2 81.4 68.9 84.8 89.7 82.5 55.4 59.5 41.7
IDFD 71.4 81.5 66.6 41.8 41.1 26.5 62.3 74.1 55.0 75.5 86.2 69.0 50.2 55.3 36.9
ProPos 85.6 92.0 84.1 54.9 51.8 37.8 72.1 83.2 70.4 81.2 89.0 78.7 54.8 63.9 45.2
CoNR 78.1 85.3 71.1 53.5 49.9 35.8 70.2 81.2 69.2 79.2 87.7 75.0 52.7 62.2 42.1
DMICC 72.2 83.1 67.5 40.0 41.8 24.3 64.1 75.5 60.5 84.3 92.5 85.2 55.1 54.2 39.8

BYOL 72.3 83.3 68.0 51.9 49.3 34.5 68.0 80.7 63.5 73.2 82.1 67.4 51.8 59.7 41.3
LFSS (Ours) 87.2 93.4 86.6 59.9 58.7 43.5 77.1 86.1 74.0 85.6 93.2 85.7 61.7 69.1 53.3

Appendix D.

5.3. Main Results

In this section, we evaluate the clustering performance of the
proposed LFSS on five commonly used benchmark datasets
and compare it with both baseline and state-of-the-art meth-
ods, as shown in Table 3. We compare LFSS with 14 repre-
sentative deep clustering methods, including IIC (Ji et al.,
2019), DCCM (Wu et al., 2019), PICA (Huang et al., 2020),
SCAN (Van Gansbeke et al., 2020), NMM (Dang et al.,
2021), CC(Li et al., 2021b), MiCE (Tsai et al., 2021), GCC
(Zhong et al., 2021), PCL (Li et al., 2021a), TCC (Shen
et al., 2021), IDFD (Tao et al., 2021), ProPos (Huang et al.,
2023), CoNR (Yu et al., 2023), DMICC (Li et al., 2023)
and baseline BYOL (Grill et al., 2020). The results from
the IIC to PCL methods are directly quoted from (Huang
et al., 2023). The remaining four methods, including IDFD,
ProPos, CoNR, DMICC, are representative approaches re-
cently. To ensure a fair comparison, we reproduced these
methods using the same backbone, batch size, and number
of epochs as our method. To ensure the validity of the re-
sults, consistent with our approach, we report the average
outcomes of 10 K-means runs. Regarding other experimen-
tal setups of each method, we referred to their respective
papers. We reproduced the baseline BYOL using exactly
the same experimental setup as our method.

As listed in Table 3, it can be observed that the pro-
posed LFSS outperforms the state-of-the-art methods on all
datasets. Compared to baseline BYOL, LFSS has achieved
significant improvements across all datasets. Specifically,
it attains a significant improvement with substantial mar-
gins ranging from 5.4% to 18.6% in all metrics. Compared
to state-of-the-art methods, our approach also achieves the

best results on all datasets, which demonstrates the effec-
tiveness of the proposed LFSS. Specifically, on the fine-
grained dataset ImageNet-Dogs, our method has achieved
the best performance improvements, with increases of 5.2%
in ACC, 6.3% in NMI, and 8.1% in ARI. We also conduct
significance tests on the methods being implemented in Ap-
pendix F, demonstrating that our approach is statistically
significantly better.

Additionally, we conduct experiments on large-scale
datasets, such as Tiny-ImageNet and ImageNet-1K. LFSS
achieves superior performance, demonstrating its effective-
ness on large-scale datasets. These experimental results can
be found in Appendix C.

Given the improvements of this method over other state-
of-the-art methods and the baseline, we can attribute the
performance improvements to the effective use of instance-
level loss for LFSS and cluster-level loss for LFSS. We
demonstrate that using sample stability as a supervision sig-
nal for deep clustering models can yield more discriminative
representations and achieve better clustering performance.

5.4. Ablation Study

To evaluate the effectiveness of each component in LFSS,
we have conducted extensive ablation studies on CIFAR-10
in Table 4. Note that all ablation experiments are conducted
under the same experimental setup. We have demonstrated
that our method achieves significant performance improve-
ments compared to BYOL in Section 5.3. We further exam-
ine the effect of the self-distillation with noise method by
training for 1,000 epochs using only the LS loss. Compared
to BYOL, it achieves performance improvements, demon-
strating that adding noise to the input of the predictor head
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is effective. By separately removing LI and LC from the
complete method, we find that compared with LFSS, both
LFSS w/o LI and LFSS w/o LC face performance degrada-
tion, but there is still a performance improvement compared
to the baseline. These results prove that LI and LC are
beneficial for deep clustering. Additionally, we conduct
experiments by removing the predecessor network. Specifi-
cally, we retain all loss functions of LFSS but no longer use
the predecessor network (for generating sample stability) as
a supervision signal. LI is computed by the output repre-
sentations from ft and fo, using different augmented inputs.
LC is computed when unstable samples are not excluded.
The results suggest that the modifications made using sam-
ple stability have good effects. The above ablation studies
demonstrate that the effective utilization of sample stability
leads to better clustering performance.

Table 4. Ablation study (in percent %) on CIFAR-10.

NMI ACC ARI
BYOL 72.3 83.3 68.0

Only Ls 79.5 86.7 75.1
LFSS w/o LI 83.6 89.6 80.3
LFSS w/o LC 81.6 89.5 79.5

LFSS w/o predecessor network 83.5 90.7 81.5
LFSS 87.2 93.4 86.6

5.5. LFSS Benefits Unstable Samples

To further investigate the impact of LFSS, we evaluate the
clustering accuracy of samples with different degrees of
stability in Figure 4. We replicate the experimental setup in
Observation 1, binning samples by stability and measuring
the respective clustering accuracy. At the 1000-th epoch on
CIFAR-10 and CIFAR-20, where LFSS has completed its
training stage, it can be seen that LFSS (in red) improves
the clustering accuracy of unstable samples compared to
other methods. On CIFAR-10, the performance improve-
ment of LFSS mainly comes from more accurate prediction
of unstable samples. On CIFAR-20, LFSS enhances clus-
tering performance for both unstable and stable samples.
As higher clustering accuracy signifies more discriminative
representations, these experimental results demonstrate that
LFSS facilitates the learning of unstable samples.

Also, we focus on the top 10% most unstable samples at
the 200-th epoch on CIFAR-10 and CIFAR-20, using the
stability of the sample at exactly the 10-th percentile as
the threshold for determining instability. In subsequent
epochs of training, a significant proportion of these samples
surpass this threshold and become stable. This indicates that
our method can effectively reduce the number of unstable
samples. The results are shown at Table 5.

(a) CIFAR-10 (b) CIFAR-20

Figure 4. LFSS benefits the training of unstable samples, improv-
ing their clustering accuracy. The subfigures share the same legend.

Table 5. The proportion (in percent %) of samples transitioning
from unstable to stable starting from the 200-th epoch.

400-th epoch 600-th epoch 800-th epoch final epoch

CIFAR-10 60.8 83.3 97.8 99.3
CIFAR-20 72.1 80.6 97.2 99.8

5.6. Applying Sample Stability into Other Methods

The proposed LFSS is based on the BYOL framework (Grill
et al., 2020). However, utilizing sample stability as a su-
pervision signal is not limited to this framework. It can be
extended to other methods. To better illustrate the gener-
ality of using sample stability as a supervision signal, we
have extended LFSS to Moco (He et al., 2020) and SimCLR
(Chen et al., 2020) by introducing LI and LC into their
frameworks. For LFSS (MoCo) and LFSS (SimCLR), we
adopt their respective network architectures and replace the
LS in LFSS with their original loss functions. We train
all models for 1,000 epoch with ResNet-18, using a batch
size of 256. To achieve a fair comparison, we implement
both the original methods and their corresponding LFSS
versions using exactly the same experimental setup. For
other experimental settings and hyper-parameter choices
unique to LFSS, we keep them consistent with Section 5.2.
The clustering performance is shown in Table 6. We can ob-
serve that LFSS exhibits performance improvements across
various frameworks. In some experimental scenarios, such
as Moco and BYOL on CIFAR-10, LFSS can bring about up

Table 6. Clustering performance (in percent %) of applying sample
stability into various methods.

CIFAR-10 CIFAR-20

Method NMI ACC ARI NMI ACC ARI

BYOL 72.3 83.3 68.0 51.9 49.3 34.5
LFSS (BYOL) 87.2 93.4 86.6 59.9 58.7 43.5

Moco 50.5 57.7 40.2 34.8 36.9 19.3
LFSS (Moco) 56.8 67.6 49.0 39.3 40.9 22.0

SimCLR 73.9 83.1 69.0 47.2 46.8 31.2
LFSS (SimCLR) 79.2 88.4 74.4 48.2 47.5 31.4
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to approximately a 10% performance improvement. These
results substantiate the scalability of using sample stability
as a supervision signal.

6. Conclusion
In this paper, we have presented a novel deep clustering
method that harnesses insights from sample stability to en-
hance clustering outcomes. Through extensive experimen-
tation, we established a strong correlation between sample
stability, clustering accuracy, and network memorization.
Notably, we revealed that unstable samples are more prone
to misclustering, highlighting the utility of sample stabil-
ity as a guiding signal in unsupervised clustering scenarios.
Furthermore, we found that samples exhibiting prolonged
instability pose challenges for network memorization, often
characterized by complexity and uniqueness in their original
features. Building on these findings, we proposed a novel
LFSS method, which leverages sample stability at both the
instance and cluster levels to advance deep clustering perfor-
mance. Our method outperforms state-of-the-art approaches
across various commonly employed datasets, demonstrat-
ing its efficacy. Through additional experiments, we delve
into the factors underpinning our method’s effectiveness and
showcase its adaptability across diverse methods.
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of deep clustering. There are many potential societal conse-
quences of our work, none which we feel must be specifi-
cally highlighted here.

Acknowledgments
This work was in part supported by the National Natural
Science Foundation of China under Grant U24A20322 and
62422118, and in part supported by the Hong Kong UGC
under grant UGC/FDS11/E02/22 and UGC/FDS11/E03/24.
This research work is supported by the Big Data Computing
Center of Southeast University.

References
Arpit, D., Jastrzebski, S., Ballas, N., Krueger, D., Bengio,

E., Kanwal, M. S., Maharaj, T., Fischer, A., Courville,
A., Bengio, Y., et al. A closer look at memorization in
deep networks. In International Conference on Machine
Learning, pp. 233–242. PMLR, 2017.

Bardes, A., Ponce, J., and LeCun, Y. VICReg: Variance-
invariance-covariance regularization for self-supervised
learning. In International Conference on Learning Rep-
resentations, 2022.

Cai, S., Qiu, L., Chen, X., Zhang, Q., and Chen, L.
Semantic-enhanced image clustering. In Proceedings of
the AAAI conference on Artificial Intelligence, volume 37,
pp. 6869–6878, 2023.

Caron, M., Misra, I., Mairal, J., Goyal, P., Bojanowski, P.,
and Joulin, A. Unsupervised learning of visual features
by contrasting cluster assignments. In Advances in Neural
Information Processing Systems, volume 33, pp. 9912–
9924. Curran Associates, Inc., 2020.

Chang, J., Wang, L., Meng, G., Xiang, S., and Pan, C. Deep
adaptive image clustering. In Proceedings of the IEEE
International Conference on Computer Vision, Oct 2017.

Chen, T., Kornblith, S., Norouzi, M., and Hinton, G. A
simple framework for contrastive learning of visual rep-
resentations. In International Conference on Machine
Learning, pp. 1597–1607. PMLR, 2020.

Chen, X. and He, K. Exploring simple siamese represen-
tation learning. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pp.
15750–15758, June 2021.

Coates, A., Ng, A., and Lee, H. An analysis of single-layer
networks in unsupervised feature learning. In Proceed-
ings of the Fourteenth International Conference on Artifi-
cial Intelligence and Statistics, volume 15, pp. 215–223.
PMLR, 11–13 Apr 2011.

Cybenko, G. Approximation by superpositions of a sig-
moidal function. Mathematics of Control, Signals and
Systems, 2(4):303–314, 1989.

Dang, Z., Deng, C., Yang, X., Wei, K., and Huang, H. Near-
est neighbor matching for deep clustering. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 13693–13702, June 2021.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei,
L. Imagenet: A large-scale hierarchical image database.
In 2009 IEEE Conference on Computer Vision and Pat-
tern Recognition, pp. 248–255, 2009.

Feldman, V. Does learning require memorization? a short
tale about a long tail. In Proceedings of the 52nd Annual
ACM SIGACT Symposium on Theory of Computing, pp.
954–959, 2020.

Feldman, V. and Zhang, C. What neural networks memorize
and why: Discovering the long tail via influence esti-
mation. In Advances in Neural Information Processing
Systems, volume 33, pp. 2881–2891. Curran Associates,
Inc., 2020.
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Appendix

(a) ImageNet-10, 200-th epoch (b) ImageNet-10, 400-th epoch (c) ImageNet-10, 600-th epoch (d) ImageNet-10, 800-th epoch

(e) Tiny-ImageNet, 40-th epoch (f) Tiny-ImageNet, 80-th epoch (g) Tiny-ImageNet, 120-th epoch (h) Tiny-ImageNet, 160-th epoch

(i) ImageNet-1K, 10-th epoch (j) ImageNet-1K, 20-th epoch (k) ImageNet-1K, 30-th epoch (l) ImageNet-1K, 40-th epoch

Figure 5. Connection between sample stability and clustering prediction on ImageNet-10, Tiny-ImageNet and ImageNet-1K. The
experiments indicate that across datasets of varying scales and at different training epochs, unstable samples are more likely to be predicted
incorrectly in deep clustering. Four methods under various epochs: SimCLR (blue), BYOL (black), ProPos (yellow), IDFD (green). All
subfigures share the same legend.

A. More Experiments on Observation 1
Here, we provide further evidence for Observation 1. In addition to the CIFAR-10 and CIFAR-20 datasets mentioned
in the main text, in Figure 5 we have also conducted experiments on ImageNet-10, Tiny-ImageNet, and ImageNet-1K.
ImageNet-10 and Tiny-ImageNet are subsets of ImageNet-1K. The specifics can be seen in Table 2. These three datasets
differ significantly in scale. Additionally, for different datasets, we present the training progress at various stages. In our
experiments, we present the outcomes at the 200-th, 400-th, 600-th, and 800-th epochs on ImageNet-10, at the 40-th, 80-th,
120-th, and 160-th epochs on Tiny-ImageNet, and at the 10-th, 20-th, 30-th, and 40-th epochs on ImageNet-1K. In Figure 5,
the results indicate that unstable samples are more likely to be clustered into wrong classes at various epochs across different
methods and datasets. These experiments further corroborate Observation 1.

In all our experiments, we set the number of bins to 10, dividing all samples into 10 equally-sized groups based on their
stability. We also present results with 5 and 20 bins on CIFAR-10 in Figure 6, to confirm that our findings are robust across
different granularities of sample stability partitioning. These results strongly indicate a significant association between
sample stability and clustering prediction.

We provide the training details of the observational experiments here to ensure reproducibility. We have trained models using
four unsupervised methods, which are very influential in deep clustering, including SimCLR (Chen et al., 2020), Moco (He
et al., 2020), ProPos (Huang et al., 2023) and IDFD (Tao et al., 2021). For all methods, we use ResNet-18 as the backbone
on CIFAR-10, CIFAR-20 and ImageNet-10, ResNet-50 on Tiny-ImageNet and ImageNet-1K. The same experimental
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(a) 5 bins, 200-th epoch (b) 5 bins, 400-th epoch (c) 5 bins, 600-th epoch (d) 5 bins, 800-th epoch

(e) 20 bins, 200-th epoch (f) 20 bins, 400-th epoch (g) 20 bins, 600-th epoch (h) 20 bins, 800-th epoch

Figure 6. Observations on the stability of CIFAR-10 samples under partitioning granularity of different levels. It can be seen that across
different partitions, unstable samples are more likely to be consistently predicted incorrectly. Four methods under various epochs: SimCLR
(blue), BYOL (black), ProPos (yellow), IDFD (green). All subfigures share the same legend.

phenomena are observed across ResNets of different depths, further validating the generality of our observations. We
adopt a batch size of 256 and train all models on an NVIDIA RTX 4090 GPU. We adopt the stochastic gradient descent
(SGD) optimizer and the learning rate is set to 0.05 on CIFAR-10, CIFAR-20, Tiny-ImageNet and ImageNet-1K. We
set learning rate to 0.005 on ImageNet-10 due to its smaller sample amount. Regarding the selection of method-specific
hyper-parameters, we refer to their respective papers.

B. More Experiments on Observation 2
We present the persistent instability of samples across various datasets in Table 7. As described in the main text, we identify
a significant number of samples that exhibit long-term instability during the training process, far exceeding what would
be expected by random selection. We selected four epochs on each dataset for statistical analysis, and these epochs are
consistent with those used in the experiments described in Observation 1: we count the most unstable 10% of samples
at the 200-th, 400-th, 600-th, 800-th epochs for CIFAR-20 and ImageNet-10, at the 40-th, 80-th, 120-th, 160-th epochs
for Tiny-ImageNet, at the 10-th, 20-th, 30-th, 40-th for ImageNet-1K. Additionally, the probability of each sample being

Table 7. Recurrence counts of unstable samples on various datasets. In all datasets, there are certain samples that remain unstable over the
long term.

Dataset Count SimCLR BYOL ProPos IDFD Random

CIFAR-20

Count = 1 11897 10734 10175 10915 17496
Count = 2 3870 4037 4109 4049 2916
Count = 3 1165 1364 1469 1273 216
Count = 4 217 275 300 292 6

ImageNet-10

Count = 1 2187 2753 1296 2868 3790
Count = 2 793 658 576 892 632
Count = 3 317 289 448 168 47
Count = 4 119 66 352 11 1

Tiny-ImageNet

Count = 1 24109 20470 21453 17855 29160
Count = 2 6038 6182 6451 7026 4860
Count = 3 1129 1870 1586 2075 360
Count = 4 107 389 222 467 10

ImageNet-1K

Count = 1 280545 269498 247905 233076 373587
Count = 2 81502 81466 83144 88438 62258
Count = 3 19289 21828 26250 26368 4612
Count = 4 2762 3638 4881 5852 128
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Table 8. Comparisons with various methods on clustering performance (in percent %) on Tiny-ImageNet.

DCCM PICA CC GCC MoCo PCL SimSiam BYOL PropPos Ours
NMI 22.4 27.7 34.0 34.7 34.2 35.0 35.1 36.5 40.5 43.5
ACC 10.8 9.8 14.0 13.8 16.0 15.9 20.3 19.9 25.6 26.8
ARI 3.8 4.0 7.1 7.5 8.0 8.7 9.4 10.0 14.3 16.2

Table 9. Comparisons with various methods on clustering performance (in percent %) on ImageNet-1K.

SimCLR BYOL IDFD PropPos Ours
NMI 40.6 40.6 24.6 43.2 45.4
ACC 15.2 11.5 3.45 14.8 15.8
ARI 7.81 55.9 1.06 7.19 8.58

randomly selected is 0.1, following a binomial distribution. Note that the results of the random selection are rounded to the
nearest integers.

C. Clustering on Large-scale Datasets
To demonstrate the effectiveness of LFSS on the large-scale dataset, we train the model on the Tiny-ImageNet and ImageNet-
1K to evaluate its performance. Tiny-ImageNet contains 200 classes and 100,000 samples. Imagenet-1K contains 1,000
classes and about 1.2 million samples. They are generally challenging for deep clustering due to its relatively large number
of classes. It is difficult for deep clustering methods to effectively learn discriminative representations that can distinguish
between the various classes on such datasets.

On Tiny-ImageNet, following (Huang et al., 2023), we train the model with ResNet-18 for 1,000 epochs with a batch size of
256. For hyper-parameters, we set η to 200, λ to 0.1, σ to 0.001 and δ to 0.1. As shown in Table 8, the proposed LFSS
achieves superior performance compared to state-of-the-art algorithms. Specifically, we can observe that our method has
significantly improved the NMI, ACC, and ARI by 3%, 1.2%, and 1.9% respectively. On ImageNet-1K, we implement four
different methods (Chen et al., 2020; Grill et al., 2020; Tao et al., 2021; Huang et al., 2023) and report their performance in
Table 9. In detail, we train all the models with ResNet-50 for 50 epochs, using a batch size of 256. For hyper-parameters in
LFSS, we set η to 50, λ to 0.1, σ to 0.001 and δ to 0.1. As shown in Table 9, LFSS achieves the best clustering performance.
It improves ACC by 1%, NMI by 2.2% and ARI by 1.39%. The experimental results demonstrate the effectiveness of LFSS
on the large-scale dataset.

D. Training Specifics
Here, we provide the experimental details omitted from the main text to facilitate the reproduction of the proposed LFSS.
We adopt the data augmentation strategies in (Chen et al., 2020). We set the dimension of output representations to 256. The
temperature τ is set to 0.5 for all experiments. We adopt the stochastic gradient descent (SGD) optimizer, whose learning
rate is 0.05, momentum is 0.9 and weight decay is 0.0005. We adopt a cosine annealing learning rate strategy to adjust
the learning rate at each iteration. Following (Huang et al., 2023), we set the learning rate of the predictor head h to be 10
times that of the rest of the network, to benefit model training. We set the minimum learning rate to 0 for all datasets, while
specially setting it to 0.025 for ImageNet-Dogs. Following (Chen et al., 2020), we modify ResNet-18 when training on
CIFAR-10 and CIFAR-20, due to their small image sizes. We remove the first max-pooling layer and use a 3x3 kernel in the
first convolutional layer.

E. Hyper-parameter Analysis
In this section, we analyze how multiple hyper-parameters influence model training. We evaluate models under different
choices of hyper-parameters to observe their impact on the model. We employ the single-variable control method in
hyper-parameter analysis and conduct experiments on CIFAR-10, CIFAR-20 and ImageNet-10. That is, when studying the
effect of a particular hyper-parameter, we keep other hyper-parameters constant and consistent with Section 5.2.
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(a) δ, CIFAR-10 (b) σ, CIFAR-10 (c) λ, CIFAR-10

(d) δ, CIFAR-20 (e) σ, CIFAR-20 (f) λ, CIFAR-20

(g) δ, ImageNet-10 (h) σ, ImageNet-10 (i) λ, ImageNet-10

Figure 7. Hyper-parameter analysis of unstable ratio δ, noise intensity σ and balance parameter λ on CIFAR-10, CIFAR-20 and ImageNet-
10. All subfigures share the same legend.

Unstable ratio δ. In cluster-level loss for LFSS, we employ cluster centers on contrastive learning and exclude a proportion
of unstable samples from generating centers. We set the unstable ratio to 0.1, 0.3, 0.5, 0.7, 0.9 for investigating its effect.
From Figures 7a, 7d and 7g, we can observe that as the unstable ratio δ increases from 0.1, all metrics show a declining trend.
As the unstable ratio δ increases, the number of representations used to generate cluster centers decreases. When δ becomes
too large, many accurate representations are also excluded, which can result in cluster centers that are not necessarily
representative. In LFSS, we fix δ at 0.1.

Noise intensity σ. Noise generated from a normal distribution is introduced to the Eq. (9) for improving the robustness of
model training. The intensity of this normally-distributed noise may have a notable impact on the experimental performance.
To examine the impact of noise intensity σ on clustering performance, we evaluate the models with σ = 0.0001, 0.001, 0.01,
and 0.1. As shown in Figures 7b, 7e and 7h, we observed that as σ varies, the clustering performance remains relatively
stable. On different datasets, varying the noise level results in performance differences of about 5%, indicating that both
excessively high and low noise intensity do not harm model training. In our experiments, we set σ to 0.01 or 0.001.

Balance parameter λ. The parameter λ balances the different terms in Eq. (10), determining the contribution of instance-
level and cluster-level losses to model training. Self-distillation with noise LS differs from instance-level loss for LFSS
LI and cluster-level loss for LFSS LC in mathematical forms, which results in different output values even when given
the same input. We have investigated the impact of varying λ, including 0.1, 0.01, 0.001, and 0.0001, on the clustering
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Table 10. Hyper-parameter analysis of η on CIFAR-10, CIFAR-20 and ImageNet-10 (in percent %).

Datasets Metrics η = 0 η = 50 η = 200 η = 500 η = 800

CIFAR-10
NMI 78.1 79.2 87.2 85.7 86.4
ACC 82.0 83.5 93.4 92.6 92.7
ARI 71.1 71.8 86.6 84.9 85.5

CIFAR-20
NMI 53.5 52.9 55.9 59.9 57.3
ACC 50.9 48.1 53.4 58.7 56.2
ARI 35.9 33.5 39.5 43.5 41.5

ImageNet-10
NMI 64.3 71.1 85.6 83.1 83.7
ACC 71.6 76.5 93.2 91.1 92.0
ARI 54.6 62.8 85.7 81.9 83.1

Table 11. Significance Test of Various Methods

CIFAR-10 CIFAR-20 STL-10 ImageNet-10 ImageNet-Dogs

Method NMI ACC ARI NMI ACC ARI NMI ACC ARI NMI ACC ARI NMI ACC ARI

IDFD 71.4(0.8)* 81.5(2.3)* 66.6(1.1)* 41.8(0.2)* 41.1(0.2)* 26.5(0.1)* 62.3(0.1)* 74.1(0.3)* 55.0(0.2)* 75.5(1.4)* 86.2(2.7)* 69.0(2.1)* 50.2(1.2)* 55.3(2.7)* 36.9(1.0)*
ProPos 85.6(0.0)* 92.0(0.0)* 84.1(0.0)* 54.9(1.2)* 51.8(1.6)* 37.8(1.1)* 72.1(1.3)* 83.2(2.1)* 70.4(1.6)* 81.2(0.0)* 89.0(0.0)* 78.7(0.0)* 54.8(2.6)* 63.9(2.1)* 45.2(2.2)*
CoNR 78.1(1.2)* 85.3(3.1)* 71.1(1.6)* 53.5(0.3)* 49.9(0.4)* 35.8(0.0)* 70.2(0.2)* 81.2(0.2)* 69.2(0.4)* 79.2(1.1)* 87.7(3.1)* 75.0(1.2)* 52.7(1.3)* 62.2(2.3)* 42.1(1.1)*
DMICC 72.2(0.2)* 83.1(0.3)* 67.5(0.3)* 40.0(0.1)* 41.8(0.2)* 24.3(0.2)* 64.1(0.0)* 75.5(0.0)* 60.5(0.0)* 84.3(0.0)* 92.5(0.0)* 85.2(0.0)* 55.1(0.1)* 54.2(0.3)* 39.8(0.1)*
BYOL 72.3(0.4)* 83.3(0.6)* 68.0(0.8)* 51.9(1.5)* 49.3(2.2)* 34.5(2.3)* 68.0(0.2)* 80.7(0.1)* 63.5(0.2)* 73.2(0.0)* 82.1(0.0)* 67.4(0.0)* 51.8(1.1)* 59.7(1.6)* 41.3(1.6)*
LFSS (Ours) 87.2(0.0) 93.4(0.0) 86.6(0.0) 59.9(0.0) 58.7(0.0) 43.5(0.0) 77.1(0.3) 86.1(0.3) 74.0(0.6) 85.6(0.0) 93.2(0.0) 85.7(0.0) 61.7(0.0) 69.1(0.0) 53.3(0.0)

performance. In Figures 7c, 7f and 7i, we can see that an overly small λ can lead to performance degradation due to the
insufficient contribution of these losses. In LFSS, we fix λ at 0.1.

Warmup epoch number η. We set η to 0, 50, 200, 500, and 800 to evaluate the impact of introducing cluster-level loss
at different training stages. As shown in Table 10, early introduction (η = 0 or 50) reduces clustering performance due to
generating cluster centers of low quality, while later introduction, when representative cluster centers are well established,
achieves better final performance. In our experiments, we set η to 200 or 500.

F. Significance Test
The clustering performance we report on the reproduced methods are based on the average of 10 runs of K-means. In
Table 11, we report the standard deviation for each method in the parentheses. We perform the t-test for significance at
the 5% level to compare the results of the proposed method with those reproduced methods. * denotes rejection of the
original hypothesis and the two results are significantly different. We can observe that the labels assigned by our method
under K-means are very stable and our clustering performance is significantly better than those of other methods in all cases
according to the t-test.
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