Under review as a conference paper at ICLR 2025

GENBEN:A GENARATIVE BENCHMARK FOR LILM-
AIDED DESIGN

Anonymous authors
Paper under double-blind review

ABSTRACT

This paper introduces GenBen, a generative benchmark designed to evaluate the
capabilities of large language models (LLMs) in hardware design. With the rapid
advancement of LLM-aided design (LAD), it has become crucial to assess the ef-
fectiveness of these models in automating hardware design processes. Existing
benchmarks primarily focus on hardware code generation and often neglect crit-
ical aspects such as Quality-of-Result (QoR) metrics, design diversity, modality,
and test set contamination. GenBen is the first open-source, generative benchmark
tailored for LAD that encompasses a range of tasks, from high-level architec-
ture to low-level circuit optimization, and includes diverse, silicon-proven hard-
ware designs. We have also designed a difficulty tiering mechanism to provide
fine-grained insights into enhancements of LLM-aided designs. Through exten-
sive evaluations of several state-of-the-art LLMs using GenBen, we reveal their
strengths and weaknesses in hardware design automation. Our findings are based
on 10,920 experiments and 2,160 hours of evaluation, underscoring the potential
of this work to significantly advance the LAD research community. In addition,
both GenBen employs an end-to-end testing infrastructure to ensure consistent
and reproducible results across different LLMs. The benchmark is available at
https://anonymous.4open.science/r/GENBEN-2812.

1 INTRODUCTION

Modern circuit design is a complex, multidisciplinary endeavor that demands expertise in numer-
ous areas, including architecture design, performance modeling design space exploration, register-
transfer level (RTL) implementations, design verification, physical layout, etc. (Rabaey et al., 2002}
Hennessy & Patterson, 2017} Bergeronl, 2012). As hardware complexity increases, so too does the
overhead associated with design and verification processes, subsequently lengthening the design
iteration cycles (Calhoun et all 2008). Traditional methodologies, which rely heavily on manual
implementations in Verilog, are being improved by Chisel (Thomas et alJ [1989; Bachrach et al.,
2012) and High-Level Synthesis (HLS) (Coussy & Morawiec, 2010; |Gajski et al.l 2012) that aim
to automate RTL code generation by introducing additional abstraction layers. However, even with
these advancements, the verification overhead remains labor-intensive. Consequently, there is a
growing need for advanced agile hardware design approaches to accelerate hardware development
iterations.

With the rise of transformer-based large language models (LLMs) (Zhao et al.| 2023} [Winata et al.|
20215 |[Chakrabarty et al., 2023)), has opened new avenues for hardware design automation. Models
like GPT-4(OpenAll [2023)), Claude (Team, 2023), and LLaMA (Touvron et al., 2023alc; [Dubey
et al., 2024) have demonstrated promising results not only in natural language processing but also
in programming. Within this new paradigm of LLM-Aided Design (LAD) (ICCAD-Committee,
20235 ACM-SIGDA, 2024} [Huang et al.,|2024)), models such as WizardCoder (Luo et al., 2023) and
Code-LLaMA (Roziere et al.,|2023) have demonstrated significant capabilities.

Building on these advanced models, techniques like fine-tuning (Wei et al.l 2021) and retrieval-
augmented generation (RAG) (Lewis et al., [2020; |Gao et al., [2023) have led to the development
of domain-specific models and operational architectures such as GPT4AIGChip (Fu et al.| [2023)),
AutoChip (Thakur et al., 2023c), ChatChisel (Liu et al., 2024b)), and ChatCPU (Wang et al., [2024)).

Under review as a conference paper at ICLR 2025

These efforts have demonstrated automated hardware design capability using LLMs. This paradigm
shift heralds a new wave of innovation in hardware design automation.

To accurately assess the efficacy of hardware code generations, several benchmarks have been intro-
duced, such as RTLLM (Lu et al.;,|2024), Verigen (Thakur et al.|[2023a)), and VerilogEval (Liu et al.,
2023). As these benchmarks are open-source on GitHub and typically consist of static tests, they
can inadvertently be incorporated into training datasets, leading to misleading test results. Moreover,
there is a pressing need for improvements in verification coverage, evaluation metrics, and data di-
versity. For instance, the tests in these benchmarks are relatively simple and unimodal, focusing
primarily on syntax and functional pass rates. This focus neglects critical metrics such as synthesiz-
ability, debugging capabilities, and performance, power, and area (PPA)(Marakkalage et al., 2024)
statistics, which are essential for a comprehensive evaluation.

To address these limitations, we introduce GenBen, an innovative benchmark for systematic eval-
uation of generative Al capabilities in hardware design. GenBen distinguishes itself from existing
works with the following key innovative enhancements:

* Enhanced Verification Coverage: We rigorously employ a standard, end-to-end verifi-
cation flow to maximize the functional coverage of the developed testbench, that maps the
generated stimuli to each function point of the RTL design.

* Diverse and Difficulty Tiering Dataset: GenBen showcases a multi-source, multimodal,
and difficulty-tiered evaluation framework consisting of 300 tests derived from silicon-
proven designs, textbooks, StackOverflow, and other sources. Each test is categorized into
one of three distinct difficulty levels (L1 to L3), allowing for the fine-grained and targeted
enhancement of LLM capabilities in hardware designs.

* Generative Benchmark Against Data Contamination: GenBen is a generative bench-
mark that incorporates both static and dynamic perturbations to distinguish each test from
its source dataset. Additionally, we utilize a script-based generation approach to impede
automated RTL code extraction by GitHub crawlers, effectively minimizing the risk of test
set data leakage.

* Enhanced Evaluation Metrics: GenBen incorporates diverse metrics to comprehensively
evaluate the generated designs, including the basic syntactical/functional correctness, and
Quality-of-Results(QoR)(Yu et al.,2018)) metrics like synthesizability, power consumption,
area utilization, timing performance, etc.

* End-to-End Open-Source Workflow: GenBen integrates tools like Icarus Ver-
ilog(Williams| 2023), OpenLane EDA flow(Ghazy & Shalan, [2020), and Open-
PDK(Edwards| [2023) to simplify the reproducibility.

The remainder of this paper is organized as follows: Section 2] presents the motivation behind Gen-
Ben and reviews related work. Section [Blintroduces GenBen architecture and workflow. Section
evaluates diverse LLMs using GenBen, and Section [5|concludes this paper.

2 RELATED WORKS

To further elucidate the necessity and impact of GenBen in advancing hardware design automation,
it is imperative to examine the current state of LLM-aided design (LAD) and the benchmarks used to
evaluate such systems. The following sections delve into the integration of LLMs in hardware design
and critically analyze the benchmarks for evaluating LAD, thereby establishing the foundational
context for our contributions.

2.1 LLM-AIDED DESIGN

The integration of LLMs based on transformer architectures into hardware design is transforming the
field, leveraging their proven capabilities in natural language processing to manage complex design
tasks efficiently (Vaswani, [2017; |Achiam et al., 2023} Touvron et al., 2023b). These models excel
across various tasks by understanding and generating human-like text, which has allowed them to ex-
tend their utility to hardware design (Zheng et al.| [2024; Nijkamp et al.| [2022; [Lozhkov et al., 2024;
Lu et al [2023). In the domain of hardware design, significant efforts focus on employing LLMs

Under review as a conference paper at ICLR 2025

Name Conference Tests Perturbation ~ Worst Coverage Score (%) MultiModal Difficulty tiering Metrics

VeriGen (Thakur et al.}[2023b)] DATE 23 16 modules X - X X Coding

RTLLM (Lu et al.12024] ASPDAC23 30 designs Partial 52.40% X X Coding, PPA

RTLLM2.0 (L1u et al.[2024a] ICCAD24 50 designs Partial 52.40% X X Coding, PPA

VerilogEval (Liu et al.[2023 ICCAD 23 HDLBit Partial 44.64% X X Coding

MLLM Bench(Chang et al.[2024] ICCAD 24 Multimodal X - X Coding

GenBen This work All criteria 95.17% Knowledge, Coding, Debugging, QoR

Table 1: Comparison of Existing Work with Our Work

Line Coverage (%) &% Toggle Coverage (%)

I~ a

O \\,,)\A OO
s A

&
S W r
oo o @ o

N APPSR RN
A \;~\°°‘ o o

o

N R I S e SN
OO @ T T e g0V g oY @

Figure 1: VerilogEval Test Coverage

to improve the generation processes and functionality of Hardware Description Languages (HDLs).
Some notable projects include ChatEDA, which develops an LLM-based EDA interface that uses
natural language inputs to generate task-specific code (Wu et al.,2024). The GPT4AIGChip project
showcases the potential of LLM-driven design automation by modularizing various hardware func-
tions designed specifically for Al accelerators (Fu et al.,2023)). AutoChip combines LLMs with Ver-
ilog compilers to iteratively generate Verilog modules (Thakur et al., [2023c), while Chip-chat inte-
grates conversational LLM technology to design a new 8-bit microprocessor architecture (Blocklove
et al.,2023). Furthermore, ChatCPU explores a comprehensive LLM-Aided Design (LAD) chip de-
sign and introduces a novel verification methodology (Wang et al.,|2024), and ChatChisel employs a
specialized HDL to create a complex processor (Liu et al.|[2024b)). The integration of LLMs in these
methods, leveraging data-based optimization techniques such as Supervised Fine-Tuning (SFT) (Hu
et al., 2021; |L1iu et al., |b; [Houlsby et al., 2019; Zhang et al.; Wei et al.| [2021)), alongside Retrieval-
Augmented Generation (RAG) (Lewis et al., 2020} |Gao et al.| 2023)) and prompt engineering (Cao
et al.; Bulat & Tzimiropoulos; |Chen et al.; |[Deng et al.) It is important to develop comprehensive
benchmarks to mitigate the impact of pre-training and fully assess model performance in this do-
main.

2.2 BENCHMARKS FOR EVALUATING LAD

In this context, establishing benchmarks to assess the capabilities of LLMs under these adjustments
is crucial (Zhong & Wang] 2023} [Liu et al.| a). However, existing benchmarks are static and open-
source, making them susceptible to unintentional inclusion in pre-training datasets, and there is room
for improvement in testbench coverage, benchmark data diversity, and the scalability of evaluation
metrics. For instance, although Verigen (Thakur et al.|[2023a)) evaluated 17 designs after fine-tuning
CodeGen (Nijkamp et al.l [2022)), the assessments mainly targeted simple and small-scale circuit
designs, and these benchmarks are not open source. RTLLM (Lu et al.| 2024) and RTLLM2.0 (Liu
et al.,|2024a) provided 30-50 testbenches for testing LLMs. These testbenches were evaluated using
VCS to determine verification coverage, with the worst coverage score being approximately 52.40%,
as shown in Table[I] Additionally, the testbenches featured relatively simple and uniform question
types, and some of the mentioned evaluation tools are not open-source. VerilogEval (Liu et al.,
2023) introduced a comprehensive dataset of 156 problems from HDLBits for automated functional
correctness testing of LLM-generated Verilog code. However, these benchmarks are relatively easy,
and models that perform best have high verification pass rates, which do not allow for further stress
testing as models continue to evolve. In addition, the worst verification coverage of VerilogEval is
relatively low at 44.63%. In order to investigate the test coverage limitation, we further analyze the
VerilogEval benchmark. As shown in Figurem RTL-Repo (Allam & Shalanl 2024)), while assessing
the RTL Repo project, can evaluate LLM accuracy through exact matching (EM) and edit similarity
(ES), yet such metrics do not guarantee that the LLM-generated designs are verifiable or optimally
synthesizable. PyHDL-Eval (Batten et al.,|2024) and VHDLEval (Vijayaraghavan et al., 2024)) are
domain-specific benchmarks whose data diversity and evaluation metrics could be further enriched.
HDLEval (Zakharov & Renau) initiated a multifunctional benchmark that uses rapid engineering
techniques to overcome syntactical differences across HDLs and adopts formal verification methods
to assess code generated across multiple HDLs. However, there is still room to enhance testbench

Under review as a conference paper at ICLR 2025

coverage and the richness of question types. ChipGPTV (Chang et al.,|2024) proposed using visual
representations to clarify design intentions and introduced a tiered benchmark to assess MLLM
performance in Verilog generation, but there is still further scope to expand the diversity of code
generation and hardware design knowledge testing metrics. A detailed comparison of existing work
with our work can be found in Table [T}

2.3 PROBLEM FORMULATION

* 1. Verification Coverage Gaps: Existing benchmarks reveal a gap in design complexity
and verification coverage. The developed testbenches often fail to adequately represent
the essential function points of the included RTL designs, a situation that worsens as de-
sign complexity increases. Consequently, the limited verification coverage of generated
hardware can undermine the authenticity of evaluation results.

* 2. Deficient Data Diversity: Current benchmark problems demonstrate insufficient diver-
sity and richness in data sources and modalities. Many benchmarks sourced from educa-
tional materials are overly simplistic and lack silicon validation. Furthermore, these text-
based, unimodal benchmarks often fail to reflect real-world design specifications, which
frequently incorporate visual schematics and timing diagrams.

* 3. Benchmark Test Set Contamination: Since these benchmarks are statically open-
source on GitHub, associated RTL designs and specifications can be automatically captured
by crawlers as part of the RTL language datasets. Evolving LLMs like GPT-4, Claude,
and Llama 3 may inadvertently incorporate this data during pre-training, resulting in data
leakage and contamination of the test set.

* 4. Limited Evaluation Metrics: Existing benchmarks focus primarily on syntax and func-
tional pass rates, neglecting critical QoR metrics such as PPA statistics and synthesizability.
This oversight can lead to an incomplete evaluation of the generated designs.

3 DESIGN & PHILOSOPHY

In this section, we introduce the detailed GenBen design including workflow, dataset collection, task
construction, data perturbation, quality enhancement, and question generation.

3.1 DESIGN STRATEGIES OF GENBEN
Targeting the challenges in Section[2.3] the GenBen design incorporates the following strategies:

» Improved Dataset Diversity: Curated from sources like GitHub, silicon-proven projects,
and StackOverflow, featuring objective (knowledge) and subjective (coding, debugging,
design optimization) tests, categorized into three difficulty levels (Table[2).

* Coverage-Enhanced TestBench: The quaility of testbench are enhanced in line, toggle,
and functional coverage by our experts to ensure fine-grained verification.

* Perturbed Generative Benchmark: Employs perturbation strategies during test genera-
tion and evaluation to defend against memorization.

* Multi-Dimensional Evaluation: Design five dimensions and 12 sub-items featuring QoR
aware mechanism as shown in (Table E]), enabling flexible, custom benchmarks.

3.2 GENBEN FRAMEWORK & WORKFLOW

The GenBen framework has below key components: a pre-processed test set, a task generator, a dy-
namic perturbator, a response collector, an evaluation suite, a report analyzer, and a scoring module.

Evaluation begins with the user providing the API of the model and modality information as shown
in Figure 2] B. GenBen then generates test tests from the test dataset D using scripts, denoted as 7~
which remain consistent for each evaluation tests. Subsequently, the dynamic perturbation compo-
nent applies surface-level perturbations to 7 , resulting in a transformed set 7'. These perturbations
introduce slight variations for dynamic evaluation. GenBen collects responses from the model for

Under review as a conference paper at ICLR 2025

A: Dataset Construction B: GenBen Workflow

(e =) e dwarelf Tt User LLM By ot L L LT S et)
B =] ; o R — 5 oo
RTL [e Design o (e W) GenBe)®| Script- [@|Dynamic| @ |Response ©®; Analysis 1@ |scoring Resul
L oergn yEnhance r -1 < based | Perturba ==l - o <y} “A system |3 Result
- _ment ” {12) {{(Design m)] |Test Gen -tion | #romet|Collection) H @ Y E]
L e I (e ~— I = Y i
C: Static Perturbation
Fail . Fail Option cgnfusion
LLM ® LM LLM Grou LLM @ A.SRAM B.DRAH C.HH D.RAG S A.SDK B.DRAM C.CD D.SRAM Ty
Doase) [QUMO) [QuMS)., (% wpo| [© o G o Sciptbased Test Gon p | Dyramic |
7)| Eq e = i N N’ on Qgen-py “code =y Design a !
—— | Perturbation Check Perturbation Check ~ — © o suriace Rowrie &l s poanns
— Update T lhope you can inplenent a FAR.
O =
E: Prompt Templates
(- v - \)
i El.Roleplaying Prompt }: E2. Design Test Prompt E3. Debug Test Prompt H E4. Knowledge Test Prompt
i" Good day! Assume you arean | { | Write the appropriate Verilog code ! The module zero3 below implements: {i Oh no, | make a mistake in Error Meg: Line 56, i Please output the correct option. Think Step by
81| Cexpert withlextensive nd described in the following topic 7\ 3.stage pipeline. Each stageisa {i' below RTL code. Please Spec: This is a module Step.
i! knowledge of hardware rzﬂnuali;u:o':ft;cz th:;agemtﬂgules single bit, and there is a single bitas :{i: location and debug it, only Code:if (a = 2°b10) ' {!: Q1. How many 3-line-to-8-line decoders are
$ 5 é ¢ , €.8.: nodu i e i i 171 ble=a bl : i pare >
: design. e N P input.... % : out the content you fixed.... begin b <=1’b1; end ... d required for a 1-of-32 decadea‘_1 BAGAR
\k J

Figure 2: GenBen Pipeline

Table 2: Difficulty Tiering

Categories Description

L1 (Simple) Suitable for initial evaluation, focusing on fundamental concepts and straightforward tests..
L2 (Intermediate) Involving more complex tests and requiring robust problem-solving skills.

L3 (Tough) Tackling real-world design challenges and requiring advanced reasoning & implementation capabilities.

both 7 and 7" using a unified prompt template. These responses are then fed into the evaluation
suite, which performs checks and executions to validate the outputs. GenBen simulates the gen-
erated answers and corresponding testbenches using Icarus Verilog (Iverilog) to obtain reports on
syntax and functional correctness. Designs that pass the functional tests undergo further physical
implementation using the open-source SkyWater 130nm Process Design Kit (PDK)(sky} and
the OpenLane flow. Within OpenLane, the Yosys(Wolf et al.| component extracts data on
synthesizability, area, and power, while OpenSTA(Cherry, 2023) handles timing-related data extrac-
tion. The report analyzer then extracts metric-related information from the evaluation results. This
information is passed to the scoring module, which evaluates the performance of the model based
on predefined metrics and generates the final results.

3.3 BENCHMARK DATASET CONSTRUCTION

Our dataset construction process is illustrated in Fig-
ure 2lA. We collected hardware-related content from
across the web, which was then meticulously cu-
rated by a team of 10 domain experts. These experts

screened the data for correctness, completeness, and 7%,
diversity, with a particular focus on sampling from Q/ Qi%,
silicon-proven projects. For selected code tests, we en- [t
hanced their testbenches to ensure robust evaluation as e
shown in Section[3.3.T} for debug test, we refined them Chip Verig,
as shown in Seciton[3.3.2] | ChipAlliance

The collected and refined content was then filtered L
and categorized into three types of tests: knowledge, | weade”.
\ :

design, and debugging. To mitigate the interference \
of publicly available pre-training data on the evalu-

ation, we introduced static perturbations. Using a
multi-agent system combined with human feedback as

shown in Figure 2]C, we applied perturbations to the

tests, transforming them into new content at the token
sequence level.

Figure 3: Dataset of GenBen

Under review as a conference paper at ICLR 2025

Table 3: Test Categories in GenBen

Test Amount Description

Knowledge Master 75 Focus on evaluating the grasp of the LLM on fundamental hardware concepts and principles.
Knowledge Transfer 69 Apply concepts to new and complex scenarios for generalization.

Design 99 Divide the difficulty based on the number of lines of code, type,and design time.

Debug 57 Distinguish the difficulty of correcting syntax/function/combination errors.

Multimodal 60 Incorporate both textual and visual inputs.

The updated tests were then tiered according to diffi-

culty, as shown in Table[2] and mapped to different cat-

egories of tests: objective tests (assessing basic knowl-

edge understanding and transfer), design tests, debugging tests, and multimodal tests. This mapping
ensures comprehensive end-to-end evaluation of the knowledge and capabilities of the LLM.

Ultimately,the GenBen tests are shown in Table [3| with distribution across difficulty levels.

3.3.1 TESTBENCH COVERAGE ENHANCEMENT

Following the preparation of the GenBen datasets, we proceed to build testbenches for each RTL
design to enhance the verification coverage of generative designs. We rigorously employ a standard,
end-to-end verification flow that ensures a point-to-point mapping between the generated stimuli
and the functional coverage checklist. By employing constraint randomization and coverage-driven
testbench generation methodologies, we significantly improve the verification coverage for each
generated RTL design, thereby maximizing the efficacy of benchmarking LAD capabilities.

3.3.2 DEBUG TEST DESIGN

Moreover, the debugging process is a critical step in the integrated circuit design flow and should
not be omitted from benchmarking: real-world hardware design often involves identifying and cor-
recting errors. Therefore, we introduce debugging tests in GenBen. We categorize them into three
types: syntax errors, functional errors, and a hybrid of both. By injecting errors into correct designs,
we create debugging datasets that require LLMs to locate and fix the erroneous code.

3.4 DATA PERTURBATION

Building upon insights from existing DS-1000 works (Lai et all 2023), we introduced
a perturbation strategy to mitigate potential memorization biases in Al models. We
implemented two types of perturbations: surface and semantic as shown in Table

Surface-level perturbations alter the phrasing

Table 4: Perturbation Categories of a question without changing its core mean-

ing. For instance, the prompt “Design a 128x32

Perturbation Description RAM module” might be rephrased as “Con-
Surface Paraphrase: don’t change reference solution struct a memory module with 128 addresses
Semantic Generalization: will change reference solution and 32-bit data width”. As illustrated in Fig—

ure[2]C, surface perturbations require a equiva-
lence check to ensure that the meaning of the task remains unchanged.

Semantic perturbations increase the difficulty of a task by altering its underlying meaning. For
example, changing a prompt from “Design a 16-bit adder” to “Design an adder that can handle
arithmetic of two complements for 16-bit inputs” requires the model to exhibit stronger reasoning
abilities. It is necessary to align the updated tasks with their corresponding solutions to maintain
consistency as shown in Figure 2]C.

We implemented perturbations in two stages: during the construction of GenBen, as shown in Fig-
ure[2]A, and throughout the GenBen workflow, as depicted in Figure 2] B.

Under review as a conference paper at ICLR 2025

3.4.1 STATIC PERTURBATION

Static perturbations are applied during the test construction phase, leveraging the multi-agent pro-
cess illustrated in Figure [2]C. This process involves adding surface and semantic perturbations to
candidate tests, which are then reviewed by human experts to finalize the test design. Key aspects of
this stage include: 1).Abstracting concepts, definitions, and computational problems into objective
questions; 2).Injecting bugs into correct code to create debugging tests; and 3).Adjusting and deriv-
ing new coding tests. These perturbations are applied at the data source level and remain unchanged
once the test set is finalized.

3.4.2 DYNAMIC PERTURBATION

To further reduce the interference of pre-training data, we introduce dynamic perturbations during
the evaluation process using surface-level perturbations. This stage involves generating slightly
varied versions of the tests as described in Section This provides researchers with additional
insights and references for analyzing the robustness and adaptability of the LLMs.

3.5 MULTIMODAL FEATURE SUPPORT

The GenBen framework offers both unimodal and multimodal task evaluations, addressing the grow-
ing need for comprehensive assessment methodologies in hardware design. This feature is partic-
ularly important because real-world design processes often require the integration of various forms
of data, such as textual specifications, diagrams, and architectural schematics. Understanding and
synthesizing information from multiple modalities is crucial for effective hardware design.

In GenBen, multimodal data types include basic circuit diagrams, design architecture schematics,
waveform diagrams, and tables. These data types are utilized across various test categories: knowl-
edge questions assess the understanding of fundamental concepts and their applications; code gen-
eration tests require interpreting and translating visual schematics into HDL code; and debugging
tests involve identifying and correcting errors in designs that are presented through a combination
of text and visual data.

3.6 EVALUATION METRIC DESIGN

We developed a comprehensive evaluation metric system, as detailed in Table [5] which includes
both basic correctness metrics and QoR metrics. The QoR metrics—encompassing synthesizability,
power, area, and timing performance for evaluating the feasibility of generated designs for silicon
implementation. To quantify the design optimization capability of LLMs, we normalize these QoR
results against a reference design for result-aware.

This comprehensive approach, which

includes knowledge master & trans- Table 5: Metrics of GenBen
fer, design generation, debugging, mul-
timodal content and design optimiza- Metric Description

tion derived from POSt-SyntheSiS, en- Knowledge Master Basic concept without need of deduction

ables GenBen to SyStematically evalugte Knowledge Transfer ~ Generalization skills that need CoT or deduction
LLM performance throughout the entire pepyg Ability

hardware design process. Especially,
the improvement-aware metrics derived
from power, area, and timing analyses
offer a clear and intuitive representation
of the capability of the model to produce high-quality, manufacturable hardware designs.

Skills in issue-solving and perseverance
Code Correctness Syntax & Function: Skills in programming
Quality of Result Synthesizability, Power, Area & Timing

Under review as a conference paper at ICLR 2025

= Knowledge Mastery ~ @88 Knowledge Transfer %475 D;hugging s function Synatx 2% Symh:sizhiln‘y
é 10 i H
8 80 z
é 60
% 40
s 20
oV 3 2 AY RS 3 h W3 A o A3 12 AW
N \es e 28 N o o o NAE - 0 <
B N ER N B¥ N N g 22 NA NAY NS
e G€ﬂ$ G\L““ C‘Eﬁ“ GEN g E““E o Eﬁ‘s‘:‘ o Eﬁg\, GEN o @?\V’E o Qﬂv,ﬁ o @““‘L
Figure 4: GPT-40 Tests
o 120 Knowledge Mastery ~ RRR® Knowledge Transfer /7, néhuggmg mE function Synatx 282 Synlhcsx/bihl‘y
S m i T
<
D80
2
2w
: 40
S o

et a2 a2 “,,\\‘*‘ Aett

)
N o “e“,\)
G S e N N

AD A2 AN
T R B B W
R N N N

A2 AN

ARV AW
P e

oo ¥

Figure 5: Claude3.5 Tests

4 EXPERIMENTAL RESULTS

4.1 EXPERIMENTAL SETUP

Model Selection: Our study evaluated nine models, comprising six multimodal and three lan-
guage models. The selected models are GPT-4-turbo, GPT-40, GPT-3.5-turbo, Claude3.5, Llama3,
QWEN-vl-max, QWEN-vl-plus, GLM-4V-plus, and GLM-4.

Prompt Template: We developed a standardized prompt structure consisting of two key compo-
nents: (1) a role-playing prompt and (2) a problem description prompt as shown in Figure 2] E.

Test Iteration: We employed a pass@5 evaluation strategy throughout our experiments.

Pass Rate: Finallys, we used Pass Rate (PR) to quantify the overall ability. For an problem 6; and
its LLM-generated answer 0, we had a corresponding set of correct answer in GenBen database
(22, y),(zt, yl),(x", ™). For the correct solution, 67, it should produce the correct output

J ; i J i I\ — 7
y; when applied to the input data z; from the test cases. That is, ag: <x1> = y;, the test case

(m{, yf) can be regarded as passing. Whether the answer is successfully passed can be described as

/\;.”:0 [agi* (mf) = yf } , an aggregate result of all test cases. The PR are defined as:

PR — i Ao oo ,Exi) =]

x 100% (D

Evaluation Criteria:

* Knowledge& debugging tests. Pass/fail criterion, comparing with reference.

* Code generation. Syntax: failed attempts receive a score of 0%. Successful attempts
with warnings incur a 5% penalty per warning, with a minimum score of 60%. Function:
calculated ranging from 0% to 100%. Besides, to assess QoR optimization capabilities, we
conduct a normalized comparison against a reference design.

4.2 RESULTS ANALYSIS

Stable Benchmark Performance: Results shown in Figure highlight that the best model
achieved a overall PR slightly above 40% but below 50%, aligning with expectations.

Under review as a conference paper at ICLR 2025

Knowledge Mastery ~ RR®® Knowledge Transfer %47 Debugging Synatx 2% Synthesizbility

& & 8

Pass Rate (%)

AP) Y
S_xe* ‘rx\“e‘ e“,(m%
GNP N

G

“;“"‘\ e o “\“‘—\)

N A AL A et
G@““Q“ @w’eﬁ_a\\ @x‘b@“&\\ eﬂv,w.a\\ N

Geﬂ“ “5\‘»“'“‘ v\“ﬁ’“—“‘ ﬁvﬁﬁ' G@ﬂ“

Figure 6: GPT-4-turbo Tests

- -
Knowledge Mastery @ Knowledge Transfer %47 Debugging Synatx @ Synthesizbility

Pass Rate (%)
s 28 2

A e
AT R
GNP

AD
e
o

oo Ay A3
C‘@ﬁv,ﬁ s B¥ G@ﬁ“’@“ -2 ﬂ.xex

Y
N ﬂ‘,,e

o

Ve o 2 AY
g@“‘“\ ﬁ-‘“ A\ @ﬁ““ b 8 e“,\u&

GEN G G@wﬁﬂ‘ G‘;)ﬁ“ o™

Figure 7: QWEN-vl-max Tests

o Knowledge Mastery R Knowledge Transfer /7, D;hugging Synatx % Synlh:sizbi]it‘y
é 100 H i
8 80
é 60
% 40
S 20

0

Figure 8: QWEN-vl-plus Tests

o 120 Knowledge Mastery ~ RRR® Knowledge Transfer /7 D;hugging Synatx @S Synlhcsxzbihl‘y
S H ;
3 |
g« |
@ w 1
£ |

X i . 7=

o a2 \\n M et PeV pevy pe “,m B v A
o N Nt N \38 e N ™ 23 AT NAS NA®
GV va?ﬁ GE“Y’ P GEN gﬂgﬁ @Y\“E ESQ.E GV \?N“"E E\“’e o @ﬁ“ﬁ
Figure 9: GLM-4V-plus Tests

0 ugging Synatx gl Knowledge Mastery ~ #95 Debugging Synatx. _120 Knowledge Mastery #75 Debugging Synatx
S] o0 s don w Symbesibilty T 1 o0 Kot Tt S cion 8 Sy T 1] 5 Kot Tt cion 8 iy
5] > =
& @ -4 &
P P P
Z § g
& » - [

ol

AL AN
AoV Aex
@,ﬁ“ﬁﬂ @,ﬂ 2 eV

A3
G@“‘“’“ @ﬂ“ ‘:‘“,wx

hY 3 2 hY
B¢ ﬂ"e “_xe* A3 ﬂ.xz?’“’ “_xe*"“ ¥ V‘"e ‘:Xx_xe* - ﬂ_\zﬁ“‘ E“_mk"\’

@V\"":‘ G@,ﬂ“ eﬂ ¥ N \:,v\"’ G@V‘“ \:,?X

Figure 10: GLM-4 Tests Figure 11: GPT-3.5-turbo Tests Figure 12: Llama3 Tests

Effective Difficulty Tiering: Difficulty levels and PRs have a correlation. Using GPT-40 (shown
in Figure] detailed value in Section[A] Table[I0) as a example, the consistent 5-10% difference in
PRs across these levels.

Correlation Between Tests: The data indicates a correlation between Knowledge Mastery and
coding abilities. Models that performed well in Knowledge Mastery, such as GPT-40 and Claude
3.5, also showed high scores in Debugging and Functional Correctness. This suggests that a solid
understanding of fundamental concepts positively influences practical coding skills.

Under review as a conference paper at ICLR 2025

GP-turbo B

- N -
- -
e

QWEN-vLplus

GLM-4V-plus

arrrane I = P
-- * o Power
P

GPTdo Q0K Area
401 @27 Hold Timing
S Setup Timing

0 Lo

Improvement((%)
|

GPT-40 Claude3.5

Figure 13: PR of All Tests Figure 14: PR of Text Tests Figure 15: Example of QoR

Synthesizability vs. Syntax Discrepancy: Synthesizability and syntax correctness has a high in-
consistency (91.76%), as Figure [13] and [14] shown. This discrepancy arises from the inherent dif-
ferences in requirements between simulation and synthesis tools, exacerbated by the presence of
non-IEEE-compliant code in pre-training datasets. This issue highlights an area for future model
improvement.

Debugging Capabilities: Models generally exhibit stronger debugging capabilities compared to
code generation, which may be attributed to the additional context provided in debugging tests.

QoR Analysis for Top Models The QoR result for
GPT-40 and Claude 3.5 is presented in Figure [T3] “
GPT-40 shows stable performance across area and tim- Ot “n. o Ew

ing metrics with improvement need in low-power de-
sign. On the other hand, Claude3.5 demonstrates ag- "™ n M
gressive optimization in power and area but at the cost ppmecrn n
of timing violations. These insights shows the differ- ™"
ent trade-offs by different models. R S

Ablation Experiment of Dynamic Perturbation Fig- Figure 16: Example of DP Influence
ure([I6]takes Llama3 as an example to illustrate the im-

pact of dynamic perturbations from GPT-3.5 and GPT-

4. The results demonstrate that the performance fluctuated across different test sets, with an overall
performance decline of approximately 9%.

2930 506

Debugging Fi
Con

5 CONCLUSION

In this paper, we introduce GenBen, a comprehensive benchmark designed to evaluate the capabili-
ties of LLMs in the domain of hardware design. Unlike existing benchmarks that primarily focus on
code generation, GenBen offers a more holistic evaluation by encompassing debugging, optimiza-
tion, and the chip hardening flow. By introducing perturbations and hierarchical task classification,
GenBen provides a diverse range of end-to-end, open-source evaluation modalities. Our goal is
to establish GenBen as a catalyst for advancements in LAD, providing a reliable benchmark for
generative hardware designs tailored to meet real-world silicon manufacturing requirements.

10

Under review as a conference paper at ICLR 2025

REFERENCES

Skywater skyl130 pdk, 2020. URL jhttps://skywater-pdk.readthedocs.io/en/
main/L [Online].

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

ACM-SIGDA. Home, 2024. URL https://www.islad.org.

Ahmed Allam and Mohamed Shalan. Rtl-repo: A benchmark for evaluating 1lms on large-scale rtl
design projects. arXiv preprint arXiv:2405.17378, 2024.

Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, Andrew Waterman, Rimas AviZienis,
John Wawrzynek, and Krste Asanovi¢. Chisel: constructing hardware in a scala embedded lan-
guage. In Proceedings of the 49th Annual Design Automation Conference, pp. 1216-1225, 2012.

Christopher Batten, Nathaniel Pinckney, Mingjie Liu, Haoxing Ren, and Bruce Khailany. Pyhdl-
eval: An llm evaluation framework for hardware design using python-embedded dsls. In
ACM/IEEE International Symposium on Machine Learning for CAD (MLCAD), Sep 2024.

Janick Bergeron. Writing testbenches: functional verification of HDL models. Springer Science &
Business Media, 2012.

Jason Blocklove, Siddharth Garg, Ramesh Karri, and Hammond Pearce. Chip-chat: Challenges and
opportunities in conversational hardware design. In 2023 ACM/IEEE 5th Workshop on Machine
Learning for CAD (MLCAD), pp. 1-6. IEEE, 2023.

Adrian Bulat and Georgios Tzimiropoulos. LASP: Text-to-Text Optimization for Language-Aware
Soft Prompting of Vision & Language Models.

Benton H Calhoun, Yu Cao, Xin Li, Ken Mai, Lawrence T Pileggi, Rob A Rutenbar, and Ken-
neth L Shepard. Digital circuit design challenges and opportunities in the era of nanoscale cmos.
Proceedings of the IEEE, 96(2):343-365, 2008.

Jialun Cao, Meiziniu Li, Ming Wen, and Shing-chi Cheung. A study on Prompt Design, Advantages
and Limitations of ChatGPT for Deep Learning Program Repair. URL http://arxiv.org/
abs/2304.08191.

Tuhin Chakrabarty, Vishakh Padmakumar, He He, and Nanyun Peng. Creative natural language
generation. In Proceedings of the 2023 Conference on Empirical Methods in Natural Language
Processing: Tutorial Abstracts, pp. 34-40, 2023.

Kaiyan Chang, Zhirong Chen, Yunhao Zhou, Wenlong Zhu, Haobo Xu, Cangyuan Li, Mengdi Wang,
Shengwen Liang, Huawei Li, Yinhe Han, et al. Natural language is not enough: Benchmarking
multi-modal generative ai for verilog generation. arXiv preprint arXiv:2407.08473, 2024.

Xiang Chen, Ningyu Zhang, Xin Xie, Shumin Deng, Yunzhi Yao, Chuangqi Tan, Fei Huang, Luo Si,
and Huajun Chen. KnowPrompt: Knowledge-aware Prompt-tuning with Synergistic Optimization
for Relation Extraction. In Proceedings of the ACM Web Conference 2022, pp. 2778-2788. doi:
10.1145/3485447.3511998. URL http://arxiv.org/abs/2104.07650.

James Cherry. Parallax static timing analyzer, 2023. URL https://github.com/
parallaxsw/OpenSTA. [Online].

Philippe Coussy and Adam Morawiec. High-level synthesis, volume 1. Springer, 2010.

Mingkai Deng, Jianyu Wang, Cheng-Ping Hsieh, Yihan Wang, Han Guo, Tianmin Shu, Meng Song,
Eric P. Xing, and Zhiting Hu. RLPrompt: Optimizing Discrete Text Prompts with Reinforcement
Learning. URL http://arxiv.org/abs/2205.12548,

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

11

https://skywater-pdk.readthedocs.io/en/main/
https://skywater-pdk.readthedocs.io/en/main/
https://www.islad.org
http://arxiv.org/abs/2304.08191
http://arxiv.org/abs/2304.08191
http://arxiv.org/abs/2104.07650
https://github.com/parallaxsw/OpenSTA
https://github.com/parallaxsw/OpenSTA
http://arxiv.org/abs/2205.12548

Under review as a conference paper at ICLR 2025

R. Timothy Edwards. Open_pdks pdk installer for open-source tools, 2023. URL http://www.
opencircuitdesign.com/open_pdks/index.html. [Online].

Yonggan Fu, Yongan Zhang, Zhongzhi Yu, Sixu Li, Zhifan Ye, Chaojian Li, Cheng Wan, and
Yingyan Celine Lin. Gptdaigchip: Towards next-generation ai accelerator design automation
via large language models. In 2023 IEEE/ACM International Conference on Computer Aided
Design (ICCAD), pp. 1-9. IEEE, 2023.

Daniel D Gajski, Nikil D Dutt, Allen CH Wu, and Steve YL Lin. High—Level Synthesis: Introduc-
tion to Chip and System Design. Springer Science & Business Media, 2012.

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, and
Haofen Wang. Retrieval-augmented generation for large language models: A survey. arXiv
preprint arXiv:2312.10997, 2023.

Ahmed Ghazy and Mohamed Shalan. Openlane: The open-source digital asic implementation flow.
In Proc. Workshop on Open-Source EDA Technol.(WOSET), 2020.

John L Hennessy and David A Patterson. Computer architecture: a quantitative approach. Morgan
kaufmann, 2017.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, An-
drea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for nlp.
In International Conference on Machine Learning, pp. 2790-2799. PMLR, 2019.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Yingbing Huang, Lily Jiaxin Wan, Hanchen Ye, Manvi Jha, Jinghua Wang, Yuhong Li, Xiaofan
Zhang, and Deming Chen. New solutions on Ilm acceleration, optimization, and application,
2024. URL https://arxiv.org/abs/2406.10903!

ICCAD-Committee. LLM-Aided Design Panel, 2023. URL https://2023.1iccad.com/
llm-aided-design—-panel.

Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang, Ruiqi Zhong, Luke Zettlemoyer, Wen-tau
Yih, Daniel Fried, Sida Wang, and Tao Yu. Ds-1000: a natural and reliable benchmark for data
science code generation. In Proceedings of the 40th International Conference on Machine Learn-
ing, ICML’23. JMLR.org, 2023.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Kiittler, Mike Lewis, Wen-tau Yih, Tim Rocktéschel, et al. Retrieval-augmented genera-
tion for knowledge-intensive nlp tasks. Advances in Neural Information Processing Systems, 33:
9459-9474, 2020.

Mingjie Liu, Nathaniel Pinckney, Brucek Khailany, and Haoxing Ren. Verilogeval: Evaluating large
language models for verilog code generation. In 2023 IEEE/ACM International Conference on
Computer Aided Design (ICCAD), pp. 1-8. IEEE, 2023.

Peng Liu, Lemei Zhang, and Jon Atle Gulla. Pre-train, Prompt and Recommendation: A Compre-
hensive Survey of Language Modelling Paradigm Adaptations in Recommender Systems, a. URL
http://arxiv.org/abs/2302.03735.

Shang Liu, Yao Lu, Wenji Fang, Mengming Li, and Zhiyao Xie. Openllm-rtl: Open dataset and
benchmark for llm-aided design rtl generation. 2024a.

Tianyang Liu, Qi Tian, Jianmin Ye, LikTung Fu, Shengchu Su, Junyan Li, Gwok-Waa Wan, Lay-
ton Zhang, Sam-Zaak Wong, Xi Wang, et al. Chatchisel: Enabling agile hardware design with
large language models. In 2024 2nd International Symposium of Electronics Design Automation
(ISEDA), pp. 710-716. IEEE, 2024b.

12

http://www.opencircuitdesign.com/open_pdks/index.html
http://www.opencircuitdesign.com/open_pdks/index.html
https://arxiv.org/abs/2406.10903
https://2023.iccad.com/llm-aided-design-panel
https://2023.iccad.com/llm-aided-design-panel
http://arxiv.org/abs/2302.03735

Under review as a conference paper at ICLR 2025

Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Tam, Zhengxiao Du, Zhilin Yang, and Jie Tang. P-Tuning:
Prompt Tuning Can Be Comparable to Fine-tuning Across Scales and Tasks. In Proceedings of the
60th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers),
pp. 61-68. Association for Computational Linguistics, b. doi: 10.18653/v1/2022.acl-short.8.
URL https://aclanthology.org/2022.acl-short.8l

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Nouamane
Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, et al. Starcoder 2 and the stack v2: The
next generation. arXiv preprint arXiv:2402.19173, 2024.

Pan Lu, Hritik Bansal, Tony Xia, Jiacheng Liu, Chunyuan Li, Hannaneh Hajishirzi, Hao Cheng, Kai-
Wei Chang, Michel Galley, and Jianfeng Gao. Mathvista: Evaluating mathematical reasoning of
foundation models in visual contexts. arXiv preprint arXiv:2310.02255, 2023.

Yao Lu, Shang Liu, Qijun Zhang, and Zhiyao Xie. Rtllm: An open-source benchmark for design rtl
generation with large language model. In 2024 29th Asia and South Pacific Design Automation
Conference (ASP-DAC), pp. 722-727. IEEE, 2024.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo Geng, Wenxiang Hu, Chongyang Tao, Jing
Ma, Qingwei Lin, and Daxin Jiang. Wizardcoder: Empowering code large language models with
evol-instruct. arXiv preprint arXiv:2306.08568, 2023.

Dewmini Sudara Marakkalage, Eleonora Testa, Walter Lau Neto, Alan Mishchenko, Giovanni
De Micheli, and Luca Amaru. Scalable sequential optimization under observability don’t cares.
In 2024 Design, Automation & Test in Europe Conference & Exhibition (DATE), pp. 1-6. IEEE,
2024.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese,
and Caiming Xiong. Codegen: An open large language model for code with multi-turn program
synthesis. arXiv preprint arXiv:2203.13474, 2022.

OpenAl. Gpt-4 technical report. Technical report, OpenAl, 2023.

Jan M Rabaey, Anantha Chandrakasan, and Borivoje Nikolic. Digital integrated circuits, volume 2.
Prentice hall Englewood Cliffs, 2002.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, et al. Code llama: Open foundation models for
code. arXiv preprint arXiv:2308.12950, 2023.

Anthropic Team. Claude2. https://www.anthropic.com/index/claude-2, 2023.

Shailja Thakur, Baleegh Ahmad, Zhenxing Fan, Hammond Pearce, Benjamin Tan, Ramesh Karri,
Brendan Dolan-Gavitt, and Siddharth Garg. Benchmarking large language models for automated
verilog rtl code generation. In 2023 Design, Automation & Test in Europe Conference & Exhibi-
tion (DATE), pp. 1-6. IEEE, 2023a.

Shailja Thakur, Baleegh Ahmad, Hammond Pearce, Benjamin Tan, Brendan Dolan-Gavitt, Ramesh
Karri, and Siddharth Garg. Verigen: A large language model for verilog code generation. arXiv
preprint arXiv:2308.00708, 2023b.

Shailja Thakur, Jason Blocklove, Hammond Pearce, Benjamin Tan, Siddharth Garg, and
Ramesh Karri. Autochip: Automating hdl generation using llm feedback. arXiv preprint
arXiv:2311.04887, 2023c.

Donald E Thomas, Elizabeth D Lagnese, Robert A Walker, Jayanth V Rajan, Robert L Blackburn,
and John A Nestor. Algorithmic and Register-Transfer Level Synthesis: The System Architect’s
Workbench: The System Architect’s Workbench, volume 85. Springer Science & Business Media,
1989.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023a.

13

https://aclanthology.org/2022.acl-short.8
https://www.anthropic.com/index/claude-2

Under review as a conference paper at ICLR 2025

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023b.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023c.

Ashish Vaswani. Attention is all you need. arXiv preprint arXiv:1706.03762, 2017.

Prashanth Vijayaraghavan, Luyao Shi, Stefano Ambrogio, Charles Mackin, Apoorva Nitsure, David
Beymer, and Ehsan Degan. Vhdl-eval: A framework for evaluating large language models in vhdl
code generation. arXiv preprint arXiv:2406.04379, 2024.

Xi Wang, Gwok-Waa Wan, Sam-Zaak Wong, Layton Zhang, Tianyang Liu, Qi Tian, and Jianmin
Ye. Chatcpu: An agile cpu design & verification platform with llm. In 6/st ACM/IEEE Design
Automation Conference (DAC’24), pp. 6, 2024.

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du,
Andrew M Dai, and Quoc V Le. Finetuned language models are zero-shot learners. arXiv preprint
arXiv:2109.01652, 2021.

S. Williams. The icarus verilog compilation system, 2023. URL https://github.com/
steveicarus/iverilog. [Online].

Genta Indra Winata, Andrea Madotto, Zhaojiang Lin, Rosanne Liu, Jason Yosinski, and Pascale
Fung. Language models are few-shot multilingual learners. arXiv preprint arXiv:2109.07684,
2021.

Clifford Wolf, Johann Glaser, and Johannes Kepler. Yosys-a free verilog synthesis suite. In Pro-
ceedings of the 21st Austrian Workshop on Microelectronics (Austrochip), volume 97, 2013.

Haoyuan Wu, Zhuolun He, Xinyun Zhang, Xufeng Yao, Su Zheng, Haisheng Zheng, and Bei Yu.
Chateda: A large language model powered autonomous agent for eda. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 2024.

Cunxi Yu, Houping Xiao, and Giovanni De Micheli. Developing synthesis flows without human
knowledge. In Proceedings of the 55th Annual Design Automation Conference, pp. 1-6, 2018.

Farzaneh Rabiei Kashanaki Mark Zakharov and Jose Renau. Hdleval benchmarking 1lms for multi-
ple hdls.

Yuanhan Zhang, Kaiyang Zhou, and Ziwei Liu. Neural Prompt Search. URL http://arxiv.
org/abs/2206.04673.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min,
Beichen Zhang, Junjie Zhang, Zican Dong, et al. A survey of large language models. arXiv
preprint arXiv:2303.18223, 2023.

Tianyu Zheng, Ge Zhang, Tianhao Shen, Xueling Liu, Bill Yuchen Lin, Jie Fu, Wenhu Chen, and
Xiang Yue. Opencodeinterpreter: Integrating code generation with execution and refinement.
arXiv preprint arXiv:2402.14658, 2024.

Li Zhong and Zilong Wang. A study on robustness and reliability of large language model code
generation, 2023.

14

https://github.com/steveicarus/iverilog
https://github.com/steveicarus/iverilog
http://arxiv.org/abs/2206.04673
http://arxiv.org/abs/2206.04673

Under review as a conference paper at ICLR 2025

A APPENDIX

Appendices Table of Contents

A.1T Concept of LLM-Aided Design|. 15
IA.2 Quality of Results in Hardware Design|. 15
A.2.1 Synthesizability]. oo 15
A.2.2 Power, Performance, and Area(PPA) 15
A.2.3 Total Negative Slack (TNS) and Worst Negative Slack (WNS)| . . . 16
A2.4 Setupand HoldTimes| 16
[A.3 The Role of Open-Source EDA Tools in Enhancing Scientific Reproducibility] 16
A.3.1 Implementation of Open-Source EDA Tools in GenBen|. 17
A.3.2 Choice of PDK for QoR Evaluation| 17
A4 Sourcesof OurDatasefl 17
[A.5 Generative Benchmark Concept and Principles| 18
[A.5.1 Test Generation Algorithm|, . 19
A.6 ExperimentalResults| 20
IA.7_Tutorial: Evaluating LLM Performance with GenBen| 23
A.7.1 Step-by-Step Instructions|. 23
[A7.2__Refer to the README for Detailed Instructions|. 23
[A.8 Open Source Declaration| 23

A.1 CONCEPT OF LLM-AIDED DESIGN

LLM-Aided Design (LAD) is defined as the use of Large Language Models (LLMs) as a methodol-
ogy to assist in designing circuits, software, and computing systems with improved quality, produc-
tivity, robustness, and cost-effectiveness. It focuses on discussing results that leverage the significant
advancements and innovations captured by generative Al and LLM technology to offer new methods
and solutions for design automation targeting various applications. This concept was first introduced
by IEEE ICCAD 2023.

A.2 QUALITY OF RESULTS IN HARDWARE DESIGN

In hardware design, Quality of Results (QoR) metrics are crucial for evaluating the effectiveness
and efficiency of a design. These metrics encompass various aspects that determine the practicality
and performance of the generated hardware. Below, we provide detailed explanations of key QoR
metrics and their significance:

A.2.1 SYNTHESIZABILITY

Synthesizability refers to the ability of a hardware design to be translated from a high-level descrip-
tion into a gate-level netlist that can be fabricated. This process, known as synthesis, is fundamental
to the hardware design flow. A design that is not synthesizable cannot be implemented in silicon,
rendering it impractical for real-world applications. Ensuring synthesizability is the first step in
verifying that a design can transition from concept to physical implementation. It is important to
note that a design passing simulation does not guarantee it will pass synthesis, often due to syntax
or structural issues that, while acceptable in simulation, do not meet the stringent requirements of
synthesis tools.

A.2.2 POWER, PERFORMANCE, AND AREA (PPA)

Power, Performance, and Area (PPA) is a comprehensive set of metrics used to evaluate the effi-
ciency of a hardware design:

* Power: Measures the amount of electrical power consumed by the hardware design. Lower
power consumption is critical for battery-operated devices and energy-efficient systems.

15

Under review as a conference paper at ICLR 2025

* Performance: Often evaluated in terms of maximum operating frequency or throughput,
performance metrics indicate how fast the hardware can operate. Higher performance is
essential for applications requiring rapid data processing and high-speed computations.

* Area: Refers to the silicon area occupied by the hardware design. Minimizing area is im-
portant for reducing manufacturing costs and enabling the integration of more functionality
within a given chip size.

Balancing these three aspects—power, performance, and area—is a key challenge in hardware de-
sign, as improvements in one area often lead to trade-offs in the others.

In our benchmark design, to ensure consistency and efficiency in runtime and EDA script stan-
dardization, we have unified the primary performance metric to frequency. Consequently, perfor-
mance feedback is primarily provided through Total Negative Slack (TNS) and Worst Negative Slack
(WNS).

A.2.3 TOTAL NEGATIVE SLACK (TNS) AND WORST NEGATIVE SLACK (WNS)

Total Negative Slack (TNS) and Worst Negative Slack (WNS) are critical timing metrics used to
evaluate the timing performance of a hardware design:

» Total Negative Slack (TNS): The sum of all negative timing slacks in a design. Nega-
tive slack indicates that a timing path does not meet its required timing constraints. TNS
provides an aggregate measure of timing violations across the entire design.

* Worst Negative Slack (WNS): Represents the most severe timing violation in the design.
It is the largest single negative slack value and highlights the worst-performing timing path.

Both TNS and WNS are essential for identifying and addressing timing issues, ensuring that the
design meets its performance requirements without violations.

A.2.4 SETUP AND HOLD TIMES

Setup and hold times are critical parameters for ensuring reliable operation of sequential circuits:

* Setup Time: The minimum time before the clock edge by which data must be stable to
be correctly latched. Violations in setup time can lead to incorrect data being captured,
affecting the functionality of the design.

* Hold Time: The minimum time after the clock edge during which data must remain sta-
ble to be correctly latched. Violations in hold time can cause data corruption, leading to
unpredictable circuit behavior.

Ensuring that setup and hold times are met is crucial for the stability and reliability of the hardware
design.

In summary, these QoR metrics provide a comprehensive framework for evaluating the practical
viability and performance of hardware designs. They are essential for ensuring that a design not only
meets its functional requirements but also operates efficiently and reliably in real-world applications.
Moreover, addressing the syntactical and structural requirements for synthesis ensures that designs
are theoretically sound and practically implementable in silicon.

A.3 THE ROLE OF OPEN-SOURCE EDA TOOLS IN ENHANCING SCIENTIFIC
REPRODUCIBILITY

Open-source Electronic Design Automation (EDA) tools are key enablers of scientific reproducibil-
ity, providing accessible alternatives to benchmarks that have traditionally relied on commercial
EDA tools such as Design Compiler and Synopsys VCS.

One of the primary advantages of open-source EDA tools is their facilitation of effortless collabora-
tion among researchers and designers. They eliminate the need for complex legal agreements such
as Non-Disclosure Agreements (NDAs), allowing for straightforward sharing of designs, ideas, and

16

Under review as a conference paper at ICLR 2025

D

I I
J json

| — —

[GDS Il StreamOut with ‘

Global Placement with
OpenFlOAD

Detailed Routing with
OpenROAD

Design Rule Checks

Linting with Verilator with Magic

"

[RTL Synthesis with
osys

KLayout

v

GDS XOR with KLayout‘

Design Rule Checks
with KLayout

OpenHOAD with OpenROAD

ey v

O N ‘ N
[SPICE E\;l(tar;(‘::tlon wnh} .gds ‘ Jef
Layout vs. Schematic
To

with Netgen
Manufacturing

Clock Tree Synthesis

Detailed Placement wnh}
J Timing Analysis with

Parasitics Extraction J

Floorplanning with }

Parasitics- based Static
Open ROAD

with OpenROAD OpenSTA

Placement with Global Routing with GDSII Streamout with
OpenROAD OpenROAD Magic

(
Q —_ == e |

Figure 17: OpenLane Flow

materials. This ease of collaboration is particularly beneficial for integrating experts from fields like
computer science, where open-source development is prevalent.

Moreover, open-source EDA tools are invaluable for educational and research purposes. They enable
educators to provide students with practical insights into the design automation process. Students
and researchers can modify the code, test their hypotheses, and gain a comprehensive understanding
of the chip design process.

A.3.1 IMPLEMENTATION OF OPEN-SOURCE EDA ToOOLS IN GENBEN

In our GenBen design process, we exclusively use open-source EDA tools. During the task construc-
tion phase, we rely on Verilator to perform coverage analysis, enhancement, and refinement of the
testbenches. For agile execution during model testing, we use Icarus Verilog due to its faster com-
pilation times, although it lacks comprehensive coverage analysis. Therefore, we employ different
tools at various stages to balance efficiency and thoroughness.

Additionally, to obtain physical implementation information, we use OpenLane, an open-source
RTL-to-GDSII EDA flow, as illustrated in Figure[T7] OpenLane enables us to extract critical data
on synthesizability, area, power, and timing, ensuring that our benchmarks are both practical and
reproducible using widely accessible tools.

A.3.2 CHOICE OF PDK FOR QOR EVALUATION

The Quality of Results (QoR) of a design can vary significantly across different Process Design
Kits (PDKs). To ensure consistency in our evaluations, we have chosen the open-source SkyWater
130nm PDK for QoR testing. This choice provides a standardized reference point for assessing
the practical viability of hardware designs, allowing for fair and comparable results across different
design implementations.

A.4 SOURCES OF OUR DATASET

The dataset for our GenBen benchmark is meticulously curated from a diverse array of sources to
ensure comprehensive coverage of various aspects of hardware design. These sources are catego-
rized into three levels—Level 1 (L1), Level 2 (L2), and Level 3 (L3)—based on the complexity and
depth of the tasks they contribute.

17

Under review as a conference paper at ICLR 2025

Level 1 (L1) sources provide fundamental tasks aimed at assessing basic knowledge and skills in
hardware design. These include materials such as university textbooks, which supply essential the-
oretical and practical questions for understanding core concepts. Basic code examples offer simple
coding tasks to test foundational programming skills, while basic quizzes include multiple-choice
and short-answer questions to evaluate basic knowledge. Additionally, HDLBits provides elemen-
tary hardware description language (HDL) exercises suitable for beginners.

Level 2 (L2) sources present intermediate-level tasks that require a deeper understanding and appli-
cation of hardware design principles. These sources incorporate GitHub projects that provide real-
world coding examples and projects necessitating practical implementation skills. Graduate projects
contribute tasks from advanced coursework, focusing on more complex design and problem-solving
abilities. Question and answer forums such as Stack Overflow and GitHub Q&A include practical
debugging and problem-solving questions commonly encountered by developers, addressing real-
world issues faced by practitioners.

Level 3 (L3) sources deliver advanced tasks that challenge the highest level of expertise in hardware
design. These include silicon-proven repositories, contributing tasks from projects successfully im-
plemented in silicon, ensuring high reliability and complexity. Research textbooks provide advanced
theoretical and practical problems stemming from cutting-edge research in hardware design. Peer-
reviewed publications from ACM and /EEE include tasks based on recent advancements in the field.
Student contests offer challenging problems from hardware design competitions, while studies in
advanced microarchitecture supply tasks involving sophisticated architectural design and optimiza-
tion. Innovative projects introduce problems that push the boundaries of current technology, and
industrial projects provide tasks derived from real-world industrial applications, emphasizing prac-
tical implementation and optimization.

The tasks from these varied sources are further categorized to cover a wide range of skills and
knowledge areas. Tasks focused on knowledge transfer assess the ability to apply learned concepts
to new scenarios, enhancing adaptability in design approaches. Those involving code debugging
require identifying and correcting errors in code, which is critical for developing robust hardware
systems. Knowledge mastery tasks evaluate the depth of understanding of fundamental concepts,
ensuring a solid theoretical foundation. Code generation tasks necessitate the creation of new code
based on given specifications, testing the ability to innovate and implement design requirements
effectively.

These tasks are organized into two main categories for the GenBen benchmark: fext-based tasks
and multimodal tasks. Text-based tasks are purely textual, focusing on theoretical and conceptual
understanding, including problem-solving and analytical reasoning. Multimodal tasks involve mul-
tiple forms of data, such as text and diagrams, to simulate real-world design challenges and provide
a more comprehensive assessment of practical skills.

Figure[20|illustrates the relationship between the data sources and the final dataset. Notably, a signif-
icant portion of silicon-proven designs comes from resources such as/Google FOSS/and OpenCores,

as shown in Figures[T8]and

Git repositories on foss-eda-tools

Name Description

gf180meu-pdk POK for 180nm MCU bulk process t u).

pdiip/gf180mcy fd ip sram SRAM for the GF180MCU provided by GlobalFoundries.

1 fd bd sram SRAM build space for the GF180MCU provided by GlobalFoundries.

1 fd io 10 and periphery cells for the GF180MCU provided by GlobalFoundries,

dllibs/gf180meu fd pr P

ives for GF180MCU provided by GlobalFoundries.

globalfc dllibs/gf180mey fd sc meu7tsvO 7 track standard cells for GF18OMCU provided by GlobalFoundries.

globalfoundries-pdi/ibs/g180mcy fd sC muSSVO 9 track standard cells for GF18OMCU provided by GlobalFoundries.

Figure 18: FOSS Projects of OpenMPW Figure 19: OpenCores

A.5 GENERATIVE BENCHMARK CONCEPT AND PRINCIPLES
The concept of a generative benchmark involves creating evaluation tasks that are not directly stored

in plaintext on platforms like GitHub but are instead implicitly distributed across various datasets.
This approach requires the use of scripts to dynamically extract tasks, arrange options, and ran-

18

https://foss-eda-tools.googlesource.com
https://opencores.org/projects

Under review as a conference paper at ICLR 2025

Knowledge Transfer

GitHub Projects
Graduate Project L2

. Stack Overflow Q&A

Code Debuggin
I citHub Q&A =509

I University Textbook Text
) Basic Code

I Basic Quiz
=== HDLBits Knowledge Master

L1 GenBen

Silicon-proven Repo

I Research Textbook

I ACM/IEEE Paper

[l FPGA-proven Projects = Code Generation

== Student Contest Multimodal
= Microarchitecture

= Innovation
— Industrial Projects

Figure 20: Data Sources of the GenBen Dataset

domize the order of questions each time they are generated. Such a methodology helps mitigate
the interference caused by a model’s pre-training memory, ensuring that assessments are based on
competency rather than memorization.

The principle behind this generative approach is to ensure that each generated task remains con-
sistent for every evaluation, thereby maintaining the objectivity and fairness of the assessments.
Additionally, a control group with only surface-level perturbations is introduced, allowing for si-
multaneous evaluation of both groups and providing insights into the model’s sensitivity to such
variations.

Moreover, GenBen supports researchers in replacing or modifying the evaluation methods and tasks,
as the tests, evaluation framework, and generative scripts are decoupled. This flexibility allows for
the adaptation of the benchmark to different research needs and the incorporation of new evaluation
strategies. Below are the test generation algorithm [I] and the evaluation flow 2] which detail the
processes involved in generating and assessing the benchmark tasks.

A.5.1 TEST GENERATION ALGORITHM

Algorithm 1 Test Generation Algorithm

Require: Test dataset D
Ensure: Generated test set 7 and perturbed test set 7"
1: Initialize test set 7 < ()
2: Initialize perturbed test set 7’ < ()
3: Load test dataset D
4: for each testd € D do
5: Generate task ¢ from d using script
6: Addtasktto T
7: end for
8: for each taskt € T do
9: Apply surface-level perturbation to ¢ to generate ¢’
10: Add perturbed task ¢’ to T~
11: end for

13: return 7 and 7'

19

Under review as a conference paper at ICLR 2025

Table 6: Results of Tested Multimodal Models on GenBen-all

model Knowledge Master | Knowledge Transfer | Debugging | Function Correctness | Synatx Correctness | Synthesizbility
GENBEN-all | gpt-4-turbo 57.00% 56.00% 40.00% 21.20% 100.00% 93.70%
GENBEN-all | gpt-40 69.00% 65.00% 52.20% 34.80% 100.00% 96.90%
GENBEN-all | claude3.5 59.00% 55.00% 55.40% 35.40% 98.60% 90.00%
GENBEN-all | qwen-vl-plus | 45.00% 39.00% 32.00% 16.30% 78.40% 66.40%
GENBEN-all | qwen-vl-max | 59.00% 49.00% 36.50% 26.50% 88.60% 78.90%
GENBEN-all | GLM-4V-plus | 51.00% 55.00% 39.60% 12.50% 71.70% 51.10%

Table 7: Results of All Tested Models on GenBen-Text

model Knowledge Master | Knowledge Transfer | Debugging | Function Correctness | Synatx Correctness | Synthesizbility
GENBEN-text | gpt-4-turbo 65.00% 62.00% 35.60% 21.30% 100.00% 89.80%
GENBEN-text | gpt-40 75.00% 70.00% 40.00% 32.00% 97.50% 96.00%
GENBEN-text | gpt-3.5-turbo | 63.00% 60.00% 37.80% 26.70% 98.10% 93.30%
GENBEN-text | claude3.5 62.00% 58.00% 46.00% 22.10% 98.10% 89.10%
GENBEN-text | qwen-vl-max | 60.00% 50.00% 43.40% 20.20% 84.80% 76.90%
GENBEN-text | qwen-vl-plus | 52.00% 47.00% 43.00% 20.20% 84.90% 76.90%
GENBEN-text | GLM-4V-plus | 57.00% 51.00% 42.20% 7.50% 65.60% 45.30%
GENBEN-text | llama3 68.00% 60.00% 40.00% 6.90% 85.90% 57.30%
GENBEN-text | GLM-4V-plus | 57.00% 48.00% 39.20% 7.50% 65.60% 45.30%

Algorithm 2 Total Evaluation Flow

Require: Test set 7, Perturbed test set 7', Model’s API A, Modality information M
Ensure: Evaluation results and final scores
1: Initialize response set R < ()

2: Initialize perturbed response set R’ < ()
3: Initialize evaluation results £ < ()
4: Initialize final scores S < ()
5: for each task ¢ € 7 do
6: Collect response r from model using .A
7: Add response r to R
8: end for
9: for each perturbed task ¢’ € 7' do
10: Collect response r’ from model using A
11: Add response 7’ to R’
12: end for
13: for each response r € R and ' € R’ do
14: Validate r and 7’ using evaluation suite
15: Simulate r and r’ with Iverilog
16: Generate syntax and functional correctness reports
17: if r and 1’ pass functional tests then
18:
19: Extract synthesizability, area, and power data with Yosys
20: Extract timing-related data with OpenSTA
21: endif
22: Add evaluation results to £
23: end for
24: Analyze evaluation results in £ using report analyzer
25: Generate final scores S based on predefined metrics
26:
27: return S

Perform physical implementation using SkyWater 130nm PDK and OpenLane

A.6 EXPERIMENTAL RESULTS

We categorized the tasks into three groups: GenBen-all, GenBen-mm, and GenBen-text, corre-
sponding to all tasks, multimodal tasks, and text-based tasks, respectively. Additionally, the latter
two categories are further classified into levels L1 to L3.

Table [f] shows the results of tested multimodal models on all tests and Table [7] shows the results of
all models on unimodal tests. Table [§|and [9]respectively present the PPA data of the Claude 3.5 and
GPT-4 models for QoR analysis.

20

Under review as a conference paper at ICLR 2025

Table 8: PPA Info of Claude3.5 on Part of Generated Design

Modal Function Area Power Hold WNS Setup TNS
Correctness Generated Reference Generated Reference Generated Reference Generated Reference
0.4 6.256 3.7536 6.33E-07 5.92E-07 3.8839 3.8395 5.5943 5.6193
0.4 7.5072 5.0048 7.01E-07 6.85E-07 3.9746 3.9153 5.504 5.5586
0.2 6.256 6.256 6.93E-07 6.93E-07 3.9485 3.9485 5.3708 5.3708
1 22.5216 22.5216 1.63E-06 1.63E-06 3.8877 3.8877 5317 5317
0.8 225216 22.5216 1.63E-06 1.63E-06 3.8877 3.8877 5317 5317
0.2 73.8208 73.8208 1.35E-05 1.35E-05 0.1141 0.1141 6.9101 6.9101
0.8 5.0048 5.0048 6.85E-07 6.85E-07 3.9153 3.9153 5.5586 5.5586
0.8 40.0384 40.0384 5.48E-06 5.48E-06 3.9153 3.9153 5.5586 5.5586
1 51.2992 38.7872 3.60E-06 3.60E-06 3.9409 3.89 5.2009 5.2115
0.8 12,512 12,512 1.39E-06 1.39E-06 3.9485 3.9485 5.3675 5.3675
0.4 185.1776 187.68 1.62E-05 2.21E-05 0.335 0.4291 7.2083 7.2307

Text 1 32.5312 32.5312 2.08E-06 2.08E-06 3.9378 3.9378 5.2313 5.2313
1 815.7824 815.7824 8.83E-05 8.83E-05 1.469 1.469 5.3261 5.3261
1 73.8208 40.0384 1.35E-05 5.48E-06 0.1141 3.9153 9.3203 5.5586
0.4 43.792 58.8064 2.67E-06 3.70E-06 3.9446 3.9487 5.2209 5.2227
0.8 240.2304 30.0288 2.07E-06 2.68E-07 3.9395 3.8045 4.6738 3.8393
0.4 78.8256 90.0864 1.35E-05 1.38E-05 0.1315 0.1315 7.2451 7.2451
0.4 3209.328 1555.2416 2.71E-04 1.47E-04 0.2087 2.29E-01 6.2969 7.0092
0.8 28.7776 28.7776 1.32E-06 1.32E-06 4.0661 4.0661 5.1155 5.1155
1 36.2848 73.8208 2.71E-06 1.35E-05 3.9378 0.1141 5.2313 6.9997
1 15.0144 22.5216 1.11E-06 1.35E-05 4.051 4.0503 5.2854 5.1241
1 96.3424 113.8592 1.44E-05 1.59E-05 0.2616 0.3507 7.2457 7.2395
1 1051.008 1051.008 3.78E-05 3.78E-05 4.1483 4.1483 3.2117 3.2117
0.8 40.0384 40.0384 3.88E-05 3.88E-05 3.9153 3.9153 5.5586 5.5586
0.4 5.0048 5.0048 6.85E-07 6.85E-07 3.9153 3.9153 5.5586 5.5586
1 20.0192 20.0192 2.74E-06 2.74E-06 3.9153 3.9153 5.5492 5.5492
0.4 1886.8096 1886.8096 1.41E-04 1.41E-04 0.2326 0.2326 6.7635 6.7635
0.6 6.256 6.256 6.35E-07 6.35E-07 3.8426 3.8426 5.4372 5.4372

Multimodal 0.6 6.256 8.7584 6.93E-07 7.38E-07 3.9485 3.9895 5.3708 5.452
1 36.2848 36.2848 7.16E-06 7.16E-06 0.3785 0.3785 7.2871 7.2871
1 26.2752 26.2752 4.85E-06 4.85E-06 1.4197 1.4197 7.2451 7.2451
1 60.0576 85.0816 9.36E-06 2.02E-05 0.1315 0.2648 7.2451 7.2284
1 120.1152 120.1152 5.19E-06 5.19E-06 3.9058 3.9058 4.7301 4.7301
1 63.8112 121.3664 9.47E-06 1.59E-05 0.2152 0.2224 7.0874 7.2451

Table 9: PPA Info of GPT4 on Part of Generated Design

Modal Function Area Power Hold WNS Setup TNS
Correctness Generated Reference Generated Reference Generated Reference Generated Reference
0.6 6.256 3.7536 6.33E-07 5.92E-07 3.8839 3.8395 5.5943 5.6193
1 7.5072 5.0048 7.01E-07 6.85E-07 3.9746 3.9153 5.504 5.5586
0.2 6.256 6.256 6.93E-07 6.93E-07 3.9485 3.9485 5.3708 5.3708
0.8 22.5216 22.5216 1.63E-06 1.63E-06 3.8877 3.8877 5317 5317
0.2 225216 22.5216 1.63E-06 1.63E-06 3.8877 3.8877 5317 5317
0.8 5.0048 5.0048 6.85E-07 6.85E-07 3.9153 3.9153 5.5586 5.5586
0.6 40.0384 40.0384 5.48E-06 5.48E-06 3.9153 3.9153 5.5586 5.5586
1 51.2992 38.7872 3.60E-06 3.60E-06 3.9409 3.89 5.2009 52115
0.8 12.512 12.512 1.39E-06 1.39E-06 3.9485 3.9485 5.3675 5.3675
0.4 171.4144 187.68 1.62E-05 2.21E-05 0.4056 0.4291 7.2206 7.2307
1 32.5312 32.5312 2.08E-06 2.08E-06 3.9378 3.9378 5.2313 5.2313

Text 1 815.7824 815.7824 8.83E-05 8.83E-05 1.469 1.469 5.3261 5.3261
1 40.0384 40.0384 5.48E-06 5.48E-06 3.9153 3.9153 5.5586 5.5586
0.4 53.8016 58.8064 3.68E-06 3.70E-06 3.9412 3.9487 5.2008 5.2227
0.8 30.0288 30.0288 2.68E-07 2.68E-07 3.8045 3.8045 3.8393 3.8393
0.4 21550.6688 22096.192 3.79E-03 4.61E-03 0.2104 0.2104 3.8231 3.7868
0.8 1068.5248 1555.2416 1.34E-04 1.47E-04 0.2395 0.229 6.9484 7.0092
0.6 17.5168 22.5216 1.32E-06 1.32E-06 3.8788 4.0503 5.3341 5.1241
1 122.6176 122.6176 1.30E-05 1.30E-05 1.4344 1.4344 7.2451 7.2451
1 96.3424 113.8592 1.44E-05 1.59E-05 0.2616 0.3507 7.2451 7.2395
0.8 11.2608 11.2608 1.03E-06 1.03E-06 4.051 4.051 5.2878 5.2878
1 1051.008 1051.008 3.78E-05 3.78E-05 4.1483 4.1483 32117 32117
0.8 210.2016 40.0384 3.88E-05 3.88E-05 1.469 3.9153 7.2451 5.5586
1 5.0048 5.0048 6.85E-07 6.85E-07 3.9153 3.9153 5.5586 5.5586
1 20.0192 20.0192 2.74E-06 2.74E-06 3.9153 3.9153 5.5492 5.5492
1 36.2848 36.2848 7.16E-06 7.16E-06 0.3785 0.3785 7.2871 7.2871

Multimodal 1 26.2752 26.2752 4.85E-06 4.85E-06 1.4197 1.4197 7.2451 7.2451
1 60.0576 85.0816 9.36E-06 2.02E-05 0.1315 0.2648 7.2451 7.2284
1 91.3376 120.1152 5.29E-06 5.19E-06 3.8815 3.9058 4.5263 4.7301
0.6 85.0816 121.3664 1.38E-05 1.59E-05 0.2737 0.2224 7.0185 7.2451

21

Under review as a conference paper at ICLR 2025

Table 10: Results of Tested Models.

model Knowledge Mastery | Knowledge Transfer | Debugging | Function | Synatx Synthesizbility
GenBen-all gpt-4-turbo 57.00% 62.00% 40.00% 21.20% | 100.00% | 93.70%
GenBen-allmodal-L1 | gpt-4-turbo 64.00% 70.00% 37.70% 30.90% 100.00% | 90.70%
GenBen-allmodal-L2 | gpt-4-turbo 56.00% 65.00% 33.30% 2420% | 99.40% | 96.40%
GenBen-allmodal-L3 | gpt-4-turbo 52.00% 52.00% 21.10% 9.10% 98.90% | 92.40%
GenBen-mm gpt-4-turbo 27.00% 67.00% 63.30% 16.70% 100.00% | 96.50%
GenBen-mm-L1 gpt-4-turbo 0.00% 67.00% 55.00% 24.30% | 100.00% | 95.00%
GenBen-mm-L2 gpt-4-turbo 40.00% 100.00% 50.00% 20.10% | 99.40% | 97.50%
GenBen-mm-L3 gpt-4-turbo 40.00% 33.00% 10.00% 8.20% 99.40% | 97.50%
GenBen-text gpt-4-turbo 65.00% 62.00% 35.60% 21.30% | 100.00% | 89.80%
GenBen-text-L1 gpt-4-turbo 80.00% 70.00% 33.30% 20.90% | 100.00% | 83.20%
GenBen-text-L2 gpt-4-turbo 60.00% 60.00% 30.00% 23.90% | 100.00% | 95.60%
GenBen-text-L3 gpt-4-turbo 55.00% 55.00% 26.60% 16.50% | 100.00% | 82.80%
GenBen-all gpt-4o0 69.00% 71.00% 52.20% 34.80% | 100.00% | 96.90%
GenBen-allmodal-L1 | gpt-4o 72.00% 83.00% 43.20% 38.60% 100.00% | 94.60%
GenBen-allmodal-L2 | gpt-40 64.00% 74.00% 38.40% 32.60% | 100.00% | 98.80%
GenBen-allmodal-L3 | gpt-40 72.00% 57.00% 34.20% 29.50% | 100.00% | 99.40%
GenBen-mm gpt-40 47.00% 78.00% 71.70% 37.50% 100.00% | 100.00%
GenBen-mm-L1 gpt-40 40.00% 67.00% 80.00% 37.50% | 100.00% | 95.00%
GenBen-mm-L2 gpt-40 60.00% 100.00% 70.00% 32.50% 100.00% | 97.50%
GenBen-mm-L3 gpt-4o 40.00% 67.00% 35.00% 28.50% | 100.00% | 97.50%
GenBen-text gpt-40 75.00% 70.00% 40.00% 32.00% | 97.50% | 96.00%
GenBen-text-L1 gpt-40 80.00% 85.00% 33.30% 34.70% | 95.00% | 95.00%
GenBen-text-L2 gpt-4o0 65.00% 70.00% 30.00% 30.50% | 97.50% | 97.50%
GenBen-text-L3 gpt-40 80.00% 55.00% 36.70% 27.50% | 100.00% | 97.50%
GenBen-text gpt-3.5-turbo | 63.00% 60.00% 37.80% 26.70% | 98.10% | 93.30%
GenBen-text-L1 gpt-3.5-turbo | 65.00% 50.00% 46.70% 29.00% | 92.00% | 72.00%
GenBen-text-L2 gpt-3.5-turbo | 65.00% 60.00% 26.70% 24.00% | 100.00% | 96.80%
GenBen-text-L3 gpt-3.5-turbo | 60.00% 70.00% 24.70% 19.00% | 99.20% | 87.20%
GenBen-all claude3.5 59.00% 61.00% 55.40% 35.40% | 98.60% | 90.00%
GenBen-allmodal-L1 | claude3.5 64.00% 70.00% 53.70% 43.30% | 97.00% | 86.70%
GenBen-allmodal-L2 | claude3.5 56.00% 65.00% 48.90% 37.10% | 100.00% | 100.00%
GenBen-allmodal-L3 | claude3.5 56.00% 48.00% 33.70% 28.50% | 98.80% | 87.30%
GenBen-mm claude3.5 47.00% 44.00% 55.00% 39.20% | 100.00% | 92.50%
GenBen-mm-L1 claude3.5 20.00% 67.00% 55.00% 45.00% | 100.00% | 90.00%
GenBen-mm-L2 claude3.5 60.00% 67.00% 45.00% 35.00% | 100.00% | 100.00%
GenBen-mm-L3 claude3.5 60.00% 0.00% 35.00% 37.50% | 100.00% | 87.50%
GenBen-text claude3.5 62.00% 63.00% 55.60% 22.10% | 98.10% | 89.10%
GenBen-text-L1 claude3.5 75.00% 70.00% 53.30% 21.60% | 96.00% | 80.80%
GenBen-text-L2 claude3.5 55.00% 65.00% 50.00% 19.20% | 100.00% | 99.20%
GenBen-text-L3 claude3.5 55.00% 55.00% 33.30% 25.60% | 98.40% | 87.20%
GenBen-text llama3 68.00% 70.00% 40.00% 6.90% 85.90% | 57.30%
GenBen-text-L1 llama3 75.00% 75.00% 53.30% 6.10% 78.40% | 56.00%
GenBen-text-L2 llama3 70.00% 70.00% 43.30% 6.40% 89.60% | 58.40%
GenBen-text-L3 llama3 60.00% 65.00% 6.67% 7.20% 89.60% | 57.40%
GenBen-all gwen-vl-max | 59.00% 55.00% 36.50% 26.50% | 88.60% | 78.90%
GenBen-allmodal-L1 | qwen-vl-max | 72.00% 74.00% 43.20% 29.90% | 84.20% | 78.20%
GenBen-allmodal-L2 | qwen-vl-max | 52.00% 57.00% 40.70% 26.50% | 95.20% | 87.30%
GenBen-allmodal-L3 | qwen-vl-max | 52.00% 35.00% 23.20% 22.20% | 86.20% | 71.30%
GenBen-mm qwen-vl-max | 53.00% 89.00% 55.00% 49.30% 100.00% | 91.70%
GenBen-mm-L1 gwen-vl-max | 60.00% 100.00% 55.00% 62.50% | 100.00% | 100.00%
GenBen-mm-L2 gwen-vl-max | 40.00% 100.00% 45.00% 51.20% 100.00% | 100.00%
GenBen-mm-L3 qwen-vl-max | 60.00% 67.00% 35.00% 25.00% 100.00% | 87.50%
GenBen-text qwen-vl-max | 60.00% 50.00% 44.40% 20.20% | 84.80% | 76.90%
GenBen-text-L1 gqwen-vl-max | 75.00% 70.00% 40.00% 22.80% | 7920% | 75.20%
GenBen-text-L2 qwen-vl-max | 55.00% 50.00% 43.00% 22.40% | 93.60% 86.40%
GenBen-text-L3 gwen-vl-max | 50.00% 30.00% 20.00% 21.30% | 81.90% | 69.30%
GenBen-all qwen-vl-plus | 45.00% 46.00% 32.60% 16.30% | 78.40% | 66.40%
GenBen-allmodal-L1 | qwen-vl-plus | 52.00% 52.00% 32.60% 20.00% | 78.80% | 65.50%
GenBen-allmodal-L2 | qwen-vl-plus | 40.00% 43.00% 27.90% 16.00% | 85.50% | 74.50%
GenBen-allmodal-L3 | qwen-vl-plus | 44.00% 43.00% 7.40% 12.00% | 71.30% | 59.30%
GenBen-mm qwen-vl-plus | 20.00% 44.00% 8.30% 4.20% 58.30% | 33.30%
GenBen-mm-L1 qwen-vl-plus | 0.00% 67.00% 5.00% 0.00% 77.50% | 35.00%
GenBen-mm-L2 qwen-vl-plus | 40.00% 33.00% 0.00% 12.50% | 60.00% | 37.50%
GenBen-mm-L3 qwen-vl-plus | 20.00% 33.00% 0.00% 0.00% 37.50% | 27.50%
GenBen-text qwen-vl-plus | 52.00% 47.00% 44.40% 20.20% | 84.90% | 76.90%
GenBen-text-L1 qwen-vl-plus | 65.00% 50.00% 40.00% 22.80% | 7920% | 75.20%
GenBen-text-L2 qwen-vl-plus | 40.00% 45.00% 43.30% 17.40% | 93.60% | 86.40%
GenBen-text-L3 qwen-vl-plus | 50.00% 45.00% 20.00% 16.30% | 81.90% | 69.30%
GenBen-all GLM-4V-plus | 51.00% 62.00% 39.60% 12.50% | 71.70% | 51.10%
GenBen-allmodal-L1 | GLM-4V-plus | 60.00% 65.00% 43.20% 15.50% | 67.30% | 40.00%
GenBen-allmodal-L2 | GLM-4V-plus | 44.00% 74.00% 17.40% 13.20% | 65.10% | 42.80%
GenBen-allmodal-L3 | GLM-4V-plus | 48.00% 48.00% 28.40% 8.00% 83.10% | 70.40%
GenBen-mm GLM-4V-plus | 27.00% 89.00% 30.00% 28.30% | 90.80% | 69.20%
GenBen-mm-L1 GLM-4V-plus | 20.00% 100.00% 30.00% 17.50% | 77.50% | 47.50%
GenBen-mm-L2 GLM-4V-plus | 20.00% 100.00% 25.00% 36.50% | 95.10% | 61.00%
GenBen-mm-L3 GLM-4V-plus | 40.00% 67.00% 35.00% 30.00% | 100.00% | 97.50%
GenBen-text GLM-4V-plus | 57.00% 58.00% 42.20% 7.50% 65.60% | 45.30%
GenBen-text-L1 GLM-4V-plus | 70.00% 60.00% 46.70% 11.00% | 64.00% | 37.60%
GenBen-text-L2 GLM-4V-plus | 50.00% 70.00% 23.30% 5.60% 55.20% | 36.80%
GenBen-text-L3 GLM-4V-plus | 50.00% 45.00% 26.70% 5.00% 77.80% | 61.90%
GenBen-text GLM-4 57.00% 58.00% 42.20% 17.50% | 65.60% | 45.30%
GenBen-text-L1 GLM-4 50.00% 25.00% 33.30% 24.80% | 84.00% | 76.00%
GenBen-text-L2 GLM-4 45.00% 45.00% 43.30% 19.00% | 95.20% | 94.40%
GenBen-text-L3 GLM-4 50.00% 20.00% 6.70% 13.00% | 96.00% | 72.80%

22

Under review as a conference paper at ICLR 2025

The result is shown in Table [I0] This provides a statistical analysis of the tested models, cover-
ing knowledge master, knowledge transfer, debugging, functional correctness, syntax correctness,
and synthesizability. For further QoR analysis, data from the best-performing models, GPT-40 and
Claude 3.5, are included in the main text.

The data in the table demonstrate the effectiveness of task categorization, the necessity of synthe-
sizability metrics, and the correlation between knowledge points and coding abilities, aligning with
the benchmark’s design expectations.

A.7 TUTORIAL: EVALUATING LLM PERFORMANCE WITH GENBEN

You can access the complete GenBen code via the following link: (GenBen Repository. This guide
will walk you through evaluating the performance of Large Language Models (LLMs) in hardware
design and obtaining detailed results using the command line.

A.7.1 STEP-BY-STEP INSTRUCTIONS

Clone the GenBen Repository

First, clone the GenBen repository to your local machine:

git clone https://anonymous.4open.science/r/GENBEN-2812

2> cd GENBEN-2812

Run the Evaluation Script
Using the command line, you can evaluate the performance of LLMs with the following command:

python genben.py —--mode all --model gpt4

This command runs the evaluation with the specified parameters.
Understanding the Command Parameters
* ——mode: This parameter controls the type of tasks input into the LLMs. There are three

available options:

— all: Enables the input of all task types.
— mm: Allows for multi-modal tasks.
— text: Restricts the input to text-based tasks only.

* ——model: This parameter specifies the model of the LLMs. Adjust this parameter accord-
ing to the specific API of the LLMs you are using.

Example:

python genben.py —--mode text —--model gpt4d
This command evaluates the gpt4 model using only text-based tasks.

A.7.2 REFER TO THE README FOR DETAILED INSTRUCTIONS

For more detailed usage instructions, please refer to the README file included in the GenBen
project. The README file contains comprehensive information

A.8 OPEN SOURCE DECLARATION

To foster transparency, collaboration, and innovation, the GenBen benchmark will be released under
the MIT open-source license. This ensures that researchers, educators, and practitioners can freely
access, use, modify, and distribute the benchmark without any restrictions.

Upon the completion of the peer-review process, the full dataset, along with all associated scripts and
documentation, will be made publicly available. We hope to support the global research community
in advancing the field of hardware design and Al-driven EDA.

23

https://anonymous.4open.science/r/GENBEN-2812

	Introduction
	Related Works
	LLM-Aided Design
	Benchmarks for Evaluating LAD
	Problem Formulation

	Design & Philosophy
	Design Strategies of GenBen
	GenBen Framework & Workflow
	Benchmark Dataset Construction
	Testbench Coverage Enhancement
	Debug Test Design

	Data Perturbation
	Static Perturbation
	Dynamic Perturbation

	Multimodal Feature Support
	Evaluation Metric Design

	Experimental Results
	EXPERIMENTAL SETUP
	RESULTS ANALYSIS

	Conclusion
	Appendix
	Concept of LLM-Aided Design
	Quality of Results in Hardware Design
	Synthesizability
	Power, Performance, and Area (PPA)
	Total Negative Slack (TNS) and Worst Negative Slack (WNS)
	Setup and Hold Times

	The Role of Open-Source EDA Tools in Enhancing Scientific Reproducibility
	Implementation of Open-Source EDA Tools in GenBen
	Choice of PDK for QoR Evaluation

	Sources of Our Dataset
	Generative Benchmark Concept and Principles
	Test Generation Algorithm

	Experimental Results
	Tutorial: Evaluating LLM Performance with GenBen
	Step-by-Step Instructions
	Refer to the README for Detailed Instructions

	Open Source Declaration

