
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

GENBEN:A GENARATIVE BENCHMARK FOR LLM-
AIDED DESIGN

Anonymous authors
Paper under double-blind review

ABSTRACT

This paper introduces GenBen, a generative benchmark designed to evaluate the
capabilities of large language models (LLMs) in hardware design. With the rapid
advancement of LLM-aided design (LAD), it has become crucial to assess the ef-
fectiveness of these models in automating hardware design processes. Existing
benchmarks primarily focus on hardware code generation and often neglect crit-
ical aspects such as Quality-of-Result (QoR) metrics, design diversity, modality,
and test set contamination. GenBen is the first open-source, generative benchmark
tailored for LAD that encompasses a range of tasks, from high-level architec-
ture to low-level circuit optimization, and includes diverse, silicon-proven hard-
ware designs. We have also designed a difficulty tiering mechanism to provide
fine-grained insights into enhancements of LLM-aided designs. Through exten-
sive evaluations of several state-of-the-art LLMs using GenBen, we reveal their
strengths and weaknesses in hardware design automation. Our findings are based
on 10,920 experiments and 2,160 hours of evaluation, underscoring the potential
of this work to significantly advance the LAD research community. In addition,
both GenBen employs an end-to-end testing infrastructure to ensure consistent
and reproducible results across different LLMs. The benchmark is available at
https://anonymous.4open.science/r/GENBEN-2812.

1 INTRODUCTION

Modern circuit design is a complex, multidisciplinary endeavor that demands expertise in numer-
ous areas, including architecture design, performance modeling design space exploration, register-
transfer level (RTL) implementations, design verification, physical layout, etc. (Rabaey et al., 2002;
Hennessy & Patterson, 2017; Bergeron, 2012). As hardware complexity increases, so too does the
overhead associated with design and verification processes, subsequently lengthening the design
iteration cycles (Calhoun et al., 2008). Traditional methodologies, which rely heavily on manual
implementations in Verilog, are being improved by Chisel (Thomas et al., 1989; Bachrach et al.,
2012) and High-Level Synthesis (HLS) (Coussy & Morawiec, 2010; Gajski et al., 2012) that aim
to automate RTL code generation by introducing additional abstraction layers. However, even with
these advancements, the verification overhead remains labor-intensive. Consequently, there is a
growing need for advanced agile hardware design approaches to accelerate hardware development
iterations.

With the rise of transformer-based large language models (LLMs) (Zhao et al., 2023; Winata et al.,
2021; Chakrabarty et al., 2023), has opened new avenues for hardware design automation. Models
like GPT-4(OpenAI, 2023), Claude (Team, 2023), and LLaMA (Touvron et al., 2023a;c; Dubey
et al., 2024) have demonstrated promising results not only in natural language processing but also
in programming. Within this new paradigm of LLM-Aided Design (LAD) (ICCAD-Committee,
2023; ACM-SIGDA, 2024; Huang et al., 2024), models such as WizardCoder (Luo et al., 2023) and
Code-LLaMA (Roziere et al., 2023) have demonstrated significant capabilities.

Building on these advanced models, techniques like fine-tuning (Wei et al., 2021) and retrieval-
augmented generation (RAG) (Lewis et al., 2020; Gao et al., 2023) have led to the development
of domain-specific models and operational architectures such as GPT4AIGChip (Fu et al., 2023),
AutoChip (Thakur et al., 2023c), ChatChisel (Liu et al., 2024b), and ChatCPU (Wang et al., 2024).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

These efforts have demonstrated automated hardware design capability using LLMs. This paradigm
shift heralds a new wave of innovation in hardware design automation.

To accurately assess the efficacy of hardware code generations, several benchmarks have been intro-
duced, such as RTLLM (Lu et al., 2024), Verigen (Thakur et al., 2023a), and VerilogEval (Liu et al.,
2023). As these benchmarks are open-source on GitHub and typically consist of static tests, they
can inadvertently be incorporated into training datasets, leading to misleading test results. Moreover,
there is a pressing need for improvements in verification coverage, evaluation metrics, and data di-
versity. For instance, the tests in these benchmarks are relatively simple and unimodal, focusing
primarily on syntax and functional pass rates. This focus neglects critical metrics such as synthesiz-
ability, debugging capabilities, and performance, power, and area (PPA)(Marakkalage et al., 2024)
statistics, which are essential for a comprehensive evaluation.

To address these limitations, we introduce GenBen, an innovative benchmark for systematic eval-
uation of generative AI capabilities in hardware design. GenBen distinguishes itself from existing
works with the following key innovative enhancements:

• Enhanced Verification Coverage: We rigorously employ a standard, end-to-end verifi-
cation flow to maximize the functional coverage of the developed testbench, that maps the
generated stimuli to each function point of the RTL design.

• Diverse and Difficulty Tiering Dataset: GenBen showcases a multi-source, multimodal,
and difficulty-tiered evaluation framework consisting of 300 tests derived from silicon-
proven designs, textbooks, StackOverflow, and other sources. Each test is categorized into
one of three distinct difficulty levels (L1 to L3), allowing for the fine-grained and targeted
enhancement of LLM capabilities in hardware designs.

• Generative Benchmark Against Data Contamination: GenBen is a generative bench-
mark that incorporates both static and dynamic perturbations to distinguish each test from
its source dataset. Additionally, we utilize a script-based generation approach to impede
automated RTL code extraction by GitHub crawlers, effectively minimizing the risk of test
set data leakage.

• Enhanced Evaluation Metrics: GenBen incorporates diverse metrics to comprehensively
evaluate the generated designs, including the basic syntactical/functional correctness, and
Quality-of-Results(QoR)(Yu et al., 2018) metrics like synthesizability, power consumption,
area utilization, timing performance, etc.

• End-to-End Open-Source Workflow: GenBen integrates tools like Icarus Ver-
ilog(Williams, 2023), OpenLane EDA flow(Ghazy & Shalan, 2020), and Open-
PDK(Edwards, 2023) to simplify the reproducibility.

The remainder of this paper is organized as follows: Section 2 presents the motivation behind Gen-
Ben and reviews related work. Section 3 introduces GenBen architecture and workflow. Section 4
evaluates diverse LLMs using GenBen, and Section 5 concludes this paper.

2 RELATED WORKS

To further elucidate the necessity and impact of GenBen in advancing hardware design automation,
it is imperative to examine the current state of LLM-aided design (LAD) and the benchmarks used to
evaluate such systems. The following sections delve into the integration of LLMs in hardware design
and critically analyze the benchmarks for evaluating LAD, thereby establishing the foundational
context for our contributions.

2.1 LLM-AIDED DESIGN

The integration of LLMs based on transformer architectures into hardware design is transforming the
field, leveraging their proven capabilities in natural language processing to manage complex design
tasks efficiently (Vaswani, 2017; Achiam et al., 2023; Touvron et al., 2023b). These models excel
across various tasks by understanding and generating human-like text, which has allowed them to ex-
tend their utility to hardware design (Zheng et al., 2024; Nijkamp et al., 2022; Lozhkov et al., 2024;
Lu et al., 2023). In the domain of hardware design, significant efforts focus on employing LLMs

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Name Conference Tests Perturbation Worst Coverage Score (%) MultiModal Difficulty tiering Metrics

VeriGen (Thakur et al., 2023b) DATE 23 16 modules ✗ – ✗ ✗ Coding
RTLLM (Lu et al., 2024) ASPDAC 23 30 designs Partial 52.40% ✗ ✗ Coding, PPA
RTLLM2.0 (Liu et al., 2024a) ICCAD24 50 designs Partial 52.40% ✗ ✗ Coding, PPA
VerilogEval (Liu et al., 2023) ICCAD 23 HDLBit Partial 44.64% ✗ ✗ Coding
MLLM Bench (Chang et al., 2024) ICCAD 24 Multimodal ✗ – ✓ ✗ Coding
GenBen This work All criteria ✓ 95.17% ✓ ✓ Knowledge, Coding, Debugging, QoR

Table 1: Comparison of Existing Work with Our Work

Figure 1: VerilogEval Test Coverage

to improve the generation processes and functionality of Hardware Description Languages (HDLs).
Some notable projects include ChatEDA, which develops an LLM-based EDA interface that uses
natural language inputs to generate task-specific code (Wu et al., 2024). The GPT4AIGChip project
showcases the potential of LLM-driven design automation by modularizing various hardware func-
tions designed specifically for AI accelerators (Fu et al., 2023). AutoChip combines LLMs with Ver-
ilog compilers to iteratively generate Verilog modules (Thakur et al., 2023c), while Chip-chat inte-
grates conversational LLM technology to design a new 8-bit microprocessor architecture (Blocklove
et al., 2023). Furthermore, ChatCPU explores a comprehensive LLM-Aided Design (LAD) chip de-
sign and introduces a novel verification methodology (Wang et al., 2024), and ChatChisel employs a
specialized HDL to create a complex processor (Liu et al., 2024b). The integration of LLMs in these
methods, leveraging data-based optimization techniques such as Supervised Fine-Tuning (SFT) (Hu
et al., 2021; Liu et al., b; Houlsby et al., 2019; Zhang et al.; Wei et al., 2021), alongside Retrieval-
Augmented Generation (RAG) (Lewis et al., 2020; Gao et al., 2023) and prompt engineering (Cao
et al.; Bulat & Tzimiropoulos; Chen et al.; Deng et al.) It is important to develop comprehensive
benchmarks to mitigate the impact of pre-training and fully assess model performance in this do-
main.

2.2 BENCHMARKS FOR EVALUATING LAD

In this context, establishing benchmarks to assess the capabilities of LLMs under these adjustments
is crucial (Zhong & Wang, 2023; Liu et al., a). However, existing benchmarks are static and open-
source, making them susceptible to unintentional inclusion in pre-training datasets, and there is room
for improvement in testbench coverage, benchmark data diversity, and the scalability of evaluation
metrics. For instance, although Verigen (Thakur et al., 2023a) evaluated 17 designs after fine-tuning
CodeGen (Nijkamp et al., 2022), the assessments mainly targeted simple and small-scale circuit
designs, and these benchmarks are not open source. RTLLM (Lu et al., 2024) and RTLLM2.0 (Liu
et al., 2024a) provided 30-50 testbenches for testing LLMs. These testbenches were evaluated using
VCS to determine verification coverage, with the worst coverage score being approximately 52.40%,
as shown in Table 1. Additionally, the testbenches featured relatively simple and uniform question
types, and some of the mentioned evaluation tools are not open-source. VerilogEval (Liu et al.,
2023) introduced a comprehensive dataset of 156 problems from HDLBits for automated functional
correctness testing of LLM-generated Verilog code. However, these benchmarks are relatively easy,
and models that perform best have high verification pass rates, which do not allow for further stress
testing as models continue to evolve. In addition, the worst verification coverage of VerilogEval is
relatively low at 44.63%. In order to investigate the test coverage limitation, we further analyze the
VerilogEval benchmark. As shown in Figure 1. RTL-Repo (Allam & Shalan, 2024), while assessing
the RTL Repo project, can evaluate LLM accuracy through exact matching (EM) and edit similarity
(ES), yet such metrics do not guarantee that the LLM-generated designs are verifiable or optimally
synthesizable. PyHDL-Eval (Batten et al., 2024) and VHDLEval (Vijayaraghavan et al., 2024) are
domain-specific benchmarks whose data diversity and evaluation metrics could be further enriched.
HDLEval (Zakharov & Renau) initiated a multifunctional benchmark that uses rapid engineering
techniques to overcome syntactical differences across HDLs and adopts formal verification methods
to assess code generated across multiple HDLs. However, there is still room to enhance testbench

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

coverage and the richness of question types. ChipGPTV (Chang et al., 2024) proposed using visual
representations to clarify design intentions and introduced a tiered benchmark to assess MLLM
performance in Verilog generation, but there is still further scope to expand the diversity of code
generation and hardware design knowledge testing metrics. A detailed comparison of existing work
with our work can be found in Table 1.

2.3 PROBLEM FORMULATION

• 1. Verification Coverage Gaps: Existing benchmarks reveal a gap in design complexity
and verification coverage. The developed testbenches often fail to adequately represent
the essential function points of the included RTL designs, a situation that worsens as de-
sign complexity increases. Consequently, the limited verification coverage of generated
hardware can undermine the authenticity of evaluation results.

• 2. Deficient Data Diversity: Current benchmark problems demonstrate insufficient diver-
sity and richness in data sources and modalities. Many benchmarks sourced from educa-
tional materials are overly simplistic and lack silicon validation. Furthermore, these text-
based, unimodal benchmarks often fail to reflect real-world design specifications, which
frequently incorporate visual schematics and timing diagrams.

• 3. Benchmark Test Set Contamination: Since these benchmarks are statically open-
source on GitHub, associated RTL designs and specifications can be automatically captured
by crawlers as part of the RTL language datasets. Evolving LLMs like GPT-4, Claude,
and Llama 3 may inadvertently incorporate this data during pre-training, resulting in data
leakage and contamination of the test set.

• 4. Limited Evaluation Metrics: Existing benchmarks focus primarily on syntax and func-
tional pass rates, neglecting critical QoR metrics such as PPA statistics and synthesizability.
This oversight can lead to an incomplete evaluation of the generated designs.

3 DESIGN & PHILOSOPHY

In this section, we introduce the detailed GenBen design including workflow, dataset collection, task
construction, data perturbation, quality enhancement, and question generation.

3.1 DESIGN STRATEGIES OF GENBEN

Targeting the challenges in Section 2.3, the GenBen design incorporates the following strategies:

• Improved Dataset Diversity: Curated from sources like GitHub, silicon-proven projects,
and StackOverflow, featuring objective (knowledge) and subjective (coding, debugging,
design optimization) tests, categorized into three difficulty levels (Table 2).

• Coverage-Enhanced TestBench: The quaility of testbench are enhanced in line, toggle,
and functional coverage by our experts to ensure fine-grained verification.

• Perturbed Generative Benchmark: Employs perturbation strategies during test genera-
tion and evaluation to defend against memorization.

• Multi-Dimensional Evaluation: Design five dimensions and 12 sub-items featuring QoR
aware mechanism as shown in (Table 5), enabling flexible, custom benchmarks.

3.2 GENBEN FRAMEWORK & WORKFLOW

The GenBen framework has below key components: a pre-processed test set, a task generator, a dy-
namic perturbator, a response collector, an evaluation suite, a report analyzer, and a scoring module.

Evaluation begins with the user providing the API of the model and modality information as shown
in Figure 2.B. GenBen then generates test tests from the test dataset D using scripts, denoted as T
which remain consistent for each evaluation tests. Subsequently, the dynamic perturbation compo-
nent applies surface-level perturbations to T , resulting in a transformed set T ′. These perturbations
introduce slight variations for dynamic evaluation. GenBen collects responses from the model for

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Figure 2: GenBen Pipeline

Table 2: Difficulty Tiering

Categories Description

L1 (Simple) Suitable for initial evaluation, focusing on fundamental concepts and straightforward tests..
L2 (Intermediate) Involving more complex tests and requiring robust problem-solving skills.
L3 (Tough) Tackling real-world design challenges and requiring advanced reasoning & implementation capabilities.

both T and T ′ using a unified prompt template. These responses are then fed into the evaluation
suite, which performs checks and executions to validate the outputs. GenBen simulates the gen-
erated answers and corresponding testbenches using Icarus Verilog (Iverilog) to obtain reports on
syntax and functional correctness. Designs that pass the functional tests undergo further physical
implementation using the open-source SkyWater 130nm Process Design Kit (PDK)(sky, 2020) and
the OpenLane flow. Within OpenLane, the Yosys(Wolf et al., 2013) component extracts data on
synthesizability, area, and power, while OpenSTA(Cherry, 2023) handles timing-related data extrac-
tion. The report analyzer then extracts metric-related information from the evaluation results. This
information is passed to the scoring module, which evaluates the performance of the model based
on predefined metrics and generates the final results.

3.3 BENCHMARK DATASET CONSTRUCTION

Figure 3: Dataset of GenBen

Our dataset construction process is illustrated in Fig-
ure 2.A. We collected hardware-related content from
across the web, which was then meticulously cu-
rated by a team of 10 domain experts. These experts
screened the data for correctness, completeness, and
diversity, with a particular focus on sampling from
silicon-proven projects. For selected code tests, we en-
hanced their testbenches to ensure robust evaluation as
shown in Section 3.3.1; for debug test, we refined them
as shown in Seciton 3.3.2.

The collected and refined content was then filtered
and categorized into three types of tests: knowledge,
design, and debugging. To mitigate the interference
of publicly available pre-training data on the evalu-
ation, we introduced static perturbations. Using a
multi-agent system combined with human feedback as
shown in Figure 2.C, we applied perturbations to the
tests, transforming them into new content at the token
sequence level.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Table 3: Test Categories in GenBen

Test Amount Description
Knowledge Master 75 Focus on evaluating the grasp of the LLM on fundamental hardware concepts and principles.
Knowledge Transfer 69 Apply concepts to new and complex scenarios for generalization.
Design 99 Divide the difficulty based on the number of lines of code, type,and design time.
Debug 57 Distinguish the difficulty of correcting syntax/function/combination errors.
Multimodal 60 Incorporate both textual and visual inputs.

The updated tests were then tiered according to diffi-
culty, as shown in Table 2, and mapped to different cat-
egories of tests: objective tests (assessing basic knowl-
edge understanding and transfer), design tests, debugging tests, and multimodal tests. This mapping
ensures comprehensive end-to-end evaluation of the knowledge and capabilities of the LLM.

Ultimately,the GenBen tests are shown in Table 3 with distribution across difficulty levels.

3.3.1 TESTBENCH COVERAGE ENHANCEMENT

Following the preparation of the GenBen datasets, we proceed to build testbenches for each RTL
design to enhance the verification coverage of generative designs. We rigorously employ a standard,
end-to-end verification flow that ensures a point-to-point mapping between the generated stimuli
and the functional coverage checklist. By employing constraint randomization and coverage-driven
testbench generation methodologies, we significantly improve the verification coverage for each
generated RTL design, thereby maximizing the efficacy of benchmarking LAD capabilities.

3.3.2 DEBUG TEST DESIGN

Moreover, the debugging process is a critical step in the integrated circuit design flow and should
not be omitted from benchmarking: real-world hardware design often involves identifying and cor-
recting errors. Therefore, we introduce debugging tests in GenBen. We categorize them into three
types: syntax errors, functional errors, and a hybrid of both. By injecting errors into correct designs,
we create debugging datasets that require LLMs to locate and fix the erroneous code.

3.4 DATA PERTURBATION

Building upon insights from existing DS-1000 works (Lai et al., 2023), we introduced
a perturbation strategy to mitigate potential memorization biases in AI models. We
implemented two types of perturbations: surface and semantic as shown in Table 4.

Table 4: Perturbation Categories

Perturbation Description
Surface Paraphrase: don’t change reference solution
Semantic Generalization: will change reference solution

Surface-level perturbations alter the phrasing
of a question without changing its core mean-
ing. For instance, the prompt “Design a 128x32
RAM module” might be rephrased as “Con-
struct a memory module with 128 addresses
and 32-bit data width”. As illustrated in Fig-
ure 2.C, surface perturbations require a equiva-

lence check to ensure that the meaning of the task remains unchanged.

Semantic perturbations increase the difficulty of a task by altering its underlying meaning. For
example, changing a prompt from “Design a 16-bit adder” to “Design an adder that can handle
arithmetic of two complements for 16-bit inputs” requires the model to exhibit stronger reasoning
abilities. It is necessary to align the updated tasks with their corresponding solutions to maintain
consistency as shown in Figure 2.C.

We implemented perturbations in two stages: during the construction of GenBen, as shown in Fig-
ure 2.A, and throughout the GenBen workflow, as depicted in Figure 2.B.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

3.4.1 STATIC PERTURBATION

Static perturbations are applied during the test construction phase, leveraging the multi-agent pro-
cess illustrated in Figure 2.C. This process involves adding surface and semantic perturbations to
candidate tests, which are then reviewed by human experts to finalize the test design. Key aspects of
this stage include: 1).Abstracting concepts, definitions, and computational problems into objective
questions; 2).Injecting bugs into correct code to create debugging tests; and 3).Adjusting and deriv-
ing new coding tests. These perturbations are applied at the data source level and remain unchanged
once the test set is finalized.

3.4.2 DYNAMIC PERTURBATION

To further reduce the interference of pre-training data, we introduce dynamic perturbations during
the evaluation process using surface-level perturbations. This stage involves generating slightly
varied versions of the tests as described in Section 3.2. This provides researchers with additional
insights and references for analyzing the robustness and adaptability of the LLMs.

3.5 MULTIMODAL FEATURE SUPPORT

The GenBen framework offers both unimodal and multimodal task evaluations, addressing the grow-
ing need for comprehensive assessment methodologies in hardware design. This feature is partic-
ularly important because real-world design processes often require the integration of various forms
of data, such as textual specifications, diagrams, and architectural schematics. Understanding and
synthesizing information from multiple modalities is crucial for effective hardware design.

In GenBen, multimodal data types include basic circuit diagrams, design architecture schematics,
waveform diagrams, and tables. These data types are utilized across various test categories: knowl-
edge questions assess the understanding of fundamental concepts and their applications; code gen-
eration tests require interpreting and translating visual schematics into HDL code; and debugging
tests involve identifying and correcting errors in designs that are presented through a combination
of text and visual data.

3.6 EVALUATION METRIC DESIGN

We developed a comprehensive evaluation metric system, as detailed in Table 5, which includes
both basic correctness metrics and QoR metrics. The QoR metrics—encompassing synthesizability,
power, area, and timing performance for evaluating the feasibility of generated designs for silicon
implementation. To quantify the design optimization capability of LLMs, we normalize these QoR
results against a reference design for result-aware.

Table 5: Metrics of GenBen

Metric Description
Knowledge Master Basic concept without need of deduction
Knowledge Transfer Generalization skills that need CoT or deduction
Debug Ability Skills in issue-solving and perseverance
Code Correctness Syntax & Function: Skills in programming
Quality of Result Synthesizability, Power, Area & Timing

This comprehensive approach, which
includes knowledge master & trans-
fer, design generation, debugging, mul-
timodal content and design optimiza-
tion derived from post-synthesis, en-
ables GenBen to systematically evaluate
LLM performance throughout the entire
hardware design process. Especially,
the improvement-aware metrics derived
from power, area, and timing analyses
offer a clear and intuitive representation
of the capability of the model to produce high-quality, manufacturable hardware designs.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 4: GPT-4o Tests

Figure 5: Claude3.5 Tests

4 EXPERIMENTAL RESULTS

4.1 EXPERIMENTAL SETUP

Model Selection: Our study evaluated nine models, comprising six multimodal and three lan-
guage models. The selected models are GPT-4-turbo, GPT-4o, GPT-3.5-turbo, Claude3.5, Llama3,
QWEN-vl-max, QWEN-vl-plus, GLM-4V-plus, and GLM-4.

Prompt Template: We developed a standardized prompt structure consisting of two key compo-
nents: (1) a role-playing prompt and (2) a problem description prompt as shown in Figure 2.E.

Test Iteration: We employed a pass@5 evaluation strategy throughout our experiments.

Pass Rate: Finallys, we used Pass Rate (PR) to quantify the overall ability. For an problem θi and
its LLM-generated answer θ∗i , we had a corresponding set of correct answer in GenBen database(
x0
i , y

0
i

)
,
(
x1
i , y

1
i

)
, . . . ,(xm

i , ymi). For the correct solution, θ∗i , it should produce the correct output

yji when applied to the input data xj
i from the test cases. That is, aθ∗

i

(
xj
i

)
= yji , the test case(

xj
i , y

j
i

)
can be regarded as passing. Whether the answer is successfully passed can be described as∧m

j=0

[
aθ∗

i

(
xj
i

)
= yji

]
, an aggregate result of all test cases. The PR are defined as:

PR =

n∑
i=0

∧m
j=0

[
aθ∗

i

(
xj
i

)
= yji

]
n

× 100% (1)

Evaluation Criteria:

• Knowledge& debugging tests. Pass/fail criterion, comparing with reference.

• Code generation. Syntax: failed attempts receive a score of 0%. Successful attempts
with warnings incur a 5% penalty per warning, with a minimum score of 60%. Function:
calculated ranging from 0% to 100%. Besides, to assess QoR optimization capabilities, we
conduct a normalized comparison against a reference design.

4.2 RESULTS ANALYSIS

Stable Benchmark Performance: Results shown in Figure 4-12 highlight that the best model
achieved a overall PR slightly above 40% but below 50%, aligning with expectations.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 6: GPT-4-turbo Tests

Figure 7: QWEN-vl-max Tests

Figure 8: QWEN-vl-plus Tests

Figure 9: GLM-4V-plus Tests

Figure 10: GLM-4 Tests Figure 11: GPT-3.5-turbo Tests Figure 12: Llama3 Tests

Effective Difficulty Tiering: Difficulty levels and PRs have a correlation. Using GPT-4o (shown
in Figure 4, detailed value in Section A, Table 10) as a example, the consistent 5-10% difference in
PRs across these levels.

Correlation Between Tests: The data indicates a correlation between Knowledge Mastery and
coding abilities. Models that performed well in Knowledge Mastery, such as GPT-4o and Claude
3.5, also showed high scores in Debugging and Functional Correctness. This suggests that a solid
understanding of fundamental concepts positively influences practical coding skills.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 13: PR of All Tests Figure 14: PR of Text Tests Figure 15: Example of QoR

Synthesizability vs. Syntax Discrepancy: Synthesizability and syntax correctness has a high in-
consistency (91.76%), as Figure 13 and 14 shown. This discrepancy arises from the inherent dif-
ferences in requirements between simulation and synthesis tools, exacerbated by the presence of
non-IEEE-compliant code in pre-training datasets. This issue highlights an area for future model
improvement.

Debugging Capabilities: Models generally exhibit stronger debugging capabilities compared to
code generation, which may be attributed to the additional context provided in debugging tests.

Figure 16: Example of DP Influence

QoR Analysis for Top Models The QoR result for
GPT-4o and Claude 3.5 is presented in Figure 15.
GPT-4o shows stable performance across area and tim-
ing metrics with improvement need in low-power de-
sign. On the other hand, Claude3.5 demonstrates ag-
gressive optimization in power and area but at the cost
of timing violations. These insights shows the differ-
ent trade-offs by different models.

Ablation Experiment of Dynamic Perturbation Fig-
ure 16 takes Llama3 as an example to illustrate the im-
pact of dynamic perturbations from GPT-3.5 and GPT-
4. The results demonstrate that the performance fluctuated across different test sets, with an overall
performance decline of approximately 9%.

5 CONCLUSION

In this paper, we introduce GenBen, a comprehensive benchmark designed to evaluate the capabili-
ties of LLMs in the domain of hardware design. Unlike existing benchmarks that primarily focus on
code generation, GenBen offers a more holistic evaluation by encompassing debugging, optimiza-
tion, and the chip hardening flow. By introducing perturbations and hierarchical task classification,
GenBen provides a diverse range of end-to-end, open-source evaluation modalities. Our goal is
to establish GenBen as a catalyst for advancements in LAD, providing a reliable benchmark for
generative hardware designs tailored to meet real-world silicon manufacturing requirements.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Skywater sky130 pdk, 2020. URL https://skywater-pdk.readthedocs.io/en/
main/. [Online].

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

ACM-SIGDA. Home, 2024. URL https://www.islad.org.

Ahmed Allam and Mohamed Shalan. Rtl-repo: A benchmark for evaluating llms on large-scale rtl
design projects. arXiv preprint arXiv:2405.17378, 2024.

Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, Andrew Waterman, Rimas Avižienis,
John Wawrzynek, and Krste Asanović. Chisel: constructing hardware in a scala embedded lan-
guage. In Proceedings of the 49th Annual Design Automation Conference, pp. 1216–1225, 2012.

Christopher Batten, Nathaniel Pinckney, Mingjie Liu, Haoxing Ren, and Bruce Khailany. Pyhdl-
eval: An llm evaluation framework for hardware design using python-embedded dsls. In
ACM/IEEE International Symposium on Machine Learning for CAD (MLCAD), Sep 2024.

Janick Bergeron. Writing testbenches: functional verification of HDL models. Springer Science &
Business Media, 2012.

Jason Blocklove, Siddharth Garg, Ramesh Karri, and Hammond Pearce. Chip-chat: Challenges and
opportunities in conversational hardware design. In 2023 ACM/IEEE 5th Workshop on Machine
Learning for CAD (MLCAD), pp. 1–6. IEEE, 2023.

Adrian Bulat and Georgios Tzimiropoulos. LASP: Text-to-Text Optimization for Language-Aware
Soft Prompting of Vision & Language Models.

Benton H Calhoun, Yu Cao, Xin Li, Ken Mai, Lawrence T Pileggi, Rob A Rutenbar, and Ken-
neth L Shepard. Digital circuit design challenges and opportunities in the era of nanoscale cmos.
Proceedings of the IEEE, 96(2):343–365, 2008.

Jialun Cao, Meiziniu Li, Ming Wen, and Shing-chi Cheung. A study on Prompt Design, Advantages
and Limitations of ChatGPT for Deep Learning Program Repair. URL http://arxiv.org/
abs/2304.08191.

Tuhin Chakrabarty, Vishakh Padmakumar, He He, and Nanyun Peng. Creative natural language
generation. In Proceedings of the 2023 Conference on Empirical Methods in Natural Language
Processing: Tutorial Abstracts, pp. 34–40, 2023.

Kaiyan Chang, Zhirong Chen, Yunhao Zhou, Wenlong Zhu, Haobo Xu, Cangyuan Li, Mengdi Wang,
Shengwen Liang, Huawei Li, Yinhe Han, et al. Natural language is not enough: Benchmarking
multi-modal generative ai for verilog generation. arXiv preprint arXiv:2407.08473, 2024.

Xiang Chen, Ningyu Zhang, Xin Xie, Shumin Deng, Yunzhi Yao, Chuanqi Tan, Fei Huang, Luo Si,
and Huajun Chen. KnowPrompt: Knowledge-aware Prompt-tuning with Synergistic Optimization
for Relation Extraction. In Proceedings of the ACM Web Conference 2022, pp. 2778–2788. doi:
10.1145/3485447.3511998. URL http://arxiv.org/abs/2104.07650.

James Cherry. Parallax static timing analyzer, 2023. URL https://github.com/
parallaxsw/OpenSTA. [Online].

Philippe Coussy and Adam Morawiec. High-level synthesis, volume 1. Springer, 2010.

Mingkai Deng, Jianyu Wang, Cheng-Ping Hsieh, Yihan Wang, Han Guo, Tianmin Shu, Meng Song,
Eric P. Xing, and Zhiting Hu. RLPrompt: Optimizing Discrete Text Prompts with Reinforcement
Learning. URL http://arxiv.org/abs/2205.12548.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

11

https://skywater-pdk.readthedocs.io/en/main/
https://skywater-pdk.readthedocs.io/en/main/
https://www.islad.org
http://arxiv.org/abs/2304.08191
http://arxiv.org/abs/2304.08191
http://arxiv.org/abs/2104.07650
https://github.com/parallaxsw/OpenSTA
https://github.com/parallaxsw/OpenSTA
http://arxiv.org/abs/2205.12548

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

R. Timothy Edwards. Open pdks pdk installer for open-source tools, 2023. URL http://www.
opencircuitdesign.com/open_pdks/index.html. [Online].

Yonggan Fu, Yongan Zhang, Zhongzhi Yu, Sixu Li, Zhifan Ye, Chaojian Li, Cheng Wan, and
Yingyan Celine Lin. Gpt4aigchip: Towards next-generation ai accelerator design automation
via large language models. In 2023 IEEE/ACM International Conference on Computer Aided
Design (ICCAD), pp. 1–9. IEEE, 2023.

Daniel D Gajski, Nikil D Dutt, Allen CH Wu, and Steve YL Lin. High—Level Synthesis: Introduc-
tion to Chip and System Design. Springer Science & Business Media, 2012.

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, and
Haofen Wang. Retrieval-augmented generation for large language models: A survey. arXiv
preprint arXiv:2312.10997, 2023.

Ahmed Ghazy and Mohamed Shalan. Openlane: The open-source digital asic implementation flow.
In Proc. Workshop on Open-Source EDA Technol.(WOSET), 2020.

John L Hennessy and David A Patterson. Computer architecture: a quantitative approach. Morgan
kaufmann, 2017.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, An-
drea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for nlp.
In International Conference on Machine Learning, pp. 2790–2799. PMLR, 2019.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Yingbing Huang, Lily Jiaxin Wan, Hanchen Ye, Manvi Jha, Jinghua Wang, Yuhong Li, Xiaofan
Zhang, and Deming Chen. New solutions on llm acceleration, optimization, and application,
2024. URL https://arxiv.org/abs/2406.10903.

ICCAD-Committee. LLM-Aided Design Panel, 2023. URL https://2023.iccad.com/
llm-aided-design-panel.

Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang, Ruiqi Zhong, Luke Zettlemoyer, Wen-tau
Yih, Daniel Fried, Sida Wang, and Tao Yu. Ds-1000: a natural and reliable benchmark for data
science code generation. In Proceedings of the 40th International Conference on Machine Learn-
ing, ICML’23. JMLR.org, 2023.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented genera-
tion for knowledge-intensive nlp tasks. Advances in Neural Information Processing Systems, 33:
9459–9474, 2020.

Mingjie Liu, Nathaniel Pinckney, Brucek Khailany, and Haoxing Ren. Verilogeval: Evaluating large
language models for verilog code generation. In 2023 IEEE/ACM International Conference on
Computer Aided Design (ICCAD), pp. 1–8. IEEE, 2023.

Peng Liu, Lemei Zhang, and Jon Atle Gulla. Pre-train, Prompt and Recommendation: A Compre-
hensive Survey of Language Modelling Paradigm Adaptations in Recommender Systems, a. URL
http://arxiv.org/abs/2302.03735.

Shang Liu, Yao Lu, Wenji Fang, Mengming Li, and Zhiyao Xie. Openllm-rtl: Open dataset and
benchmark for llm-aided design rtl generation. 2024a.

Tianyang Liu, Qi Tian, Jianmin Ye, LikTung Fu, Shengchu Su, Junyan Li, Gwok-Waa Wan, Lay-
ton Zhang, Sam-Zaak Wong, Xi Wang, et al. Chatchisel: Enabling agile hardware design with
large language models. In 2024 2nd International Symposium of Electronics Design Automation
(ISEDA), pp. 710–716. IEEE, 2024b.

12

http://www.opencircuitdesign.com/open_pdks/index.html
http://www.opencircuitdesign.com/open_pdks/index.html
https://arxiv.org/abs/2406.10903
https://2023.iccad.com/llm-aided-design-panel
https://2023.iccad.com/llm-aided-design-panel
http://arxiv.org/abs/2302.03735

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Tam, Zhengxiao Du, Zhilin Yang, and Jie Tang. P-Tuning:
Prompt Tuning Can Be Comparable to Fine-tuning Across Scales and Tasks. In Proceedings of the
60th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers),
pp. 61–68. Association for Computational Linguistics, b. doi: 10.18653/v1/2022.acl-short.8.
URL https://aclanthology.org/2022.acl-short.8.

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Nouamane
Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, et al. Starcoder 2 and the stack v2: The
next generation. arXiv preprint arXiv:2402.19173, 2024.

Pan Lu, Hritik Bansal, Tony Xia, Jiacheng Liu, Chunyuan Li, Hannaneh Hajishirzi, Hao Cheng, Kai-
Wei Chang, Michel Galley, and Jianfeng Gao. Mathvista: Evaluating mathematical reasoning of
foundation models in visual contexts. arXiv preprint arXiv:2310.02255, 2023.

Yao Lu, Shang Liu, Qijun Zhang, and Zhiyao Xie. Rtllm: An open-source benchmark for design rtl
generation with large language model. In 2024 29th Asia and South Pacific Design Automation
Conference (ASP-DAC), pp. 722–727. IEEE, 2024.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo Geng, Wenxiang Hu, Chongyang Tao, Jing
Ma, Qingwei Lin, and Daxin Jiang. Wizardcoder: Empowering code large language models with
evol-instruct. arXiv preprint arXiv:2306.08568, 2023.

Dewmini Sudara Marakkalage, Eleonora Testa, Walter Lau Neto, Alan Mishchenko, Giovanni
De Micheli, and Luca Amarù. Scalable sequential optimization under observability don’t cares.
In 2024 Design, Automation & Test in Europe Conference & Exhibition (DATE), pp. 1–6. IEEE,
2024.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese,
and Caiming Xiong. Codegen: An open large language model for code with multi-turn program
synthesis. arXiv preprint arXiv:2203.13474, 2022.

OpenAI. Gpt-4 technical report. Technical report, OpenAI, 2023.

Jan M Rabaey, Anantha Chandrakasan, and Borivoje Nikolic. Digital integrated circuits, volume 2.
Prentice hall Englewood Cliffs, 2002.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, et al. Code llama: Open foundation models for
code. arXiv preprint arXiv:2308.12950, 2023.

Anthropic Team. Claude2. https://www.anthropic.com/index/claude-2, 2023.

Shailja Thakur, Baleegh Ahmad, Zhenxing Fan, Hammond Pearce, Benjamin Tan, Ramesh Karri,
Brendan Dolan-Gavitt, and Siddharth Garg. Benchmarking large language models for automated
verilog rtl code generation. In 2023 Design, Automation & Test in Europe Conference & Exhibi-
tion (DATE), pp. 1–6. IEEE, 2023a.

Shailja Thakur, Baleegh Ahmad, Hammond Pearce, Benjamin Tan, Brendan Dolan-Gavitt, Ramesh
Karri, and Siddharth Garg. Verigen: A large language model for verilog code generation. arXiv
preprint arXiv:2308.00708, 2023b.

Shailja Thakur, Jason Blocklove, Hammond Pearce, Benjamin Tan, Siddharth Garg, and
Ramesh Karri. Autochip: Automating hdl generation using llm feedback. arXiv preprint
arXiv:2311.04887, 2023c.

Donald E Thomas, Elizabeth D Lagnese, Robert A Walker, Jayanth V Rajan, Robert L Blackburn,
and John A Nestor. Algorithmic and Register-Transfer Level Synthesis: The System Architect’s
Workbench: The System Architect’s Workbench, volume 85. Springer Science & Business Media,
1989.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023a.

13

https://aclanthology.org/2022.acl-short.8
https://www.anthropic.com/index/claude-2

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023b.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023c.

Ashish Vaswani. Attention is all you need. arXiv preprint arXiv:1706.03762, 2017.

Prashanth Vijayaraghavan, Luyao Shi, Stefano Ambrogio, Charles Mackin, Apoorva Nitsure, David
Beymer, and Ehsan Degan. Vhdl-eval: A framework for evaluating large language models in vhdl
code generation. arXiv preprint arXiv:2406.04379, 2024.

Xi Wang, Gwok-Waa Wan, Sam-Zaak Wong, Layton Zhang, Tianyang Liu, Qi Tian, and Jianmin
Ye. Chatcpu: An agile cpu design & verification platform with llm. In 61st ACM/IEEE Design
Automation Conference (DAC’24), pp. 6, 2024.

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du,
Andrew M Dai, and Quoc V Le. Finetuned language models are zero-shot learners. arXiv preprint
arXiv:2109.01652, 2021.

S. Williams. The icarus verilog compilation system, 2023. URL https://github.com/
steveicarus/iverilog. [Online].

Genta Indra Winata, Andrea Madotto, Zhaojiang Lin, Rosanne Liu, Jason Yosinski, and Pascale
Fung. Language models are few-shot multilingual learners. arXiv preprint arXiv:2109.07684,
2021.

Clifford Wolf, Johann Glaser, and Johannes Kepler. Yosys-a free verilog synthesis suite. In Pro-
ceedings of the 21st Austrian Workshop on Microelectronics (Austrochip), volume 97, 2013.

Haoyuan Wu, Zhuolun He, Xinyun Zhang, Xufeng Yao, Su Zheng, Haisheng Zheng, and Bei Yu.
Chateda: A large language model powered autonomous agent for eda. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 2024.

Cunxi Yu, Houping Xiao, and Giovanni De Micheli. Developing synthesis flows without human
knowledge. In Proceedings of the 55th Annual Design Automation Conference, pp. 1–6, 2018.

Farzaneh Rabiei Kashanaki Mark Zakharov and Jose Renau. Hdleval benchmarking llms for multi-
ple hdls.

Yuanhan Zhang, Kaiyang Zhou, and Ziwei Liu. Neural Prompt Search. URL http://arxiv.
org/abs/2206.04673.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min,
Beichen Zhang, Junjie Zhang, Zican Dong, et al. A survey of large language models. arXiv
preprint arXiv:2303.18223, 2023.

Tianyu Zheng, Ge Zhang, Tianhao Shen, Xueling Liu, Bill Yuchen Lin, Jie Fu, Wenhu Chen, and
Xiang Yue. Opencodeinterpreter: Integrating code generation with execution and refinement.
arXiv preprint arXiv:2402.14658, 2024.

Li Zhong and Zilong Wang. A study on robustness and reliability of large language model code
generation, 2023.

14

https://github.com/steveicarus/iverilog
https://github.com/steveicarus/iverilog
http://arxiv.org/abs/2206.04673
http://arxiv.org/abs/2206.04673

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A APPENDIX

Appendices Table of Contents

A.1 Concept of LLM-Aided Design . 15
A.2 Quality of Results in Hardware Design . 15

A.2.1 Synthesizability . 15
A.2.2 Power, Performance, and Area (PPA) 15
A.2.3 Total Negative Slack (TNS) and Worst Negative Slack (WNS) . . . 16
A.2.4 Setup and Hold Times . 16

A.3 The Role of Open-Source EDA Tools in Enhancing Scientific Reproducibility 16
A.3.1 Implementation of Open-Source EDA Tools in GenBen 17
A.3.2 Choice of PDK for QoR Evaluation 17

A.4 Sources of Our Dataset . 17
A.5 Generative Benchmark Concept and Principles 18

A.5.1 Test Generation Algorithm . 19
A.6 Experimental Results . 20
A.7 Tutorial: Evaluating LLM Performance with GenBen 23

A.7.1 Step-by-Step Instructions . 23
A.7.2 Refer to the README for Detailed Instructions 23

A.8 Open Source Declaration . 23

A.1 CONCEPT OF LLM-AIDED DESIGN

LLM-Aided Design (LAD) is defined as the use of Large Language Models (LLMs) as a methodol-
ogy to assist in designing circuits, software, and computing systems with improved quality, produc-
tivity, robustness, and cost-effectiveness. It focuses on discussing results that leverage the significant
advancements and innovations captured by generative AI and LLM technology to offer new methods
and solutions for design automation targeting various applications. This concept was first introduced
by IEEE ICCAD 2023.

A.2 QUALITY OF RESULTS IN HARDWARE DESIGN

In hardware design, Quality of Results (QoR) metrics are crucial for evaluating the effectiveness
and efficiency of a design. These metrics encompass various aspects that determine the practicality
and performance of the generated hardware. Below, we provide detailed explanations of key QoR
metrics and their significance:

A.2.1 SYNTHESIZABILITY

Synthesizability refers to the ability of a hardware design to be translated from a high-level descrip-
tion into a gate-level netlist that can be fabricated. This process, known as synthesis, is fundamental
to the hardware design flow. A design that is not synthesizable cannot be implemented in silicon,
rendering it impractical for real-world applications. Ensuring synthesizability is the first step in
verifying that a design can transition from concept to physical implementation. It is important to
note that a design passing simulation does not guarantee it will pass synthesis, often due to syntax
or structural issues that, while acceptable in simulation, do not meet the stringent requirements of
synthesis tools.

A.2.2 POWER, PERFORMANCE, AND AREA (PPA)

Power, Performance, and Area (PPA) is a comprehensive set of metrics used to evaluate the effi-
ciency of a hardware design:

• Power: Measures the amount of electrical power consumed by the hardware design. Lower
power consumption is critical for battery-operated devices and energy-efficient systems.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

• Performance: Often evaluated in terms of maximum operating frequency or throughput,
performance metrics indicate how fast the hardware can operate. Higher performance is
essential for applications requiring rapid data processing and high-speed computations.

• Area: Refers to the silicon area occupied by the hardware design. Minimizing area is im-
portant for reducing manufacturing costs and enabling the integration of more functionality
within a given chip size.

Balancing these three aspects—power, performance, and area—is a key challenge in hardware de-
sign, as improvements in one area often lead to trade-offs in the others.

In our benchmark design, to ensure consistency and efficiency in runtime and EDA script stan-
dardization, we have unified the primary performance metric to frequency. Consequently, perfor-
mance feedback is primarily provided through Total Negative Slack (TNS) and Worst Negative Slack
(WNS).

A.2.3 TOTAL NEGATIVE SLACK (TNS) AND WORST NEGATIVE SLACK (WNS)

Total Negative Slack (TNS) and Worst Negative Slack (WNS) are critical timing metrics used to
evaluate the timing performance of a hardware design:

• Total Negative Slack (TNS): The sum of all negative timing slacks in a design. Nega-
tive slack indicates that a timing path does not meet its required timing constraints. TNS
provides an aggregate measure of timing violations across the entire design.

• Worst Negative Slack (WNS): Represents the most severe timing violation in the design.
It is the largest single negative slack value and highlights the worst-performing timing path.

Both TNS and WNS are essential for identifying and addressing timing issues, ensuring that the
design meets its performance requirements without violations.

A.2.4 SETUP AND HOLD TIMES

Setup and hold times are critical parameters for ensuring reliable operation of sequential circuits:

• Setup Time: The minimum time before the clock edge by which data must be stable to
be correctly latched. Violations in setup time can lead to incorrect data being captured,
affecting the functionality of the design.

• Hold Time: The minimum time after the clock edge during which data must remain sta-
ble to be correctly latched. Violations in hold time can cause data corruption, leading to
unpredictable circuit behavior.

Ensuring that setup and hold times are met is crucial for the stability and reliability of the hardware
design.

In summary, these QoR metrics provide a comprehensive framework for evaluating the practical
viability and performance of hardware designs. They are essential for ensuring that a design not only
meets its functional requirements but also operates efficiently and reliably in real-world applications.
Moreover, addressing the syntactical and structural requirements for synthesis ensures that designs
are theoretically sound and practically implementable in silicon.

A.3 THE ROLE OF OPEN-SOURCE EDA TOOLS IN ENHANCING SCIENTIFIC
REPRODUCIBILITY

Open-source Electronic Design Automation (EDA) tools are key enablers of scientific reproducibil-
ity, providing accessible alternatives to benchmarks that have traditionally relied on commercial
EDA tools such as Design Compiler and Synopsys VCS.

One of the primary advantages of open-source EDA tools is their facilitation of effortless collabora-
tion among researchers and designers. They eliminate the need for complex legal agreements such
as Non-Disclosure Agreements (NDAs), allowing for straightforward sharing of designs, ideas, and

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Figure 17: OpenLane Flow

materials. This ease of collaboration is particularly beneficial for integrating experts from fields like
computer science, where open-source development is prevalent.

Moreover, open-source EDA tools are invaluable for educational and research purposes. They enable
educators to provide students with practical insights into the design automation process. Students
and researchers can modify the code, test their hypotheses, and gain a comprehensive understanding
of the chip design process.

A.3.1 IMPLEMENTATION OF OPEN-SOURCE EDA TOOLS IN GENBEN

In our GenBen design process, we exclusively use open-source EDA tools. During the task construc-
tion phase, we rely on Verilator to perform coverage analysis, enhancement, and refinement of the
testbenches. For agile execution during model testing, we use Icarus Verilog due to its faster com-
pilation times, although it lacks comprehensive coverage analysis. Therefore, we employ different
tools at various stages to balance efficiency and thoroughness.

Additionally, to obtain physical implementation information, we use OpenLane, an open-source
RTL-to-GDSII EDA flow, as illustrated in Figure 17. OpenLane enables us to extract critical data
on synthesizability, area, power, and timing, ensuring that our benchmarks are both practical and
reproducible using widely accessible tools.

A.3.2 CHOICE OF PDK FOR QOR EVALUATION

The Quality of Results (QoR) of a design can vary significantly across different Process Design
Kits (PDKs). To ensure consistency in our evaluations, we have chosen the open-source SkyWater
130nm PDK for QoR testing. This choice provides a standardized reference point for assessing
the practical viability of hardware designs, allowing for fair and comparable results across different
design implementations.

A.4 SOURCES OF OUR DATASET

The dataset for our GenBen benchmark is meticulously curated from a diverse array of sources to
ensure comprehensive coverage of various aspects of hardware design. These sources are catego-
rized into three levels—Level 1 (L1), Level 2 (L2), and Level 3 (L3)—based on the complexity and
depth of the tasks they contribute.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Level 1 (L1) sources provide fundamental tasks aimed at assessing basic knowledge and skills in
hardware design. These include materials such as university textbooks, which supply essential the-
oretical and practical questions for understanding core concepts. Basic code examples offer simple
coding tasks to test foundational programming skills, while basic quizzes include multiple-choice
and short-answer questions to evaluate basic knowledge. Additionally, HDLBits provides elemen-
tary hardware description language (HDL) exercises suitable for beginners.

Level 2 (L2) sources present intermediate-level tasks that require a deeper understanding and appli-
cation of hardware design principles. These sources incorporate GitHub projects that provide real-
world coding examples and projects necessitating practical implementation skills. Graduate projects
contribute tasks from advanced coursework, focusing on more complex design and problem-solving
abilities. Question and answer forums such as Stack Overflow and GitHub Q&A include practical
debugging and problem-solving questions commonly encountered by developers, addressing real-
world issues faced by practitioners.

Level 3 (L3) sources deliver advanced tasks that challenge the highest level of expertise in hardware
design. These include silicon-proven repositories, contributing tasks from projects successfully im-
plemented in silicon, ensuring high reliability and complexity. Research textbooks provide advanced
theoretical and practical problems stemming from cutting-edge research in hardware design. Peer-
reviewed publications from ACM and IEEE include tasks based on recent advancements in the field.
Student contests offer challenging problems from hardware design competitions, while studies in
advanced microarchitecture supply tasks involving sophisticated architectural design and optimiza-
tion. Innovative projects introduce problems that push the boundaries of current technology, and
industrial projects provide tasks derived from real-world industrial applications, emphasizing prac-
tical implementation and optimization.

The tasks from these varied sources are further categorized to cover a wide range of skills and
knowledge areas. Tasks focused on knowledge transfer assess the ability to apply learned concepts
to new scenarios, enhancing adaptability in design approaches. Those involving code debugging
require identifying and correcting errors in code, which is critical for developing robust hardware
systems. Knowledge mastery tasks evaluate the depth of understanding of fundamental concepts,
ensuring a solid theoretical foundation. Code generation tasks necessitate the creation of new code
based on given specifications, testing the ability to innovate and implement design requirements
effectively.

These tasks are organized into two main categories for the GenBen benchmark: text-based tasks
and multimodal tasks. Text-based tasks are purely textual, focusing on theoretical and conceptual
understanding, including problem-solving and analytical reasoning. Multimodal tasks involve mul-
tiple forms of data, such as text and diagrams, to simulate real-world design challenges and provide
a more comprehensive assessment of practical skills.

Figure 20 illustrates the relationship between the data sources and the final dataset. Notably, a signif-
icant portion of silicon-proven designs comes from resources such as Google FOSS and OpenCores,
as shown in Figures 18 and 19.

Figure 18: FOSS Projects of OpenMPW Figure 19: OpenCores

A.5 GENERATIVE BENCHMARK CONCEPT AND PRINCIPLES

The concept of a generative benchmark involves creating evaluation tasks that are not directly stored
in plaintext on platforms like GitHub but are instead implicitly distributed across various datasets.
This approach requires the use of scripts to dynamically extract tasks, arrange options, and ran-

18

https://foss-eda-tools.googlesource.com
https://opencores.org/projects

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Figure 20: Data Sources of the GenBen Dataset

domize the order of questions each time they are generated. Such a methodology helps mitigate
the interference caused by a model’s pre-training memory, ensuring that assessments are based on
competency rather than memorization.

The principle behind this generative approach is to ensure that each generated task remains con-
sistent for every evaluation, thereby maintaining the objectivity and fairness of the assessments.
Additionally, a control group with only surface-level perturbations is introduced, allowing for si-
multaneous evaluation of both groups and providing insights into the model’s sensitivity to such
variations.

Moreover, GenBen supports researchers in replacing or modifying the evaluation methods and tasks,
as the tests, evaluation framework, and generative scripts are decoupled. This flexibility allows for
the adaptation of the benchmark to different research needs and the incorporation of new evaluation
strategies. Below are the test generation algorithm 1 and the evaluation flow 2, which detail the
processes involved in generating and assessing the benchmark tasks.

A.5.1 TEST GENERATION ALGORITHM

Algorithm 1 Test Generation Algorithm

Require: Test dataset D
Ensure: Generated test set T and perturbed test set T ′

1: Initialize test set T ← ∅
2: Initialize perturbed test set T ′ ← ∅
3: Load test dataset D
4: for each test d ∈ D do
5: Generate task t from d using script
6: Add task t to T
7: end for
8: for each task t ∈ T do
9: Apply surface-level perturbation to t to generate t′

10: Add perturbed task t′ to T ′

11: end for
12:
13: return T and T ′

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 6: Results of Tested Multimodal Models on GenBen-all

model Knowledge Master Knowledge Transfer Debugging Function Correctness Synatx Correctness Synthesizbility
GENBEN-all gpt-4-turbo 57.00% 56.00% 40.00% 21.20% 100.00% 93.70%
GENBEN-all gpt-4o 69.00% 65.00% 52.20% 34.80% 100.00% 96.90%
GENBEN-all claude3.5 59.00% 55.00% 55.40% 35.40% 98.60% 90.00%
GENBEN-all qwen-vl-plus 45.00% 39.00% 32.00% 16.30% 78.40% 66.40%
GENBEN-all qwen-vl-max 59.00% 49.00% 36.50% 26.50% 88.60% 78.90%
GENBEN-all GLM-4V-plus 51.00% 55.00% 39.60% 12.50% 71.70% 51.10%

Table 7: Results of All Tested Models on GenBen-Text

model Knowledge Master Knowledge Transfer Debugging Function Correctness Synatx Correctness Synthesizbility
GENBEN-text gpt-4-turbo 65.00% 62.00% 35.60% 21.30% 100.00% 89.80%
GENBEN-text gpt-4o 75.00% 70.00% 40.00% 32.00% 97.50% 96.00%
GENBEN-text gpt-3.5-turbo 63.00% 60.00% 37.80% 26.70% 98.10% 93.30%
GENBEN-text claude3.5 62.00% 58.00% 46.00% 22.10% 98.10% 89.10%
GENBEN-text qwen-vl-max 60.00% 50.00% 43.40% 20.20% 84.80% 76.90%
GENBEN-text qwen-vl-plus 52.00% 47.00% 43.00% 20.20% 84.90% 76.90%
GENBEN-text GLM-4V-plus 57.00% 51.00% 42.20% 7.50% 65.60% 45.30%
GENBEN-text llama3 68.00% 60.00% 40.00% 6.90% 85.90% 57.30%
GENBEN-text GLM-4V-plus 57.00% 48.00% 39.20% 7.50% 65.60% 45.30%

Algorithm 2 Total Evaluation Flow

Require: Test set T , Perturbed test set T ′, Model’s API A, Modality informationM
Ensure: Evaluation results and final scores

1: Initialize response setR ← ∅
2: Initialize perturbed response setR′ ← ∅
3: Initialize evaluation results E ← ∅
4: Initialize final scores S ← ∅
5: for each task t ∈ T do
6: Collect response r from model using A
7: Add response r toR
8: end for
9: for each perturbed task t′ ∈ T ′ do

10: Collect response r′ from model using A
11: Add response r′ toR′

12: end for
13: for each response r ∈ R and r′ ∈ R′ do
14: Validate r and r′ using evaluation suite
15: Simulate r and r′ with Iverilog
16: Generate syntax and functional correctness reports
17: if r and r′ pass functional tests then
18: Perform physical implementation using SkyWater 130nm PDK and OpenLane
19: Extract synthesizability, area, and power data with Yosys
20: Extract timing-related data with OpenSTA
21: end if
22: Add evaluation results to E
23: end for
24: Analyze evaluation results in E using report analyzer
25: Generate final scores S based on predefined metrics
26:
27: return S

A.6 EXPERIMENTAL RESULTS

We categorized the tasks into three groups: GenBen-all, GenBen-mm, and GenBen-text, corre-
sponding to all tasks, multimodal tasks, and text-based tasks, respectively. Additionally, the latter
two categories are further classified into levels L1 to L3.

Table 6 shows the results of tested multimodal models on all tests and Table 7 shows the results of
all models on unimodal tests. Table 8 and 9 respectively present the PPA data of the Claude 3.5 and
GPT-4 models for QoR analysis.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table 8: PPA Info of Claude3.5 on Part of Generated Design

Modal Function
Correctness

Area Power Hold WNS Setup TNS
Generated Reference Generated Reference Generated Reference Generated Reference

Text

0.4 6.256 3.7536 6.33E-07 5.92E-07 3.8839 3.8395 5.5943 5.6193
0.4 7.5072 5.0048 7.01E-07 6.85E-07 3.9746 3.9153 5.504 5.5586
0.2 6.256 6.256 6.93E-07 6.93E-07 3.9485 3.9485 5.3708 5.3708
1 22.5216 22.5216 1.63E-06 1.63E-06 3.8877 3.8877 5.317 5.317
0.8 22.5216 22.5216 1.63E-06 1.63E-06 3.8877 3.8877 5.317 5.317
0.2 73.8208 73.8208 1.35E-05 1.35E-05 0.1141 0.1141 6.9101 6.9101
0.8 5.0048 5.0048 6.85E-07 6.85E-07 3.9153 3.9153 5.5586 5.5586
0.8 40.0384 40.0384 5.48E-06 5.48E-06 3.9153 3.9153 5.5586 5.5586
1 51.2992 38.7872 3.60E-06 3.60E-06 3.9409 3.89 5.2009 5.2115
0.8 12.512 12.512 1.39E-06 1.39E-06 3.9485 3.9485 5.3675 5.3675
0.4 185.1776 187.68 1.62E-05 2.21E-05 0.335 0.4291 7.2083 7.2307
1 32.5312 32.5312 2.08E-06 2.08E-06 3.9378 3.9378 5.2313 5.2313
1 815.7824 815.7824 8.83E-05 8.83E-05 1.469 1.469 5.3261 5.3261
1 73.8208 40.0384 1.35E-05 5.48E-06 0.1141 3.9153 9.3203 5.5586
0.4 43.792 58.8064 2.67E-06 3.70E-06 3.9446 3.9487 5.2209 5.2227
0.8 240.2304 30.0288 2.07E-06 2.68E-07 3.9395 3.8045 4.6738 3.8393
0.4 78.8256 90.0864 1.35E-05 1.38E-05 0.1315 0.1315 7.2451 7.2451
0.4 3209.328 1555.2416 2.71E-04 1.47E-04 0.2087 2.29E-01 6.2969 7.0092
0.8 28.7776 28.7776 1.32E-06 1.32E-06 4.0661 4.0661 5.1155 5.1155
1 36.2848 73.8208 2.71E-06 1.35E-05 3.9378 0.1141 5.2313 6.9997
1 15.0144 22.5216 1.11E-06 1.35E-05 4.051 4.0503 5.2854 5.1241
1 96.3424 113.8592 1.44E-05 1.59E-05 0.2616 0.3507 7.2457 7.2395
1 1051.008 1051.008 3.78E-05 3.78E-05 4.1483 4.1483 3.2117 3.2117
0.8 40.0384 40.0384 3.88E-05 3.88E-05 3.9153 3.9153 5.5586 5.5586

Multimodal

0.4 5.0048 5.0048 6.85E-07 6.85E-07 3.9153 3.9153 5.5586 5.5586
1 20.0192 20.0192 2.74E-06 2.74E-06 3.9153 3.9153 5.5492 5.5492
0.4 1886.8096 1886.8096 1.41E-04 1.41E-04 0.2326 0.2326 6.7635 6.7635
0.6 6.256 6.256 6.35E-07 6.35E-07 3.8426 3.8426 5.4372 5.4372
0.6 6.256 8.7584 6.93E-07 7.38E-07 3.9485 3.9895 5.3708 5.452
1 36.2848 36.2848 7.16E-06 7.16E-06 0.3785 0.3785 7.2871 7.2871
1 26.2752 26.2752 4.85E-06 4.85E-06 1.4197 1.4197 7.2451 7.2451
1 60.0576 85.0816 9.36E-06 2.02E-05 0.1315 0.2648 7.2451 7.2284
1 120.1152 120.1152 5.19E-06 5.19E-06 3.9058 3.9058 4.7301 4.7301
1 63.8112 121.3664 9.47E-06 1.59E-05 0.2152 0.2224 7.0874 7.2451

Table 9: PPA Info of GPT4 on Part of Generated Design

Modal Function
Correctness

Area Power Hold WNS Setup TNS
Generated Reference Generated Reference Generated Reference Generated Reference

Text

0.6 6.256 3.7536 6.33E-07 5.92E-07 3.8839 3.8395 5.5943 5.6193
1 7.5072 5.0048 7.01E-07 6.85E-07 3.9746 3.9153 5.504 5.5586
0.2 6.256 6.256 6.93E-07 6.93E-07 3.9485 3.9485 5.3708 5.3708
0.8 22.5216 22.5216 1.63E-06 1.63E-06 3.8877 3.8877 5.317 5.317
0.2 22.5216 22.5216 1.63E-06 1.63E-06 3.8877 3.8877 5.317 5.317
0.8 5.0048 5.0048 6.85E-07 6.85E-07 3.9153 3.9153 5.5586 5.5586
0.6 40.0384 40.0384 5.48E-06 5.48E-06 3.9153 3.9153 5.5586 5.5586
1 51.2992 38.7872 3.60E-06 3.60E-06 3.9409 3.89 5.2009 5.2115
0.8 12.512 12.512 1.39E-06 1.39E-06 3.9485 3.9485 5.3675 5.3675
0.4 171.4144 187.68 1.62E-05 2.21E-05 0.4056 0.4291 7.2206 7.2307
1 32.5312 32.5312 2.08E-06 2.08E-06 3.9378 3.9378 5.2313 5.2313
1 815.7824 815.7824 8.83E-05 8.83E-05 1.469 1.469 5.3261 5.3261
1 40.0384 40.0384 5.48E-06 5.48E-06 3.9153 3.9153 5.5586 5.5586
0.4 53.8016 58.8064 3.68E-06 3.70E-06 3.9412 3.9487 5.2008 5.2227
0.8 30.0288 30.0288 2.68E-07 2.68E-07 3.8045 3.8045 3.8393 3.8393
0.4 21550.6688 22096.192 3.79E-03 4.61E-03 0.2104 0.2104 3.8231 3.7868
0.8 1068.5248 1555.2416 1.34E-04 1.47E-04 0.2395 0.229 6.9484 7.0092
0.6 17.5168 22.5216 1.32E-06 1.32E-06 3.8788 4.0503 5.3341 5.1241
1 122.6176 122.6176 1.30E-05 1.30E-05 1.4344 1.4344 7.2451 7.2451
1 96.3424 113.8592 1.44E-05 1.59E-05 0.2616 0.3507 7.2451 7.2395
0.8 11.2608 11.2608 1.03E-06 1.03E-06 4.051 4.051 5.2878 5.2878
1 1051.008 1051.008 3.78E-05 3.78E-05 4.1483 4.1483 3.2117 3.2117
0.8 210.2016 40.0384 3.88E-05 3.88E-05 1.469 3.9153 7.2451 5.5586

Multimodal

1 5.0048 5.0048 6.85E-07 6.85E-07 3.9153 3.9153 5.5586 5.5586
1 20.0192 20.0192 2.74E-06 2.74E-06 3.9153 3.9153 5.5492 5.5492
1 36.2848 36.2848 7.16E-06 7.16E-06 0.3785 0.3785 7.2871 7.2871
1 26.2752 26.2752 4.85E-06 4.85E-06 1.4197 1.4197 7.2451 7.2451
1 60.0576 85.0816 9.36E-06 2.02E-05 0.1315 0.2648 7.2451 7.2284
1 91.3376 120.1152 5.29E-06 5.19E-06 3.8815 3.9058 4.5263 4.7301
0.6 85.0816 121.3664 1.38E-05 1.59E-05 0.2737 0.2224 7.0185 7.2451

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table 10: Results of Tested Models.

model Knowledge Mastery Knowledge Transfer Debugging Function Synatx Synthesizbility
GenBen-all gpt-4-turbo 57.00% 62.00% 40.00% 21.20% 100.00% 93.70%
GenBen-allmodal-L1 gpt-4-turbo 64.00% 70.00% 37.70% 30.90% 100.00% 90.70%
GenBen-allmodal-L2 gpt-4-turbo 56.00% 65.00% 33.30% 24.20% 99.40% 96.40%
GenBen-allmodal-L3 gpt-4-turbo 52.00% 52.00% 21.10% 9.10% 98.90% 92.40%
GenBen-mm gpt-4-turbo 27.00% 67.00% 63.30% 16.70% 100.00% 96.50%
GenBen-mm-L1 gpt-4-turbo 0.00% 67.00% 55.00% 24.30% 100.00% 95.00%
GenBen-mm-L2 gpt-4-turbo 40.00% 100.00% 50.00% 20.10% 99.40% 97.50%
GenBen-mm-L3 gpt-4-turbo 40.00% 33.00% 10.00% 8.20% 99.40% 97.50%
GenBen-text gpt-4-turbo 65.00% 62.00% 35.60% 21.30% 100.00% 89.80%
GenBen-text-L1 gpt-4-turbo 80.00% 70.00% 33.30% 20.90% 100.00% 83.20%
GenBen-text-L2 gpt-4-turbo 60.00% 60.00% 30.00% 23.90% 100.00% 95.60%
GenBen-text-L3 gpt-4-turbo 55.00% 55.00% 26.60% 16.50% 100.00% 82.80%
GenBen-all gpt-4o 69.00% 71.00% 52.20% 34.80% 100.00% 96.90%
GenBen-allmodal-L1 gpt-4o 72.00% 83.00% 43.20% 38.60% 100.00% 94.60%
GenBen-allmodal-L2 gpt-4o 64.00% 74.00% 38.40% 32.60% 100.00% 98.80%
GenBen-allmodal-L3 gpt-4o 72.00% 57.00% 34.20% 29.50% 100.00% 99.40%
GenBen-mm gpt-4o 47.00% 78.00% 71.70% 37.50% 100.00% 100.00%
GenBen-mm-L1 gpt-4o 40.00% 67.00% 80.00% 37.50% 100.00% 95.00%
GenBen-mm-L2 gpt-4o 60.00% 100.00% 70.00% 32.50% 100.00% 97.50%
GenBen-mm-L3 gpt-4o 40.00% 67.00% 35.00% 28.50% 100.00% 97.50%
GenBen-text gpt-4o 75.00% 70.00% 40.00% 32.00% 97.50% 96.00%
GenBen-text-L1 gpt-4o 80.00% 85.00% 33.30% 34.70% 95.00% 95.00%
GenBen-text-L2 gpt-4o 65.00% 70.00% 30.00% 30.50% 97.50% 97.50%
GenBen-text-L3 gpt-4o 80.00% 55.00% 36.70% 27.50% 100.00% 97.50%
GenBen-text gpt-3.5-turbo 63.00% 60.00% 37.80% 26.70% 98.10% 93.30%
GenBen-text-L1 gpt-3.5-turbo 65.00% 50.00% 46.70% 29.00% 92.00% 72.00%
GenBen-text-L2 gpt-3.5-turbo 65.00% 60.00% 26.70% 24.00% 100.00% 96.80%
GenBen-text-L3 gpt-3.5-turbo 60.00% 70.00% 24.70% 19.00% 99.20% 87.20%
GenBen-all claude3.5 59.00% 61.00% 55.40% 35.40% 98.60% 90.00%
GenBen-allmodal-L1 claude3.5 64.00% 70.00% 53.70% 43.30% 97.00% 86.70%
GenBen-allmodal-L2 claude3.5 56.00% 65.00% 48.90% 37.10% 100.00% 100.00%
GenBen-allmodal-L3 claude3.5 56.00% 48.00% 33.70% 28.50% 98.80% 87.30%
GenBen-mm claude3.5 47.00% 44.00% 55.00% 39.20% 100.00% 92.50%
GenBen-mm-L1 claude3.5 20.00% 67.00% 55.00% 45.00% 100.00% 90.00%
GenBen-mm-L2 claude3.5 60.00% 67.00% 45.00% 35.00% 100.00% 100.00%
GenBen-mm-L3 claude3.5 60.00% 0.00% 35.00% 37.50% 100.00% 87.50%
GenBen-text claude3.5 62.00% 63.00% 55.60% 22.10% 98.10% 89.10%
GenBen-text-L1 claude3.5 75.00% 70.00% 53.30% 21.60% 96.00% 80.80%
GenBen-text-L2 claude3.5 55.00% 65.00% 50.00% 19.20% 100.00% 99.20%
GenBen-text-L3 claude3.5 55.00% 55.00% 33.30% 25.60% 98.40% 87.20%
GenBen-text llama3 68.00% 70.00% 40.00% 6.90% 85.90% 57.30%
GenBen-text-L1 llama3 75.00% 75.00% 53.30% 6.10% 78.40% 56.00%
GenBen-text-L2 llama3 70.00% 70.00% 43.30% 6.40% 89.60% 58.40%
GenBen-text-L3 llama3 60.00% 65.00% 6.67% 7.20% 89.60% 57.40%
GenBen-all qwen-vl-max 59.00% 55.00% 36.50% 26.50% 88.60% 78.90%
GenBen-allmodal-L1 qwen-vl-max 72.00% 74.00% 43.20% 29.90% 84.20% 78.20%
GenBen-allmodal-L2 qwen-vl-max 52.00% 57.00% 40.70% 26.50% 95.20% 87.30%
GenBen-allmodal-L3 qwen-vl-max 52.00% 35.00% 23.20% 22.20% 86.20% 71.30%
GenBen-mm qwen-vl-max 53.00% 89.00% 55.00% 49.30% 100.00% 91.70%
GenBen-mm-L1 qwen-vl-max 60.00% 100.00% 55.00% 62.50% 100.00% 100.00%
GenBen-mm-L2 qwen-vl-max 40.00% 100.00% 45.00% 51.20% 100.00% 100.00%
GenBen-mm-L3 qwen-vl-max 60.00% 67.00% 35.00% 25.00% 100.00% 87.50%
GenBen-text qwen-vl-max 60.00% 50.00% 44.40% 20.20% 84.80% 76.90%
GenBen-text-L1 qwen-vl-max 75.00% 70.00% 40.00% 22.80% 79.20% 75.20%
GenBen-text-L2 qwen-vl-max 55.00% 50.00% 43.00% 22.40% 93.60% 86.40%
GenBen-text-L3 qwen-vl-max 50.00% 30.00% 20.00% 21.30% 81.90% 69.30%
GenBen-all qwen-vl-plus 45.00% 46.00% 32.60% 16.30% 78.40% 66.40%
GenBen-allmodal-L1 qwen-vl-plus 52.00% 52.00% 32.60% 20.00% 78.80% 65.50%
GenBen-allmodal-L2 qwen-vl-plus 40.00% 43.00% 27.90% 16.00% 85.50% 74.50%
GenBen-allmodal-L3 qwen-vl-plus 44.00% 43.00% 7.40% 12.00% 71.30% 59.30%
GenBen-mm qwen-vl-plus 20.00% 44.00% 8.30% 4.20% 58.30% 33.30%
GenBen-mm-L1 qwen-vl-plus 0.00% 67.00% 5.00% 0.00% 77.50% 35.00%
GenBen-mm-L2 qwen-vl-plus 40.00% 33.00% 0.00% 12.50% 60.00% 37.50%
GenBen-mm-L3 qwen-vl-plus 20.00% 33.00% 0.00% 0.00% 37.50% 27.50%
GenBen-text qwen-vl-plus 52.00% 47.00% 44.40% 20.20% 84.90% 76.90%
GenBen-text-L1 qwen-vl-plus 65.00% 50.00% 40.00% 22.80% 79.20% 75.20%
GenBen-text-L2 qwen-vl-plus 40.00% 45.00% 43.30% 17.40% 93.60% 86.40%
GenBen-text-L3 qwen-vl-plus 50.00% 45.00% 20.00% 16.30% 81.90% 69.30%
GenBen-all GLM-4V-plus 51.00% 62.00% 39.60% 12.50% 71.70% 51.10%
GenBen-allmodal-L1 GLM-4V-plus 60.00% 65.00% 43.20% 15.50% 67.30% 40.00%
GenBen-allmodal-L2 GLM-4V-plus 44.00% 74.00% 17.40% 13.20% 65.10% 42.80%
GenBen-allmodal-L3 GLM-4V-plus 48.00% 48.00% 28.40% 8.00% 83.10% 70.40%
GenBen-mm GLM-4V-plus 27.00% 89.00% 30.00% 28.30% 90.80% 69.20%
GenBen-mm-L1 GLM-4V-plus 20.00% 100.00% 30.00% 17.50% 77.50% 47.50%
GenBen-mm-L2 GLM-4V-plus 20.00% 100.00% 25.00% 36.50% 95.10% 61.00%
GenBen-mm-L3 GLM-4V-plus 40.00% 67.00% 35.00% 30.00% 100.00% 97.50%
GenBen-text GLM-4V-plus 57.00% 58.00% 42.20% 7.50% 65.60% 45.30%
GenBen-text-L1 GLM-4V-plus 70.00% 60.00% 46.70% 11.00% 64.00% 37.60%
GenBen-text-L2 GLM-4V-plus 50.00% 70.00% 23.30% 5.60% 55.20% 36.80%
GenBen-text-L3 GLM-4V-plus 50.00% 45.00% 26.70% 5.00% 77.80% 61.90%
GenBen-text GLM-4 57.00% 58.00% 42.20% 17.50% 65.60% 45.30%
GenBen-text-L1 GLM-4 50.00% 25.00% 33.30% 24.80% 84.00% 76.00%
GenBen-text-L2 GLM-4 45.00% 45.00% 43.30% 19.00% 95.20% 94.40%
GenBen-text-L3 GLM-4 50.00% 20.00% 6.70% 13.00% 96.00% 72.80%

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

The result is shown in Table 10. This provides a statistical analysis of the tested models, cover-
ing knowledge master, knowledge transfer, debugging, functional correctness, syntax correctness,
and synthesizability. For further QoR analysis, data from the best-performing models, GPT-4o and
Claude 3.5, are included in the main text.

The data in the table demonstrate the effectiveness of task categorization, the necessity of synthe-
sizability metrics, and the correlation between knowledge points and coding abilities, aligning with
the benchmark’s design expectations.

A.7 TUTORIAL: EVALUATING LLM PERFORMANCE WITH GENBEN

You can access the complete GenBen code via the following link: GenBen Repository. This guide
will walk you through evaluating the performance of Large Language Models (LLMs) in hardware
design and obtaining detailed results using the command line.

A.7.1 STEP-BY-STEP INSTRUCTIONS

Clone the GenBen Repository

First, clone the GenBen repository to your local machine:

1 git clone https://anonymous.4open.science/r/GENBEN-2812
2 cd GENBEN-2812

Run the Evaluation Script

Using the command line, you can evaluate the performance of LLMs with the following command:

1 python genben.py --mode all --model gpt4

This command runs the evaluation with the specified parameters.

Understanding the Command Parameters

• --mode: This parameter controls the type of tasks input into the LLMs. There are three
available options:

– all: Enables the input of all task types.
– mm: Allows for multi-modal tasks.
– text: Restricts the input to text-based tasks only.

• --model: This parameter specifies the model of the LLMs. Adjust this parameter accord-
ing to the specific API of the LLMs you are using.

Example:

1 python genben.py --mode text --model gpt4

This command evaluates the gpt4 model using only text-based tasks.

A.7.2 REFER TO THE README FOR DETAILED INSTRUCTIONS

For more detailed usage instructions, please refer to the README file included in the GenBen
project. The README file contains comprehensive information

A.8 OPEN SOURCE DECLARATION

To foster transparency, collaboration, and innovation, the GenBen benchmark will be released under
the MIT open-source license. This ensures that researchers, educators, and practitioners can freely
access, use, modify, and distribute the benchmark without any restrictions.

Upon the completion of the peer-review process, the full dataset, along with all associated scripts and
documentation, will be made publicly available. We hope to support the global research community
in advancing the field of hardware design and AI-driven EDA.

23

https://anonymous.4open.science/r/GENBEN-2812

	Introduction
	Related Works
	LLM-Aided Design
	Benchmarks for Evaluating LAD
	Problem Formulation

	Design & Philosophy
	Design Strategies of GenBen
	GenBen Framework & Workflow
	Benchmark Dataset Construction
	Testbench Coverage Enhancement
	Debug Test Design

	Data Perturbation
	Static Perturbation
	Dynamic Perturbation

	Multimodal Feature Support
	Evaluation Metric Design

	Experimental Results
	EXPERIMENTAL SETUP
	RESULTS ANALYSIS

	Conclusion
	Appendix
	Concept of LLM-Aided Design
	Quality of Results in Hardware Design
	Synthesizability
	Power, Performance, and Area (PPA)
	Total Negative Slack (TNS) and Worst Negative Slack (WNS)
	Setup and Hold Times

	The Role of Open-Source EDA Tools in Enhancing Scientific Reproducibility
	Implementation of Open-Source EDA Tools in GenBen
	Choice of PDK for QoR Evaluation

	Sources of Our Dataset
	Generative Benchmark Concept and Principles
	Test Generation Algorithm

	Experimental Results
	Tutorial: Evaluating LLM Performance with GenBen
	Step-by-Step Instructions
	Refer to the README for Detailed Instructions

	Open Source Declaration

