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ABSTRACT

As generative artificial intelligence (AI) models become increasingly widespread,
ensuring transparency and provenance in AI-generated content has become a critical
challenge. Watermarking techniques have been proposed to embed imperceptible
yet detectable signals in AI-generated images, enabling provenance tracking and
copyright enforcement. However, a second party can repurpose images generated
by an existing model to train their own diffusion model, potentially disregarding
the ownership rights of the original model creator. Recent research in language
models has explored the concept of watermark radioactivity, where embedded
signals persist when training or fine-tuning a new model, enabling the detection
of models trained on watermarked data. In this work, we investigate whether
similar persistence occurs in diffusion models. Our findings reveal that none of
the tested watermarking methods transfer their signal when used for fine-tuning
a second model. This means that images generated by this new model exhibit
detection results for the watermarks of the original model indistinguishable from
random guessing. These results indicate that existing techniques are insufficient
for ensuring watermark propagation through the model derivation chain and that
novel approaches are needed to achieve effective and resilient watermark transfer
in diffusion models.

1 INTRODUCTION

As AI-generated content becomes increasingly realistic, concerns over AI-driven disinformation
and copyright infringement continue to grow. High-fidelity generative models, such as Stable
Diffusion (Rombach et al., 2022), have made synthetic media creation more accessible, raising
critical issues regarding misuse, ownership, and content authenticity (Crothers, 2022). In response,
regulatory efforts have emphasized the need for greater transparency, urging AI developers to
implement watermarking techniques for content attribution and provenance tracking (Biden, 2023;
California State Legislature, 2024; European Union, 2024).

To address these concerns, various watermarking techniques have been developed to embed identifi-
able signals within AI-generated images (Fernandez et al., 2023; Wen et al., 2023; Gunn et al., 2024;
Yang et al., 2024). These watermarks serve as a means of attributing images to a specific diffusion
model. However, an unresolved challenge is whether these watermarks persist when AI-generated
images are repurposed to train a new diffusion model. If the watermark does not transfer, it exposes a
gap in current techniques, rendering them less effective in preventing model misuse and protecting
ownership rights.

In the context of Large Language Models (Sander et al., 2024) explores the radioactivity of wa-
termarked text—its ability to leave detectable traces when used to fine-tune another model. Their
findings show that even when the watermark is not directly visible, its residual signal can persist in a
fine-tuned model’s outputs. The strength of this effect depends on the watermark’s robustness, its
prevalence in the training data, and the fine-tuning process. This unintended consequence makes it
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possible to identify models trained on watermarked content, helping to trace data provenance, detect
unauthorized use, and evaluate the influence of synthetic data on model behavior.

Inspired by these findings, we examine whether images generated by watermarked diffusion models
transfer detectable traits when used to fine-tune subsequent generative models. We find that none of
the tested watermarking techniques transfer in the case of latent diffusion models. Although certain
watermarking methods, such as Stable Signature (Fernandez et al., 2023), Tree-Ring (Wen et al.,
2023), and PRC (Gunn et al., 2024) watermarking, enable perfect watermark detection in images
generated by the original model, applying the detection algorithm to images generated by a fine-tuned
model results in detection performance no better than random guessing.

Our findings indicate that the inability of watermarking methods to persist through fine-tuning in
diffusion models is closely related to their vulnerability to visual paraphrasing attacks Barman et al.
(2024). Given these limitations, we conclude that developing transferable watermarking techniques for
diffusion models requires new methodologies that ensure robust watermark propagation throughout
the model derivation chain.

2 BACKGROUND

In text-to-image models, watermarks are designed to be imperceptible to the human eye yet detectable
by a specialized detection algorithm. Image watermarks must possess several essential properties.
Undetectability ensures that the watermark remains imperceptible to unauthorized parties. Unforge-
ability guarantees that an adversary cannot reproduce the same watermark. Robustness ensures that
the watermark remains detectable even under adversarial attacks. In this work, we consider the
following watermarking methods:

A Recipe for Watermarking Diffusion Models. Zhao et al. (2023) propose a method that utilizes an
pretrained encoder-decoder structure to embed a predefined binary signature into the training data of
an Elucidated Diffusion Model (EDM) (Karras et al., 2022). The diffusion model is then trained on
this watermarked dataset, causing it to reproduce the watermark in its generated images. A watermark
decoder is subsequently used to extract and verify the binary signature from these outputs. We refer
to this approach as the Recipe method.

Stable Signature. The Stable Signature method (Fernandez et al., 2023) introduces a watermarking
technique for Latent Diffusion Models (LDMs) (Rombach et al., 2022), leveraging the model’s
structure. The method fine-tunes the latent decoder to embed an invisible binary signature in every
generated image. This signature can later be recovered using a pretrained watermark extractor.

Tree-Ring. Wen et al. (2023) propose embedding a structured pattern into the initial noise vector used
in diffusion model sampling. By structuring these patterns in the Fourier space, the method achieves
a high level of robustness against common image transformations, such as cropping, dilation, and
rotation. Unlike the Stable Signature approach, which modifies the decoder, Tree-Ring Watermarking
influences the sampling process itself, allowing for watermark detection by inverting the diffusion
process and analyzing the retrieved noise vector.

PRC Watermarking: PseudoRandom Code (PRC) watermarking (Gunn et al., 2024) utilizes the
random generation of an initial noise vector. This noise vector is sampled based on a pseudorandom
error-correcting code (Christ & Gunn, 2024), enabling watermark detection. Given an image, the
original noise vector can be reconstructed, allowing the identification of the specific random code
used to generate the image.

3 PROBLEM FORMULATION

Consider a diffusion model DM1, trained on a dataset X0, that has been watermarked using a
method w. This model is then used to generate a collection of images X1, which inherently carry
the watermark i.e.,, an appropriate detection algorithm, specific to w, can successfully identify the
watermark signal in X1. Next, X1 is used as a training dataset for a second diffusion model, DM2.
Our goal is to determine whether the watermark signal persists in the images X2 generated by DM2.
If the watermark remains detectable in X2, we consider the watermarking method w to be radioactive,
indicating that the watermark transfers through generated data.
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Figure 1: Radioactivity in diffusion models.

4 EXPERIMENTAL EVALUATION

Experimental Setup. We evaluate the transferability of watermarks across two distinct DM types:
one operating in image space and the other in latent space.

For our experiments on the image space DM, we employ an EDM model architecture (Karras et al.,
2022) and the CIFAR-10 dataset (Krizhevsky, 2009). We investigate the Recipe framework as
proposed by Zhao et al. (2023). The first model, referred to as DM1, is trained unconditionally on
the watermarked images X0. In accordance with the method, we embed the watermark directly into
the training data X0 of DM1. We then generate 50,000 images—matching the number of training
samples used for DM1—to train a second model, DM2, using the same hyperparameters.

For the assesment on LDMs, we consider Stable Diffusion 2.1 (Rombach et al., 2022) and the MS
COCO 2014 dataset (Lin et al., 2014). For the Recipe, we adopt a procedure analogous to the one
used for image-space models described above. In the case of Stable Signature, Tree-Ring, and PRC
watermarks, fine-tuning DM1 on X0 with an embedded watermark is unnecessary, as the watermark
in those methods is directly embedded in DM1’s output. Consequently, we only fine-tune DM2 on
the dataset X1 generated by DM1, simulating full training, following the MS COCO captions.

In the case of LDMs, we also examine an extreme scenario where DM2 (and DM1 in the case of
Recipe) is fine-tuned on a single image for an exceptionally high (4000) number of epochs to enforce
the transfer of a specific watermark instance.

4.1 RESULTS

4.1.1 INSIGHTS INTO IMAGE SPACE DIFFUSION MODELS

Data-level watermarks transfer in the image space. We find that in image-space DMs, the
watermarking method Recipe (Zhao et al., 2023) successfully transfers from the output of DM1 to
DM2. This aligns with expectations: when a watermark is present in the training data and propagates
to the output of DM1, it should implicitly transfer to the output of DM2 as well, given that both
models perform the same task. The EDM architecture facilitates this transfer, as images are directly
generated and learned in image space. This direct reconstruction of pixel values, without abstraction
into the latent space, enhances the retention of watermarks.

Table 1: We find no transferability of watermarks in LDMs. We evaluate two distinct types of
diffusion models: one operating in image space (EDM) and the other in latent space (LDM). For
the Recipe method, we also assess watermark detection in the training data of DM1. We analyze
four different watermarking methods using identical model fine-tuning hyperparameters. The bitwise
accuracy of the reconstructed watermark is reported for Recipe, Stable Signature, and PRC. When the
bitwise accuracy reaches 50%, the watermark is indistinguishable from random noise and cannot be
reliably detected. Since Tree-Ring does not rely on a bitwise key, we instead report TPR@FPR=1%,
which measures the true positive rate at a 1% false positive rate for detecting watermarked images. In
this case, TPR=1% corresponds to random guessing.

Type of M1 Type of M2 Method Metric Output of M1 Output of M2

EDM EDM Recipe TPR@FPR=1% 82.5 82.2
LDM EDM Tree-Ring TPR@FPR=1% 100 80.39

LDM LDM Recipe BA 49.9 -
LDM LDM Stable Signature BA 100 49.9
LDM LDM PRC BA 100 50.0
LDM LDM Tree-Ring TPR@FPR=1% 100 1
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4.1.2 INSIGHTS INTO LATENT DIFFUSION MODELS

Table 2: Extensive fine-tuning on a single watermarked sample does not enforce watermark
transfer. Given the observed lack of watermark transferability in LDMs, we extend our analysis to
an extreme scenario aimed at transferring a specific watermark instance. We report bitwise accuracy
for Recipe, Stable Signature, and PRC, as well as TPR@FPR=1% for Tree-Ring.

Type of M1 Type of M2 Method Metric Output of M1 Output of M2

LDM LDM Recipe BA 53.2 51.5
LDM LDM Stable Signature BA 100 44.7
LDM LDM PRC BA 100 51.2
LDM LDM Tree-Ring TPR@FPR=1% 100 1

We find no transferability of watermarks in LDMs. Table 1 highlights the contrasting behaviors
of EDM and LDM architectures in watermark transferability. Given these findings, we also conduct
an experiment to analyze an extreme scenario where LDMs are extensively fine-tuned on a single
instance of a watermarked image in an attempt to force watermark transfer. Table 2 shows that even
under such conditions, the watermark does not transfer through fine-tuning, resulting in random
detection outcomes.

Figure 2: The LDM autoencoder acts as a filter for the Recipe data-level watermark. Left:
original watermarked image with 100% bitwise accuracy, Middle: difference × 2, Right: image
after en-decoding by the SD2.1 autoencoder structure with 49.9% bitwise watermark accuracy, i.e.,
guessing.

The autoencoder acts as a filter for data-level Recipe watermark in LDMs. For the Recipe method,
we observe that the watermark successfully transfers in EDMs but fails under full fine-tuning in the
LDM architecture. We attribute this failure to the variational autoencoder (VAE) used in the Stable
Diffusion 2.1 framework, which encodes images into latent space. We hypothesis that in the case
of Recipe the autoencoder effectively acts as a filter, suppressing high-frequency details, including
embedded watermarks. Figure 2 presents an example of a watermarked image used for fine-tuning
SD2.1. We observe that, after passing through the VAE, the watermark’s detection bitwise accuracy
in the image drops to 49.9%.

Watermarking methods explicitly designed for LDMs also show no signs of transferability. The
Stable Signature, Tree-Ring, and PRC watermarking techniques fail to transfer from DM1 to DM2.
However, we find that for these methods, the watermark remains intact after being encoded into the
latent space of SD2.1, suggesting that an alternative factor inhibits its transferability.

Figure 3 presents example images generated by DM1 and DM2 with the Stable Signature watermark.
In Figure 3a, the watermark is clearly detectable, whereas in Figure 3b, it is no longer traceable.
Additionally, the two images exhibit noticeable differences in composition and color. While the
semantic structure remains consistent, the spatial layout differs significantly. This variation in image
composition resembles a visual paraphrasing attack (Barman et al., 2024). Current watermarking
techniques remain vulnerable to such transformations, highlighting a critical challenge in ensuring
watermark robustness and transferability. Additional examples for other watermarking methods are
presented in Figure 4 and Figure 5.
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(a) DM1: bitwise accuracy 100% (b) DM2: bitwise accuracy 49%

Figure 3: Comparison of the output of DM1 and DM2 and the Stable Signature watermark.

(a) DM1:bitwise accuracy 100% (b) DM2:bitwise accuracy 51%

Figure 4: Comparison of the output of DM1 and DM2 and the PRC watermark.

5 CONCLUSION AND FUTURE WORK

In this work, we assess the transferability of watermarks from one DM to another across four
watermarking methods and two model architectures. Our results show that watermark transfer occurs
only in one of the architectures—specifically, in image-space DMs. For the Recipe watermarking
method, we attribute this behavior to the embedding process in the latent space of LDMs. Furthermore,
we demonstrate that for watermarking methods designed for LDMs, fine-tuning a second DM on
watermarked images behaves similarly to a visual paraphrasing attack, which inherently disrupts
watermark integrity. These findings highlight the need for more robust watermarking approaches
capable of withstanding such attacks.

An effective approach to transferable watermarking may involve embedding signals directly in the
data space, ensuring they are strong enough to persist through the autoencoder, which naturally filters
out high-frequency signals. Initial experiments with the method proposed by Wang et al. (2024),
which detects unauthorized data usage by injecting imperceptible modifications into training data,
show promising results: the signal successfully transfers through the fine-tuning process. However,
this approach significantly degrades the generative performance of fine-tuned models, making it more
suitable as a defensive mechanism against unauthorized data usage rather than a lossless watermarking
solution. Future research could focus on designing watermarking methods that not only transfer
through fine-tuning but also preserve the generative quality of DMs.
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A EXPERIMENT DETAILS

The EDM model is trained unconditionally for 200 epochs with a batch size of 512 with other
hyperparameters following Zhao et al. (2023).

In our experiments for LDMs, we perform full finetuning of the Stable Diffusion 2.1 (Rombach et al.,
2022) model on the MSCOCO (Lin et al., 2014) or its synthetic counterpart regenerated with the
diffusion model. We finetune all models for 10 epochs, with batch size = 4 and learning rate = 1e− 4.
We use 512×512 images.

B ADDITIONAL FIGURES

(a) DM1: TPR@FPR=1% 100% (b) DM2: TPR@FPR=1% 1%

Figure 5: Comparison of the output of DM1 and DM2 and the Tree-Ring watermark.
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