Under review as a conference paper at ICLR 2026

HARNESSING ON-DEVICE LARGE LANGUAGE MODEL:
EMPIRICAL RESULTS AND IMPLICATIONS FOR AI PC

Anonymous authors
Paper under double-blind review

ABSTRACT

The increasing deployment of Large Language Models (LLMs) on edge devices,
driven by model advancements and hardware improvements, offers significant
privacy benefits. However, these on-device LLMs inherently face performance
limitations due to reduced model capacity and necessary compression techniques.
To address this, we introduce a systematic methodology—encompassing model
capability, development efficiency, and system resources—for evaluating on-
device LLMs. Our comprehensive evaluation, encompassing models from 0.5B
to 14B parameters and seven post-training quantization (PTQ) methods on com-
modity laptops, yields several critical insights: 1) System-level metrics exhibit
near-linear scaling with effective bits-per-weight (BPW). 2) A practical thresh-
old exists around ~3.5 effective BPW, larger models subjected to low-bit quan-
tization consistently outperform smaller models utilizing higher bit-precision.
3) As model size decreases, the primary performance bottleneck potentially
shifts from computation to communication. 4) Determined by low-level im-
plementation specifics power consumption on CPU, computation-intensive op-
erations spend more power than memory-intensive ones. These insights offer
practical guidelines for the efficient deployment and optimized configuration
of LLMs on resource-constrained edge devices. Our codebase is available at
https://anonymous.4open.science/r/LLMOnDevice/.

1 INTRODUCTION

Large language models (LLMs) have revolutionized modern applications through their advanced text-
generation capabilities (Achiam et al., 2023} Liu et al.| [2024). While traditionally cloud-dependent,
a paradigm shift towards on-device deployment is emerging (Chen & Li, 2024; Hu et al., [2024),
enabled by breakthroughs in efficient model design (Zhu et al., 2024)) and advancements in edge
computing hardware. This transition also addresses critical privacy concerns: on-device execution
eliminates remote data transmission, positioning these models as essential tools for privacy-sensitive
domains such as healthcare (Thirunavukarasu et al., 2023)) and finance (Wu et al .| 2023)).

Despite these advantages, on-device LLMs face inherent limitations due to their reduced parameter
count and the use of compression techniques like quantization and pruning (Zhu et al., 2024)), which
restrict their performance potential (Xu et al.|[2024). Nonetheless, studies show they perform routine
tasks—such as text summarization, intent recognition, and local query resolution—with adequate
competence (Team et al.| [2025). However, the lack of a comprehensive evaluation leaves their true
capabilities underexplored. As these models evolve rapidly, establishing a comprehensive evaluation
framework is crucial to ensure reliability, scalability, and alignment with user needs.

Numerous methods and readily available benchmarks have been proposed for evaluating the practical
viability of LLMs for on-device deployment. For instance, MLPerf Client (MLCommons Association,
2025) evaluates Time to First Token (TTFT) and Tokens Per Second (TPS) for the 4-bit quantized
Llama 2 model (Touvron et al.| [2023)) across tasks inspired by real-world applications, such as
content generation and text summarization. Similarly, LocalScore (Pais| [2025]) assesses pre-filling
throughput, text generation throughput, and TTFT for 4-bit quantized models of 1B, 8B, and 14B
parameters. Power consumption metrics have also been explored, as demonstrated by [Stevens| (2024)
who measure consumption in Watt-hours.

https://anonymous.4open.science/r/LLMOnDevice/

Under review as a conference paper at ICLR 2026

However, a common limitation is that most existing works typically concentrate on a subset of metrics,
often evaluating accuracy, efficiency, or power consumption in isolation. While |Husom et al.| (2025)
concurrently evaluated output accuracy, inference performance, and energy efficiency, their analysis
lacks a detailed examination of how these metrics are influenced by varying workloads (e.g., model
size, token length) and specific methodologies (e.g., CPU operator implementations for quantization
techniques).

To address these limitations, we propose a tripartite evaluation framework for on-device LLM in-
ference that systematically considers: 1) Model capability: assessing task-specific accuracy using
standardized benchmarks. 2) Deployment efficiency: quantifying generation throughput and latency
under practical hardware constraints. 3) System resource utilization: analyzing resource consumption
and potential contention, particularly in environments with concurrent applications. This multidimen-
sional framework aims to provide a holistic understanding of the scenarios where, and methodologies
by which, on-device LLMs can effectively serve as alternatives to cloud-based solutions.

Our investigation employs a representative consumer-grade Windows laptop with a single CPU and
16GB RAM, mirroring typical user hardware configurations. Through rigorous experimentation,
we address three pivotal questions: 1) We establish the maximum model size that maintains accept-
able system responsiveness during concurrent multitasking. 2) We dissect the trade-offs between
quantization precision levels (4-bit to 8-bit) across our evaluation dimensions, revealing nonlinear
relationships between bit-width reduction and performance degradation. 3) We compare different
post-training quantization methods, demonstrating how algorithmic choices affect deployment out-
comes. These findings provide actionable insights for optimizing the balance between model efficacy
and resource efficiency in edge computing environments. Our primary contributions are:

Comprehensive Evaluation of On-Device LLM Inference: We conduct an extensive empirical study
of LLM inference on edge devices using the Llama.cpp framework. The investigation encompasses
eight LLMs of diverse parameter scales, subjected to seven distinct quantization methods. Model
capability is benchmarked across five open-source datasets, while inference efficiency and resource
utilization are assessed under four different input token lengths. This comprehensive methodology
spans diverse model architectures, quantization levels, task types, and workloads.

Deployment Insights for Practical Scenarios: We offer actionable insights into the deployment
of LLMs in production environments on edge devices. This includes an analysis of the trade-offs
between task accuracy and deployment efficiency, guiding optimal model and quantization selection.

Guidance for LLM Inference Architecture and Acceleration: We provide recommendations for
architectural optimizations pertinent to LLM inference frameworks. We offer insights for accelerating
LLM inference on resource-constrained edge devices by analyzing potential bottlenecks, particularly
the increasing communication overheads associated with model sizes.

2 PRELIMINARIES

Quantization. Deploying LLMs on resource-constrained devices requires model compression (Zhu
et al.,2024), with post-training quantization being a leading strategy due to its ability to reduce model
size and computational cost with minimal performance impact. A primary framework categorizes
quantization methods into symmetric and asymmetric variants based on their alignment with the
origin. Following |ggml-org| (2024])), let x € R be an original (pre-quantization) value and q its
quantized counterpart, using n € N bits of precision, symmetric quantization employs n-bit signed
integers, where the discrete quantized value q lies in the range {—2"~1 ... 2"=1 — 1}, A scaling

factor s € R is computed as s = @1‘7’2", where || max is the maximum absolute value of z. Denoting
rounding by Round(-), g is computed as

¢ = max (—2”_1, min (Round (f) Jont 1)) .

Asymmetric quantization employs n-bit unsigned integers, resulting in g € {0,...,2" — 1}. Let
M = ZTyin and Ty, be the minimum and maximum values of the input data x, respectively. The
scaling factor s, which maps the input range [m, Zmax] to approximately [0, 2" — 1], is computed as

Zwax— The input x is then quantized as ¢ = max (0, min (Round(%), 2" — 1))

S = on_1 -

Quantization methods in 11ama.cpp. 1lama.cpp (ggml-org, 2024) stands out as a crucial
tool in the landscape of on-device LLM research and development due to its open-source and

Under review as a conference paper at ICLR 2026

cross-platform nature. The quantization schemes n_0 and n_k implemented in 11ama. cpp is
adopted in our study. The n_0 method employs symmetric quantization, where weights are scaled
uniformly using a zero-centered range, eliminating the need for zero-point offsets. In contrast, the
n_k framework uses asymmetric strategy and further extends through five synergistic enhancements:
1) Hierarchical parameter grouping, which recursively quantizes scale s and offset m metadata to
reduce overhead. 2) Activation-guided importance matrices that prioritize high-impact dimensions
during quantization, mitigating accuracy loss from skewed weight distributions. 3) Post-quantization
convex optimization to refine scales and zero-points by minimizing layer-wise reconstruction error.
4) Perturbative search algorithms that iteratively adjust quantized values to escape local minima,
improving parameter recovery. 5) Heterogeneous bit allocation, assigning different precision to
different weight matrices.

3 METHODOLOGY

This section outlines the evaluation methodology employed for on-device LLMs, encompassing the
selection criteria for quantization methods and models, and the evaluation framework of 1) model
capability, 2) deployment efficiency, and 3) system resource utilization, respectively.

3.1 MODEL AND QUANTIZATION SELECTION

This study considers the Qwen 2.5 (Team), |2024b)) and Llama 3 (Team), |2024a) series of LLMs due to
their widespread adoption and popularity within the research community and industry. Specifically,
Qwen 2.5 models with 0.5B, 1.5B, 3B, 7B, 14B parameters and Llama 3 models with 1.5B, 3B, 8B
parameters are selected for evaluation. The upper limit of 14B parameters was chosen as it represents
the largest model size that can be reliably deployed on a laptop equipped with 16GB of RAM after
applying quantization techniques, enabling a practical on-device evaluation.

For effective on-device LLM deployment, both the quantization method and the resulting data format
are critical considerations. The choice of quantization method, such as symmetric or asymmetric
quantization, block-wise or per-tensor quantization, directly influences the trade-off between model
size reduction and potential accuracy loss. The data format resulting from quantization, which
dictates the bit-width and representation of the quantized weights, significantly impacts memory
footprint and computational efficiency. Thus, considering the availability in 11ama . cpp, seven
quantization methods i.e., g8_0, g5_0, g4_0, g5_k, g4_k, g3_k, and g2_k, are adopted in this
study. Table [3|details a systematic comparison of these methods across key characteristics, where d;
denotes primary layer, ds denotes secondary layer, and BPW denotes the resultant bits per weight.

3.2 MODEL CAPABILITY

Datasets. We have selected five diverse benchmarks that encompass a broad spectrum of compe-
tencies. GSM8K (Cobbe et al., [2021) emphasizes multi-step reasoning by presenting grade-school
mathematics problems. HellaSwag (Zellers et al.,|2019) evaluates commonsense reasoning, challeng-
ing models to infer plausible continuations in everyday scenarios. Similarly, MMLU (Hendrycks
et al}|2021) spans a wide array of disciplines, providing an extensive evaluation of general knowl-
edge. Together, these benchmarks facilitate a comprehensive assessment of a model’s performance,
resilience, and adaptability under resource constraints. HumanEval (Chen et al., 2021) assesses the
model’s capabilities in generating precise and efficient code, reflecting practical software development
tasks. Lastly, Truthful QA (Lin et al., [2022]) examines the reliability of factual outputs and mitigates
the risks related to hallucinated information.

Evaluation Metrics. Evaluation metrics for the aforementioned tasks must be tailored to their unique
characteristics to ensure accurate and meaningful assessment of model performance. Each task
presents distinct challenges and objectives, necessitating the use of specialized metrics that align with
its specific requirements. Crafting task-specific evaluation metrics not only enhances the precision
of benchmarking but also captures the nuanced capabilities of language models, ensuring holistic
evaluation. Specific methodologies for metric construction per dataset are detailed in Section[A.4]

We adopt 1lm-evaluation—harness (Gao et al., [2024) (version 0.4.8) as the evalua-
tion tool to align with Open LLM Leaderboard so that all our evaluations and comparisons

Under review as a conference paper at ICLR 2026

are fair and clear. Given the incomplete native support of lm-evaluation-harness (ver-
sion 0.4.8) for 11lama.cpp, we develop a customized evaluation mechanism by extending
Im-evaluation-harness to ensure comprehensive functionality. We keep the default set-
tings on most hyper-parameters such as temperature and top-p threshold. We set the same number of
few shots according to the Qwen 2.5 technical report (Team, 2024b): 4-shots for GSM8K, 10-shots for
HellaSwag, 5-shots for MMLU, and 0-shot for TruthfulQA and HumanEval. To make the evaluation
results consistent, the same fewshot setting is also applied to Llama 3 models.

3.3 DEPLOYMENT EFFICIENCY

Datasets. To evaluate efficiency and sustained operational performance, we conduct text generation
tasks employing extensive context sequences. These tasks utilize synthetic data generated by LLMs
under evaluation. To simulate real-world application scenarios, initial inputs consist of text segments
with lengths of 54, 118, 246, or 502 tokens. Each segment is prefixed with a constant 10-token
(counted by 11ama . cpp) instructional prompt (Write a 50000-word article based on this text:) to
elicit long text generation. Thus, the total input lengths are 64, 128, 256, and 512 tokens, respectively.
All generation processes are uniformly terminated upon generating 1024 tokens.

Evaluation Metrics. The primary metric for LLM inference efficiency is throughput, measured in
tokens per second. We evaluate throughput independently for the prefill (input processing) and decode
(token generation) stages, defining it as the number of tokens processed divided by the execution time.
For our experiments, all performance metrics are obtained directly from the runtime logs provided by
the 11lama . cpp framework. We have verified the accuracy of these logs; our manual measurements
of latency and throughput align with the logged values to three decimal places.

To ensure reliable performance measurements, we first pre-warm the 11ama . cpp with three prelim-
inary runs to mitigate cold-start latency. And we fix the temperature and seed parameters to
ensure reproducibility. In the event that a run fails to produce the target 1024 tokens, these parameters
are adjusted, and the trial is repeated. The reported throughput is the average of three independent
runs, with the KV-cache cleared before each trial to ensure measurement independence.

3.4 SYSTEM RESOURCE UTILIZATION

Datasets. Consistent with the setup in Section we evaluate the performance of token genera-
tiontion with input lengths of 64, 128, 256, and 512 tokens.

Evaluation Metrics. Resource utilization is quantified by three primary metrics: CPU utilization,
memory occupancy, and power consumption. Windows Performance Recorder (WPR) and Windows
Performance Analyzer (WPA) are employed to systematically quantify and analyze system-level
resource consumption throughout application execution, specifically monitoring CPU utilization,
memory occupancy, and power draw. The psut il Python library is employed to quantify memory
consumption. This library facilitates the retrieval of system and process information, including
detailed memory usage statistics. Our analysis focuses on the Resident Set Size (RSS), representing
the non-swapped physical memory utilized by the LLM inference process. The key metric adopted
is Peak RSS, defined as the maximum physical RAM consumed by the process at any point during
its execution, thereby capturing the worst-case memory footprint. The specific psut il metric for
RSS on Windows corresponds to the “wset” field, aligning with the “Memory (Working Set)” in Task
Manager, consistent with system-level reporting.

Energy consumption is assessed using the Windows Energy Estimation Engine (E3), an integrated
real-time power modeling system. E3 translates hardware activity metrics into energy estimates
for various system components. To optimize data collection and minimize extraneous recording, a
customized Windows Performance Recorder (WPR) profile is developed through a structured XML
configuration. This tailored profile enables targeted logging of energy-relevant counters.

4 EXPERIMENTS

Our experiments utilize 1 1ama—cpp-python (v0. 3. 7) (Andrei, 2024)), an open-source Python
binding for 11ama . cpp. The evaluation platform is a consumer-grade laptop with a 12-core, 2.20
GHz Intel Core i7-1360P CPU, 16 GB of 5600 MT/s DDR5 RAM, and an NVMe SSD, selected to

Under review as a conference paper at ICLR 2026

Table 1: Performance of selected Qwen 2.5 (Team, 2024b) instruction-tuned models.

Quantization
Models & Tasks fpl6 980 g5k g5.0 gd k g4 0 g3k g2k

GSMSK (Cobbe et al.|[2021) 89.08 89.76 88.86 90.45 89.01 84.46
HellaSwag (Zellers et al.]|2019) 85.09 8478 84.72 84.24 8393 81.76
14B | MMLU (Hendrycks et al..[2021) 79.74 79.75 79.55 79.43 78.86 75.74
HumanEval (Chen et al.[[2021) 69.51 6951 6890 6890 69.51 62.20
Truthful QA (Lin et al.][2022) 68.64 69.63 6893 6750 66.92 65.89

GSMBK (Cobbe et al.][2021) 86.73 86.05 87.11 8552 8620 8446 76.19
HellaSwag (Zellers et al.[[2019) 8132 81.21 81.19 8094 80.59 79.79 7748
7B | MMLU (Hendrycks et al.;[2021) 7424 7427 7415 7426 74.04 7323 68.58
HumanEval (Chen et al.][202T) 70.73 67.68 6890 64.63 58.54 6341 53.66
Truthful QA (Lin et al.][2022) 64.74 6425 6445 63.80 6222 6444 62.25

GSMSK (Cobbe et al.|2021) 80.89 80.29 78.77 80.82 76.80 7536 62.62 4852
HellaSwag (Zellers et al.[|2019) | 75.29 75.07 7490 75.10 7486 73.69 70.85 68.56
3B | MMLU (Hendrycks et al.]l2021) | 66.38 66.52 66.06 66.34 65.68 6508 60.15 58.80
HumanEval (Chen et al.]|[2021) 5488 5488 4939 47.56 4878 4512 4634 31.10
Truthful QA (Lin et al.[[2022) 58.67 5859 5838 5894 5838 57.00 56.38 50.16

GSMSK (Cobbe et al.|[2021) 60.80 59.82 59.14 57.85 5277 5330 4647 21.46
HellaSwag (Zellers et al.][Z019) | 67.91 67.92 67.70 67.66 66.81 66.89 6506 59.92
1.5B | MMLU (Hendrycks et al.;[2021) | 60.28 60.36 60.32 59.77 59.76 59.14 57.33 51.30
HumanEval (Chen et al.|[2021) 3720 3780 3476 39.02 37.50 3537 2439 20.73
Truthful QA (Lin et al.][2022) 46.70 46770 4578 4641 4541 4771 4521 46.51

GSMBK (Cobbe et al.|[2021) 3148 3328 31.77 30.86 3033 21.00 25.85 2199
HellaSwag (Zellers et al.]|2019) 50.50 50.37 49.88 50.12 50.20 48.52 49.65 49.04
0.5B | MMLU (Hendrycks et al.|[Z021) | 46.69 46.81 46.09 46.08 46.12 4436 4553 44.83
HumanEval (Chen et al.{ 2021} 29.88 31.71 2683 29.27 28.66 2256 28.05 25.00
Truthful QA (Cin et al.][2022) 4250 4250 42,15 42.61 4251 4040 41.89 40.90

~~

N N e

represent a typical user configuration. Given that the model’s task performance is largely platform-
independent (Schlogl et al.| [2023)), we conducted all performance evaluations on a GPU to capitalize
on its significantly higher inference throughput. These evaluations were performed on a Linux
workstation equipped with two 56-core Intel Xeon Platinum 8480C CPUs and an NVIDIA H800
GPU with 80 GB of VRAM.

4.1 MODEL CAPABILITY RESULTS

Following the experimental setup in Section [3.3] we showcase the performace of selected
Qwen2.5 (Team, 2024b) intruction-tuned models, ranging in sizes from 1.5B to 14B parame-
ters, across aforementioned tasks GSM8K (Cobbe et al., [2021), HellaSwag (Zellers et al., [2019)),
MMLU (Hendrycks et al.,[2021)), HumanEval (Chen et al., [2021)), and Truthful QA (Lin et al., 2022)
in Table [I] For each model, we evaluate the original fp16 model (except 7B and 14B) with a
series of quantization levels following the experimental setup introduced in Section[3.2] The results
highlight the impact of both model size and quantization methods on task accuracy. From Table|[T}
a clear trend emerges showing that larger models in parameters generally achieve higher accuracy
across almost all tasks, demonstrating their greater capacity for reasoning, knowledge retention, and
adaptability. For example, the 14B models consistently outperform the smaller models, with different
quantization series yielding top scores on GSM8K (Cobbe et al., 2021) (g4_0), HellaSwag (Zellers
et al.,[2019) (g5_k), MMLU (Hendrycks et al., [2021)) (g5_0), and Truthful QA (Lin et al.| 2022)
(g5_.0). Smaller models, such as the 3B and 1.5B variants, show a noticeable decline in accuracy,
particularly on reasoning-intensive tasks like GSM8K and MMLU. It is notable that the 7B models,
particularly the g8_0 model, achieve results on HumanEval (Chen et al.,|2021) that are comparable
to, and even slightly better than, some of the 14B models. While this might seem counterintuitive at
first, such behavior is also observed in (Team) [2024b)).

Within each model size, the choice of quantization has a substantial impact on performance. The
fpl6 model generally achieves the highest accuracy, suggesting that lower quantization levels may
degrade performance due to precision loss. Additionally, the results reveal that larger models are
more robust to variations in quantization levels compared to smaller models. For example, the 14B
model on GSM8K (Cobbe et al.,|2021)) demonstrates only a slight reduction in accuracy, from 89.08%
(a5_k) to 89.01% (g3_k). In contrast, the 1.5B model shows a more pronounced decline, with its
accuracy decreasing from 59.14% (q5_k) to 46.47% (q3_k). The findings from TableT]indicate that
larger models are more resilient to performance loss caused by lower-precision quantization. However,

Under review as a conference paper at ICLR 2026

0.5B 1.5B 3B 7B 14B 3.2-1B 3.2-3B 3.1-8B

7
<]

o
S
T
,
'
o

D W
=]
=)
T
4
|}
S
S
T

)
S
T
w
=)
T
»

$. - = -

| ==t | . g
L L L L L L L L L - 0 L L L L L L L L L L L L
g2 g3 g4 g5 g8 fplé6 g2 93 g4 g5 g8 fplé g2 93 g4 g5 g8 fple g2 g3 g4 g5 g8 fplé

(a) Qwen2.5 Pre-filling (b) Qwen2.5 Decoding (c) Llama3 Pre-filling (d) Llama3 Decoding
Figure 1: Pre-filling and decoding throughput of selected models of Qwen 2.5 (Team, 2024b) and

Llama 3 (Team, |2024a)) against different quantization methods (128-token input).

Biki

———
=¢ ~o

=]

Throughput (tokens/s)

Throughput (tokens/s)

Thrnughp:lt (tokens/s)

Throughput (tokens/s)
$

the g2_k configuration significantly degrades performance across all model sizes, demonstrating
that extreme quantization harms both computational accuracy and representation fidelity. These
results highlight the robustness of larger models, likely due to their higher parameter capacity, and
offer insights for optimizing quantization in smaller models to ensure usability in resource-limited
environments, such as on-device LLMs.

Moreover, task-specific performance provides insights into the models’ strengths and weaknesses.
Tasks like HumanEval (Chen et al.,|[2021]), which involve code generation, exhibit greater sensitivity
to model size and quantization. For example, the accuracy for HumanEval drops sharply in smaller
models, with the 1.5B g5_0 model achieving 39.02% compared to 69.51% in the 14B counterpart.
Truthful QA (Lin et al.| 2022) similarly shows a decline in factual reliability as model size decreases,
highlighting the challenges of maintaining accuracy in smaller models.

4.2 DEPLOYMENT EFFICIENCY RESULTS

We showcase the pre-filling and decoding efficiencies of selected instruction-tuned models of Qwen
2.5 (Team| 2024b) and Llama 3 (Team, 2024a) across the quantization series introduced in Section@
We highlight the impact of model size, prompt length, and quantization methods on efficiency.

Figure [I] depicts throughput as a function of model size with 128 input tokens. Solid bold curves
correspond to the n__k quantization family, while dashed curves indicate the n__0 family. Individual
models, detailed in Section are distinguished by color. Two primary trends are evident: 1) A
monotonic decline in throughput is observed with increasing model scale. 2) The choice of quantiza-
tion method exerts a diminishing influence at larger model scales. These findings suggest that when
deploying LLMs on resource-constrained devices, higher BPW quantization methods offer a balance
between accuracy and computational cost, preserving accuracy with a minimal latency penalty.

Impact of Quantization Method. Moreover, we analyze the impact of quantization technique on
throughput. During decoding (Figures|Ib|and[Id), throughput declines monotonically with increasing
BPW, as higher-precision quantization methods entail greater computational and memory traffic
overhead. This effect is considerably more pronounced than during the pre-filling phase (Figures|Ta]
and[Ic), consistent with decoding being predominantly memory-bound. In addition, operator-level
optimizations within 11lama . cpp amplify the performance advantage of the n_k series; For 4-bit
and 5-bit configurations, variants n_k outperform their counterparts n_0.

During the pre-filling phase (Figures|Ta)and[Ic)), throughput generally decreases as BPW increases.
However, since pre-filling is compute-bound, the impact of CPU computational overhead is magnified
relative to the decoding phase. Specifically, the g5_k quantization scheme achieves a greater speedup
relative to g5_0 due to its integration of 6-bit quantization within its 5-bit framework. Both methods
partition quantized weights across multiple bytes. The 6-bit quantization component within g5_k
requires fewer data concatenation iterations to form 8-bit or 16-bit data units during the unpacking
process (marcingomulkiewicz, |2024). Conversely, this mixed-precision approach, characteristic of
n_k variants, introduces additional bit-shifting operations. For instance, while the g4_ 0 method
employs a single shifting operation to unpack quantized weights into an 8-bit data unit, the more
complex unpacking logic in g4_k (and other _k schemes) may result in slightly reduced throughput
compared to the simpler g4_0. g2_k and g3_k necessitate even more shifting operations and
iterations, leading to lower throughput compared to 4-bit methods (g4_k and g4_0). However, for
very small models, such as Qwen 2.5 0.5B (Figure [Ia)), low-bit quantization can improve cache hit
rates, thereby enhancing throughput. Thus, in such cases, the increased computational overhead
associated with complex unpacking can be offset by gains in memory access efficiency.

Under review as a conference paper at ICLR 2026

0.5B 1.5B 3B 7B 14B 3.2-1B 3.2-3B 3.1-8B

[S]

=]

S

T
I
1
1
¢
1
|
|
.
I
I
[}

.
=N
=)

o
1
1
¢
1
1
1
.
I
1
1
=
S

N
[S)
T
w
S
T

]
=)
T
S
T

Throughput (tokens/s)
)
S

Throughput (tokens/s)

IS)

3
Throughput (tokens/s)
Throughput (tokens/s)

w

S

=)
e
[
il
&
[
]
u
]
1]
]
@

| 7‘:::::?:::3‘:::§7 i 0
64 128 256 512 0 64 128 256 512 64 128 256 512 64 128 256 512

(a) Qwen2.5 Pre-filling (b) Qwen2.5 Decoding (c) Llama3 Pre-filling (d) Llama3 Decoding
Figure 2: Pre-filling and decoding throughput with selected models of Qwen 2.5 (Team), 2024b) and

Llama 3 (Team| |2024a) against different token lengths (5-bit quantization).

Impact of Token Length. Figure 2]illustrates throughput performance as a function of model size
under 5-bit quantization schemes (g5_k and g5_0). During decoding, a fixed output length of
1024 tokens is employed. The observed marginal decrease (3% on 14B and 7B, 5% on 3B) in
throughput with increasing token length indicates minimal growth in communication or computation
overheads, suggesting neither currently constitutes the primary bottleneck. Regarding communication,
model weight transmission overhead is dominant for shorter token sequences, as the incremental
communication cost of the KV-cache is negligible relative to that of the model weights. Conversely,
for smaller models, an increasing proportion of KV-cache communication, relative to model weight
transmission, results in a more significant throughput degradation (7% on 1B, 9% on 0.5B).

As illustrated in Figure[I] the negative impact of BPW on throughput is less pronounced in smaller
models. This trend is particularly evident when analyzing the performance degradation from low
precision (q2) to high precision (fp16), with data presented in Figures [Ta] and During the
computation-intensive prefill stage, increasing the BPW results in a throughput degradation of only
2.3% for the Qwen2.5 0.5B model, compared to a substantial 30.5% for the larger Qwen2.5 1.5B
model. This wide disparity suggests that as model size decreases, the primary performance bottleneck
shifts from computation to communication.

The communication-dominance hypothesis is further nuanced by the results in Figure 2} where longer
input token lengths mitigate the overall throughput degradation from higher Bits Per Weight (BPW).
For example, when increasing the BPW from g2 to £p16 (data in Figures[2a)and 2b), the throughput
degradation for the Qwen2.5 0.5B model is 10.5% (prefill) and 9.2% (decode). In contrast, the
larger Qwen2.5 1.5B model is less affected, with degradation ratios of 3.9% and 3.3%, respectively.
Consequently, the primary bottleneck is contingent on both model scale and workload. This is
particularly salient for deployments on edge devices, where the computational load on the CPU must
be balanced against inherent communication constraints.

4.3 SYSTEM RESOURCE UTILIZATION RESULTS

An analysis of CPU power consumption for quantized LLMs on edge devices reveals a largely stable
power draw across various bit-widths (g2_k to g8_0), with values fluctuating within a narrow
7.9W-9.5W range (Figure [3a). However, subtle inefficiencies in mixed-precision processing are
observed, with g4_0 (9.2W) and g8_0 (9.5W) consuming marginally more power than g5_0
(8.5W). We attribute this to hardware-level optimizations; for example, the alignment of g5_0 with
32-bit registers likely minimizes instruction pipeline stalls, while the irregular bit grouping in g4_0
may incur additional overhead from bit-unpacking operations.

—— 0.5B
~— 1.5B

T - - -
0.5BC11.5B—=3B==m7B

—
T

—— 3B

[P

QX quqA.D QA)‘@S\ q‘>~\‘q‘5~°

Memory (GB)
N W Ot N

CPU Power (W)
T
Il
T T T T
Il Il Il Il Il Il Il Il

S N e O
T

q2k q3k q4-0 g4k q5-0 q5-k q8
(a) CPU Power Consumption. (b) Memory Consumption.
Figure 3: System resource utilization (power in Watt and memory in GB) of Qwen 2.5 series (from
0.5B to 7B). Prompt size of 128 tokens and output size 1000 tokens are fixed.

Under review as a conference paper at ICLR 2026

Qwen2.5-14B
-~ /en2.5-7B
- . A L QwenQ.S-BB
§) Y °~.
~ 80+ i - % N 9 o
\Q T . . \‘ g c
S . N Qwen2.5-1.5B
2\ o leam-=-=.10 .
% 601 \‘\ < ; N s = <
= Llama3.1-8B Y ‘ X * .
8 : Llama3.2-3B s
404 \ N
\
204
0

0 5 10 s 20 25 30 35 40
Decoding Speed (Token/s)

Figure 4: Visualiszation of decoding speed (token/s) and model performance (GSM8K score). Llama

3 and Qwen 2.5 series are evaluated at different quantization scheme (g8_0 to g2_k). The circle

area of each model is proportional to its memory consumption on device.

Quantization bit-width fundamentally alters the relationship between model scale and power con-
sumption (Figure [3a). At g2_k precision, we observe a paradoxical trend where larger models
consume less power; for example, the 7B model uses 8.27W versus 9.33W for the 0.5B model. This
occurs because the workload shifts from being compute-bound to memory-bound at this low precision.
As a result, CPU power draw is dictated by the latency of data movement from memory—during
which the CPU is often underutilized—rather than by the model’s computational complexity.

However, the above trend disappears at g8_0, where the 7B and 0.5B models exhibit minimal
divergence (9.31W vs. 9.65W, 10.34W). We observe two key patterns: 1) Ultra-low bit quantization
(a2_k) enables memory access optimization for larger models (e.g., reduced cache misses due to full
weight residency), overriding computational load increases; 2) High-bit operations (g8_0) saturate
CPU arithmetic units regardless of model scale, diminishing size-related efficiency variations. The
results suggest that aggressive quantization shifts power bottlenecks from computation to memory
subsystems, with diminishing returns as bit-width increases.

Moreover, memory consumption scales near-monotonically with quantization bit-width for all
schemes except g4_ 0. For example, 0.5B models range from 392 MB (g2_k) to 576 MB (g8_0),
and 7B models from 2411 MB to 7297 MB. The g4_0 scheme consistently breaks this trend, exhibit-
ing anomalously high memory usage across all model scales; the 0.5B variant, for instance, requires
597 MB (versus 448 MB for g5_0). This is caused by runtime weight repacking, an optimization
specific to the g4_0 implementation in 11ama . cpp. To enhance computational performance, this
process reorganizes 4-bit weight groups into 32-bit aligned blocks, a design that prioritizes execution
speed over memory efficiency. Apart from this specific implementation detail, memory usage for
other methods scales predictably in proportion to bit-width.

Our analysis indicates that CPU power consumption is fundamentally governed by the balance
between computation-intensive and memory-intensive workloads, not just high-level model properties.
Models that are compute-bound consume significantly more power than those that become memory-
bound, as the latter leads to reduced CPU utilization and frequency. This principle is evident
across various quantization schemes (Figures [3|and[T3). High-power models such as g4_k, q4_0,
and g8_0 sustain high CPU utilization, particularly during decoding. In contrast, low-bit-width
models like g2_k, g3_k, and g5_0 become memory-bound, leading to lower power consumption
manifested through reduced CPU utilization and increased System Agent (SA) power. This trade-off
also explains specific behaviors: g4_ 0 consumes more power than g4_k due to a compute-intensive
prefill phase, while g5_0 uses less power than g5_k by inducing a memory-intensive decoding
phase. Therefore, we conclude that low-level operational characteristics dictated by the quantization
implementation are the primary determinant of CPU power consumption.

Further, we evaluate the interplay between accuracy, speed, and memory consumption, as illustrated
by the Pareto frontier analysis in Figure 4] This analysis reveals three key findings. First, Qwen
2.5 models consistently outperform Llama variants at all scales. Quantization to 4-bit precision
offers a favorable trade-off, accelerating inference by 30-50% with minimal accuracy loss, whereas
further compression below 4-bits leads to severe degradation. Second, robustness to quantization is

Under review as a conference paper at ICLR 2026

scale-dependent. The Qwen2.5 7B model, for instance, maintains accuracy comparable to its 14B
counterpart at double the speed, while sub-3B models suffer disproportionate accuracy losses when
quantized. Moreover, and most critically, model scale is a more dominant factor than quantization
in defining the efficiency-accuracy trade-off. Scaling a model from 7B to 14B parameters sacrifices
significant speed for accuracy, while 4-bit quantization on the 7B model provides a substantial
speedup with a negligible accuracy drop. This establishes model scaling as the primary determinant
of the overall performance balance, with quantization serving as a secondary tool for fine-tuning
speed and memory.

5 CONCLUSION AND DISCUSSION

This paper presents a systematic evaluation of LLM inference on edge devices. Our experimental
results yield several key findings concerning model capability, deployment efficiency, and system
resource utilization across diverse model sizes and quantization methods.

Model Capability. Model capability increases monotonically with BPW and model scale. Qwen
models generally outperform Llama models. Further, large models employing low-bit quantization
demonstrate superior performance compared to smaller models utilizing higher-bit quantization.

Deployment Efficiency. LLM inference throughput is primarily governed by an inverse correlation
with model size and Bits Per Weight (BPW). During the communication-bound decoding phase,
higher BPW typically results in a monotonic decrease in throughput. However, this trend is nuanced
by the computational cost of the specific quantization method. For a fixed bit-width, the efficiency
of the bit-unpacking operation—where methods requiring fewer discrete operations like bit-shifting
yield higher performance—emerges as a critical factor. Furthermore, for sufficiently small models,
communication bottlenecks can be alleviated; their reduced model and KV-cache footprints can
improve cache hit rates and increase throughput, counteracting the general scaling trends. During the
pre-filling phase, the dense computations inherent to batch processing typically render the system
computation-bound, particularly for large models. Consequently, the computational efficiency of the
selected quantization method becomes paramount for throughput in these scenarios. Conversely, for
small models during pre-filling, which are generally less computation-bound, effective management
of communication overheads—facilitated by smaller model and KV-cache sizes—is crucial for
optimizing throughput.

System Resource Utilization. Memory consumption exhibits a monotonic increase with BPW.
Quantization methods characterized by fewer CPU operations during the unpacking stage generally
correlate with higher overall CPU utilization, as computational throughput is less frequently impeded
by this process compared to less efficient alternatives.

The observations lead to the following insights, offered as recommendations for model and quantiza-
tion method selection, particularly for on-device framework development and efficiency optimization:

Trade-off between Model Capability and Deployment Efficiency. For large-scale models, low-bit-
width quantization typically preserves accuracy while offering only marginal gains in deployment
efficiency. Conversely, for small-scale models, low-bit-width quantization achieves accuracy compa-
rable to its high-bit-width counterpart while substantially improving deployment efficiency.

Model Selection for Resource-Constrained Scenarios: In scenarios prioritizing accuracy, the
deployment of large models with moderate quantization precision (e.g., 4-bit) is often advisable, as
this frequently represents an optimal balance among capability, efficiency, and resource consumption.
Conversely, in scenarios where deployment efficiency is paramount, employing small models, also
with moderate quantization precision, can be more effective.

Bottleneck Identification on Edge Devices: On edge devices, the primary performance bottleneck is
highly dependent on model scale. For larger models (>1B parameters), the limited parallelism of CPUs
renders them computation-bound, even during decoding. Consequently, optimizing computational
efficiency is the most effective strategy for improving throughput. In contrast, for smaller models
(<0.5B parameters) in long-context input scenarios, communication overhead potentially becomes
the dominant constraint. Therefore, enhancing data transfer efficiency yields more substantial
performance gains in this regime.

Under review as a conference paper at ICLR 2026

6 REPRODUCIBILITY STATEMENT

This paper is reproducible. The code is open-source. The detailed proofs of theoretical results are
available in the Appendix.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Andrei. Llama-cpp-python. https://github.com/abetlen/llama-cpp-python,
2024. Version 0.3.7.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Wei Chen and Zhiyuan Li. Octopus v3: Technical report for on-device sub-billion multimodal ai
agent. arXiv preprint arXiv:2404.11459, 2024.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

DavidZyy. Introduction of quantization methods in 11ama.cpp. https://zhuanlan.zhihu
.com/p/12729759086, 2024.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster,
Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muennighoff,
Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang Sutawika,
Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework for few-shot
language model evaluation, 07 2024. URL https://zenodo.org/records/12608602.

ggml-org. ggml: Tensor library for machine learning. https://github.com/ggml-org/g
gml, 2023. Commit ££90433.

ggml-org. ggml: Tensor library for machine learning. https://github.com/ggml-org/1
lama.cpp, 2024. Commit 5555c0Oc.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. In International Conference on
Learning Representations, 2021. doi: 10.48550/arXiv.2009.03300. URL https://arxiv.or
g/abs/2009.03300.

Shengding Hu, Yuge Tu, Xu Han, Chaoqun He, Ganqu Cui, Xiang Long, Zhi Zheng, Yewei Fang,
Yuxiang Huang, Weilin Zhao, et al. MiniCPM: Unveiling the potential of small language models
with scalable training strategies. arXiv preprint arXiv:2404.06395, 2024.

Erik Johannes Husom, Arda Goknil, Merve Astekin, Lwin Khin Shar, Andre Kasen, Sagar Sen,
Benedikt Andreas Mithassel, and Ahmet Soylu. Sustainable 1lm inference for edge ai: Evaluating

quantized llms for energy efficiency, output accuracy, and inference latency. arXiv preprint
arXiv:2504.03360, 2025.

jukofyork. Empirical correction of imatrix in 11ama.cpp. https://github.com/ggml-o
rg/llama.cpp/discussions/5263#discussioncomment-11511794, 2024.

Stephanie Lin, Jacob Hilton, and Owain Evans. TruthfulQA: Measuring how models mimic human

falsehoods. In Proceedings of the 60th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 3214-3252, 2022.

10

https://github.com/abetlen/llama-cpp-python
https://zhuanlan.zhihu.com/p/12729759086
https://zhuanlan.zhihu.com/p/12729759086
https://zenodo.org/records/12608602
https://github.com/ggml-org/ggml
https://github.com/ggml-org/ggml
https://github.com/ggml-org/llama.cpp
https://github.com/ggml-org/llama.cpp
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2009.03300
https://github.com/ggml-org/llama.cpp/discussions/5263#discussioncomment-11511794
https://github.com/ggml-org/llama.cpp/discussions/5263#discussioncomment-11511794

Under review as a conference paper at ICLR 2026

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024.

marcingomulkiewicz. (Stupid?) Q6/5 quantization idea. https://github.com/ggml-org/1
lama.cpp/discussions/ 9539, 2024.

MLCommons Association. MLPerf® Client Benchmark: Version 0.6. https://mlcommons .
org/2025/04/mlperf-client-v0-6/, April 2025.

C. J. Pais. Introducing LocalScore: A local LLM benchmark. https://www.localscore.a
i/blog, April 2025. Blog post, Mozilla Builders project.

Alex Schlogl, Nora Hofer, and Rainer Bohme. Causes and effects of unanticipated numerical
deviations in neural network inference frameworks. Advances in Neural Information Processing
Systems, 36:56095-56107, 2023.

Didier Stevens. Quickpost: The Electric Energy Consumption of LLMs. https://blog.didie
rstevens.com/2024/10/06/quickpost-the-electric-energy—-consumpti
on-of-11ms/, October 2024. Blog post.

Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej,
Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Riviere, et al. Gemma 3 technical
report. arXiv preprint arXiv:2503.19786, 2025.

Llama Team. The Llama 3 herd of models. arXiv preprint 2407.21783, 2024a.
Qwen Team. Qwen2.5 technical report. arXiv preprint arXiv:2412.15115, 2024b.

Arun James Thirunavukarasu, Darren Shu Jeng Ting, Kabilan Elangovan, Laura Gutierrez, Ting Fang
Tan, and Daniel Shu Wei Ting. Large language models in medicine. Nature medicine, 29(8):
1930-1940, 2023.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Shijie Wu, Ozan Irsoy, Steven Lu, Vadim Dabravolski, Mark Dredze, Sebastian Gehrmann, Prabhan-
jan Kambadur, David Rosenberg, and Gideon Mann. Bloomberggpt: A large language model for
finance. arXiv preprint arXiv:2303.17564, 2023.

Jiajun Xu, Zhiyuan Li, Wei Chen, Qun Wang, Xin Gao, Qi Cai, and Ziyuan Ling. On-device language
models: A comprehensive review. arXiv preprint arXiv:2409.00088, 2024.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. HellaSwag: Can a machine
really finish your sentence? In Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics, pp. 4791-4800, 2019.

Xunyu Zhu, Jian Li, Yong Liu, Can Ma, and Weiping Wang. A survey on model compression for large
language models. Transactions of the Association for Computational Linguistics, 12:1556-1577,
11 2024. ISSN 2307-387X. doi: 10.1162/tacl_a_00704. URL https://doi.org/10.1162/
tacl_a 00704l

11

https://github.com/ggml-org/llama.cpp/discussions/9539
https://github.com/ggml-org/llama.cpp/discussions/9539
https://mlcommons.org/2025/04/mlperf-client-v0-6/
https://mlcommons.org/2025/04/mlperf-client-v0-6/
https://www.localscore.ai/blog
https://www.localscore.ai/blog
https://blog.didierstevens.com/2024/10/06/quickpost-the-electric-energy-consumption-of-llms/
https://blog.didierstevens.com/2024/10/06/quickpost-the-electric-energy-consumption-of-llms/
https://blog.didierstevens.com/2024/10/06/quickpost-the-electric-energy-consumption-of-llms/
https://doi.org/10.1162/tacl_a_00704
https://doi.org/10.1162/tacl_a_00704

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 COMPARISON OF DIFFERENT LLM INFERENCE FRAMEWORKS

We survey existing LLLM inference frameworks for a CPU-based Windows platform. The results
are shown in Table@ Specifically, frameworks such as TensorRT-LLM, SGLang, and exllama are
incompatible as they are designed for GPU architectures. Although we deployed vLLLM via WSL,
it demonstrated unacceptably low throughput (e.g., 3.07 tokens/s for a 0.5B model), encountered
out-of-memory errors with models larger than 1.5B, and lacked int 4/int 8 quantization support on
its CPU backend. MLC-LLM also performed poorly, yielding extremely slow inference that stalled
after a few tokens. This lack of viable alternatives led us to select 11ama . cpp to investigate the
performance limits of LLMs on consumer hardware, a choice justified by its role as a foundational
backend for many popular tools like Ollama.

Table 2: Comparison of Different LLM Inference Frameworks.

Inference Framework Platforms Limitations
Memory hungry.
vLLM GPUs / Server-level CPUs Lack int4 and int 8 quantization
support on CPU.
Slow on CPU.
TensorRT-LLM NVIDIA GPUs only Not for CPUs.
SGlang GPUs / Server-level CPUs Lack support for consumer CPUs
without AMX Instructions.
exllamav2/v3 Single GPU Only support devices with CUDA.

Extremely slow on consumer CPU.
Vulkan backend, limits memory to
6GB.

MLC-LLM GPU/CPU/Mobile CPU/NPU

A.2 DETAILS OF IMPORTANCE MATRIX

To reduce the precision degradation between de-quantized and pre-quantized values,
llama. cpp (ggml-org, 2024) formulates an optimization problem that leverages activation statis-
tics to construct weight-aware objective functions. Let w € R? denote a d-dimensional learnable
parameter vector, with q € Q¢ representing its quantized counterpart obtained through standard
quantization procedures. Let a € R¢ denotes the corresponding activation vector from the preceding
layer. For each dimension ¢ € {1,2,...,d}, the per-block quantization problem can be formulated as

a quadratic programming problem as min; ,,, E [Z?zl (q; — wi)ai] ? (s and m are the scale factor
and the minimum value defined in Section E]) Taking the reformulation in (DavidZyyl 2024), the
sum-squared operation in the objective above can be simplified into squared-sum form as:

> al(a —wi)ﬂ , (1

where the coefficient a; serves as a weighting factor in the optimization objective.

12

Under review as a conference paper at ICLR 2026

Proof.
-4 2
E Z(Qi - WZ)aZ1
Li=1
[d , d
Expansion of quadratic = =E Z ((qZ - wi)ai) + Z (a; — wi)a;(q; — wy)a; |,
i=1 J=1,j#i

Sum of expectation = = E Z ((ai — wi)ai)2

d
Eliminate Second Term — ~ E Z a?(% - Wi)2] .
O

Empirical studies suggest that parameters with larger magnitudes exhibit greater influence in neural
network computations (]ukofyork 2024). To amplify the significance of these salient parameters
a squared magnitude term x? is incorporated into the weighting factor (jukofyork, 2024). 22 also
serves as a simple approxunatlon of the diagonal entries of Hessian matrices (jukofyork, 2024)
Moreover, to address numerical instability in low-magnitude regimes, block-wise mean squared value
of original data is calculated as o2 = % Z?:l x? (jukofyork, 2024). This regularization prevents
the systematic underestimation of near-zero parameters during quantization (jukofyork, [2024). The

complete importance matrix is therefore formulated as &2 = a?\/09 + x2.

A.3 DETAILS OF SELECTED QUANTIZATION METHODS OF LLAMA.CPP (GGML-ORG) 2023))

We begin by introducing the mini-block technique utilized in 11ama . cpp, which enhances data
representation fidelity by quantizing parameters into smaller, independent groups. LLM parameters
are partitioned into contiguous blocks B;, each of a predefined size d; € N*. Each block B; is
then quantized independently using its own scale factor s; and zero-point (denoted as z;). Thus,
for any parameter w € B;, its quantized value g, is given by ¢, = Q(w; s;, 2;), where Q(+) is the
quantization function. This allows for finer-grained adaptation to the local data distribution within
each block.

The g8_0, g5_0, and g4_0 methods employ symmetric quantization with a single-layer block
structure, grouping 32 weights per block. These methods allocate 8, 5, and 4 bits to weight represen-
tation, respectively, while uniformly reserving 16 bits to store quantization parameters (scale and
minimum values). Due to the additional bit overhead for shared scale parameters, the resulting BPW
for g8_0, g5_0, and g4_0 are calculated as 8.5, 5.5, and 4.5 bits, respectively.

The remaining n_k quantization methods employ distinct precision-mixed strategies tailored to
specific model components, featuring diverse block sizes and bit allocations for quantization pa-
rameters. As detailed in Table 3] the g5_k method utilizes symmetric quantization for half of the
“attention.wv” and “feed_forward.w2” components, structured with a primary block (16
weights) and a secondary block (16 parameters). Here, weights and scale parameters are allocated
6 bits and 8 bits, respectively, resulting in a BPW of 6.5625. For asymmetric quantization, g5_k
employs a 32x8 block configuration with 5 bits for weights and 6 bits for parameters, yielding a
BPW of 5.5. The component-specific configurations in g4_ k mirror those of g5_k, but with reduced
bit allocations: 4 bits for weights and 6 bits for scale parameters, achieving a lower BPW of 4.5.

In the g3_k method, components attention.wv, attention.wo, and feed_forward.w2
utilize a 328 block configuration, allocating 4 bits for weights and 6 bits for scale parameters,
yielding 4.5 BPW. For other components, weights are quantized using a 16x 16 block structure with
3 bits for weights and 6 bits for scale parameters, achieving a reduced BPW of 3.4375. The g2_k
method adopts component-specific configurations analogous to g4_k and g5_k, but with distinct
parameterizations. For attention.wv and feed_forward.w2, a 32x8 block is employed
with 4 bits for weights and 6 bits for scale parameters. The remaining components leverage a 16 x 16

13

Under review as a conference paper at ICLR 2026

Table 3: Selected quantization methods of 11ama . cpp

Series Weight Component Symmetric d; d2 Bits s, mBits BPW
q8_0 All v 32 NA 8 16 8.5
q5_0 All v 32 NA 5 16 55
q4_0 All v 32 NA 4 16 45

attention.wv: Half v 16 16 6 8 6.5625

g5k feed_forward.w2: Half v 16 16 6 8 6.5625
Others X 32 8 5 6 55

attention.wv: Half v 16 16 6 8 6.5625

g4_k feed_forward.w2: Half v 16 16 6 8 6.5625
Others X 32 8 4 6 4.5
attention.wv: All X 32 8 4 6 45
g3_k attention.wo: All X 32 8 4 6 4.5
feed_forward.w2: All X 32 8 4 6 4.5

Others v 16 16 3 6 3.4375
attention.wv: All X 32 8 4 6 45
q2_k feed_forward.w2: All X 32 8 4 6 4.5

Others X 16 16 2 4 2.5625

block structure, allocating 2 bits for weights and 4 bits for scale parameters, further optimizing the
BPW metric.

A.4 DETAILS OF METRIC CONSTRUCTION FOR MODEL CAPABILITY

For GSMBK, there are two types of matching scores: flexible-extract and strict-match.
The former retrieves the last number in the response as the final answer to a mathematical question,
disregarding the exact pattern of the answer. The latter one strictly matches the first number with a
given pattern in the response. We use the maximum number between flexible—extract and
strict-match matching scores as the evaluation metric.

For HumanEval, the model’s code completion ability is assessed using the pass@1 metric. It is
given a function signature and a docstring describing the function, then tasked with completing it.
The pass rate is determined by counting how many generated code snippets pass all test cases.

HellaSwag, MMLU, and Truthful QA are all multiple-choice evaluation tasks. Accuracy is determined
by evaluating the model’s ability to select the correct answer from a set of predefined options. In
HellaSwag and MMLU, model capabilities are examined by presenting contextual information
without explicit choices, utilizing the logits generated during inference to compute the cumulative log
probabilities for each candidate response. For TruthfulQA, we adopt the mc2 score to measure both
truthfulness and informativeness, enabling the model to assign probability values to multiple correct
answers.

A.5 ADDITIONAL RESULTS OF MODEL CAPABILITY

We also showcase the performace of selected Llama 3 intruction-tuned models, ranging in sizes from
1B to 8B parameters, across aforementioned tasks GSMS8K, HellaSwag, MMLU, HumanEval, and
Truthful QA in Table] Similar to the observations on Qwen 2.5 models, we conclude that larger
models in Llama 3 demonstrate superior performance across all tasks compared to smaller models.
For example, on GSM8K, the Llama 3.1 8B £p1 6 model achieves 78.01% accuracy, while the Llama
3.2 1B £pl6 model reaches only 35.03%. Similar trends are observed across other benchmarks,
reflecting the general advantage of model size in capturing and utilizing complex knowledge.

Within each model size, quantization levels significantly impact performance. Lower quantization
levels (e.g. a3_k, g2_k) lead to noticeable performance declines. For instance, the Llama 3.1 8B

14

Under review as a conference paper at ICLR 2026

Table 4: Performance of selected Llama 3 (Team, [2024a) instruction-tuned models.

Quantization
fplé g8_0 g5 _k 950 g4k g4_.0 g3_k g2_k

7794 7733 76,57 7642 76.80 7195 46.17
8049 80.39 80.19 79.85 7994 7893 7737
6842 6825 6822 67.57 66.99 6647 59.46
HumanEval (Chen et al.||2021) 62.80 6341 6220 61.59 61.59 6159 43.29
Truthful QA (Lin et al.[[2022) 5440 54.09 5442 5353 5213 5278 45.68

GSMBK (Cobbe et al.|[2021) 6490 6528 6528 66.26 6391 61.64 59.89 2441
HellaSwag (Zellers et al.||2019) 73.62 73.55 7343 7320 7260 7286 7093 61.29
3.2-3B | MMLU (Hendrycks et al.|2021) | 60.83 60.75 60.44 6030 60.08 59.72 57.09 46.52
HumanEval (Chen et al.||2021) 50.61 48.78 50.61 49.39 51.22 50.61 47.56 26.83
Truthful QA (Lin et al.||2022) 5146 51.66 51.82 5091 52.09 50.26 66.34 45.85

GSMSK (Cobbe et al.{|2021) 35.03 3525 3480 3275 3207 30.78 26091 2.96
HellaSwag (Zellers et al.[2019) | 60.94 61.00 60.76 6098 60.04 5894 5853 45.66
3.2-1B | MMLU (Hendrycks et al.|2021) | 46.27 4635 4591 4594 4429 4440 43.11 3135
HumanEval (Chen et al.||2021) 3415 3415 3598 3293 31.10 2927 2683 4.88

Models & Tasks

GSMSK (Cobbe et al.|[2021)
HellaSwag (Zellers et al.||2019)
3.1-8B | MMLU (Hendrycks et al.|[2021)

~~~ - -

Truthful QA (Lin et al.[[2022) 4339 4352 4343 4347 4424 4351 40.86 4248
0.5B 1.5B 3B 7B 14B 3.2-1B 3.2-3B 3.1-8B
Z400 r Z30FT — = %50 ———— z ————
g N 5 . 5 gaof
301 AR 20T NG ) g
& N ~ £ N e S
5200 T 1 sz4op N 2 2
2. 2 » =3 220 |
100 | 1 S0l & S0f . =) S
E) P E) [ e =) e El - _
2 o s=F=v—°| £, =g -0 | = *—e -0 2 e e
= R S AR S £ £ o ! 2 .
g2 g3 g4 g5 g8 fplé

7q‘2 c£3 c£4 c£5 c£8 fp‘16 c£2 q‘} c£4 c£5 g8 fp‘16 q‘Z c£3 q‘4 c£5 q‘S fpl6
(a) Qwen2.5 Pre-filling (b) Qwen2.5 Decoding (c) Llama3 Pre-filling (d) Llama3 Decoding

Figure 5: Pre-filling and decoding throughput of selected models of Qwen 2.5 (Team, 2024b)) and
Llama 3 (Team, |2024a)) against different quantization methods (64-token input).

model achieves 68.26% on MMLU with £p16 but drops to 66.47% with g3_k and further plummets
to 59.46% with g2_k. Similarly, for the Llama 3.2-1B model, accuracy on MMLU decreases from
46.27% (fpl6) to 43.11% (g3_k) and sharply to 31.35% (g2_k). The drop in quality at g2_k is
particularly pronounced, emphasizing the limitations of extreme quantization.

Both Llama 3 and Qwen 2.5 consistently demonstrate that larger models outperform smaller ones
across nearly all tasks. However, Qwen 2.5’s (Team| 2024b)) 7B models surpass Llama 3 8B models
on all five tasks, despite having a comparable number of parameters. Similar to Qwen 2.5, Llama 3
maintains stable performance with moderate quantization levels (e.g., g8_0, g5_k), but its accuracy
degrades significantly under g2_k. Qwen 2.5 models exhibit better resilience to quantization changes
compared to Llama 3. For example, the Qwen 2.5 14B model on MMLU shows only a minor drop
from 79.74% (qg5_k) to 78.86% (g3_k), whereas the Llama 3.1 8B model experiences a sharper
decline from 68.25% (g5_k) to 66.47% (g3_k). Furthermore, it is noticeable that the quantization
g2_k of the Llama 3.2 1B model proves to be significantly ineffective for tasks such as GSM8K and
HumanEval.

A.6 ADDITIONAL RESULTS OF DEPLOYMENT EFFICIENCY

The subsequent figures present further throughput results of LLMs with different quantization
methods, employing selected quantization methods across input token lengths of 64, 256, and 512.
The results consistently reveal a degradation in decoding throughput with increasing BPW, alongside
variations in pre-filling throughput linked to the operational complexity inherent in the quantization
methods.

Further, the subsequent figures present additional results for LLMs across token lengths of 64, 256,
and 512, employing quantization at 2-bit, 3-bit, 4-bit, and 8-bit precision levels. These results
consistently reveal an exacerbated trend of throughput degradation with increasing model size, further
underscoring the growing impact of computational bottlenecks at larger model scales. Notably, among

15



Under review as a conference paper at ICLR 2026

w2
[~}
N
w

0.5B 1.5B 14B 3.2-1B 3.2-3B 3.1-8B

7
<]

w
=3
=}
T
,
=
=}
T
1
.4
1
IS
S

w
S

S
S
T

]
=1
S
T
L
N
<o
T
g

9
]
T

'S
~

=)

S
T

€]

=]
T

=
- .
~
e _q O
.

-

>

—e=F=t— : ; ‘ ‘ ‘ ‘

- 1 L L - 0 L L L
g2 g3 g4 g5 g8 fplé6 g2 93 g4 g5 g8 fplé g2 93 g4 g5 g8 fple g2 g3 g4 g5 g8 fplé

(a) Qwen2.5 Pre-filling (b) Qwen2.5 Decoding (c) Llama3 Pre-filling (d) Llama3 Decoding

Figure 6: Pre-filling and decoding throughput of selected models of Qwen 2.5 |Team| (2024b) and
Llama 3 [Team| (2024a)) against different quantization methods (256-token input).

-~

Throughput (tokens/s)
[5]
S

Throughput (tokens/s)

Throughput (tokens/s)
P |

Throughput (tokens/s)

e

—— o
=g -0

=}

—-— -0
I I

o

(=1
n
=~}
1z
=~}
.
=~}

7B 14B 3.2-1B 3.2-3B 3.1-8B

'S
S

)
S
S

T
»

o

=)
T

]
.4
1

00 |

@
<)

N}
=}
S

T
.
\
é

N

=)
T
v

50 IS I

=t
-~

=)
=)
T
€]
=)
T

~ | e
=0 _ o .
! .

=

==t |
=

e o~
: et - 7 e -

. . I £ ! = . . . . . . . !
g2 g3 g4 g5 g8 fplé g2 93 g4 g5 g8 fplé g2 93 g4 g5 g8 fplé g2 g3 g4 g5 g8 fplé

(a) Qwen2.5 Pre-filling (b) Qwen2.5 Decoding (c) Llama3 Pre-filling (d) Llama3 Decoding

Figure 7: Pre-filling and decoding throughput of selected models of Qwen 2.5 (Team, |2024b)) and
Llama 3 (Team||2024a) against different quantization methods (512-token input).

Throughput (tokens/s)
S
S

Throughput (tokens/s)
Throughput (tokens/s)
4
Throughput (tokens/s)

=]
T
=}

4-bit quantization methods, g4_0 exhibits superior throughput compared to g4_k, an advantage
attributed to its implementation involving fewer CPU operations.

A.7 ADDITIONAL RESULTS OF SYSTEM RESOURCE UTILIZATION

To facilitate a detailed analysis of system resource utilization, additional metrics are collected
using HWiNFO64. Following a warm-up phase utilizing g2_k quantization, inference scripts are
sequentially executed on the Qwen 2.5 7B and Llama 3.1 8B models. These models are evaluated
with a suite of quantization schemes: g2_k, g3_k, g4_k, g5_k, g4_0, g5_0, and g8_0. Each
model instance underwent approximately 10 minutes of inference, employing 256 input tokens and
generating 1000 output tokens.

Metrics, including CPU utilization, CPU frequency, and System Agent (SA) Power, are sampled using
HWiNFO64. Key observations from this analysis are as follows: The pre-filling phase consistently
exhibits significantly higher instantaneous power consumption compared to the decoding phase;
however, average power consumption is predominantly dictated by the longer decoding phase. SA
Power, an integral power management component within Intel CPU architectures responsible for
regulating elements such as memory controllers, PCle controllers, and display engines, effectively
reflects memory access intensity and bandwidth utilization. Consequently, elevated SA Power levels
observed with the g2_k, g3_k, and g5_0 quantization schemes are indicative of memory-bound
workloads.

B THE USE OF LARGE LANGUAGE MODELS STATEMENT

The use of Large Language Models in this work was restricted to polishing writing.

16



Under review as a conference paper at ICLR 2026

——05B 15B —e— 3B —e— 7B —o— 14B 32-1B —e— 32:3B —e— 3.1-8B

Q r : : T 280 FT T T — z T T T : Q) T T
5300*\_—\’ % .‘\"_0\. 5100* 530,

- .-%60 - . < =

£ B g B

S200 Zuol 1 2.1 220

a. 2 2. 50 a.

Sioof 5 i l——] § [ ——
= 220 | = =10 f 4
o = =} o

E opEeY/—/—t—=r—-1] = (LS : : ol . ‘ ‘ ‘ e | =

= 64 128 256 512 © 64 128 256 512 64 128 256 512 ©

64 léS 25‘6 512

(a) Qwen2.5 Pre-filling (b) Qwen2.5 Decoding (c) Llama3 Pre-filling (d) Llama3 Decoding
Figure 8: Pre-filling and decoding throughput with selected models of Qwen 2.5 (Team) 2024b) and
Llama 3 (Team||20244a) against different token lengths (g2_k quantization).

—e— 0.5B 1.5B —e+— 3B —e— 7B —e— 14B 3.2-1B —e— 3.2-3B —e— 3.1-8B

g ool o —{ & g
Za00} 2 gloor 30l
2 o E :
Eioo N | £so} { Eoop 1
) 5020 2) o 2 e
E3 = = 3
5] o o 10|
2 ———e—— = 23— =1 g
& OF 1 ! ! 1 £ ok ! ! T = ! ! ! ! =

64 128 256 512 128 256 512 64 128 256 512

64 é4 12‘8 25‘() 512
(a) Qwen2.5 Pre-filling (b) Qwen2.5 Decoding (c) Llama3 Pre-filling (d) Llama3 Decoding
Figure 9: Pre-filling and decoding throughput with selected models of Qwen 2.5 (Team, [2024b) and
Llama 3 (Team||2024a) against different token lengths (g3_k quantization).

0.5B 1.5B 3B 7B 14B 32-1B 32-3B 3.1-8B

?::4007.____.__-; — 3 '__‘___.___; %150 T T T ;\é40,‘ T T

2300} el goor 2 2

Eh E Ef | g3or

2200 40T g =

: z Z z

100 | 5020 | S S0 ==t — — o ) [ S ———

3 - ———— —— —— o 3 } il Snlinlis alislisl 1 2 Z10f

E opE==2======1 | 507F==?===‘F==f7 & i i 1 S - ot i i
64 128 256 512 64 128 256 512 64 128 256 512 64 128 256 512

(a) Qwen2.5 Pre-filling (b) Qwen2.5 Decoding (c) Llama3 Pre-filling (d) Llama3 Decoding

Figure 10: Pre-filling and decoding throughput with selected models of Qwen 2.5 (Team, |2024b) and
Llama 3 (Team| |2024a) against different token lengths (4-bit quantization).

- -—-0.5B 1.5B ———-3B ----7B 3.2-1B —-s—-3.2-3B —-e—-3.1-8B
Y [Fo-e--m__l] EO[F--<o-m-_l] fuiso E: ‘
2200} 2 £ 2
= 2T S100f =T
= = = =
£100 £l £ £
2 2 Sh 50 & — — @ = — —e= — — o 23 (0] S At el
g = — = 9= — —0— — — 0o 8 it Sulnls a4 g ]
l:; obr -~ - - "¢ - -9 | E e dhti i ‘ﬁ' e B [f“ kil i s |
64 128 256 512 128 256 512 64 128 256 512

64 128 256 512

64
(a) Qwen2.5 Pre-filling (b) Qwen2.5 Decoding (c) Llama3 Pre-filling (d) Llama3 Decoding

Figure 11: Pre-filling and decoding throughput with selected models of Qwen 2.5 (Team) 2024b)) and
Llama 3 (Team, 2024a)) against different token lengths (g8_0 quantization).

T T
3 IBC13B 8B — 1B A
8 3B / p——
g 10 1@ 7 8B /o
= 8| | g 6 =
5] > gl
3 5 \ B
£ 6 1 g4 4 .
E 4 | =3 o
O 2 y
2+ . 1 - - |
Il Il Il Il Il Il Il
0 1 1 1 1 1 1 1
@2k @3k  q40  gik 50 g5k  g8.0 PEPFPOp¥ Ok
(a) CPU Power Consumption. (b) Memory Consumption.

Figure 12: System resource utilization (power in Watt and memory in GB) of Llama 3 series (from
1B to 8B). Prompt size of 128 tokens and output size 1000 tokens are fixed.

17



Under review as a conference paper at ICLR 2026

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932

~

warm up q2_k q3_k qd k g5 _k qd 0 50 q8 0

} L ’Wm \““""*w“ o

19
o

CPU Frequenq’ld(loHOMHz
A
?
?
-
R
B
-
i
13
i
-
1

°
°

~
S

- et

S

CPU Usage (%)
I §
|- g’
o
I
F
.
i
- =
%
N
.
4
E

o

System Agent Power (W)
5 5 & 8
=
=
_;—?35
S
=
o]
o
-~
e}
‘w
—
,.:gg_
=
?
3

Now
oo
—
—
B

I3
°

o
S
8
s

933
934
936 )

937 ' J

938 1000 2000 3000 4000 5000

940 warm up a2 k a3 k a4 k a5 k 4.0 a5 0 a8.0

941

o4z I e

944

945 J ! |

946 0 1000 2000 3000 4000 5000

s a4 k 45k q4 0 50 8.0

949

950 ’MM

952 ‘

953

954

956 . ey . . .y . .

957 Figure 13: System Resource Utilization (CPU frequency in 100MHz, CPU utilization in percentage,
958 System agent power in Watt) of Qwen 2.5 7B. Prompt size of 256 Tokens and Output size 1000
960

961

962

964

965

966

968

969

970

935

939

943

947 B
951

955 —
059 Tokens are fixed.

963

967

971

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

CPU Frequency (100MHz)

CPU Usage (%)
5w
5

5.5

System Agent Power (W)
s n 58 & 3

N

bAoA
N
\ HH‘«N 7 Lu MHM-M‘- | po | L“W‘“‘w ww;Jm f‘ﬂ :
N

i W m , MW Mm

Figure 14: System Resource Utilization (CPU frequency in 100MHz, CPU utilization in percentage,
System agent power in Watt) of Llama3.1 8B. Prompt size of 256 Tokens and Output size 1000
Tokens are fixed.

19




	Introduction
	Preliminaries
	Methodology
	Model and Quantization Selection
	Model Capability
	Deployment Efficiency
	System Resource Utilization

	Experiments
	Model Capability Results
	Deployment Efficiency Results
	System Resource Utilization Results

	Conclusion and Discussion
	Reproducibility Statement
	Appendix
	Comparison of Different LLM Inference Frameworks
	Details of Importance Matrix
	Details of Selected Quantization Methods of llama.cpp ggmlquant2023
	Details of Metric Construction for Model Capability
	Additional Results of Model Capability
	Additional Results of Deployment Efficiency
	Additional Results of System Resource Utilization

	The Use of Large Language Models Statement

