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ABSTRACT

Hierarchical text classification (HTC) is a challenging problem with two key is-
sues: utilizing structural information and mitigating label imbalance. Recently,
the unit-based approach generating unit-based feature representations has outper-
formed the global approach focusing on a global feature representation. Neverthe-
less, unit-based models using BCE and ZMLCE losses still face static thresholding
and label imbalance challenges. Those challenges become more critical in large-
scale hierarchies. This paper introduces a novel hierarchy-aware loss function for
unit-based HTC models: Hierarchy-aware Biased Bound (H2B) loss. H2B in-
tegrates learnable bounds and biases to address static thresholding and mitigate
label imbalance adaptively. Experimental results on benchmark datasets demon-
strate the superior performance of H2B compared to competitive HTC models.

1 INTRODUCTION

Figure 1: Classification processes of (a)
Global and (b) Unit-based HTC models.

Hierarchical Text Classification (HTC) aims to classify
text into a predefined label hierarchy. HTC currently
faces two fundamental challenges: utilizing structural in-
formation and mitigating label imbalance. As shown in
Figure 1, recent research can be categorized into global
and unit-based approaches based on exploiting feature
representations combined with text and structural infor-
mation. The global approach, HiAGM (Zhou et al.,
2020), HiMatch (Chen et al., 2021), HGCLR (Wang et al.,
2022a), K-HTC (Liu et al., 2023), and HiTIN (Zhu et al.,
2023), generates a holistic feature representation of text
that encompasses an entire hierarchy and use it to com-
pute label scores comprehensively. In contrast, the unit-
based approach, HPT (Wang et al., 2022b) and HiDEC
(Im et al., 2023), generate unit-level feature representa-
tions of text, where a unit refers to a subset of a hierarchy
partitioned according to specific strategies, and classifica-
tion is performed on labels within these units. The unit-
based approach has achieved significant improvements
over the global approach.

However, two significant limitations have emerged from existing research: static thresholding and
label imbalance. Static thresholding is problematic because most HTC models using binary cross
entropy (BCE) predict positive labels using a fixed threshold, typically set at 0.5, when the output
probability exceeds this threshold. Determining optimal thresholds for target labels is challenging as
it requires extensive computations for various units. Label imbalance is also a concern because fre-
quent labels dominate training data, resulting in numerous false negatives. Unit-based HTC models,
such as HPT and HiDEC, address this issue by rebalancing the ratio between positives and negatives
by sampling a subset of a hierarchy as units. In particular, HPT presents a zero-bounded multi-label
cross entropy (ZMLCE) loss using a log-sum-exp operation to deal with the imbalance, but the static
threshold problem still remains.
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To tackle these limitations, this paper introduces a novel hierarchy-aware loss function for unit-
based HTC models: Hierarchy-aware Biased Bound (H2B) loss. Our key innovations in H2B are
as follows. First, we incorporate learnable bounds for all units within a hierarchy to address static
thresholding. These bounds are optimized for various units during training and are used as dynamic
thresholds during inference. Second, in addition to the bounds, we introduce biases for both positive
and negative labels to alleviate the imbalance resulting from overtraining dominant negative labels.
Biases are only used to measure the degree of label imbalance within units during training and are
not utilized during inference. A bias for a positive label amplifies the corresponding bound, whereas
one for a negative label diminishes the corresponding bound. Consequently, the biases help to adjust
the bounds to reduce the impact of the ratio between positive and negative labels.

Through a series of experiments, we demonstrate the effectiveness of our loss function applied to
recent unit-based HTC models, HPT and HiDEC, using three benchmark datasets: RCV1-v2 (Lewis
et al., 2004), NYT (Sandhaus, 2008), and EURLEX57K (Chalkidis et al., 2019). Notably, our loss
function outperforms competitive HTC models on all three benchmark datasets. We comprehen-
sively analyze how the bounds and biases influence static thresholding and label imbalance in HTC.

Our contributions are summarized as follows:

• We propose a novel hierarchy-aware loss function, H2B, for unit-based HTC models to
address static threshold and label imbalance by incorporating learnable bounds and biases.
The bounds are optimized during training and used as dynamic thresholds during inference,
with biases helping adjust the bounds to reduce the impact of the ratio between positive and
negative labels.

• We demonstrate the effectiveness of our loss function applying to recent unit-based HTC
models by comparing competitive HTC models on three benchmark datasets. Our results
confirm the superiority and behaviors of our loss function, supported by in-depth analysis.

2 RELATED WORK

Recent HTC research based on deep learning can be categorized into global and unit-based ap-
proaches, each with its unique way of creating feature representations that incorporate both text and
hierarchy structure.

The unit-based approach generates feature representations at the unit-level by partitioning the entire
hierarchy into units using specific strategies. Each unit corresponds to a subset of labels within a
hierarchy. Various models employ diverse unit construction strategies, including “for-each-class”
(Banerjee et al., 2019), “for-each-parent” (Kowsari et al., 2017; Im et al., 2023), “for-each-level”
(Shimura et al., 2018; Wang et al., 2022b), and “for-each-sub-hierarchy” (Peng et al., 2018). HDL-
Tex (Kowsari et al., 2017) introduces HTC models using DNN, CNN, and RNN architectures.
HTrans (Banerjee et al., 2019) enhances HDLTex by employing transfer learning to preserve path
information. HR-DGCNN (Peng et al., 2018) utilizes recursive hierarchical segmentation to divide
a hierarchy into sub-hierarchies and construct local unit models. However, the unit-based approach
often suffers from a lack of hierarchical information.

In contrast, the global approach generates a holistic feature representation encompassing the entire
label hierarchy. HiAGM (Zhou et al., 2020) merges text and structural representations through text
propagation, while HGCLR (Wang et al., 2022a) propagates structural representation through a text
encoder and employs contrastive learning. HiMatch (Chen et al., 2021) applies a hierarchy-aware
matching loss to HiAGM and adjusts feature representations based on hierarchy information. K-
HTC (Liu et al., 2023) tries to incorporate a knowledge graph into HTC using knowledge-aware
hierarchical label attention and contrastive learning. HiTIN (Zhu et al., 2023) reduces the com-
plexity of the existing global models by reconstructing a hierarchy to minimize structural entropy.
The global models effectively leverage hierarchical information through structure encoders (Kipf &
Welling, 2017; Ying et al., 2021), outperforming unit-based models. Despite their achievements,
they face challenges of label imbalances and hierarchy-dependent model parameters.

To address these challenges, HPT (Wang et al., 2022b) and HiDEC (Im et al., 2023) incorporate
a structure encoder (Veličković et al., 2018) and attention mechanism (Vaswani et al., 2017) into
their unit-based HTC models. HiDEC utilizes an encoder-decoder architecture to generate a sub-
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hierarchy sequence based on the target labels of each document using a parent-level unit construction
strategy. By dividing a hierarchy based on levels, HPT integrates level-specific feature representa-
tions from a structure encoder into a text encoder and proceeds with unit-wise prediction. Fur-
thermore, HPT introduces ZMLCE loss (Su et al., 2022) to deal with label imbalance by adding a
zero-bound to the existing MLCE loss (Sun et al., 2020; Li et al., 2017). However, these methods
still encounter label imbalance in large-scale hierarchies and suffer from static thresholding.

3 PROPOSED HIERARCHY-AWARE LOSS FUNCTION

Figure 2: The illustration of classification losses, (a) BCE, (b) ZMLCE, and (c) H2B. The blue line
is a threshold during inference. In BCE, a loss is computed for each label and then averaged. In
ZMLCE and H2B, a loss is calculated separately for positive and negative target sets and combined.
In H2B, the bound is optimized for each unit and used as dynamic thresholds during inference. The
green and red lines are positive and negative biased bounds, respectively, during training.

3.1 PRELIMINARIES AND NOTATIONS

Let a graph G = (V, E) be a predefined hierarchy where V = {v1, . . . , vN} is a set of all label
nodes and E = {(vi, vj)|vi, vj ∈ V} is a set of edges indicating a relation between two nodes.
D = {(xd,Yd)}|D|

d=1 is a document dataset where xd is d-th document and Yd ⊂ V is a set of target
labels associated with xd. Note |Yd| ≥ 1 because a document xd can have multi-labels. We partition
V into a set of units W = {U1, . . . ,U|W|} where U denotes a unit composed of a set of labels.

For a given document xd, unit-based HTC models generate a unit representation rU , then compute
logits lU using the unit representation rU and label embeddings associated with the labels in a unit
U . These logits lU are employed to make predictions on a unit U . The target label set for each unit
is defined as YU

d = {vi|vi ∈ (Yd ∩ U)}.

To calculate a loss, we divide a unit U into positive and negative target sets, denoted as NU
pos =

{vi|vi ∈ YU
d } and NU

neg = {vi|vi ∈ U\YU
d } . If the target label does not exist within a specific unit,

NU
pos can become an empty set. Based on NU

pos and NU
neg, in Figure 2-(a), BCE loss is defined as:

LBCE = − 1∑
U∈W |U|

∑
U∈W

 ∑
p∈NU

pos

log σ
(
lUp
)
+

∑
n∈NU

neg

log
(
1− σ

(
lUn
)) (1)

where lUp and lUn are the logits for positive label p and negative label n, respectively. σ(·) is a sigmoid
function.

BCE loss has a weakness in dealing with label imbalance. To this end, ZMLCE (Zero-bounded
Multi-Label Cross-Entropy) loss is presented in HPT (Wang et al., 2022b) :

LZMLCE =
1

|W|
∑
U∈W

log

1 +
∑

p∈NU
pos

e−lUp

+ log

1 +
∑

n∈NU
neg

el
U
n

 . (2)
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As depicted in Figure 2-(b), while ZMLCE loss attempts to mitigate label imbalance through the log-
sum-exp operation, it does not address static thresholding because the bounds for all units remain
fixed at 0.

3.2 HIERARCHY-AWARE BIASED BOUND LOSS

We propose a Hierarchy-aware Biased Bound (H2B) loss to simultaneously address the issues of
static thresholding and label imbalance within a unit U . H2B is defined as:

LH2B =
1

|W|
∑
U∈W

log

1 +
∑

p∈NU
pos

e−lUp +(tU+bUpos)

+ log

1 +
∑

n∈NU
neg

el
U
n−(tU−bUneg)

 (3)

where tU ∈ R is a learnable bound for a unit U . bUpos and bUneg are positive and negative biases for a
unit U , respectively.

The bound tU is computed using a unit representation rU , allowing us to predict distinct bounds for
each unit by employing text and hierarchy information. The biases bUpos and bUneg can be computed
using any function g : N → R+ designed to mitigate label imbalance on NU

pos and NU
neg. We employ

a standard deviation, g = std({lUvi |vi ∈ N}). Like Figure 2-(c), a high standard deviation of logits
indicates insufficient model training on the labels within N , leading to the assignment of higher
biases. This adjustment increases the corresponding bound, providing a better opportunity to train
on less frequent labels as the bound is elevated. The bound tU is optimized and used as dynamic
thresholds by ŶU

d = {vi|lUvi > tU , vi ∈ U} during inference. The biases bUpos and bUneg are only used
with detaching gradients during training.

Comparison to ZMLCE Loss For a deeper understanding, we compare H2B loss with ZMLCE
loss. Equation 4 is derived from ZMLCE loss in Equation 2.

LU
ZMLCE = log(1 +

∑
p∈NU

pos

∑
n∈NU

neg

el
U
n−lUp

︸ ︷︷ ︸
(a)

+
∑

p∈NU
pos

e0−lUp +
∑

n∈NU
neg

el
U
n−0

︸ ︷︷ ︸
(b)

) (4)

ZMLCE loss can be split into two terms: multi-label cross-entropy term in Equation 4-(a) and the
zero-bounded term in Equation 4-(b) (Wang et al., 2022b). In Equation 4-(a), all positive logits
should surpass all negative logits. In Equation 4-(b), positive logits are anticipated to be greater than
0, and negative logits should be less than 0. As a result, all unit bounds are restricted to 0, which
may impose a stringent constraint on specific labels.

Similarly, Equation 5 is derived from H2B loss in Equation 3.

LU
H2B = log(1 +

∑
p∈NU

pos

∑
n∈NU

neg

el
U
n−lUp +(bUpos+bUneg)

︸ ︷︷ ︸
(a)

+
∑

p∈NU
pos

e(t
U+bUpos)−lUp +

∑
n∈NU

neg

el
U
n−(tU−bUneg)

︸ ︷︷ ︸
(b)

) (5)

H2B loss consists of two components. Equation 5-(a) represents the marginal multi-label cross-
entropy, where the margin is defined as the sum of positive and negative biases. When a unit’s
biases increase, the loss is computed to enhance the differentiation between positive and negative
logits, thereby emphasizing the unit’s significance. In Equation 5-(b), the bounds for a unit are
determined to address the issue of static thresholding, which uses a fixed bound set to 0. The bias
of a positive label increases the corresponding bound, whereas the bias of a negative label decreases
the corresponding one. As the biases of a unit increase, the loss encourages the logits to create a
more distinct separation between biased bounds, as in the left of Figure 2-(c). Conversely, when the
biases of a unit decrease to zero, the loss focuses on estimating the bounds between positive and
negative logits, as in the right of Figure 2-(c).
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Implementations on Unit-based Models To validate the effectiveness of the H2B loss, we have
applied it to two recent unit-based HTC models, HPT (Wang et al., 2022b) and HiDEC (Im et al.,
2023). These models employ distinct strategies for partitioning a hierarchy into a set of units. In
HPT, the same units are utilized during both training and inference. In contrast, HiDEC exhibits
variability in its units. This difference stems from the fact that in HiDEC, for a document xd,
units are constructed using the target label set Yd during training, whereas during inference, units
are formed through sub-hierarchy expansion starting from the root. Specifically, in HPT, each unit
encompasses all labels at the same hierarchy level. We denote a unit and a target label set for the m-th
level as Um = {vi|level(vi) = m, vi ∈ V} and YUm

d = {vi|vi ∈ Yd∩Um}, respectively. In HiDEC,
for a given document xd, a sub-hierarchy label set Vd = Yd ∪ {vi|vi ∈ ancestor(vj), vj ∈ Yd}
and a sub-hierarchy sequence Hd = [vi|vi ∈ Vd\leaf(G)] are created sequentially. Based on Hd,
the k-th parent unit is defined as Uk = {vi|vi ∈ child(Hd

k)} ∪ {vend}, where vend is a special node
used to terminate sub-hierarchy expansion. Then, a target label set is defined as YUk

d = {vi|vi ∈
Vd ∩ Uk}. For a label assignment, we re-define YUk

d = YUk

d ∪ {vend} if Hd
k ∈ Yd. In both HPT and

HiDEC, a simple feed-forward network (FFN) is employed to learn optimal bounds based on unit
representations. Consequently, HPT and HiDEC using H2B loss require only a modest number of
additional parameters compared to the original models.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Table 1: Data statistics. Level and |V| are the maximum level and number of labels in a hierarchy,
while |W| is the number of units. |Yd| and |Wd| are the average number of target labels and units
for a document, while |U| is the average number of labels in a unit. |NU

pos| and |NU
neg| are the average

number of positive and negative labels for units, respectively. Note that values partitioned by ‘/’
indicate HPT and HiDEC in order.

Dataset |V| |W| Level Average of Train Dev Test
|Yd| |Wd| |U| |NU

pos| |NU
neg|

RCV1-v2 103 4/22 4 3.24 4/2.98 25.75/5.63 0.80/1.77 24.95/3.86 20,833 2,316 781,265
NYT 166 8/52 8 7.60 8/6.94 20.75/4.17 0.95/1.79 19.80/2.38 23,345 5,834 7,292

EURLEX57K 4,271 6/1,168 6 5.00 6/9.16 752.17/5.15 0.85/1.06 751.32/4.09 45,000 6,000 6,000

Datasets and Evaluation Metrics We selected two small-scale datasets, RCV1-v2 (Lewis et al.,
2004) and NYT (Sandhaus, 2008), and a large-scale dataset, EURLEX57K (Chalkidis et al., 2019),
for our standard experiments. To ensure a fair comparison, we adhered to the same data configuration
as previous research (Zhou et al., 2020; Chen et al., 2021; Wang et al., 2022b; Im et al., 2023) and
used Micro-F1 and Macro-F1 as our evaluation metrics. Table 1 presents the data statistics for three
datasets. RCV1-v2 offers limited training data, while EURLEX57K provides a large number of
labels. It is particularly noteworthy to examine the statistics of units. HPT (Wang et al., 2022b)
generates a considerably smaller number of units compared to HiDEC (Im et al., 2023). We can
see label imbalance explicitly as both HPT and HiDEC produce a limited number of positive but
substantial negative labels. As a hierarchy size increases, label imbalance becomes pronounced in
HPT, while it remains stable in HiDEC.

Implementation Details We implemented H2B, BCE, and ZMLCE losses using the original
codes1 based on HPT and HiDEC. The same model architectures and hyperparameters were utilized
for three datasets.

In HPT, bert-base-uncased (Devlin et al., 2019) and GAT (Veličković et al., 2018) were used
as text and structure encoders, respectively. The batch size was set to 16. Adam (Kingma & Ba,
2015) optimizer was used with a learning rate of 3e-5. The early stop was applied when Macro-F1
for developments set after each epoch did not increase during 6 epochs. The other hyperparameters
were not tuned.

1Check out code repositories referred to in HPT and HiDEC papers.
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Table 2: Overall performance. The upper shows the official scores reported in the original papers,
whereas the lower presents the scores from our implementations, with each score accompanied by
its standard deviation. Values are derived by averaging results from ten runs with random weight
initialization. ∗ indicates that an auxiliary loss is used with the classification loss, while represents
the baseline loss for each model. † and ‡ denotes Wang et al. (2022a) and Chalkidis et al. (2019),
respectively.

Model Approach Loss RCV1-v2 NYT EURLEX57K
Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

BERT†‡ Global BCE 85.65† 67.02† 78.24† 66.08† 73.20‡ -
HiAGM (Zhou et al., 2020) Global BCE∗ 85.58 67.35 78.64 66.76 - -
HiMatch (Chen et al., 2021) Global BCE∗ 86.33 68.66 - - - -
HGCLR (Wang et al., 2022a) Global BCE∗ 86.49 68.31 78.86 67.96 - -
HiTIN (Zhu et al., 2023) Global BCE∗ 86.71 69.95 79.65 69.31 - -
HPT (Wang et al., 2022b) Unit ZMLCE∗ 87.26 69.53 80.42 70.42 - -
HiDEC (Im et al., 2023) Unit BCE 87.96 69.97 79.99 69.64 75.29 -

Our Implementations

HPT Unit
BCE∗ 87.65±0.11 69.87±0.40 79.49±0.22 68.66±0.30 71.57±0.58 25.34±0.59

ZMLCE∗ 87.82±0.14 70.23±0.31 80.04±0.23 69.69±0.49 75.54±0.20 28.46±0.26

H2B∗ 87.74±0.11 69.31±0.94 80.23±0.17 70.07±0.52 76.17±0.04 28.33±0.22

HiDEC Unit
BCE 87.70±0.12 70.82±0.20 80.13±0.16 69.80±0.24 75.14±0.19 27.91±0.11

ZMLCE 87.59±0.18 70.61±0.36 80.25±0.21 70.14±0.23 76.17±0.13 28.73±0.22

H2B 87.65±0.12 71.52±0.31 80.35±0.12 70.59±0.32 76.43±0.08 28.60±0.18

In HiDEC, bert-base-uncasedwas used as a text encoder, while a 2-layer transformer decoder
(Vaswani et al., 2017) was used as a hierarchy decoder. The label embeddings were initialized
using a normal distribution with µ = 0 and σ = 768−0.5. The batch size was set to 64. AdamW
(Loshchilov & Hutter, 2019) optimizer was used with the learning rate 5e-5. The learning rate was
scheduled using a linear scheduler with a warmup rate of 0.1 over 100 epochs.

Comparison Models For comparison, we selected recent HTC models that leverage pre-trained
language models: HiAGM (Zhou et al., 2020), HiMatch (Chen et al., 2021), HGCLR (Wang et al.,
2022a), HiTIN (Zhu et al., 2023), HPT (Wang et al., 2022b), and HiDEC (Im et al., 2023).

HiAGM: HiAGM utilizes the prior probability of parent-child label dependency as adjacency
of Graph Convolution Networks (GCN) (Kipf & Welling, 2017). A text representation from a
text encoder such as TextRCNN (Lai et al., 2015) or BERT is propagated to GCN using text
propagation.

HiMatch: HiMatch considers HTC as a semantic matching problem and conducts text and la-
bel semantic matching to HiAGM through a hierarchy-aware matching loss. In addition, the
hierarchy-aware margin loss learns to adjust the distance based on the label’s hierarchical rela-
tionship to reflect hierarchy in presentation.

HGCLR: HGCLR points out the limitations of the existing models that use separate text and
structure encoders and proposes a contrastive learning method that can inject structural informa-
tion into the text encoder.

HiTIN: To address the limitations of the existing global approach, HiTIN employs a strategy
of reconstructing the hierarchy into a code tree to reduce structural complexity effectively. This
code tree construction aims to minimize structural entropy, resulting in a simplified hierarchy
that maximizes the retention of structural information from the original hierarchy.

HPT: HPT is the first attempt to address HTC using prompt tuning. It transforms HTC into a
hierarchy-aware multi-label MLM to incorporate the HTC and MLM. The hierarchy represen-
tation at different levels, represented through GAT, is used in conjunction with text as input to
BERT. Classification is performed for labels corresponding to units at each level.

HiDEC: To address the issue of excessive parameters in the existing models, HiDEC employs a
sub-hierarchy composed of labels related to documents rather than the entire hierarchy. HiDEC
transforms HTC into a sequence generation problem and conducts training to generate sub-
hierarchy sequences.
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HiAGM, HiMatch, HGCLR, and HiTIN are global models, whereas HPT and HiDEC are unit-based
models. All models employ BERT as a text encoder. Apart from HPT utilizing ZMLCE loss, the
other models use BCE loss.

4.2 RESULTS

Table 2 presents the overall performance of three datasets. The scores and their variances were
obtained from our implementations by averaging results from ten runs with random weight initial-
ization. On NYT, H2B improved over the baseline losses, ZMLCE and BCE, in both HPT and
HiDEC. In HiDEC, the performance exhibited an ascending trend with BCE, ZMLCE, and H2B in
order. However, a different pattern emerged on EURLEX57K. Compared to H2B, BCE significantly
deteriorated the performance, highlighting the need to address label imbalance in such a large-scale
hierarchy. Interestingly, ZMLCE and H2B in HPT and HiDEC resulted in a gain in Micro-F1, which
led to a drop in Macro-F1. Bounds and biases in H2B seem to impact unit performance and lead to a
tradeoff. On RCV1v2, H2B loss resulted in only minor degradation, except for HiDEC in Macro-F1.
These results came from the variance used in positive and negative biases, as detailed in Section 4.3,
along with the analysis of other results.

4.3 ABLATION STUDIES

Table 3: Ablation results of H2B on three datasets. The first ranks are highlighted in red-bold in
each group, while the second ones are underlined.

RCV1v2 NYT EURLEX57KModel Bounds Biases Micro F1 Macro F1 Micro F1 Macro F1 Micro F1 Macro F1

(a) - - 87.82 70.23 80.04 69.69 75.54 28.46
(b) ⃝ - 87.82 70.37 80.01 69.71 75.58 28.37
(c) - ⃝ 87.69 69.29 80.19 69.90 76.17 28.40HPT

(d) ⃝ ⃝ 87.74 69.31 80.23 70.07 76.17 28.33

(a) - - 87.59 70.61 80.25 70.14 76.17 28.73
(b) ⃝ - 87.74 70.87 80.29 70.15 76.11 28.66
(c) - ⃝ 87.43 71.01 80.38 70.51 76.35 28.58HiDEC

(d) ⃝ ⃝ 87.65 71.52 80.35 70.59 76.43 28.60

We conducted ablation studies to analyze the impact of bounds and biases in H2B. As shown in
Equations 2 and 3, H2B becomes equivalent to ZMLCE when the bounds are set to 0 and biases are
removed. The results of these ablation studies are presented in Table 3.

On NYT and EURLEX57K, bounds have little impact on ZMLCE, while biases consistently lead to
improvements. However, on EURLEX57K, bounds and biases lead to a slight decrease in Macro-
F1. The reason is that severe label imbalance, 79% of labels appearing fewer than 50 times, causes
unstable estimation of bounds and large biases. On RCV1-v2, bounds contribute to improvement,
while biases lead to a decrease in Micro-F1. Specifically, bounds result in an improvement over
ZMLCE. However, biases decrease Micro-F1 in both HPT and HiDEC, as well as Macro-F1 in HPT.
H2B negatively affects performance in HPT but shows improvement, particularly in Macro-F1, in
HiDEC. This difference arises because most few-shot labels are concentrated within two units in
HPT, whereas they spread across units in HiDEC. A detailed analysis will be provided in Subsection
4.4.

4.4 ANALYSIS OF H2B BASED ON LABEL FREQUENCY

For an in-depth investigation of label imbalance, we partitioned a dataset into frequent, few-shot,
and zero-shot label sets based on label frequencies like EURLEX57K (Chalkidis et al., 2019). The
frequent refers to labels with occurrences exceeding a predefined cutoff threshold, while the few-
shot encompasses the remaining labels that appeared in training. The zero-shot refers to labels that
never appeared in training but were excluded from the analysis since both models do not consider
them. The cutoffs were set at 50 for three datasets. Figure 3 illustrates the Macro-F1 gains in
Table 3. Based on the blue vertical line, the left and right denote the frequent and few-shot labels,
respectively. The labels are sorted in descending order based on label frequencies. Subsequently,
the gain is defined as the difference in Macro-F1, computed up to the corresponding label, between
H2B ablation (one of b, c, d) and ZMLCE (a).
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Figure 3: Macro-F1 gains in Table 3. A gain is defined as (ablation setting – ZMLCE) over the F1
score for each label. The gains are sorted in descending order using label frequency. The graph
illustrates Macro-F1 gain up to a corresponding label. Based on the blue vertical bar, the left is the
frequent labels, while the right is the few-shot labels.

As depicted in Figure 3, H2B exhibits consistent patterns in HPT and HiDEC across NYT and EU-
RLEX57K. H2B enhances the performance of frequent labels while diminishing the performance
of few-shot labels. This underscores the adverse effect of applying H2B to datasets with limited
training data. However, in contrast to NYT and EURLEX57K, the influence of H2B on few-shot
labels depends on the model used on RCV1-v2. The macro F1 score for few-shot labels decreases
in HPT but increases in HiDEC. This discrepancy arises because the two models’ distinct unit con-
figurations lead to dissimilar distributions over labels, particularly few-shot labels. While HiDEC
distributes 27 few-shot labels across 11 units, HPT concentrates its label configuration within only
2 units. This imbalance results in unstable logits and significantly impacts H2B, which relies on the
logit’s standard deviation as a measure of bias. In summary, H2B consistently improves the per-
formance of frequent labels but exhibits instability when applied to few-shot labels. However, the
comparison between HPT and HiDEC on RCV1-v2 highlights that substantial improvements can be
achieved depending on the structural configuration of units.

4.5 ANALYSIS OF BOUNDS AND BIASES

Figure 4 illustrates the samples of thresholds, biased bounds, and logits obtained from ZMLCE and
H2B during inference in HPT. Each point on the graph represents a logit, with target labels in green
and non-target labels in red, respectively. The logits are obtained from test documents in NYT (a
and b) and EURLEX57K (c) using HPT’s level 1 and 2 units. Blue lines denote the threshold used
in each unit. In H2B, a threshold is determined by a bound predicted for each unit, based on a
specific document. The green and red lines indicate positive and negative biased bounds of units,
respectively, in H2B. They are not used during inference.

As in Figure 4, H2B employs dynamic thresholds for each document and unit, whereas ZMLCE
applies a zero threshold to all units. The dynamic thresholds reduce false predictions, as in Figure
4-(a) and (c). As biases influence the distinction between positive and negative labels, the biased
bounds (green and red lines) lead to more significant deviations in positive and negative logits than
the unbiased bound (blue line). They enhance the discriminative power of a model by encouraging
the logits to move further away from the threshold, as in Figure 4-(b). As depicted in Figure 4-(c), we
observed higher thresholds when a unit comprises many few-shot labels, such as EURLEX57K. This
phenomenon arises because raising the bounds is relatively easier than lowering all negative logits
associated with few-shot labels in training. Consequently, attaining logits higher than the bound
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Figure 4: Illustration of sample logits of documents obtained from ZMLCE and H2B during infer-
ence (a, b and c) in HPT. Each point on the graph represents a logit, with target labels in green and
non-target labels in red, respectively. Blue lines denote the threshold used in each unit, while the
green and red lines indicate positive and negative biased bounds, respectively, in H2B. In (a), H2B
effectively reduces false predictions through dynamic thresholding. In (b), logits obtained with H2B
are clearly distinguishable beyond the biased bounds. In (c), higher thresholds are observed when a
unit comprises many few-shot labels.

for the few-shot positive labels is difficult. This issue can be mitigated by reducing the number of
few-shot labels, as observed on NYT, or adjusting the unit configuration, as exemplified in HiDEC.

5 CONCLUSION

This paper introduces a Hierarchy-aware Biased Bound (H2B) loss function, offering two key in-
novations to address the challenges of static thresholding and label imbalance in HTC. First, H2B
introduces learnable bounds for all units within a hierarchy to address static thresholding. These
bounds are optimized for various units during training and are used as dynamic thresholds during
inference. Second, H2B introduces biases for both positive and negative labels to alleviate the la-
bel imbalance, where a bias measures the degree of imbalance within a unit. The biases help to
adjust the bounds to reduce the impact of the ratio between positive and negative labels. Extensive
experiments on benchmark HTC datasets demonstrate the superiority of H2B loss based on unit-
based HTC models by comparing competitive HTC models and comprehensive analysis. We plan
to extend H2B to extremely large-scale hierarchies and improve imbalance relations among units.
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Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
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A DATASET DETAILS

We provide a more detailed examination of the datasets as presented in Table 1, yielding several key
observations:

• Train-Test Mismatch: In RCV1-v2, there is a notable disparity in the sizes of the training
and test sets, leading to a train-test mismatch.

• Label Hierarchy Disparities: EURLEX57K has a label hierarchy of 42 times and 25 times
larger than RCV1-v2 and NYT, respectively. This substantial discrepancy in size causes a
significant imbalance between positive and negative labels. The average of |NU

pos| remains
relatively stable, while the average of |NU

neg| increases significantly from 24.95 and 19.80
in RCV1-v2 and NYT to 751.32 in EURELX57K.

• Unit Imbalance: The disparity in the unit construction strategies between HPT and HiDEC
leads to substantial variations in unit statistics. HiDEC divides the hierarchy into smaller
units than HPT, resulting in a small number of labels for each unit (Average of |U|) and
significantly balances the ratio of positive and negative labels for each unit (Average of
|NU

pos| and |NU
neg|). However, HiDEC still suffers from label imbalance.

Additionally, EURLEX57K is categorized into three types based on label frequencies: ”frequent”
labels are those that appeared more than 50 times in the training data, ”few-shot” labels are those
that appeared less than 50 times, and ”zero-shot” labels are those that have never appeared. This
paper focuses on frequent and few-shot labels, as our baseline models, HPT and HiDEC, were not
designed to handle zero-shot settings.

B ABLATION RESULT BY FREQUENCY

Table 4 presents a comprehensive ablation study for frequent, few-shot, and overall labels using
H2B. All performances are averaged from ten runs with random weight initialization. On RCV1v2,
biases negatively affect both frequent and few-shot labels in HPT, leading to a decline in perfor-
mance. On the other hand, HiDEC shows an improvement in Macro-F1 for frequent labels and
few-shot labels. On EURLEX57K, biases improve both Micro-F1 and Macro-F1 scores for frequent
labels. However, for few-shot labels, while Micro-F1 increases, Macro-F1 decreases due to the
impact of biases.

Table 4: Ablation results of H2B on three datasets, including frequent and few-shot performances.
The number in parentheses indicates the number of labels according to frequency. MiF and MaF
denotes Micro-F1 and Macro-F1, respectively.

RCV1v2 NYT EURLEX57K
Frequent (76) Few-shot (27) Overall (103) Overall (166) Frequent (746) Few-shot (3,362) Overall (4,271)Model Bounds Biases
MiF MaF MiF MaF MiF MaF MiF MaF MiF MaF MiF MaF MiF MaF

(a) - - 88.18 78.76 58.39 46.22 87.82 70.23 80.04 69.69 78.58 69.84 54.88 20.65 75.54 28.46
(b) ⃝ - 88.18 78.87 58.98 46.45 87.82 70.37 80.01 69.71 78.62 69.77 55.03 20.55 75.58 28.37
(c) - ⃝ 88.05 78.61 56.24 43.06 87.69 69.29 80.19 69.90 79.17 70.33 55.47 20.48 76.17 28.40HPT

(d) ⃝ ⃝ 88.11 78.70 56.02 42.89 87.74 69.31 80.23 70.07 79.19 70.41 55.33 20.37 76.17 28.33

(a) - - 87.94 78.69 59.05 47.88 87.59 70.61 80.25 70.14 79.27 70.86 55.17 20.78 76.17 28.73
(b) ⃝ - 88.08 78.87 59.74 48.35 87.74 70.87 80.29 70.15 79.22 70.83 54.99 20.69 76.11 28.66
(c) - ⃝ 87.78 78.79 60.60 49.09 87.43 71.01 80.38 70.51 79.40 71.01 55.23 20.56 76.35 28.58HiDEC

(d) ⃝ ⃝ 87.98 79.07 61.32 50.25 87.65 71.52 80.35 70.59 79.50 71.05 55.23 20.56 76.43 28.60
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C MORE SAMPLES OF UNIT PREDICTIONS

In Figure 5, we display the complete unit predictions for the sample presented in Figure 4, with
HPT.
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Figure 5: Complete unit predictions of samples in Figure 4, with HPT.
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