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Department of Computer Science

University of Bath
Bath, United Kingdom
o.simsek@bath.ac.uk

Abstract

What is a useful skill hierarchy for an autonomous agent? We propose an answer
based on a graphical representation of how the interaction between an agent and its
environment may unfold. Our approach uses modularity maximisation as a central
organising principle to expose the structure of the interaction graph at multiple
levels of abstraction. The result is a collection of skills that operate at varying
time scales, organised into a hierarchy, where skills that operate over longer time
scales are composed of skills that operate over shorter time scales. The entire
skill hierarchy is generated automatically, with no human intervention, including
the skills themselves (their behaviour, when they can be called, and when they
terminate) as well as the hierarchical dependency structure between them. In a wide
range of environments, this approach generates skill hierarchies that are intuitively
appealing and that considerably improve the learning performance of the agent.

1 Introduction

One of the most important open problems in artificial intelligence is how to make it possible for
autonomous agents to develop useful action hierarchies on their own, without any input from humans,
including system designers and domain specialists. Before addressing this algorithmic question, it
is useful to first consider a conceptual one: What constitutes a useful action hierarchy? Here we
focus on this conceptual question with the aim of providing a useful foundation for algorithmic
development.

Our primary contribution is a characterisation of a useful action hierarchy. In defining this action
hierarchy, we use no information other than a graphical representation of how the interaction between
the agent and its environment may unfold. When this information is not known a priori, it would be
discovered naturally by the agent as it operates in its environment. Beyond this interaction graph, no
particular domain knowledge is needed. Hence, our approach is applicable broadly.

Multiple strands of earlier work have used the interaction graph as a basis for defining collections
of actions. The main novelty in our approach is our use of modularity maximisation as a central
organising principle to expose the structure of the interaction graph at multiple levels of abstraction.
The outcome is an action hierarchy that enables the agent to explore its environment efficiently at
multiple time scales.

Our approach yields an action hierarchy with four desirable properties. First, it contains actions
that operate at a wide range of time scales. This is necessary to solve complex problems, which
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require agents to be able to act, learn, and plan at varying time scales. Secondly, the actions are
naturally organised into a hierarchy, with actions that operate over longer time scales being composed
of actions that operate over shorter time scales. This hierarchical structure offers substantial benefits
over unstructured collections of actions. For example, it allows an agent to learn about not only
the action it is currently executing but also all lower-level actions that are called in the process. In
addition, a hierarchical structure allows actions to be updated in a modular fashion. For instance,
any improvements to an action would be immediately reflected in all higher-level actions that call it.
Thirdly, the action hierarchy is fully specified. This includes when each action can be selected for
execution, how exactly it behaves, and when it terminates. It also includes the number of levels in the
hierarchy and the exact dependency structure between the actions. Fourthly, the action hierarchy is
generated automatically, with no human intervention.

In a diverse set of environments, the proposed approach translates into action hierarchies that are
intuitively appealing. When evaluated within the context of reinforcement learning, they substantially
improve learning performance compared to alternative approaches, with the largest performance
improvement observed in the largest environment tested.

An important question for future research is how such an action hierarchy may be learned when the
agent has no prior knowledge of the dynamics of the environment. We present an initial exploration
of how this may be achieved, with positive results.

2 Background

We use the reinforcement learning framework, modelling an agent’s interaction with its environment
as a finite Markov Decision Process (MDP). An MDP is a six-tuple (S,A,P,R,D, γ), where S is
a finite set of states, A is a finite set of actions, P : S × A × S → [0, 1] is a transition function,
R : S ×A×S → R is a reward function, D : S → [0, 1] is an initial state distribution, and γ ∈ [0, 1]
is a discount factor. Let A(s) denote the set of actions available in state s ∈ S. At decision stage t,
t ≥ 0, the agent observes state st ∈ S and executes action at ∈ A(st). Consequently, at decision
stage t + 1, the agent receives reward rt+1 ∈ R and observes new state st+1 ∈ S. The return at
decision stage t, denoted by Gt, is the discounted sum of future rewards, Gt =

∑∞
k=0 γ

krt+k+1. A
policy π : S × A → [0, 1] specifies the probability of selecting action a ∈ A in state s ∈ S. The
objective is to learn a policy that maximises the expected return.

The state transition graph of an MDP is a weighted, directed graph whose nodes correspond to the
states of the MDP and whose edges correspond to possible transitions between states. Specifically, an
edge (u, v) exists on the graph if it is possible to transition from state u ∈ S to state v ∈ S by taking
some action a ∈ A(u). In this paper, we use uniform edge weights of 1.

The actions of an MDP take exactly one decision stage to execute. We refer to them as primitive
actions. Using primitive actions, it is possible to define abstract actions, also known as skills, whose
execution can take a variable number of decision stages. Furthermore, primitive and abstract actions
can be combined to form complex action hierarchies. In this work, we represent abstract actions
using the options framework [2, 3]. An option o is a three-tuple (Io, πo, βo), where Io ⊂ S is the
initiation set, specifying the set of states in which the option can start execution, πo : S ×A → [0, 1]
is the option policy, and βo : S → [0, 1] is the termination condition, specifying the probability
of option termination in a given state. An option policy is ultimately defined in terms of primitive
actions—because primitive actions are the fundamental units of interaction between the agent and its
environment—but this can be done indirectly by allowing options to call other options, making it
possible for agents to act, learn, and plan with hierarchies of primitive and abstract actions.

3 Proposed Approach

To define a skill hierarchy, we use modularity maximisation as a central organising principle, applied
at multiple time scales. Specifically, we represent the possibilities of interaction between the agent
and its environment as a graph and identify partitions of this graph that maximise modularity [4–6].
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A partition of a graph is a division of its nodes into mutually exclusive groups, called clusters. The
modularity of a partition composed of a set of clusters C = {c1, c2, . . . , ck} is

k∑
i=1

eii − ρa2i ,

where eii denotes the proportion of total edge weight in the graph that connects two nodes in cluster
ci, and ai denotes the proportion of total edge weight in the graph with at least one end connected
to a node in cluster ci. A resolution parameter ρ > 0 controls the relative importance of eii and ai.
Intra-cluster edges contribute to both eii and ai while inter-cluster edges contribute only to ai. A
partition that maximises modularity will have relatively dense connections within its clusters and
relatively sparse connections between its clusters.

Finding a partition that maximises modularity for a given graph is NP-complete [7]. Therefore,
when working with large graphs, approximation algorithms are needed. The most widely used
approximation algorithm is the Louvain algorithm [8], which is an agglomerative hierarchical graph
clustering approach. While no formal analysis exists, the runtime of the Louvain algorithm has been
observed empirically to be linear in the number of graph edges [9]. It has been successfully applied
to graphs with millions of nodes and billions of edges [8].

An important feature of the Louvain algorithm is that, as a hierarchical graph clustering method,
it exposes the structure of a graph at multiple levels of granularity. Specifically, the output of the
Louvain algorithm is a sequence of partitions of the input graph. This sequence has a useful structure:
multiple clusters found in one partition in the sequence are merged into a single cluster in the next
partition in the sequence. In other words, the output is a hierarchy of clusters, with earlier partitions
containing many smaller clusters that are merged into fewer larger clusters in later partitions. This
hierarchical structure forms the basis of our characterisation of a useful multi-level skill hierarchy.

The Louvain algorithm starts by placing each node of the graph in its own cluster. Nodes are
then iteratively moved locally, from their current cluster to a neighbouring cluster, until no gain
in modularity is possible. This results in a revised partition corresponding to a local maximum of
modularity with respect to local node movement. The revised partition is used to define an aggregate
graph as follows: each cluster in the partition is represented as a single node in the aggregate
graph, and a directed edge is added to the aggregate graph if there is at least one edge that connects
neighbouring clusters in the corresponding direction. This process is then repeated on the aggregate
graph, and then on the next aggregate graph, and so on, until an iteration is reached with no modularity
gain. Pseudocode for the Louvain algorithm is presented in Section H of the supplementary material.

Let h denote the number of partitions returned by the Louvain algorithm when applied to the state
transition graph. We use each of the h partitions to define a single layer of skills, resulting in an action
hierarchy with h levels of abstract actions (skills) above primitive actions. Each level of the hierarchy
contains one or more skills for efficiently navigating between neighbouring clusters of the state
transition graph. Specifically, we define an option for navigating from a cluster ci to a neighbouring
cluster cj as follows: the initiation set consists of all states in ci; the option policy efficiently takes
the agent from a given state in ci to a state in cj ; the option terminates with probability 1 in states in
cj , with probability 0 otherwise.

Taking advantage of the natural hierarchical structure of the partitions produced by the Louvain
algorithm, we compose the skills at one level of the hierarchy to define the skills at the next level
up. That is, at each level of the hierarchy, option policies call actions (options or primitive actions)
from the level below, with primitive actions being called directly by option policies from only the
first level of the hierarchy. We call the resulting set of skills the Louvain skill hierarchy.

4 Related Work

There have been earlier approaches to skill discovery using the state transition graph. The approach
we propose here differs from them in two fundamental ways. First, it is novel in its use of modularity
maximisation as a central organising principle for skill discovery. Secondly, it produces a multi-level
hierarchy, whereas existing graph-based approaches produce hierarchies with only a single level of
skills above primitive actions.
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Many existing approaches to skill discovery use the state transition graph to identify useful subgoal
states and define skills that efficiently take the agent to these subgoals. Suggestions for useful subgoals
have often been inspired by the concept of a “bottleneck”. They include states that are on the border
of strongly-connected regions of the state space [10], states that allow transitions between different
regions of the state space [11], and states that lie on the shortest path between many pairs of states [12].
To identify such states, several approaches use graph centrality measures [12–16]. Others use graph
partitioning algorithms [10, 17–23]. Alternatively, it has been proposed that “landmark” states found
at the centre of strongly-connected regions of the state-space can be used as subgoals [24].

The proposed approach is most directly related to skill discovery methods that make use of graph
partitioning to identify meaningful regions of the state transition graph and define skills for navigating
between them [17, 25–29]. Three of these methods use the concept of modularity. One such
approach is to generate a series of possible partitions by successively removing the edge with the
highest edge betweenness from a graph, then selecting the partition with the highest modularity [26].
A second approach is to generate a partition using the label propagation algorithm and then to
merge neighbouring clusters until no gain in modularity is possible [29]. In these two approaches,
modularity maximisation is applied after first producing candidate partitions using different criteria.
Consequently, the final partition does not maximise modularity overall. The time complexity of the
label propagation method is near-linear in the number of graph edges, whereas the edge betweenness
method has a time complexity of O(m2n) on a graph with m edges and n nodes. A third approach is
by Xu et al. [28], who use the Louvain algorithm to find a partition that maximises modularity but,
unlike our approach, define skills only for moving between clusters in the highest-level partition,
discarding all lower-level partitions. All three methods produce a single level of skills above primitive
actions.

Several approaches have used the graph Laplacian [30, 31] to identify skills that are specifically useful
for efficiently exploring the state space. It is unclear how to arrange such skills to form multi-level
skill hierarchies. In contrast, the proposed approach produces a set of skills that are naturally arranged
into a multi-level hierarchy.

While existing graph-based methods do not learn multi-level hierarchies, policy-gradient methods
have made some progress towards this goal. Bacon et al. [32] extended policy-gradient theorems [33]
to allow the learning of option policies and termination conditions in a hierarchy with a single level
of skills above primitive actions. Riemer et al. [34] further generalised these theorems to support
multi-level hierarchies. Fox et al. [35] propose an imitation learning method that finds the multi-level
skill hierarchy most likely to generate a given set of example trajectories. Levy et al. [36] propose a
method for learning multi-level hierarchies of goal-directed policies, with each level of the hierarchy
producing a subgoal for the lower levels to navigate towards. However, these methods are not without
their limitations. Unlike the approach proposed here, they all require the number of hierarchy levels
to be pre-defined instead of finding a suitable number automatically. They do not judiciously define
initiation sets, instead making all skills available in all states. They also target different types of
problems than we do, such as imitation-learning or goal-directed problems.

5 Empirical Analysis

We analyse the Louvain skill hierarchy in the six environments depicted in Figure 1: Rooms, Grid,
Maze [24], Office, Taxi [37], and Towers of Hanoi. In all environments, the reward is −0.001 for
each action and an additional +1.0 for reaching a goal state. In Rooms, Grid, Maze, and Office, there
are four primitive actions: north, south, east, and west. In Taxi, there are two additional primitive
actions: pick-up-passenger and put-down-passenger. Some decisions in Taxi are irreversible. For
instance, after picking up the passenger, the agent cannot return to a state where the passenger is
still waiting to be picked up. We describe each of these environments fully in Section A of the
supplementary material.

When generating partitions of the state transition graph using the Louvain algorithm, we used a
resolution parameter of ρ = 0.05, unless stated otherwise. When converting the output of the Louvain
algorithm into a concrete skill hierarchy, we discarded all levels of the cluster hierarchy where
the mean number of nodes per cluster was less than 4. Our reasoning is that skills that navigate
between such small clusters execute for only a very small number of decision stages (often only one
or two) and are not meaningfully more abstract than primitive actions. For all methods used in our
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comparisons, we generated options using the complete state transition graph and learned their policies
offline using macro-Q learning [38]. We trained all hierarchical agents using macro-Q learning and
intra-option learning [39]. Although these algorithms have not previously been applied to multi-level
hierarchies, they both extend naturally to this case. The primitive agent was trained using Q-Learning
[40]. The shaded regions on the learning curves represent the standard error in 40 independent runs.
All experiments are fully described in Section B of the supplementary material.

Our analysis is directed by the following questions: What is the Louvain skill hierarchy generated
in each environment? How does this skill hierarchy impact the learning performance of the agent?
How do the results change as the number of states increases? Does arranging skills into a multi-level
hierarchy provide benefits over a flat arrangement of the same skills? What is the impact of varying
the value of the resolution parameter ρ?

Louvain Skill Hierarchy. We first examine the cluster hierarchies generated by applying the Louvain
algorithm to the state transition graphs of various environments. Figure 2 shows the results in Rooms,
Office, Taxi, and Towers of Hanoi. Section D of the supplementary material shows additional results
in Grid and Maze.

In Rooms, the hierarchy has four levels. At level three, we see that each room has been placed in its
own cluster. Moving up the hierarchy, at level four, two of these rooms have been joined together into
a single cluster. Moving down the hierarchy, each room has been divided into smaller clusters at level
two, and then into even smaller clusters at level one. The figure illustrates how the corresponding
skill hierarchy would enable efficient navigation between and within rooms.

In Office, at the top level, we see six large clusters connected by corridors. As we move lower down
the hierarchy, we see that these large clusters have been divided into increasingly smaller regions. At
level three, there are many rooms that form their own cluster. At level two, most rooms have been
divided into multiple clusters. The figure reveals how the corresponding skill hierarchy would enable
efficient navigation of the environment at multiple time scales.

In Taxi, the state transition graph has four disconnected components, each corresponding to one
particular passenger destination: R, G, B, or Y. In Figure 2, we show only one of these components,
the one where the passenger destination is B. The results for the other components are similar. The
Louvain cluster hierarchy has four levels. At the top level, we see four clusters. In three of these
clusters, the passenger is waiting at their starting location (R, G, or Y). In the fourth cluster, the
passenger is either in-taxi or has been delivered to their destination (B). Navigation between these
clusters is unidirectional, with only three possibilities. The three corresponding skills navigate the
taxi to the passenger location and pick up the passenger. Moving one level down the hierarchy, the
clusters produce skills that move the taxi between the left and the right-hand side of the grid, which
are connected by the bottleneck state at the centre of the taxi navigation grid.

In Towers of Hanoi, the hierarchy has three levels. At level three, moving between the three clusters
corresponds to moving the largest disk to a different pole. Each of these clusters has been divided
into three smaller clusters at level two and then into three even smaller clusters at level one. A similar
structure exists at levels two and one. The smaller clusters at level two correspond to moving the
second-largest disc between different poles; the smallest clusters at level one correspond to moving
the third-largest disc between different poles.

In all of these domains, the Louvain skill hierarchy closely matches human intuition. In addition, it is
clear how skills at one level of the hierarchy can be composed to produce the skills at the next level.

Learning Performance. We compare learning performance with the Louvain skill hierarchy to
approaches based on Edge Betweenness [26] and Label Propagation [29], as well as to the

Rooms Grid Maze Office

R

Y

G

B

Taxi Towers of Hanoi

Figure 1: The environments.
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Figure 2: The cluster hierarchies produced by the Louvain algorithm when applied to the state
transition graphs representing Rooms, Office, Taxi, and Towers of Hanoi. For Taxi and Towers of
Hanoi, the graph layout was determined by using a force-directed algorithm that models nodes as
charged particles that repel each other and edges as springs that attract connected nodes.

method proposed by Xu et al. [28]. These methods are the most directly related to the proposed
approach, as discussed in Section 4. In addition, we compare to options that navigate to local maxima
of Node Betweenness [12], a subgoal-based approach that captures the many different notions of
the bottleneck concept in the literature. Similarly to the proposed approach, it is also one of the few
approaches in the literature to explicitly characterise a target skill hierarchy for an agent to learn. We
also compare to Eigenoptions [30], which are derived from the Laplacian of the state transition
graph and encourage efficient exploration. Finally, we include a Primitive agent that uses only
primitive actions. Primitive actions are available to all agents.

We present learning curves in Figure 3. The Louvain agent has a clear and substantial advantage over
other approaches in all domains except for Towers of Hanoi, where its performance is much closer to
that of the other hierarchical agents, with none of them performing much better than the primitive
agent. This is consistent with existing results reported in this domain (e.g., by Jinnai et al. [31]).

Section C of the supplementary material contains further analysis comparing Louvain skills and skills
based on node betweenness.

6



10 20 30 40 50 60

0
1

2
3

4
5

6

Rooms

Epoch

R
ew

ar
d

0 20 40 60 80 100

0
4

8
12

Maze

Epoch

R
ew

ar
d

0 10 20 30 40 50

0
1

2
3

4
5

6

Towers of Hanoi

Epoch

R
ew

ar
d

0 10 20 30 40 50

0
5

10
15

20

Taxi

Epoch

R
ew

ar
d

0 50 100 150 200

0
5

10
15

Office

Epoch

R
ew

ar
d

20 40 60 80 100

0
5

10
15

Grid

Epoch

R
ew

ar
d

Louvain
Eigenoptions
Label Prop.
Edge Bet.
Node Bet.
Xu et al.
Primitive

Figure 3: Learning performance. An epoch corresponds to 100 decision stages in Rooms and Towers
of Hanoi, 300 in Taxi, 750 in Maze and Grid, and 1000 in Office.

Scaling to larger domains. We experimented with a multi-floor version of the Office environment,
with floors connected by a central elevator, where two primitive actions move the agent up and down
between two adjacent floors. The number of states in this domain can be varied by adjusting parame-
ters such as the number of office floors. We use this environment to explore how the performance of
the agent and the Louvain skill hierarchy change as the number of states in the environment increases.

Figure 4a presents results in an Office environment with 2537 states. It shows that the Louvain agent
learns much more quickly than all other agents. Some alternatives, including the Eigenoptions agent,
fail to achieve any learning.

Figure 4b shows how the Louvain skill hierarchy changes with the size of the state space in the
Office environment. The figure shows the depth of the skill hierarchy in a series of fifteen Office
environments of increasing size, ranging from a single floor (∼103 states) to one thousand floors
(∼106 states). The depth of the hierarchy increased very gradually with the number of states in the
environment. The maximum hierarchy depth reached was eight in the largest environment tested.

Hierarchical versus flat arrangement of skills. An alternative to the Louvain skill hierarchy is a
flat arrangement of the skills, where each skill calls primitive actions directly rather than indirectly
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Figure 4: (a) Learning performance in a two-floor Office containing 2537 states. (b) How the depth
of the skill hierarchy scales with the size of the state space in multi-floor Office.
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Figure 5: Learning curves comparing various different Louvain agents. An epoch corresponds to 100
decision stages in Rooms, 300 in Taxi, and 750 in Maze. The skill hierarchy contained three levels in
Rooms and Taxi, and four levels in Maze.

through other (lower-level) skills. We expected the hierarchical arrangement to lead to faster learning
than the flat arrangement due to the additional learning updates enabled by the hierarchical relationship
between the skills. Figure 5 shows that this is indeed the case. In the figure, Louvain shows an agent
that uses the Louvain skill hierarchy while Louvain flat shows an agent that uses the Louvain
skills but where the skill policies call primitive actions directly rather than through other skills. In
addition, the figure shows a number of agents that use only a single level of the Louvain hierarchy
(Level 1, Level 2, Level 3, or Level 4), with option policies that call primitive actions directly.
Primitive actions were available to all agents. The figure shows that the hierarchical agent learns
more quickly than the flat agent. Furthermore, the agents using individual levels of the Louvain
hierarchy learn more quickly than the primitive agent but not as quickly as the agent using the full
Louvain hierarchy.

Impact of the resolution parameter. When using very high values of the resolution parameter ρ, the
Louvain algorithm terminates without producing any partitions. On the other hand, when using very
low values of ρ, it runs until a partition is produced where all nodes are merged into a single cluster.

Figure 6 shows how changing the resolution parameter ρ impacts the Louvain cluster hierarchy in
Towers of Hanoi and Rooms. In Towers of Hanoi, at ρ = 10, the output is a single level containing
many small clusters comprised of three nodes. As ρ gets smaller, the cluster hierarchy remains the
same until ρ = 3.3, at which point a second level is added. The first level remains identical to the
single level produced at ρ = 10. The second level contains larger clusters, each formed by merging
three of the clusters from the first level. As ρ is reduced further, additional levels are added to the
hierarchy. When a new level is added to the hierarchy, the existing levels generally remain the same.

A sensitivity analysis on the value of ρ showed that a wide range of ρ values led to useful skills, and
that performance gradually decreased to no worse than that of a primitive agent at higher values of ρ.
Section E of the supplementary material contains full details of this sensitivity analysis and a more
detailed discussion on the choice of ρ.
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Figure 6: How the Louvain algorithm’s output when applied to Towers of Hanoi and Rooms changes
with the resolution parameter. The cluster hierarchy had a maximum of four levels in Towers of
Hanoi and five levels in Rooms.
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Figure 7: (a) Performance when incrementally discovering Louvain options in Rooms. An epoch
corresponds to 100 decision stages. (b-d) How the state transition graph and top-level partitions
produced by the Update approach evolved as an agent explored Rooms. The hierarchy contained 2
levels after visiting 30 states, 3 levels after visiting 60 states, and 5 levels after observing all possible
transitions.

6 Discussion and Future Work

An important research direction for future work is incremental learning of Louvain skill hierachies
as the agent interacts with its environment—because the state transition graph will not always be
available in advance. We explored the feasibility of incremental learning in the Rooms environment.
The results are shown in Figure 7. The agent started with an empty state transition graph and no
skills. Every m decision stages, it updated its state transition graph with new nodes and edges, and it
revised its skill hierarchy using one of two approaches: Replace or Update.

In the first approach (Replace), the agent applied the Louvain algorithm to create a new skill
hierarchy from scratch. In the second approach (Update), the agent incorporated the new information
into its existing skill hierarchy, using an approach similar to the Louvain algorithm. This second
approach starts by assigning each new node to its own cluster; the new nodes are then iteratively
moved locally, between neighbouring clusters (both new and existing) until no modularity gain is
possible. This revised partition is used to define an aggregate graph and the entire process is repeated
on the aggregate graph, and the next aggregate graph, and so on, until an iteration is reached with no
modularity gain. The cluster membership of existing nodes stays fixed; only new nodes have their
cluster membership updated. The result of both approaches is a revised set of partitions, from which
a revised hierarchy of Louvain skills is derived. Section I of the supplementary material presents
pseudocode for the two incremental approaches.

Figure 7a shows the performance of the incremental agents. The agents started with only primitive
actions; after decision stages 100, 500, 1000, 3000, and 5000, the state transition graph was updated
and the skill hierarchy was revised. The figure compares performance to a Primitive agent and an
agent using the full Louvain skill hierarchy, whose performance acts as a Ceiling for the incremental
agents. Both incremental agents learned much faster than the primitive agent and only marginally
slower than the fully-informed Louvain agent. The two incremental agents had similar performance
throughout training but Replace reached a higher level of asymptotic performance than Update, as
expected. The reason is that partitions produced early in training are based on incomplete information;
Replace discards these early imperfections while Update carries them forward. But there is a trade-
off: building a new skill hierarchy from scratch has a higher computational cost than updating an
existing one.

Figures 7b–7d show the evolution of the partitions as the Update agent performed a random walk in
Rooms. The partitions were updated after observing 30 states, 60 states, and all possible transitions.
The figure shows that, as more nodes were added, increasingly higher-level skills were produced.

These results demonstrate the feasibility of learning Louvain skills incrementally. A full incremental
method for learning Louvain skills may take many forms, and different approaches may be useful
under different circumstances, with each having its own strengths and weaknesses. We leave the full
development of such algorithms to future work.

Another direction for future work is extending Louvain skills to environments with continuous state
spaces such as robotic control tasks. Such domains present a difficulty to all skill discovery methods
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Pinball Layout Level 3 Level 2 Level 1

Figure 8: The layout of the Pinball environment—with the green ball in its initial position, the red
goal, and several obstacles—and the Louvain cluster hierarchy produced by the Louvain algorithm.

that use the state transition graph due to the inherently discrete nature of the graph. If the critical step
of constructing an appropriate graphical representation of a continuous state space can be achieved,
all graph-based methods would benefit. Some approaches have already been proposed in the literature.
We use one such approach [41, 21, 27] to examine the Louvain hierarchy in a variant of the Pinball
domain [42], which involves manoeuvring a ball around a series of obstacles to reach a goal, as
shown in the leftmost panel of Figure 8. The state is represented by two continuous values: the ball’s
position in the horizontal and vertical directions. At each decision stage, the agent can choose to
apply a small force to the ball in each direction. The amount of force applied is stochastic and causes
the ball to roll until friction causes it to come to a rest. Collisions between the ball and the obstacles
are elastic.

We sampled 4000 states, added them to the state transition graph, then added an edge between each
node and its k-nearest neighbours according to Euclidean distance, assigning an edge weight of e−4d2

to an edge that connects two locations u and v with Euclidean distance d between them. We then
applied the Louvain algorithm to the resulting graph. The result was the cluster hierarchy shown
in Figure 8. It had three levels. Moving between clusters in the top level corresponds to skills that
enable high-level navigation of the state space, and take into account features such as the natural
bottlenecks caused by the obstacles, allowing the agent to efficiently change its position. Moving
between clusters in the lower-level partitions enable more local navigation.

Currently, Louvain skills at one level of the hierarchy are composed of skills from only the previous
level. Such skills may not provide the most efficient navigation between clusters. Future work could
consider composing skills from all lower levels, including primitive actions.

Because Louvain skills are derived from the connectivity of the state transition graph, we expect
them to be suitable for solving a range of problems in a given environment. Examining their use for
transfer learning is a useful direction for future work.

A possible difficulty with building multi-level skill hierarchies is that having a large number of
skills can end up hurting performance by increasing the branching factor. One solution that has
been explored in the context of two-level hierarchies is pruning less useful skills from the hierarchy
[22, 43]. Further research is needed to address this potential difficulty.

A key open problem for graph-based skill discovery methods generally is how to best make use
of state abstraction. We suggest that the most natural place to introduce state abstraction is when
constructing the state transition graph itself. Instead of a concrete state, each node could represent an
abstract state based on some learned representation of the environment. The proposed method—and
any other existing graph-based method—could then directly use this abstract state transition graph to
define a skill hierarchy.

Lastly, we note that the various characterisations of useful skills proposed in the literature, including
the one proposed here, are not necessarily competitors. To solve complex tasks, it is likely that an
agent will need to use many different types of skills. An important avenue for future work is exploring
how different ideas on skills discovery can be used together to enable agents that can autonomously
develop complex and varied skill hierarchies.
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A Environments

Gridworlds include Rooms, Grid, Office, and Maze [24]. They had four primitive actions: north,
south, east, and west. These actions move the agent in the intended direction (unless the intended
direction faces a wall, in which case the agent remains in the same state). The reward is −0.001 for
each action and an additional +1.0 for reaching the goal state. There is a single start state and a
single goal state, selected for each run from a list of possibilities.

Multi-Floor Office is an extension of Office to multiple floors. All foors are connected by an elevator,
which occupies the same grid square on each floor, where the agent has two additional primitive
actions: up and down. These actions move the agent to the adjecent floor in the intended direction
(unless there is no other floor in that direction).

Taxi is a 5 × 5 grid with four special squares (R, G, B, and Y) that serve as possible pick-up and
drop-off locations for a passenger. An episode starts with the taxi at a random square, the passenger at
a random special square, and the destination another random special square. Six actions are available
in each state: north, south, east, west, pick-up, and put-down. The navigation actions are identical to
those in the gridworlds, as described above. Pick-up and put-down have the intended effect when
appropriate; otherwise they do not change the state. The reward is −0.001 for each action and an
additional +1.0 when the passenger is put down at the destination.

Towers of Hanoi contains four discs of different sizes, placed on three poles. An episode starts with
all discs stacked on the leftmost pole. Primitive actions move the top disc from one pole to any other
pole, with the constraint that a disc cannot be placed on top of a disc smaller than itself. The reward
is −0.001 for each action and an additional reward of +1.0 at the goal state, where when all three
discs are stacked on the rightmost pole.

B Methodology

Generating options. To generate Louvain options, the Louvain algorithm (ρ = 0.05) was applied
to the state transition graph, resulting in a set of partitions. Any partition where the mean number
of nodes per cluster was smaller than 4 was discarded. For all remaining partitions, options were
defined for efficiently taking the agent from a cluster ci to each of its neighbouring clusters cj if a
directed edge existed from a node in ci to a node in cj . The Louvain options were arranged into a
multi-level hierarchy, where options for navigating between clusters in partition i could call skills for
navigating between clusters in partition i− 1. Only options at the lowest level of the hierarchy could
call primitive actions. Options generated using alternative methods called primitive actions directly.

Eigenoptions [30] were generated by computing the normalised Laplacian of the state transition
graph and using its eigenvectors to define pseudo-reward functions for each Eigenoption to maximise.
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In Office, the first 32 eigenvectors (and their negations) were used. In all other environments, the
first 16 eigenvectors (and their negations) were used. Options for navigating to local maxima of
betweenness [12] were generated by selecting all local maxima as subgoals and defining options for
navigating to each subgoal from the nearest 30 states.

Learning option policies. For all methods except Eigenoptions, option policies were learned using
macro-Q learning [38], with learning rate α = 0.6, initial action values Q0 = 0, and discount factor
γ = 1. All agents used an ϵ-greedy exploration strategy with ϵ = 0.2. For options based on clustering,
the agent started in a random state in the source cluster. It received a reward of −0.01 for each
action taken and an additional +1.0 for reaching a state in the goal cluster. For options based on
node betweenness, the agent started in a random state in the initiation set. It received a reward of
−0.01 at each decision stage, an additional +1.0 for reaching the subgoal state, and an additional
−1.0 for leaving the initiation set. For Eigenoptions, value iteration was used to produce policies that
maximised the pseudo-reward function of each Eigenoption.

Producing learning curves. All agents were trained using macro-Q [38] and intra-option learn-
ing [39] updates, which were performed every time an option at any level of the hierarchy terminated.
A learning rate of α = 0.4, discount factor of γ = 1, and initial action values of Q0 = 0 were used
in all experiments. All agents used an ϵ-greedy exploration strategy with ϵ = 0.1. All learning
curves show evaluation performance. After training each agent for one epoch, the learned policy was
evaluated (with exploration and learning disabled) in a separate instance of the environment.

Applying the Louvain algorithm in Pinball. The state transition graph was constructed by following
the method used by Mahadevan and Maggioni [41]. Initially, 4000 states were randomly sampled and
a node representing each state was added to the graph. Edges were then added between each node
and its 10 nearest neighbours. An between two locations u and v with Euclidean distance d between
them was assigned a weight of e−4d2

. Finally, the Louvain algorithm (ρ = 0.05) was applied to the
resulting graph.

C Comparison to Skills that Navigate to Local Maxima of Betweenness

Here we explore the relationship between Louvain skills and the skill chracterisation proposed by
Şimşek and Barto [12]. The latter is a subgoal-based approach that captures various definitions of the
bottleneck concept. It defines skills that navigate to local maxima of betweenness. Both approaches
address the conceptual problem of what makes a useful skill, explicitly defining a target set of skills
for the agent to learn.

There is substantial overlap between Louvain skills and skills that navigate to local maxima of
betweenness. They both include skills that traverse bottleneck states, including those that navigate
between rooms in Rooms, picking up the passenger in Taxi, and navigating different parts of the grid
in Taxi. In Towers of Hanoi, all Louvain skills traverse states that are also identified as local maxima
of betweenness. The highest local maxima of betweenness correspond to the states that separate
Louvain clusters at level 3; the second highest local maxima of betweenness correspond to the states
that separate Louvain clusters at level 2.

On the other hand, there are many Louvain skills that do not correspond to navgating to local maxima
of betweenness. Examples include the Louvain skills that navigate within a single room in Rooms.

Most importantly, Louvain skills and skills that navigate to local maxima of betweenness differ in
how they can be arranged hierarchically. Even in Towers of Hanoi, where there is a clear hierarchical
structure between the larger and smaller local maxima of betweenness, it is not clear how to exploit the
betweenness metric to form a multi-level hierarchy. In contrast, the modularity metric approximated
by the Louvain algorithm provides a clear and principled way of building a multi-level hierarchy.

D Cluster Hierarchies

Figure 1 shows the cluster hierarchies produced by the Louvain algorithm when applied to the state
transition graphs of Grid and Maze. It also shows the first level of the cluster hierarchy in Office,
which was omitted in the main paper due to space limitations.
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Figure 1: Top two rows: Cluster hierarchies produced by the Louvain algorithm in Grid and Maze.
Bottom row: The lowest level of the cluster hierarchy in Office.

E Sensitivity to the Resolution Parameter

Figure 2 shows the performance of agents in Rooms and Towers of Hanoi using Louvain skills
generated using different values of ρ. Louvain skills created using lower values of ρ consistently
outperformed those created by using higher values, and very high values (ρ ≥ 10) generally led to
performance similar to that obtained by using primitive actions only. Lower ρ values lead to deeper
hierarchies that contain skills for navigating the environment over varying timescales. In contrast,
higher ρ values result in shallower skill hierarchies that contain few—or, in the extreme, no—levels
of skills above primitive actions. While there are better and worse values of ρ, it may be argued
that there is no “bad” choice; lowering ρ will result in deeper hierarchies, but existing levels of the
hierarchy will remain intact.
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Figure 2: Agent performance with Louvain skills generated using different settings of the resolution
parameter ρ.
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F Compute Resource Usage

The experiments were run using a shared internal CPU cluster with the specifications shown below.
Approximately 40 CPU cores were utilised for approximately 336 hours when producing the final
set of results presented in the paper. Prior to this, approximately 20 CPU cores were utilised for
approximately 168 hours during preliminary testing. GPU acceleration was not used because the
experiments involved tabular reinforcement learning methods.

Processor 2× AMD EPYC 7443
Cores per Processor 24 Cores
Clock Speed 2.85GHz–4GHz
RAM 512 GB
RAM Speed 3200MHz DDR4

G Source Code

An implementation of the proposed approach, implementations of the test environments,
and the code used to generate all results presented in the paper can be found in the
following GitHub repository: https://github.com/bath-reinforcement-learning-lab/
Louvain-Skills-NeurIPS-2023
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H Louvain Algorithm

Algorithm 1 shows pseudocode for the Louvain algorithm [8]. It takes a graph G0 = (V0, E0) as
input and outputs a set of partitions of that graph into clusters. Each iteration of the algorithm (lines
4–25) produces one partition of the graph.

Algorithm 1: Louvain Algorithm
1 parameters: resolution parameter ρ ∈ R+

2 input: G0 = (V0, E0) // e.g., the state transition graph of an MDP

3 i← 0
4 repeat
5 Ci ← {{u} | u ∈ Vi} // define singleton partition
6 Qold ← modularity from dividing Gi into partition Ci

7 repeat
8 Cbefore ← Ci

9 foreach u ∈ Vi do
10 find clusters neighbouring u, Nu ← {c | c ∈ Ci, v ∈ Vi, v ∈ c, (u, v) ∈ Ei}
11 compute the modularity gain from moving u into each cluster c ∈ Nu

12 update Ci by inserting u into cluster c ∈ Nu that maximises modularity gain
13 end foreach
14 Cafter ← Ci

15 until Cbefore = Cafter // no nodes changed clusters during an iteration

16 Qnew ← modularity from dividing Gi into revised partition Ci

17 if Qnew > Qold then
18 Vi+1 ← {c | c ∈ Ci}
19 Ei+1 ← {(cj , ck) | cj ∈ Ci, ck ∈ Ci, (u, v) ∈ Ei, u ∈ cj , v ∈ ck}
20 Gi+1 ← (Vi+1, Ei+1) // derive aggregate graph from current partition
21 i← i+ 1
22 else
23 break
24 end if
25 end
26 output: partitions C0, . . . , Ci−1
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I Incremental Discovery of Louvain Skills

Algorithm 2 presents an approach for incrementally developing a hierarchy of Louvain skills over
time, starting with only primitive actions. To update the agent’s skill hierarchy, Algorithm 2 calls
upon either Algorithm 1 or Algorithm 3, depending on whether the agent’s existing skill hierarchy is
to be replaced or updated. Algorithm 3 presents an approach for incrementally updating Louvain
partitions. It integrates new nodes into an existing cluster hierarchy.

Algorithm 2: Incremental Discovery of Louvain Skills
1 input: variant ∈ {1, 2} // which variant of the incremental algorithm to use
2 input: N = {n1, n2, . . .} // decision stages to revise skill hierarchy after

3 V ← ∅ // initialise empty set of nodes
4 E ← ∅ // initialise empty set of edges
5 G← (V,E) // initialise empty state transition graph (STG)
6 C ← ∅ // initialise empty set of partitions of the STG
7 Vnew ← ∅ // initialise empty set for recording novel states
8 Enew ← ∅ // initialise empty set for recording novel transitions

9 initialise Q(s, a) for all s ∈ S, a ∈ A(s) arbitrarily, with Q(terminal state, ·) = 0
10 t← 0
11 repeat
12 initialise environment to state S

13 if S /∈ V then
14 Vnew ← Vnew ∪ {S}
15 end if
16 while S is not terminal do
17 choose A from S using policy derived from Q (e.g., ϵ-greedy)
18 take action A, observe next-state S′ and reward R
19 perform macro-Q and intra-option updates using (S,A, S′, R)
20 S ← S′

21 if S′ /∈ V then
22 Vnew ← Vnew ∪ {S′} // add novel state to set of new nodes
23 end if
24 if (S, S′) /∈ E then
25 Enew ← Enew ∪ {(S, S′)} // add novel transition to set of new edges
26 end if
27 if t ∈ N then
28 add each state u ∈ Vnew to V
29 add each transition (u, v) ∈ Enew to E
30 Vnew ← ∅
31 Enew ← ∅
32 if variant = 1 then
33 C ← partitions of the STG derived from (V,E) using Algorithm 1
34 replace existing skill hierarchy with skills derived from C
35 else if variant = 2 then
36 C ← partitions of the STG derived from (V,E,C) using Algorithm 3
37 revise existing skill hierarchy based on skills derived from C
38 end if
39 initialise entries in Q for all new skills arbitrarily, with Q(terminal state, ·) = 0
40 remove entries from Q for all skills that no longer exist in the revised hierarchy
41 end if
42 t← t+ 1
43 end while
44 end
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Algorithm 3: Update Louvain Partitions
1 parameters: resolution parameter ρ ∈ R+

2 input: G0 = (V0, E0) // e.g., the state transition graph (STG) of an MDP
3 input: C = {C0, C1, . . . , Cn} // an existing set of partitions of the STG

4 i← 0
5 repeat
6 Vnew ← nodes in Vi not assigned to any cluster in Ci

7 Ci ← Ci ∪ {{u} | u ∈ Vnew} // define singleton partition over new nodes
8 Qold ← modularity from dividing Gi into partition Ci
9 repeat

10 Cbefore ← Ci

11 foreach u ∈ Vnew do
12 find clusters neighbouring u, Nu ← {c | c ∈ Ci, v ∈ Vi, v ∈ c, (u, v) ∈ Ei}
13 compute the modularity gain from moving u into each cluster c ∈ Nu

14 update Ci by inserting u into cluster c ∈ Nu that maximises modularity gain
15 end foreach
16 Cafter ← Ci

17 until Cbefore = Cafter // no nodes changed clusters during an iteration

18 Qnew ← modularity from dividing Gi into revised partition Ci

19 if Qnew > Qold or i < |C| then
20 Vi+1 ← {c | c ∈ Ci}
21 Ei+1 ← {(cj , ck) | cj ∈ Ci, ck ∈ Ci, (u, v) ∈ Ei, u ∈ cj , v ∈ ck}
22 Gi+1 ← (Vi+1, Ei+1) // derive aggregate graph from current partition
23 i← i+ 1
24 else
25 break
26 end if
27 end
28 output: partitions C0, . . . , Ci−1
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