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Abstract— Vision-based tactile sensors offer rich tactile infor-
mation through high-resolution tactile images, enabling the re-
construction of dense contact force fields on the sensor surface.
However, accurately reconstructing the three-dimensional (3D)
contact force distribution remains a challenge. In this paper, we
propose the multi-layer inverse finite element method (iFEM2.0)
as a robust and generalized approach to reconstruct dense
contact force distribution. The proposed iFEM2.0 demonstrates
good performance in both simulation- and experiment-based
evaluations. Such dense 3D contact force information is critical
for enabling dexterous robotic manipulation that handles both
rigid and soft materials.

I. INTRODUCTION

Robots are increasingly performing complex tasks such
as surgical assistance, space servicing, and precision assem-
bly [1]-[3]. In these unstructured environments, dense 3D
contact force perception is critical for ensuring safe and
effective interaction [4], [5], offering valuable insights into
object properties like texture, stiffness, and friction [6]—
[9]. While traditional tactile sensors excel at normal force
sensing [10]-[12], tangential force measurement is essen-
tial for capturing frictional behaviors and detecting slip-
page [13], [14], particularly when manipulating deformable
objects [15], [16]. Fig. 1 illustrates a practical scenario
showcasing the importance of dense 3D contact force fields.
In this example, the softer outer contact region induces
smaller tangential forces on the sensor, whereas the stiffer
central part exhibits larger tangential forces, which aligns
with Hertzian contact [17] and friction principles [18]. Such
nuanced information allows for better perceiving and manip-
ulating rigid-soft coupled objects.

Vision-based tactile sensors [19], [20] offer promising
hardware, capable of recovering the surface deformation
fields, while accurately estimating the contact force distri-
bution from the deformation fields poses a challenge. This
inverse mechanical problem is inherently ill-conditioned,
leading to serious errors even with minor measurement
noise [21]. Existing methods for reconstructing contact force
via vision-based tactile sensors often yield noisy results [22]—
[24]. Furthermore, the lack of standardized benchmarks
hampers method evaluation and comparison.

This work was jointly supported by the National Natural Science Foun-
dation of China (NSFC) under Grant 12272220, and the Shanghai Jiao
Tong University through the Oceanic Interdisciplinary Program under Grant
SL2021MS017. (Corresponding author: Daolin Ma)

Can Zhao and Daolin Ma are with the School of Ocean & Civil
Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
Jin Liu is with the School of Mechanical Engineering, Shanghai Jiao
Tong University, Shanghai 200240, China. (e-mail: can.zhxx @sjtu.edu.cn;
jinliu.sjtu@outlook.com; daolinma@sjtu.edu.cn)

Fig. 1. An example of dense 3D contact force fields for perceiving rigid-soft
coupled objects. (a) The GelSlim 3.0 sensor holds onto a coupled rigid-soft
ball. (b) 2D tangential displacement field. (c) Depth field. (d) 3D contact
force field with noise reconstructed using raw iFEM. (e) Enhanced accuracy
and clarity in the 3D contact force field reconstructed via iFEM 2.0.
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Fig. 2. The iFEM2.0 improvements compared to iFEM1.0. The task is
defined as reconstructing the 3D contact force distribution on the pad’s
surface F from the observed 3D deformation field U,,.

This work proposes iFEM2.0-a comprehensive and robust
method for reconstructing dense contact force fields using
vision-based tactile sensors, published in IEEE Transactions
on Robotics [25].

II. METHOD

Fig. 2 visualizes a side-by-side comparison of the iFEM1.0
and iFEM2.0 algorithms, while Fig. 3 presents the overall
pipeline of the iFEM2.0 algorithm.

1) Problem Statement: The sensor’s gel pad is discretized
into a multi-layer uniform 8-node hexahedral element system
with ne element layers and m, node layers (n. > 2,
np = Ne + 1). The global displacement and force vectors
are denoted as U and F', respectively. The observed 3D

displacement field on the gel pad surface is U,,. The goal is
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Fig. 3. Algorithm flowchart for 3D contact force distribution. (a) 3D displacement field acquisition from tactile images using a neural network. (b) Stiffness
matrix generation: contact model establishment, mechanical parameters calibration, and geometric parameters determination of vision-based tactile sensor.
(c) 3D contact force field (normal and tangential) reconstruction from noisy 3D displacement field and original stiffness matrix.
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Fig. 4. (a) Normal contour and (b) tangential quiver map for contact
force distribution using different methods and states. First row: ground truth,
second row: FirEM, o (our method), third row: FirgM,,,, . fourth row:
FZiFEMsparse' The columns are labeled with Sy, where n = 5,6, 9, 10.

to reconstruct the 3D contact force distribution on the pad’s
surface F1 =G (ﬁm), as illustrated in Fig. 2.

2) Multi-layer Inverse Finite Element Method: For the
only two-layer element case (n, = 2), applying boundary

conditions to the finite element equilibrium KU = F yields:

ey

For systems more than two layers (n, > 3), intermediate-
layer displacements U are condensed, and the correspond-
ing matrices are denoted as Kj,, Kj;, and Kj,. For
simplicity, the same notation is used hereafter. However,
directly inverting K5 o is ill-conditioned due to its large
sparse structure, which amplifies numerical noise and leads
to unstable force estimation [21]. In addition, measurement
noise in U, further deteriorates reconstruction accuracy.

3) Ridge Regularization: To stabilize the inversion, Ridge
regularization is introduced for its simplicity, robustness, and
numerical efficiency in ill-posed problems [21], [26]. An Lo
penalty term is added to the objective, reformulating the force

K;,U; = -K Uy, Fy = K 1Uy + K 2Us.
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Fig. 5. Practical experimental evaluation and results. (a) Experimental setup
with GelSlim 3.0 vision-based tactile sensor and ATI force/torque sensor.
(b) Dense 3D contact force distribution reconstructed using iFEM 2.0 for
various domestic objects: M8 steel ball, M8 Phillips screw, M6 hexagonal
screw, USB plug, and shell.

reconstruction as: argnlljinHK271U1 + K5 2Us |3+ Us |3
2

Solving this convex optimization problem by setting its
derivative to zero yields:

Uy = (Ky5 Koo +wl) ' Koy T (— K5 Uy +ng), (2)

where w and ng denote the regularization parameter and
noise level.

III. CONCLUSION

This study presents iFEM2.0, a multi-layer inverse finite
element framework that significantly improves the accuracy
and robustness of 3D contact force reconstruction for vision-
based tactile sensors. The method enables precise estimation
of both normal and tangential force components across dense
measurement points. Simulation results in Fig. 4 demonstrate
accurate recovery of 3D force fields under varying algo-
rithm settings, while Fig. 5 illustrates high-resolution force
distributions captured between the GelSlim3.0 sensor and
diverse real-world objects. Beyond reconstruction, iFEM2.0
provides a foundation for tactile-driven closed-loop control,
offering new opportunities for adaptive grasping, dexterous
manipulation, and complex robotic tasks.
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