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Abstract— Vision-based tactile sensors offer rich tactile infor-
mation through high-resolution tactile images, enabling the re-
construction of dense contact force fields on the sensor surface.
However, accurately reconstructing the three-dimensional (3D)
contact force distribution remains a challenge. In this paper, we
propose the multi-layer inverse finite element method (iFEM2.0)
as a robust and generalized approach to reconstruct dense
contact force distribution. We systematically analyze various
parameters within the iFEM2.0 framework, and determine
the appropriate parameter combinations through simulation
and in-situ mechanical calibration. Our approach incorpo-
rates multi-layer mesh constraints and ridge regularization
to enhance robustness. Furthermore, as no off-the-shelf mea-
surement equipment or criterion metrics exist for 3D contact
force distribution perception, we present a benchmark covering
accuracy, fidelity, and noise resistance that can serve as a
cornerstone for other future force distribution reconstruction
methods. The proposed iFEM2.0 demonstrates good perfor-
mance in both simulation- and experiment-based evaluations.
Such dense 3D contact force information is critical for enabling
dexterous robotic manipulation that handles both rigid and soft
materials.

I. INTRODUCTION

Robots are increasingly performing complex tasks such
as surgical assistance, space servicing, and precision assem-
bly [1]–[3]. In these unstructured environments, dense 3D
contact force perception is critical for ensuring safe and
effective interaction [4], [5], offering valuable insights into
object properties like texture, stiffness, and friction [6]–
[9]. While traditional tactile sensors excel at normal force
sensing [10]–[12], tangential force measurement is essen-
tial for capturing frictional behaviors and detecting slip-
page [13], [14], particularly when manipulating deformable
objects [15], [16]. Fig. 1 illustrates a practical scenario
showcasing the importance of dense 3D contact force fields.
In this example, the softer outer contact region induces
smaller tangential forces on the sensor, whereas the stiffer
central part exhibits larger tangential forces, which aligns
with Hertzian contact [17] and friction principles [18]. Such
nuanced information allows for better perceiving and manip-
ulating rigid-soft coupled objects.

Vision-based tactile sensors [19], [20] offer promising
hardware, capable of recovering the surface deformation

C. Zhao, D. Ma are with the School of Ocean & Civil Engineering,
Shanghai Jiao Tong University, Shanghai 200240, China (e-mail: can.zhxx,
daolinma@sjtu.edu.cn). J. Liu is with the School of Mechanical Engi-
neering, Shanghai Jiao Tong University, Shanghai 200240, China (e-mail:
jinliu.sjtu@outlook.com). (Corresponding author: Daolin Ma)

Fig. 1. An example of dense 3D contact force fields for perceiving rigid-
soft coupled objects through tangential force distributions between central
and outer region. (a) The GelSlim 3.0 sensor holds onto a coupled rigid-soft
ball. (b) 2D tangential displacement field. (c) Depth field. (d) 3D contact
force field with noise reconstructed using raw iFEM. (e) Enhanced accuracy
and clarity in the 3D contact force field reconstructed via iFEM 2.0.

fields, while accurately estimating the contact force distri-
bution from the deformation fields poses a challenge. This
inverse mechanical problem is inherently ill-conditioned,
leading to serious errors even with minor measurement
noise [21]. Existing methods for reconstructing contact force
via vision-based tactile sensors often yield noisy results [22]–
[24]. Furthermore, the lack of standardized benchmarks
hampers method evaluation and comparison.

In this study, we propose iFEM2.0, a comprehensive and
robust method for reconstructing dense contact force fields
using vision-based tactile sensors.
• Accurate and Robust Algorithm to reconstruct dense,

precise and robust 3D contact force distribution are
proposed. The framework leverages a multi-layer mesh
with complementary constraints and regularization mech-
anisms to effectively address model inaccuracies and ill-
conditioning issues while handleing measurement noise.

• Appropriate Model Parameter Combination about
the constitutive models, element parameters, and mate-
rial properties of tactile sensors are determined within
iFEM2.0 through comprehensive simulation comparisons
and in-situ mechanical calibration.

• Integrated Evaluation Benchmark and Metrics for
3D contact force reconstruction are established, covering
accuracy, fidelity, noise resistance and generalizability.
The iFEM2.0 demonstrates superior performance in both
simulation- and experiment-based evaluations compared
with previous methods.



Fig. 2. Algorithm flowchart for 3D contact force distribution. (a) 3D displacement field acquisition from tactile images using a neural network. (b) Stiffness
matrix generation: contact model establishment, mechanical parameters calibration, and geometric parameters determination of vision-based tactile sensor.
(c) 3D contact force field (normal and tangential) reconstruction from noisy 3D displacement field and original stiffness matrix.

II. METHOD

In this section, we present details of the iFEM2.0 algo-
rithm, as shown in Fig. 2.

First, key notations are described to clearly define the
problem. The gel pad of sensor is discretized into a multi-
layer uniform 8-node hexahedral element system, with ne

element layers and np node layers (ne ≥ 2, np = ne + 1).
The displacement and force vectors for the entire system
are denoted as U = {U1

T,U2
T, . . . ,Unp

T}T and F =
{F1

T,F2
T, . . . ,Fnp

T}T. The observed 3D displacement
field on the outer surface of gel pad is denoted as Um. The
goal is to reconstruct the 3D contact force distribution on the
pad’s surface F1 = G(Um).

Reconstructing the 3D contact force distribution F1 from
noisy surface nodal displacements Um is challenging, as
directly reversing the forward contact model for vision-based
tactile sensors is inherently ill-conditioned and often unfeasi-
ble. To address this, we propose the multi-layer inverse finite
element method (iFEM2.0) to reconstruct F1 and enhance
the effect by incorporating a ridge regularization term.

1) Specific Boundary Conditions: We first define a simpli-
fied contact model with the following assumptions:

• The reconstruction is limited to the central gel region to
avoid peripheral image distortion.

• The built-in camera records real-time deformation of the
gel pad’s top surface, i.e., U1 = U top ≈ Um (with noise).
The bottom surface is adhered to the acrylic prism, treated
as a rigid foundation, i.e., Unp = Ubm = 0.

• External loads applied to intermediate-layer nodes are
zero, i.e., F2 = · · · = Fnp−1

= 0.

2) Multi-layer Inverse Finite Element Method: The discrete
silica gel system consists of np layers of nodes (np = ne+1,
ne ≥ 2). For the only two-layer element case (ne = 2),
incorporating boundary conditions into the finite element

equilibrium KU = F results in equations:

K2,2U2 = −K2,1U1,F1 = K1,1U1 +K1,2U2. (1)

For systems more than two layers (ne ≥ 3), the intermediate-
layer displacement distribution are condensed asU ′

2. The
corresponding matrices are denoted as K ′

1,2, K ′
2,1, and

K ′
2,2, respectively. For simplicity, we use the same notation

for (U ′
2, K ′

1,2, K ′
2,1 and K ′

2,2), as the original variables
(U2, K1,2, K2,1 and K2,2). However, inverting K2,2 is ill-
conditioned due to its large sparse nature, leading to potential
fluctuations in force calculations [21]. Moreover, measure-
ment noise in the upper node displacement observations Um

further affects the accuracy of force calculation results.
3) Ridge Regularization: To address the ill-conditioning,

Ridge regularization is chosen due to its benefits in en-
hancing stability, ease of use, and numerical efficiency,
particularly for solving inverse problems [21], [25]. Ridge
regularization introduces L2 regularization term to the loss
function, transforming the force reconstruction into an opti-
mization problem. The optimization objective is formulated
as: argmin

U2

∥K2,1U1 +K2,2U2∥22+λ∥U2∥22.
Solving this convex function by setting its derivative to

zero, resulting in the estimation of U2 as:

U2 = (K2,2
TK2,2 + wI)−1K2,2

T(−K2,1U1 + n0) (2)

where w and n0 denote a regularization parameter and the
noise level, respectively.

III. CONCLUSION

In this study, we present iFEM2.0, a multi-layer inverse
finite element method designed to enhance the accuracy and
robustness of contact force reconstruction for vision-based
tactile sensors. Our framework enables precise estimation
of 3D contact force distributions—including both normal
and tangential components—at each measurement point.
This method holds broad potential for advanced closed-loop
strategies in robot control.
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