
Under review as a conference paper at ICLR 2021

DEEP REINFORCEMENT LEARNING WITH ADAPTIVE
COMBINED CRITICS

Anonymous authors
Paper under double-blind review

ABSTRACT

The overestimation problem has long been popular in deep value learning, because
function approximation errors may lead to amplified value estimates and subop-
timal policies. There have been several methods to deal with the overestimation
problem, however, further problems may be induced, for example, the underesti-
mation bias and instability. In this paper, we focus on the overestimation issues on
continuous control through deep reinforcement learning, and propose a novel al-
gorithm that can minimize the overestimation, avoid the underestimation bias and
retain the policy improvement during the whole training process. Specifically, we
add a weight factor to adjust the influence of two independent critics, and use the
combined value of weighted critics to update the policy. Then the updated policy
is involved in the update of the weight factor, in which we propose a novel method
to provide theoretical and experimental guarantee for future policy improvement.
We evaluate our method on a set of classical control tasks, and the results show
that the proposed algorithms are more computationally efficient and stable than
several existing algorithms for continuous control.

INTRODUCTION

The task of deep reinforcement learning (DRL) is to learn good policies by optimizing a discounted
cumulative reward through function approximation. Although a variety of control tasks have gained
success through DRL Mnih et al. (2013; 2015); Van Hasselt et al. (2016); Wang et al. (2015); Schaul
et al. (2015); Lillicrap et al. (2015); Mnih et al. (2016), there still exists biases caused by function
approximation errors, studied in prior work Mannor et al. (2007).

Overestimation bias is rooted in Q-learning by consistently maximizing a noisy value estimate,
and was originally reported to be present in the algorithms, typically, like deep Q-network (DQN)
Mnih et al. (2015) which is aimed for discrete control tasks. Since DQN adopts neural networks
to approximate a cumulative future reward, it is unavoidable that the noise evolved from function
approximation accompanies the whole training. Besides, DQN updates its policy by choosing the
action that maximizes the value function, which may bring the inaccurate value approximation that
outweighes the true value, i.e., the overestimation bias. This bias further accumulates at every step
via bootstrapping of temporal difference learning, which estimates the value function using the value
estimate of a subsequent state.

When the overestimation bias is harmful to a certain task, it will cause instability, divergence and
suboptimal policy updates. To solve this, Double deep Q-networks (DDQN) Van Hasselt et al.
(2016) alter the policy update strategy by taking actions based on a relatively independent target
value function instead of maximizing the original Q network. DDQN not only yields more accu-
rate value estimates, but leads to much higher scores on several games Van Hasselt et al. (2016).
However, due to the randomness of approximation errors, DDQN provides no theoretical bounds
for the overestimation, and the unresolved overestimation or induced underestimation makes the
performance of DDQN worse than DQN in some cases, reported in Van Hasselt et al. (2016).

For the case of high-dimensional, continuous action spaces, Deep Deterministic Policy Gradient (D-
DPG) Lillicrap et al. (2015) provide a model-free, off-policy actor-critic method using deterministic
policy gradients. Due to the slow-changing policy in an actor-critic setting, the current and target
value estimates will be too dependent to circumvent bias if the solution of DDQN to overestima-
tion is directly under the continuous control setting. Inspired by Double Q-learning Hasselt (2010)

1

Under review as a conference paper at ICLR 2021

which employ a pair of independently trained critics to achieve a less biased value estimation, the
twin delayed deep deterministic policy gradient algorithm (TD3) Fujimoto et al. (2018) propose a
clipped Double Q-learning variant choosing the lower target value as an approximate upper-bound to
estimate the true current value, which favors underestimation biases that will not accumulate during
training because actions with high value estimation are preferred. However, there are two problems
lying in TD3. First, by taking actions towards the maximization of lower action-value (Q-value) at
every step, the policy improvement cannot be guaranteed, which may cause potential suboptimal
policies and instability. Second, using the same target value to update two critic networks will make
them less independent.

The paper has the following contributions. First, we propose a combined value of two independent
critics connected by a weight factor, and use it to update the policy instead of serving as a shared
target estimate for the two critics, to avoid losing independence. Second, we propose a sign multi-
plier which determines whether the updated combined value has increased. The objective function
for updating the weight factor is the product of the sign and the combined value evaluated by the
updated policy. Third, we present a novel algorithm for continuous control, which can minimize
the overestimation bias while providing guarantee for future policy improvement. And theoretical
proofs show that the proposed algorithm has the property of asymptotical convergence and expected
policy improvement. Fourth, we further apply the proposed algorithm to an unbiased framework
to create another algorithm, which can remove the systematic bias due to the probability mismatch
between the behavior policy and the target policy existing in off-policy methods. Fifth, extensive
evaluations are conducted to compare the proposed algorithms with some baseline algorithms, in
terms of computational efficiency, convergence rate and stability.

BACKGROUND

The task of reinforcement learning (RL) is to learn an optimal policy that maximizes a single return,
i.e., the expected discounted cumulative reward of an episode. During an episode, the agent continu-
ally receives a sequence of observations by interacting with the environment before encountering an
terminated state or the timeout. The return is calculated as the expected sum of future rewards. DRL
combines the neural networks with RL so that the return can be approximated by the parameterized
function. In DRL, the agent follows a behavior policy to determine future rewards and states, and
store these observations in a memory, which will be randomly sampled over to train the network
parameters and update the target Q-values. The target updates can be immediate, delayed or ”soft”.

Generally, the Q-value of DRL is represented as the expected discounted cumulative reward, an
estimate function with respect to the state and action, which is given by

Qπ(s, a) = Epπ(h|s0,a0)

[∞∑
t=0

γtr(st, at)|s0 = s, a0 = a

]
, (1)

where r(s, a) is the immediate reward which is usually connected to the state-action pair, (s, a) is
the value of initial state-action pair, and γ ∈ (0, 1) is the discount horizon factor for future rewards.
Under the guidance of behavior policy π, pπ(h|s0, a0) is the joint probability of all state-action pairs
during an episode given the initial state-action pair (s0, a0).

When neural networks are used to approximate Q-values, the update of behavior policy π is closely
related to the Q network under the setting of Markov Decision Process (MDP). The Q-value function
in (1) takes the state-action pair (s, a) as input and maps it to the Q-value. The foundation for
updates of network parameters is the Bellman equation. Most of existing DRL algorithms adopt an
independent target Q network to approximate an essential part of the target value, which can be set
based on Bellman equation and organized to form the general loss function for DRL as Lillicrap
et al. (2015)

L(ω) = E(s,a,r,s′)

[
(r + γQ(s′, µ(s′|θ′)|ω′)−Q(s, a|ω))2

]
, (2)

where a is the action drawn from a behavior policy based on s, r and s′ are the immediate reward
and next state received by interacting with the MDP environment, respectively. Overall, (s, a, r, s′)
is the tuple stored in the replay buffer at every step. Besides, µ(s′|θ′) is the target policy mapping s′
to the next action a′ through a target actor network parameterized by θ′ in deterministic actor-critic

2

Under review as a conference paper at ICLR 2021

methods, instead of taking actions from the replay buffer. Moreover, ω is the parameter of current
Q network, which is normally different from the target network parameter ω′.

Once the Q networks are updated, the objective at the current iteration is to optimize the actor
parameter θ, which is updated by maximizing the expected return J(θ) = Es [Qπ(s, µ(s|θ)|ω)]. In
the case of continuous control, θ can be updated by gradient descent∇θJ(θ).

ADAPTIVE DELAYED DEEP DETERMINISTIC POLICY GRADIENT

In TD3, the clipped variant of Double Q-Learning is proposed for actor-critic to reduce the overes-
timation bias. Instead of using a pair of actors and critics to learn twice, TD3 upper-bounds the less
biased value estimate by taking the minimum between two critic networks to offer target estimation
for the update of future critics. Inspired by this work, we also adopt two critic networks and their
target estimates, which are parameterized by ω, Ω, ω′ and Ω′, respectively. Since we plan to deal
with our problem through DRL, we can substitute sampled minibatches into the loss functions of
action-values (2), which are given by

L(ω) =
1

N

N∑
n=1

(rn + γQ(s′n, a
′
n|ω′)−Q(sn, an|ω))2, (3)

L(Ω) =
1

N

N∑
n=1

(rn + γQ(s′n, a
′
n|Ω′)−Q(sn, an|Ω))2, (4)

where a′n = µ(s′n|θ′) is the action taken from the target actor network, and (sn, an, rn, s
′
n) is the

n-th tuple of minibatches stored in replay buffer.

In TD3, the minimum of two critics is employed to serve as the target estimation value. However,
updating two Q networks according to the same target estimate will make them less independent,
which will further negatively affect the training efficiency. Besides, it is more reasonable to apply
the clipped variant of Double Q-Learning to the procedure of actor update. Inspired by the Lagrange
relaxation applied in constrained MDP problems Tessler et al. (2018), we propose a dual form of
combined value function via a weight factor to determine actions reducing the harmful effect from
overestimation. The dual form of combined value function for policy update is given by

π∗ = arg min
0≤λ≤1

max
π

[(1− λ)Qπ(s|ω) + λQπ(s|Ω)] ,∀s ∈ χ \ χ′. (5)

where Qπ(s|ω) and Qπ(s|Ω) are two critics following policy π, χ′ be the set of transient states
in continuous compact state space χ, and the weight factor λ determines the influence of two Q
functions. Specifically, (5) will reduce to a normal policy evaluation with one critic when λ = 0
or λ = 1. Generally, (5) needs to be solved by a two-timescale approach that may result in a
saddle point problem, i.e., on the faster timescale, the policy π or its parameter is solved by (5)
when fixing λ, while on the slower timescale, λ is slowly increased until the overestimation error
is minimized without losing the optimal solution to (5). Due to the potential non-convexity of the
action-value function, the method may lead to a sub-optimal solution, and even cause instability
when the convergence is slow.

To avoid the potential saddle point problem, we first propose a two-step separation method to solve
(5) for each policy update, which determines the optimal action to restrain overestimation based on
the target weight factor λ′ and then use the up-to-date policy to update λ. Second, although the
underestimation bias accompanying the minimization operator is far preferable to overestimation
and does not explicitly propagate through the policy update, it indeed negatively affect the policy
improvement at every iteration and further brings fluctuation on algorithm convergence. The policy
improvement means that the optimized objective function in (5) should steadily increase during
training. The insurance of this value improvement lies in the choice of weight factor λ. The process

3

Under review as a conference paper at ICLR 2021

of this separation method is given by

J(θ) =
1

N

N∑
n=1

[(1− λ′)Q(sn, an|ω) + λ′Q(sn, an|Ω)] , (6)

J(λ) =
1

N

N∑
n=1

[(1− λ)Q(sn, an|ω) + λQ(sn, an|Ω)] ∗ Sign(λ), (7)

where 0 ≤ λ′ ≤ 1, an = µ(sn|θ), which means actions in (6) and (7) should be taken from the
policy of current actor instead of the replay buffer. We provide the guarantee of policy improvement
by multiplying the averaged return for λ updating by a sign function, which is given by

Sign(λi) = I

(
1

N

N∑
n=1

[
min
λi

Q̂(sn, an,i|ωi,Ωi, λi)− Q̂(sn, an,i−1|ωi−1,Ωi−1, λi−1)

])
, (8)

where

Q̂(s, a|ω,Ω, λ) = (1− λ)Q(s, a|ω) + λQ(s, a|Ω), (9)

an,i = µ(sn|θi) and an,i−1 = µ(sn|θi−1), which come from actor networks parameterized by
current states before and after updating respectively but not from the replay buffer. I(x) produces
1 when x is negative, and vice versa. The sign denoted in (8) is actually the comparison between
the minimum updated Q-values in two critics and the old (before the policy update) combined value
defined in (9) .

Lemma 1. Denoting the converged values of two critics asQ(s, a|ω?) andQ(s, a|Ω?), respectively,
then the convergence of combined value denoted in (9) can be ensured by minimizing (3) and (4).

Different from updating λ in (7), the averaged return for θ updating in (6) adopts the target weight
factor λ′. Then (ω′,Ω′, θ′, λ′) are updated adopting the ”soft” target updates Lillicrap et al. (2015)
by (ω,Ω, θ, λ), in the way of

ω′i ← τ arg min
ωi

L(ωi) + (1− τ)ω′i−1,

Ω′i ← τ arg min
Ωi

L(Ωi) + (1− τ)Ω′i−1,

θ′i ← τ arg max
θi

J(θi) + (1− τ)θ′i−1,

λ′i ← τ arg min
λi

J(λi) + (1− τ)λ′i−1, (10)

where τ < 1 is the factor to control the speed of policy updates for the sake of small value error
at each iteration, and λ′ updates following θ′. We organize the above procedures as the adaptive
delayed deep deterministic policy gradient (AD3) algorithm, whose pseudocode is described by
Algorithm 1.

Theorem 1. AD3 algorithm asymptotically converges as the iteration i→∞ with properly chosen
learning rate.

Theorem 2. AD3 algorithm has the property of asymptotical expected policy improvement. Specif-
ically, when the critics tend to converge, i.e., ∃K, ∀i ≥ K, ∀ε > 0,∣∣∣E(s,a)

[
Q̂(s, a|ωi+1,Ωi+1, λi)− Q̂(s, a|ωi,Ωi, λi)

]∣∣∣ < ε, (11)

then

E(s,a)

[
Q̂(s, a|ωi+1,Ωi+1, λi+1)

]
≥ E(s,a)

[
Q̂(s, a|ωi,Ωi, λi)

]
. (12)

The proof of Theorem 1 and Theorem 2 can be found in the Appendix.

4

Under review as a conference paper at ICLR 2021

Algorithm 1 AD3 Algorithm
1: Input: The batch size N , the maximum of updates M , the timeout step T , and the soft update

parameter τ .
2: Initialization: Initialize parameters (ω,Ω, θ, λ) ← (ω0,Ω0, θ0, λ0), (ω′,Ω′, θ′, λ′) ←

(ω′0,Ω
′
0, θ
′
0, λ
′
0) randomly; Initialize replay buffer R, the counter i← 0.

3: while i < M do
4: Reset randomly the initial state s1.
5: for t = 1, T do
6: Select action at according to the current behavior policy, i.e., µ(st|θi) added by exploration

noise;
7: Execute actions at, get next states st+1, and immediate reward rt;
8: Store transition (st, at, rt, st+1) in R;
9: if R is full then

10: Randomly and uniformly sample the slot (si, ai, ri, si+1) from R;
11: Minimize the Q1 loss function shown in (3) by gradient decent, and then update ωi;
12: Minimize the Q2 loss function shown in (4) by gradient decent, and then update Ωi;
13: Maximize the expected return shown in (6) by gradient ascent, and then update θi;
14: Minimize the product of (7) and (8) by gradient ascent, and then update λi;
15: Execute the ”soft” target updates shown in (10) to update θ′i, ω

′
i, Ω′i, and λ′i;

16: i← i+ 1;
17: end if
18: end for
19: end while

UNBIASED ADAPTIVE DELAYED DEEP DETERMINISTIC POLICY GRADIENT

To further improve the performance of proposed AD3 algorithm, we employ AD3 under the frame-
work of unbiased DRL (UDRL) Zhang & Huang (2020). UDRL attempts to solve the systematic
bias induced by the approximation of MDP samples. This systematic bias happens in the experience
replay mechanism without importance sampling (IS) Precup et al. (2000); Hachiya et al. (2008);
Mahmood et al. (2014); Thomas & Brunskill (2016); Jiang & Li (2016); Wang et al. (2016); Foer-
ster et al. (2017); Metelli et al. (2018), because there exists mismatch between distributions of the
target policy and the behavior policy. Without IS to weight the tuples with different probabilities in
commonly applied off-policy methods, the experience replay that memorizes the past observations
for random samples will accumulate the systematic errors and lower the convergence performance.
When applying UDRL, the independently and identically distributed (IID) initial states are paral-
lelly sampled to start respective tuples at the beginning of each iteration. Then the parallel virtual
agents follow the same behavior policy to complete their tuples, which serve as the observations to
synchronously train and update the shared network parameters.

In the case of unbiased AD3 (UAD3) method, the parallelly sampled IID observations should be
used to train the two critic networks, an actor network and a weight factor. At each iteration, the
actions are taken following the same behavior to receive rewards and next states, so that the achieved
four-tuple transition slots are independent and follow the same joint probability. By this means, no IS
is required in the approximations of (3), (4), (6), (7) and (8). The pseudocode of UAD3 is organized
as Algorithm 2.

EXPERIMENTS

CONTINUOUS MAZE

One of the benchmark tasks we choose is the continuous maze which is filled with obstacles. The
environment of the continuous maze problem includes infinite states and actions which is shown in
Fig. 1(a). At every step, the agent is able to move towards all directions with its step size. Since
the state-action space is continuous, the agent may travel through the obstacles represented by the
gray grids if no effective guide is provided during the whole training. The dark solid line at the edge
of Fig. 1(a) is represented as the wall to show the maze is closed except for the goal. The task of

5

Under review as a conference paper at ICLR 2021

Algorithm 2 UAD3 Algorithm
1: Input: The batch size N , the maximum of updates M , and the soft update parameter τ .
2: Initialization: Initialize parameters (ω,Ω, θ, λ) ← (ω0,Ω0, θ0, λ0), (ω′,Ω′, θ′, λ′) ←

(ω′0,Ω
′
0, θ
′
0, λ
′
0) randomly.

3: for i = 1,M do
4: Sample Si = (si,1, si,2, · · · , si,N) IID;
5: Choose actions Ai = (ai,1, ai,2, · · · , ai,N) for Si according to the current actor network

µ(Si|θi) added by exploration noise;
6: Execute actions Ai, get next states S′i = (s′i,1, s

′
i,2, · · · , s′i,N) and immediate rewards Ri =

(ri,1, ri,2, · · · , ri,N);
7: Minimize the Q1 loss function shown in (3) by gradient decent, and then update ωi;
8: Minimize the Q2 loss function shown in (4) by gradient decent, and then update Ωi;
9: Maximize the expected return shown in (6) by gradient ascent, and then update θi;

10: Minimize the product of (7) and (8) by gradient ascent, and then update λi;
11: Execute the ”soft” target updates shown in (10) to update θ′i, ω

′
i, Ω′i, and λ′i;

12: end for

this experiment is move the agent from the start to the goal colored yellow with no block. This
goal can be achieved by setting scores for the agent at every step. Specifically, the agent receives
negative if it encounters any jam. If the agent reaches the goal, it will be rewarded 100 score. In
other blank areas, the reward is set as the minus distance from the agent to the goal for the purpose
of stimulating the agent to fulfill the task as soon as possible.

……

…
…

Goal

Agent

(a)

Goal

Finger

(b)

Figure 1: (a) The maze environment with continuous state-action space and lines of obstacles; (b)
The robot arm environment with a move and grasp task.

In this experiment, we evaluate the performance of AD3 and UAD3 algorithms, using the baseline
algorithms DDPG and TD3. The hyperparameters are shown in Table 1. Every 500 iterations (update
periods), an evaluation procedure is launched, which records 100 episodes and averages their results
to improve accuracy, i.e., the average reward, where each episode observes the agent from the start
to the goal and adds up the rewards without discount along the path. Similar evaluation procedures
are shared by all experiments in the context with the same cycle.

Figure 2 illustrates the average reward versus update periods of the continuous maze with barriers of
different lines plotted in Fig. 1(a). Fig. 2(a) shows that AD3 converges faster than DDPG and TD3.
From Figs. 2(b)-2(c), we see UAD3 robustly converges so that the agent can reach the goal and
receives a positive reward, however, other algorithms diverges and fails in their missions. The better
performance is mainly due to the policy improvement clarifies in Theorem 2. Besides, adaptive λ
provides a superior way to reduce overestimation.

6

Under review as a conference paper at ICLR 2021

(a) (b) (c)

Figure 2: Convergence performance of the continuous maze with barriers (a) of 1 line; (b) of 2 lines;
(c) of 3 lines.

ROBOT ARM

The ”robot arm” experiment is a move and grasp task which is shown in Fig. 1(b). In this figure, we
just show three sections to represent a general arm that may contain several more sections. The aim
of this task is to move the finger represented by the end of the arm to catch the goal. Specifically,
the finger should get into the yellow ”goal box”, and then hold on to the moving goal for required
steps to fulfill the grasp task. In the experiment setting, the goal is randomly moving, so the state
representation includes both the positions of joints represented by the green circles and their relative
positions to the goal. Besides, the number of sections determines the dimension of action space
which contains the rotation angle of each section. The reward is set as the negative distance from
the finger to the goal outside the ”goal box”. If the finger is located within the ”goal box”, the
reward is set as 1.

We also evaluate our proposed algorithms using the baseline algorithms DDPG and TD3 based on
the hyperparameters in Table 1. Fig. 3 shows the computational performance of the robot arm with
2− 7 sections by fitting scatterplots run for 800 thousand iterations. Notably, one more section will
raise the state dimension by 4, including the 2-dimensional coordinates of joints and their relative
coordinates to the goal. Increased state dimension needs more time for convergence and produces
lower converged average reward. Throughout Fig. 3, we observe UAD3 can robustly converge
to a value much higher than other algorithms, which shows the best performance because higher
converged average reward means the agent can react more promptly to the moving goal. From
Figs. 3(a)-3(b), AD3 converges faster and more robustly to a higher value compared with DDPG
and TD3 under the same circumstance. In Fig. 3(c), AD3 converges above the zero line with a value
higher than DDPG for 6 sections, however, TD3 diverges for both 6 and 7 sections. Overall, UAD3
and AD3 have better performance than their counterparts DDPG and TD3.

(a) (b) (c)

Figure 3: Convergence performance of the robot arm with (a) 2-3 sections; (b) 4-5 sections; (c) 6-7
sections.

7

Under review as a conference paper at ICLR 2021

CLASSICAL CONTROL ENVIRONMENT

In this part, we adopt a series of classical control experiments including Pendulum, Acrobat, contin-
uous mountain car and Cartpole as the benchmark tasks to evaluate the proposed AD3 and UAD3
algorithms based on the hyperparameters in Table 1.

It is noteworthy that we revised the rewards of Cartpole environment to make them more challenging.
Specifically, the distance and average velocity of the cart are added to the rewards to stimulate the
cart to go farther and faster because staying at the origin trading for stability is not enough to tell the
robustness of algorithms. The results of the average reward, average velocity and distance versus
update periods for Cartpole are given by Fig. 4. From Fig. 4(a), we see UAD3 and AD3 can converge
much faster and more stably than DDPG and TD3. Besides, UAD3 and AD3 are able to simulate the
cart to move faster and farther according to Figs. 4(b) and 4(c), respectively. Figs. 5(a)-5(c) present
the results of average reward versus update periods for Pendulum, Acrobat and continuous mountain
car, which further show the advantages of UAD3 and AD3 over DDPG and TD3. Moreover, we
reproduce the results of UDDPG Zhang & Huang (2020) for a fair comparison with UAD3. From
Figs. 4 and 5, we see that UAD3 is even better than UDDPG in higher convergence speed, converged
average reward, and stability.

103 104 105
Update periods

0

200

400

600

800

1000

1200

Av
er
ag

e
re
wa

rd

DDPG
TD3
AD3
UAD3
UDDPG

(a)

103 104 105

Update periods

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Av
er
ag

e
ve

lo
cit

y

DDPG
TD3
AD3
UAD3
UDDPG

(b)

103 104 105
Update periods

0

10

20

30

40

Di
st
an

ce

DDPG
TD3
AD3
UAD3
UDDPG

(c)

Figure 4: (a) Average reward; (b) Average velocity; (c) Distance versus update periods in Cartpole.

(a) (b) (c)

Figure 5: Computational efficiency in (a) in Pendulum; (b) Acrobat; (c) continuous mountain car.

CONCLUSION

In this paper, we proposed the combined value of two independent critics connected by a weight
factor to update the policy, which will in turn to update the combined value. We also proposed
the objective function for updating the weight factor by multiplying the updated combined value
by a sign, which compares the minimum updated Q-value in two critics with the combined value
before updating. Based on the above two components, we present AD3 to reduce the overestimation
bias and ensure future policy improvement at the same time. Furthermore, we apply AD3 to UDRL
framework to eliminate the systematic bias caused by the probability mismatch between the behavior
policy and the target policy in experience replay, and present UAD3. The proposed AD3 algorith-
m is theoretically proved to possess the property of asymptotical convergence and expected policy

8

Under review as a conference paper at ICLR 2021

improvement. Evaluation results show that our proposed algorithms can boost and stabilize the con-
vergence. Although we represent the weight factor as a variable in the context, it can be formulated
as a function of states. It can be seen that all theorems and proofs can apply to it when lambda is
state-dependent, and all the experimental results are based on the model of state-dependent weight
factor λ(s). The network architecture of weight factor concerning states is clarified in Appendix.

REFERENCES

Jakob Foerster, Nantas Nardelli, Gregory Farquhar, Triantafyllos Afouras, Philip H S Torr, Pushmeet Kohli,
and Shimon Whiteson. Stabilising experience replay for deep multi-agent reinforcement learning. pp.
1146–1155, 2017.

Scott Fujimoto, Herke Van Hoof, and David Meger. Addressing function approximation error in actor-critic
methods. 80:1587–1596, 2018.

Hirotaka Hachiya, Takayuki Akiyama, Masashi Sugiyama, and Jan Peters. Adaptive importance sampling with
automatic model selection in value function approximation. pp. 1351–1356, 2008.

Hado V Hasselt. Double q-learning. In Advances in neural information processing systems, pp. 2613–2621,
2010.

Nan Jiang and Lihong Li. Doubly robust off-policy value evaluation for reinforcement learning. pp. 652–661,
2016.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David Silver,
and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv preprint arXiv:1509.02971,
2015.

A Rupam Mahmood, Hado Van Hasselt, and Richard S Sutton. Weighted importance sampling for off-policy
learning with linear function approximation. pp. 3014–3022, 2014.

Shie Mannor, Duncan Simester, Peng Sun, and John N. Tsitsiklis. Bias and variance approximation in value
function estimates. Manag. Sci., 53(2):308–322, 2007.

Alberto Maria Metelli, Matteo Papini, Francesco Faccio, and Marcello Restelli. Policy optimization via impor-
tance sampling. pp. 5442–5454, 2018.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wierstra, and
Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602, 2013.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare, Alex
Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control through deep
reinforcement learning. Nature, 518(7540):529–533, 2015.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim Harley,
David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement learning. In Interna-
tional conference on machine learning, pp. 1928–1937, 2016.

Doina Precup, Richard S Sutton, and Satinder Singh. Eligibility traces for off-policy policy evaluation. pp.
759–766, 2000.

Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay. arXiv preprint
arXiv:1511.05952, 2015.

SATINDER SINGH, TOMMI JAAKKOLA, and MICHAEL L. LITTMAN. Convergence results for single-step
on-policy reinforcement-learning algorithms. Machine Learning, 38(3):p.287–308, 2000.

Csaba Szepesvári. Algorithms for reinforcement learning. Synthesis lectures on artificial intelligence and
machine learning, 4(1):1–103, 2010.

Chen Tessler, Daniel J Mankowitz, and Shie Mannor. Reward constrained policy optimization. arXiv preprint
arXiv:1805.11074, 2018.

Philip S Thomas and Emma Brunskill. Data-efficient off-policy policy evaluation for reinforcement learning.
pp. 2139–2148, 2016.

Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-learning. In
Thirtieth AAAI conference on artificial intelligence, 2016.

9

Under review as a conference paper at ICLR 2021

Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Van Hasselt, Marc Lanctot, and Nando De Freitas. Dueling
network architectures for deep reinforcement learning. arXiv preprint arXiv:1511.06581, 2015.

Ziyu Wang, Victor Bapst, Nicolas Heess, Volodymyr Mnih, Remi Munos, Koray Kavukcuoglu, and Nando
De Freitas. Sample efficient actor-critic with experience replay. arXiv: Learning, 2016.

Huihui Zhang and Wu Huang. Unbiased deep reinforcement learning: A general training framework for existing
and future algorithms. CoRR, abs/2005.07782, 2020. URL https://arxiv.org/abs/2005.07782.

APPENDIX

PROOF OF LEMMA 1

Proof

E(s,a)

[
(Q̂(s, a|ω,Ω, λ)− Q̂(s, a|ω?,Ω?, λ))2

]
,

=E(s,a)

[
((1− λ)(Q(s, a|ω)−Q(s, a|ω?)) + λ(Q(s, a|Ω)−Q(s, a|Ω?)))2

]
,

≤E(s,a)

{
[(1− λ)(Q(s, a|ω)−Q(s, a|ω?))]

2
+ [λ(Q(s, a|Ω)−Q(s, a|Ω?))]

2
}
,

→0, (13)

where the converged combined value Q̂(s, a|ω?,Ω?, λ) = (1− λ)Q(s, a|ω?) + λQ(s, a|Ω?). �

PROOF OF THEOREM 1

Proof This proof is based on Lemma 1 of SINGH et al. (2000), which is moved originally below for conve-
nience.

Lemma 1 of SINGH et al. (2000): Consider a stochastic process (αt,∆t, Ft), t ≥ 0, where αt,∆t, Ft : X →
R, which satisfies the equations

∆t+1(x) = (1− αt(x))∆t(x) + αt(x)Ft(x), x ∈ X, t = 0, 1, 2, · · · (14)

Let Pt be a sequence of increasing σ-fields such that α0,∆0 are P0-measurable and αt,∆t and Ft−1 are
Pt-measurable, t = 1, 2, · · · Assume that the following hold:

1. the set of possible states X is finite.

2. 0 ≤ αt(x) ≤ 1,
∑

t αt(x) =∞,
∑

t α
2
t (x) <∞ w.p.1.

3. ‖E{Ft(·)|Pt}‖ ≤ γ‖∆t‖+ ct, where γ ∈ [0, 1) and ct converges to zero w.p.1.

4. V ar{Ft(x)|Pt} ≤ K(1 + ‖∆t‖)2, where K is some constant.

Then ∆t converges to zero with probability one (w.p.1).

Within the scope of this paper, the MDP state space is finite, satisfying condition 1 in Lemma 1 of SINGH et al.
(2000), and Lemma condition 2 holds by proper selection of learning rate. According to Szepesvári (2010),
even the commonly used constant learning rate can make algorithms converge in distribution.

We apply Lemma 1 of SINGH et al. (2000) with Pt = {Q(·, ·|ω0), Q(·, ·|Ω0), s0, a0, r1, s1, · · · , st, at}.
Following the update rule for optimizing (3) and (4) and using the current policy to produce the action at+1 =
µ(st+1|θ), we have

Q(st, at|ωt+1) = (1− αt)Q(st, at|ωt) + αt [rt + γQ(st+1, at+1|ωt)] , (15)
Q(st, at|Ωt+1) = (1− αt)Q(st, at|Ωt) + αt [rt + γQ(st+1, at+1|Ωt)] . (16)

Under the setting of our proposed algorithm, we denote ∆t = Q̂(·, ·|ωt,Ωt, λ) − Q?(·, ·), which is the dif-
ference between the combined value of weighted critics denoted in (9) and optimal value function. Then we
have

∆t+1(st, at) = Q̂(st, at|ωt+1,Ωt+1, λ)−Q?(st, at),

=(1− λ)Q(st, at|ωt+1) + λQ(st, at|Ωt+1)−Q?(st, at),

=(1− αt)
[
Q̂(st, at|ωt,Ωt, λ)−Q?(st, at)

]
+ αtFt,

=(1− αt)∆t(st, at) + αtFt(st, at), (17)

10

https://arxiv.org/abs/2005.07782

Under review as a conference paper at ICLR 2021

where the third equality is due to the substitution of (15) and (16), and

Ft(st, at) = rt + γ
[
Q̂(st+1, at+1|ωt,Ωt, λ)

]
−Q?(st, at). (18)

Since the reward is bounded within the scope of this paper, the action-values are also bounded, then condition 4
in Lemma 1 of SINGH et al. (2000) holds. According to the proof in Theorem 2 of SINGH et al. (2000), there
is ‖E [Ft(st, at)|Pt] ‖ ≤ γ‖∆t‖, which satisfies condition 3 in Lemma 1 of SINGH et al. (2000).

Finally, it can be concluded that Q̂(·, ·|ωt,Ωt, λ) converges to Q?(·, ·) with probability 1.

�

PROOF OF THEOREM 2

Proof If signi+1 ≥ 0, then

E(s,a)

[
Q̂(s, a|ωi+1,Ωi+1, λi+1)

]
= Es

[
Q̂(s, µ(s|θi+1)|ωi+1,Ωi+1, λi+1)

]
≈ 1

N

N∑
n=1

Q̂(sn, µ(sn|θi+1)|ωi+1,Ωi+1, λi+1)

≥ 1

N
min

(
N∑

n=1

Q(sn, µ(sn|θi+1)|ωi+1),

N∑
n=1

Q(sn, µ(sn|θi+1)|Ωi+1)

)

≥ 1

N

N∑
n=1

[
Q̂(sn, µ(sn|θi)|ωi,Ωi, λi)

]
≈ E(s,a)

[
Q̂(s, a|ωi,Ωi, λi)

]
, (19)

where the approximations the mean average is statistically equal to the expectation (or unbiased approximation
for UAD3), the first inequality holds based on (9), and the second inequality holds because (8) is no less than
0.

Otherwise, if signi+1 ≤ 0, then

E(s,a)

[
Q̂(s, a|ωi+1,Ωi+1, λi+1)

]
= Es

[
Q̂(s, µ(s|θi+1)|ωi+1,Ωi+1, λi+1)

]
≈ 1

N

N∑
n=1

Q̂(sn, µ(sn|θi+1)|ωi+1,Ωi+1, λi+1)

≥ 1

N

N∑
n=1

Q̂(sn, µ(sn|θi+1)|ωi+1,Ωi+1, λi)

=
1

N

N∑
n=1

Q̂(sn, µ(sn|θi+1)|ωi+1,Ωi+1, λ
′
i)

≥ 1

N

N∑
n=1

Q̂(sn, µ(sn|θi)|ωi+1,Ωi+1, λ
′
i)

=
1

N

N∑
n=1

Q̂(sn, µ(sn|θi)|ωi+1,Ωi+1, λi)

≈ Es

[
Q̂(s, µ(s|θi)|ωi,Ωi, λi)

]
= E(s,a)

[
Q̂(s, a|ωi,Ωi, λi)

]
, (20)

where the first inequality holds due to the fact that the update of λ is to maximize (7) given a negative sign,
the second inequality holds because the update of θ is to maximize (6). Although (19) and (20) are done for
immediate target updates, the same conclusions can be achieved under the condition of delayed or ”soft” target
updates if the Q network is linear with respect to the actor and critic parameters. �

11

Under review as a conference paper at ICLR 2021

NETWORK ARCHITECTURE

We construct the critic network using a fully-connected MLP with two hidden layers. The input is composed of
the state and action, outputting a value representing the Q-value. The ReLU function is adopted to activate the
first hidden layer. The setting of actor network is similar to that of the critic network, except that the input is the
state and the output is multiplied by the action supremum after tanh nonlinearity. The network of weight factor
λ is constructed similar to the actor network except replacing the tanh nonlinearity by clipping λ in [0, 1]. The
architecture of networks are plotted in Fig. 6.

Fully connected
layer
ReLu

Fully connected
layer

Fully connected
layer
ReLu

Fully connected
layer
Tanh

Fully connected
layer
ReLu

Fully connected
layer

 a s

 ,Q s a

 s

Bound
of

action

Clip by
[0,1]

Input layer

Input layer

Input layer

State layer

Action layer

State layer

State layer

Figure 6: Architecture of networks.

HYPERPARAMETERS

Table 1 lists the common hyperparameters shared by all experiments and their respective settings.

12

Under review as a conference paper at ICLR 2021

Table 1: List of hyperparameters
Shared Env Value Description Algorithm applied

LR a 0.001 Learning rate of actor DDPG, TD3, AD3, UAD3, UDDPG
LR c 0.001 Learning rate of critic DDPG, UDDPG
LR c1 0.001 Learning rate of critic1 TD3, AD3, UAD3
LR c2 0.001 Learning rate of critic2 TD3, AD3, UAD3
LR λ 0.001 Learning rate of weight factor TD3, AD3, UAD3
τ a 0.01 Soft update parameter of actor DDPG, UDDPG
τ c1 0.01 Soft update parameter of critic1 TD3, AD3, UAD3
τ c2 0.01 Soft update parameter of critic2 TD3, AD3, UAD3
γ 0.9 Discount horizon factor DDPG, TD3, AD3, UAD3, UDDPG

Interval 500 Eval period DDPG, TD3, AD3, UAD3, UDDPG
Test 100 Episodes per eval period DDPG, TD3, AD3, UAD3, UDDPG

Var dr 0.9995 Exploration variance decay rate DDPG, TD3, AD3, UAD3, UDDPG
Sample 200 Sample size of initial states UAD3, UDDPG
Batch 200 Size of mini-batches DDPG, TD3, AD3

Cartpole Value Description Algorithm applied
Max EPS 500 Maximal steps per episode training DDPG, TD3, AD3
Runout 1000 Maximal steps per episode eval DDPG, TD3, AD3, UAD3, UDDPG

Initial variance 10.0 Initial exploration variance DDPG, TD3, AD3, UAD3, UDDPG
Memory 50000 Size of replay buffer DDPG, TD3, AD3

Train num 100000 Updating iterations (Not episodes) DDPG, TD3, AD3, UAD3, UDDPG
Acrobot Value Description Algorithm applied

MountainCar
Max EPS 500 Maximal steps per episode training DDPG, TD3, AD3
Runout 500 Maximal steps per episode eval DDPG, TD3, AD3, UAD3, UDDPG

Initial variance 10.0 Initial exploration variance DDPG, TD3, AD3, UAD3, UDDPG
Memory 10000 Size of replay buffer DDPG, TD3, AD3

Train num 800000 Updating iterations (Not episodes) DDPG, TD3, AD3, UAD3, UDDPG
Robot Arm Value Description Algorithm applied
Max EPS 200 Maximal steps per episode training DDPG, TD3, AD3
Runout 100 Maximal steps per episode eval DDPG, TD3, AD3, UAD3, UDDPG

Initial variance 1.0 Initial exploration variance DDPG, TD3, AD3, UAD3, UDDPG
Memory 30000 Size of replay buffer DDPG, TD3, AD3

Train num 800000 Updating iterations (Not episodes) DDPG, TD3, AD3, UAD3, UDDPG
Maze Value Description Algorithm applied

Max EPS 500 Maximal steps per episode training DDPG, TD3, AD3
Runout 100 Maximal steps per episode eval DDPG, TD3, AD3, UAD3, UDDPG

Initial variance 10.0 Initial exploration variance DDPG, TD3, AD3, UAD3, UDDPG
Memory 10000 Size of replay buffer DDPG, TD3, AD3

Train num 800000 Updating iterations (Not episodes) DDPG, TD3, AD3, UAD3, UDDPG
Pendulum Value Description Algorithm applied
Max EPS 200 Maximal steps per episode training DDPG, TD3, AD3
Runout 100 Maximal steps per episode eval DDPG, TD3, AD3, UAD3, UDDPG

Initial variance 10.0 Initial exploration variance DDPG, TD3, AD3, UAD3, UDDPG
Memory 30000 Size of replay buffer DDPG, TD3, AD3

Train num 800000 Updating iterations (Not episodes) DDPG, TD3, AD3, UAD3, UDDPG

13

Under review as a conference paper at ICLR 2021

ESTIMATE OF Q-VALUE

We uniformly sample 10000 states from the replay buffer every 500 update periods, and average the computed
Q-values based on the newly-updated current policy. The averaged Q-value can be seen as the estimate of
discounted cumulative return (value estimate). The value estimates of Cartpole, Robotarm of 2 sections and
Pendulum experiments are plotted in Fig. 7. From these figures, we can see the converged value function
Q(s, a|ω?) denoted in Lemma 1.

(a) (b) (c)

Figure 7: Value estimate in (a) Cartpole; (b) Robotarm of 2 sections; (c) Pendulum.

14

	Introduction
	Background
	Adaptive Delayed Deep Deterministic Policy Gradient
	Unbiased Adaptive Delayed Deep Deterministic Policy Gradient
	Experiments
	Continuous Maze
	Robot arm
	Classical Control Environment

	Conclusion
	Appendix
	Proof of Lemma 1
	Proof of Theorem 1
	Proof of Theorem 2
	Network Architecture
	Hyperparameters
	Estimate of Q-value

