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ABSTRACT

We improve upon previous oblivious sketching and turnstile streaming results for ℓ1
and logistic regression, giving a much smaller sketching dimension achieving O(1)-
approximation and yielding an efficient optimization problem in the sketch space.
Namely, we achieve for any constant c > 0 a sketching dimension of Õ(d1+c)

for ℓ1 regression and Õ(µd1+c) for logistic regression, where µ is a standard
measure that captures the complexity of compressing the data. For ℓ1-regression
our sketching dimension is near-linear and improves previous work which either
required Ω(log d)-approximation with this sketching dimension, or required a
larger poly(d) number of rows. Similarly, for logistic regression previous work
had worse poly(µd) factors in its sketching dimension. We also give a tradeoff
that yields a 1 + ε approximation in input sparsity time by increasing the total
size to (d log(n)/ε)O(1/ε) for ℓ1 and to (µd log(n)/ε)O(1/ε) for logistic regression.
Finally, we show that our sketch can be extended to approximate a regularized
version of logistic regression where the data-dependent regularizer corresponds to
the variance of the individual logistic losses.

1 INTRODUCTION

We consider logistic regression in distributed and streaming environments. A key tool for solving
these problems is a distribution over random oblivious linear maps S ∈ Rr×n which have the property
that, for a given n× d matrix X , where we assume the labels for the rows of X have been multiplied
into X , given only SX one can efficiently and approximately solve the logistic regression problem.
The fact that S does not depend on X is what is referred to as S being oblivious, which is important
in distributed and streaming tasks since one can choose S without first needing to read the input data.
The fact that S is a linear map is also important for such tasks, since given SX(1) and SX(2), one
can add these to obtain S(X(1) +X(2)), which allows for positive or negative updates to entries of
the input in a stream, or across multiple servers in the arbitrary partition model of communication,
see, e.g., (Woodruff, 2014) for a discussion of data stream and communication models.

An important goal is to minimize the sketching dimension r of the sketching matrix S, as this
translates into the memory required of a streaming algorithm and the communication cost of a
distributed algorithm. At the same time, one would like the approximation factor that one obtains via
this approach to be as small as possible. Specifically we develop and improve oblivious sketching for
the most important robust linear regression variant, namely ℓ1 regression, and for logistic regression,
which is a generalized linear model of high importance for binary classification and estimation of
Bernoulli probabilities. Sketching supports very fast updates which is desirable for performing robust
and generalized regression in high-velocity data processing applications, for instance in physical
experiments and other resource constraint settings, cf. (Munteanu et al., 2021; Munteanu, 2023).

We focus on the case where the number n of data points is very large, i.e., n ≫ d. In this case,
applying a standard algorithm directly is not a viable option since it is either too slow or even becomes
impossible when it requires more memory than we can afford. Following the sketch & solve paradigm
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(Woodruff, 2014), our goal is in a first step to reduce the size of the data without losing too much
information. Then, in a second step, we approximate the problem efficiently on the reduced data.

Sketch & solve principle:
1. Calculate a small sketch SX of the data X .
2. Solve the problem β̃ = argminβ f(SXβ) using a standard optimization algorithm.

The theoretical analysis proves that the sketch in the first step is calculated in such a way that the
solution obtained in the second step is a good approximation to the original problem, i.e., that
f(Xβ̃) ≤ C · argminβ f(Xβ) holds for a small constant factor C ≥ 1.

1.1 OUR CONTRIBUTIONS

For logistic regression our goal is to achieve an O(1)-approximation with an efficient estimator in
the sketch space and smallest possible sketching dimension in terms of µ and d, where µ = µ(X) =

supβ ̸=0

∑
xiβ>0 |xiβ|∑
xiβ<0 |xiβ| is a data dependent parameter that captures the complexity of compressing the

data for logistic regression, see Definition 2.1. As a byproduct of our algorithms, we also obtain
algorithms for ℓ1-regression. We note that the parameter µ is necessary only for logistic regression,
i.e., for sketching ℓ1-regression, we set µ = 1. We summarize our contributions as follows:

1) We significantly improve the sketch of Munteanu et al. (2021). More precisely we show with
minor modifications in their algorithm but major modifications in the analysis that the size of the
sketch can be reduced from roughly Õ(µ7d5)1 to Õ(µd1+c) for any c > 0, while preserving an O(1)
approximation to either the logistic or ℓ1 loss.

2) We show that increasing the sketching dimension to (µd log(n)/ε)O(1/ε) is sufficient to obtain a
1 + ε approximation guarantee.

3) We show that our sketch can also approximate variance-based regularized logistic regression
within an O(1) factor if the dependence on n in the sketching dimension is increased to n0.5+c for
any c > 0. We also give an example corroborating that the CountMin-sketch that we use needs at
least Ω(n0.5) rows to achieve an approximation guarantee below log2(µ).

1.2 RELATED WORK

Data oblivious sketching Data oblivious sketches have been developed for many problems in
computer science, see (Phillips, 2017; Munteanu, 2023) for surveys. The seminal work of Sarlós
(2006) opened up the toolbox of sketching for numerical linear algebra and machine learning
problems, such as linear regression and low rank approximation, cf. (Woodruff, 2014). We note
that oblivious sketching is very important to obtain data stream algorithms in the turnstile model
(Muthukrishnan, 2005) and there is evidence that linear sketches are optimal for such algorithms
under certain conditions (Li et al., 2014; Ai et al., 2016). The classic works on ℓ2 regression have been
generalized to other ℓp norms (Sohler & Woodruff, 2011; Woodruff & Zhang, 2013) by combining
sketching as a fast but inaccurate preconditioner and subsequent sampling to achieve the desired
(1+ ε)-approximation bounds. Those works have been generalized further to so-called M -estimators,
i.e., Huber (Clarkson & Woodruff, 2015a) or Tukey regression loss (Clarkson et al., 2019), that share
nice properties such as symmetry and homogeneity leveraged in previous works on ℓp norms.

ℓ1 regression Specifically for ℓ1, the first sketching algorithms used random variables drawn from
1-stable (Cauchy) distributions to estimate the norm (Indyk, 2006). It is possible to get concentration
and a (1 ± ε)-approximation in near-linear space by using a median estimator. However, in a
regression setting this estimator leads to a non-convex optimization problem in the sketch space.
Since we want to preserve convexity to facilitate efficient optimization in the sketch space, we focus
on sketches that work with an ℓ1 estimator for solving the ℓ1 regression problem in the sketch space
in order to obtain a constant approximation for the original ℓ1 problem. With this restriction, it is
possible to obtain a contraction bound with high probability so as to union bound over a net, but
similar results are not available for the dilation. Indeed, subspace embeddings for the ℓ1 norm have

1The tilde notation suppresses any polylog(µdn
εδ

) even if no higher order terms appear. This allows us to
focus on the main parameters and their improvement. The exact terms are specified in Theorems 1-3.
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Θ̃(d) dilation (Woodruff & Zhang, 2013; Li et al., 2021; Wang & Woodruff, 2022). A 1+ε dilation is
only known to be possible when mapping to exp(O(1/ε)) dimensions (Brinkman & Charikar, 2005),
even for single vectors as in (Indyk, 2006). We thus focus on obtaining an O(1) approximation in this
paper. Previous work had either larger O(log(d)) distortion2 or larger poly(d) factors (Indyk, 2006;
Sohler & Woodruff, 2011). There exists a (1 + ε)-approximation algorithm (Sohler & Woodruff,
2011) for turnstile data streams, running two sketches in parallel: one for preconditioning and another
that performs ℓ1-row-sampling from the sketch (Andoni et al., 2009). However, it has a worse
poly(d log(n)/ε) update time and sketching dimension, see (Sohler & Woodruff, 2011, Theorem 13).
An advantage of our sketch is that it uses only random {0, 1}-entries, which have better computational
and implicit storage properties (Alon et al., 1986; 1999; Rusu & Dobra, 2007). More importantly,
our approach works simultaneously for both, ℓ1 and logistic regression. For the latter no near-linear
sketching dimension was known to be possible since sketches for ℓ1 cannot preserve the sign of
coordinates, which is crucial for any multiplicative error on the asymmetric logistic loss.

Generalized linear models (GLMs) It is important to extend the works on linear regression to
more sophisticated and expressive statistical learning problems, such as generalized linear models
(McCullagh & Nelder, 1989). Unfortunately, taking this step led to impossibility results. Namely,
approximating the regression problems on a succinct sketch for strictly monotonic functions such as
logistic loss (Munteanu et al., 2018) or heavily imbalanced asymmetric functions such as Poisson
regression loss (Molina et al., 2018) allows one to design a low-communication protocol for the
INDEXING problem that contradicts its Ω(n) bit randomized one-way communication complexity
(Kremer et al., 1999). This implies an Ω̃(n) sketching dimension for these problems. To circumvent
this worst-case limitation for logistic regression, Munteanu et al. (2018) introduced a natural data
dependent parameter µ that can be used to bound the complexity of compressing data for logistic and
probit regression (Munteanu et al., 2022). This also led to the very first oblivious sketch for logistic
regression (Munteanu et al., 2021), with a polylogarithmic number of rows for mild data. We improve
this by giving, the only near-linear sketching dimension in d and µ for logistic regression. The
previous best sketching dimension obtained by Lewis weight sampling (Mai et al., 2021), required
O(µ2d) and crucially their sketch is not oblivious so cannot be implemented in a turnstile data stream,
with positive and negative updates to the entries of the input point set. For lower bounds, an Ω(d)
dependence is immediate since mapping to fewer than d dimensions contracts non-zero vectors in the
null-space of the sketching matrix to zero. An Ω(µ) lower bound is immediate from Munteanu et al.
(2018) and was recently generalized by Woodruff & Yasuda (2023) to more natural settings.

Variance-based regularization Regularization techniques have been proposed in the literature for
many purposes, such as reducing the effective dimension of statistical problems or limiting their
expressivity to avoid overfitting. Regularization was also proposed to relax the logistic regression
problem. In an extreme setting where the regularizer dominates the objective function, the contribu-
tions of data points do not differ significantly. The problem then becomes easy to approximate by
uniform subsampling (Samadian et al., 2020). To address the bias-variance tradeoff in machine learn-
ing problems in a more meaningful way and to provably reduce the generalization error of models,
Maurer & Pontil (2009) proposed to add a data-dependent variance-based regularization. Since this
results in a non-convex optimization problem even for convex objectives, Duchi & Namkoong (2019);
Yan et al. (2020) used optimization tricks to reformulate a convex variant with additional parameters
that can be integrated into standard hyperparameter tuning. Interestingly, this data-dependent regular-
ization – in contrast to standard regularization – does not relax the sketching problem but makes it
more complicated, requiring in the case of logistic regression a combination of ℓ1 and ℓ2 geometries
to be preserved. We show that our sketch can deal with both simultaneously.

1.3 OUR TECHNIQUES

Our main motivation is to reduce the large dependence on the parameters of the oblivious sketching
algorithm of Munteanu et al. (2021). Their sketch consists of O(log n) levels that take subsamples
at exponentially decreasing rate, and apply a CountMin-sketch to each subsample to compress it
to roughly size Õ(d5(µ/ε)7) which gives (1− ε) contraction but only O(1)3 dilation bounds. Our
new methods significantly improve over their sketching dimension for obtaining (1− ε) contraction
bounds. The large dependence on µ came from adapting the analysis of Clarkson & Woodruff (2015a)

2by an argument in the proof of Lemma 7 of Sohler & Woodruff (2011), cf. (Woodruff, 2021, Problem 1).
3The exact constant was not specified but overcounting their parameters gives at best an ≥ 8-approximation.
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to work for the asymmetric logistic loss function. This required to rescale ε′ = ε/µ to translate the
estimation error of ε′∥z∥1 to an error of ε∥z+∥1, where the latter quantity sums only over the positive
entries of z. We avoid this by noting that we can oversample the elements by a factor of µ to capture
sufficiently many elements to approximate the required ε∥z+∥1 error directly. However, the analysis
of the so-called heavy hitters4 requires µ elements to be perfectly isolated when hashing them into
buckets, which requires µ2 buckets to succeed with good probability. To obtain a linear dependence
on µ, we sacrifice some sparsity in our sketching matrix. Instead of hashing to a single bucket
at each level, we hash each element multiple times. The best known trade-off between sketching
dimension and sparsity is due to Cohen (2016) for the Count-sketch. We adapt the technique to
our CountMin-sketch: we hash each element to roughly O(ε−1 log(µd/ε)) buckets and resolve
collisions by summing the elements instead of taking a random sign combination. This brings the
dependence on µ down to quasi-linear. The dependence on d and ε also benefit from this technique
but at this point, our analysis still requires a d2 dependence. This comes from needing to separate the
heavy hitters from other large coordinates for all vectors in a net of exponential size in d. To bring the
dependence on d down to near-linear we densify our sketch to roughly O(ε−3µd log(n)) non-zeros
per column, which separates the heavy hitters almost entirely and yields our result.

We also improve the dilation bounds from a factor of ≥ 8 to a 2-approximation: previous analyses
were conducted by bounding the expected contribution of weight classes Wq = {i | 2−q−1 <
zi ≤ 2−q} to the different levels in our sketch. A simple bound of O(log n) was improved to
O(1) by a Ky-Fan norm argument, which cuts off elements that have a low redundant contribution.
We reverse the perspective and ask for each level h, which weight classes are well represented?
This allows us to conduct a more fine-grained analysis: we define intervals Qh = [q(2), q(3)] and
Qh ⊆ Q′

h = [q(1), q(4)] and quantify their size depending on the number of buckets, such that
weight classes q /∈ Q′

h do not contribute at all, q ∈ Q′
h make a non-negligible contribution, and

q ∈ Qh are additionally well-approximated. It is thus desirable to choose the number of buckets in
such a way that |Q′

h|/|Qh| ≈ 1. Moreover, we ask how the intervals in consecutive levels overlap.
It turns out that slightly increasing the number of buckets in each level to Õ(µd2) allows us to
show that each q appears only in at most two consecutive levels (in expectation) which yields a
2-approximation. Indeed, the argument can be continued by raising the size of the sketch to any
power of k ∈ N, resulting in an expected contribution in at most (1 + 1/k) levels, which yields a
(1 + ε)-approximation using (µd log(n)/ε)O(1/ε) rows. An exponential dependence on 1/ε is best
known for sketching-based estimators of the ℓ1 norm (Indyk, 2006; Li et al., 2021) that embed into
lower-dimensional ℓ1, and our sketch can be used as such an estimator for ℓ1 as a special case.

Finally, as a corollary and important application of our results, we obtain similar oblivious sketching
bounds for a variance-regularized version of logistic regression, see Section 1.2. It combines aspects
of the ℓ1 geometry of the sum of logistic losses with the ℓ2 geometry that appears in the sum of
squared logistic losses. The analysis is very similar to the standard logistic regression loss but
requires redefining the weight classes in terms of squared values z2i and converting between the two
norms, which introduces roughly another O(

√
n)-factor. Previous work on data reduction methods for

generalized linear models that work for different ℓp losses were either based on sampling (Munteanu
et al., 2022) or worked only for symmetric functions such as norms (Clarkson & Woodruff, 2015a).
However, an oblivious sketch for our loss function requires preserving the signs of elements which is
not possible with previous sketching methods. Relying on the CountMin-sketch as in (Munteanu
et al., 2021) thus seems necessary. For this choice we show that an additional Θ(

√
n)-factor is

unavoidable and hereby we corroborate the tightness of our analysis.

2 PRELIMINARIES AND MAIN RESULTS

For ℓ1 regression, we consider as inputs a data matrix X ∈ Rn×d and a target vector Y ∈ Rn.
The task is to find β ∈ argminβ∈Rd ∥Xβ − Y ∥1. We note that up to constants, this corresponds to
minimizing the negative log-likelihood of a standard linear model Y = Xβ + η with a Laplace noise
distribution ηi ∼ L(0, 1) for all i ∈ [n]. Our goal will be to design an oblivious linear sketching
matrix S such that the sketch X ′ = S[X,Y ] is significantly reduced in its number of rows and
solving the compressed ℓ1 regression problem in the sketch space yields an O(1) approximation to
the same problem on the original large data.

4i.e., the coordinates of z with largest ℓ1 leverage score
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Up to slight modifications, this sketch will also allow us to approximate logistic regression within a
constant factor. For logistic regression, assume that we are given a data set Z = {z1, . . . , zn} with
zi ∈ Rd for all i ∈ [n], together with a set of labels Y = {y1, . . . , yn} with yi ∈ {−1, 1} for all
i ∈ [n]. In logistic regression the negative log-likelihood (McCullagh & Nelder, 1989) is of the form

L(β|Z, Y ) =
∑n

i=1 ln(1 + exp(−yiziβ)),

which, from a learning and optimization perspective, is the objective function that we would like
to minimize. For r ∈ R we set ℓ(r) = ln(1 + exp(r)) to simplify notation. Then we have that
L(β|Z, Y ) =

∑n
i=1 ℓ(−yiziβ). We also include a variance-based regularization as proposed in

(Maurer & Pontil, 2009; Duchi & Namkoong, 2019; Yan et al., 2020) to decrease the generalization
error. We view our data set as n realizations of a random variable (z, y), where each (zi, yi) is drawn
i.i.d. from an unknown distribution D. Then the expected value of the negative log-likelihood (on the
empirical sample) for any fixed β equals E(ℓ(−yzβ)) = 1

nL(β|Z, Y ). The variance is given by

Var(ℓ(−yzβ)) = E(ℓ(−yzβ)2)− E(ℓ(−yzβ))2 = 1
n

∑n
i=1 ℓ(−yiziβ)

2 −
(
1
n

∑n
i=1 ℓ(−yiziβ)

)2
We also introduce a regularization hyperparameter λ ∈ R≥0. Then our objective is to minimize

E(ℓ(−yzβ)) +
λ

2
Var(ℓ(−yzβ)).

As zi and yi always appear together, we set xi = −yizi. Further we set X ∈ Rn×d to be the matrix
with row vectors xi for i ∈ [n]. For technical reasons we include a weight vector w ∈ Rn

≥0 into the
objective. Then our goal is to find β ∈ Rd minimizing

fw(Xβ) = 1
n

∑n
i=1 wiℓ(xiβ) +

λ
2n

∑n
i=1 wiℓ(xiβ)

2 − λ
2

(
1
n

∑n
i=1 wiℓ(xiβ)

)2
.

The unweighted case corresponds to choosing w to be the vector containing only 1’s, in which case
we set f(Xβ) = fw(Xβ).

We also note that f(Xβ) ≥ 1
n

∑n
i=1 ℓ(xiβ) since the variance term is non-negative. Next, observe

that minβ∈Rd f(Xβ) ≤ f(0) = ℓ(0) = ln(2). In our analysis we investigate functions ℓ(r) and ℓ(r)2.
Further we split f into three functions f1(Xβ) = 1

n

∑n
i=1 ℓ(xiβ), f2(Xβ) = λ

2n

∑n
i=1 ℓ(xiβ)

2, and
f3(Xβ) = λ

2

(
1
n

∑n
i=1 ℓ(xiβ)

)2
= λ

2 f1(Xβ)2.

In contrast to the ℓ1 regression problem, a data reduction for f or even f1 where the sketch size is
r ≪ n cannot be obtained in general. There are examples where no sketch of size r = o(n/ log n)
exists, even for an arbitrarily large but finite error bound (Munteanu et al., 2018). If we require
the sketch to be a subset of the input, the bound can be strengthened to Ω(n) (Tolochinsky et al.,
2022). Those impossibility results rely on the monotonicity of the loss function and thus extend to
the function f studied in this paper. To get around these strong limitations, Munteanu et al. (2018)
introduced a parameter µ as a natural notion for parameterizing the complexity of compressing the
input matrix X for logistic regression. It was recently adapted for p-generalized probit regression
(Munteanu et al., 2022). We work with a similar generalization given in the following definition.
Definition 2.1. Let X ∈ Rn×d be any matrix and let p ∈ [1,∞). We define

µp(X) = sup
β∈Rd\{0}

∑
xiβ>0 |xiβ|p∑
xiβ<0 |xiβ|p

.

We say that X is µ-complex if max{µ1(X), µ2(X)} ≤ µ.

Our goal is to construct a slightly relaxed version of a sketch that suffices to obtain a good approxi-
mation by optimizing in the sketch space:
Definition 2.2. Given a dataset (X,w), a subset V ⊂ Rd, a > 1 and ε, δ > 0. A weak weighted
(V, a, ε)-sketch C = (X ′, w′) for f is a matrix X ′ ∈ Rr×d together with a weight vector w′ ∈ Rr

>0
such that it holds simultaneously that: For all β ∈ V we have

fw′(X ′β) ≥ (1− ε)fw(Xβ)

and for β∗ ∈ V minimizing fw(Xβ) it holds that
fw′(X ′β∗) ≤ afw(Xβ∗).

Further for any β ∈ Rd \ V it holds that
fw′(X ′β) > min

β∈V
fw′(X ′β).
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We note that a sketch satisfying the definition for V = Rd is known in the literature as a lopsided
embedding (Sohler & Woodruff, 2011; Clarkson & Woodruff, 2015b; Feng et al., 2021). We denote
by nnz(X) the number of non-zero entries of X . Our main results are the following:

For ℓ1 regression, where the objective is ∥Xβ − Y ∥1, we have
Theorem 1. Let X ∈ Rn×d and let Y ∈ Rn. Let ε, δ > 0 and let a > 1. Then there is a
distribution over sketching matrices S ∈ Rr×n and a corresponding weight vector w ∈ Rr, for
which X ′ = S[X,Y ] can be computed in T time in a single pass over a turnstile data stream such
that (X ′, w) is a weak weighted (Rd, α, ε)-sketch for ℓ1-regression with failure probability at most
P , where

1. r = O(d1+c ln(n)3+5c) for any constant 1 ≥ c > 0, T = O(d ln(n)nnz(X)), and
α = 1 + 1

c and P are constant,

2. r = O(d
4 ln(n)5

δε7 ) + 32d ln(n)3

ε5 · ( 64d ln(n)5

ε6δ )1+ε−1

, T = O(nnz(X)), α = (1 + aε), and
P = δ + 1

a .

For logistic regression where the objective function is only f1(Xβ), we have
Theorem 2. Let 1 ≥ c > 0 be any constant. Let X ∈ Rn×d be a µ-complex matrix for bounded
µ ∈ O((d log3(n))c). Let ε, δ > 0 and let a > 1. Then there is a distribution over sketching
matrices S ∈ Rr×n and a corresponding weight vector w ∈ Rr, for which X ′ = SX can be
computed in T time in a single pass over a turnstile data stream such that (X ′, w) is a weak weighted
(Rd, α, ε)-sketch for f1 with failure probability at most P , where

1. r = O(µd1+c ln(n)2+4c), T = O(µd ln(n)nnz(X)), and α = 1 + 1
c and P are constant,

2. r = O(d
4 ln(n)5µ2

δε7 ) + 32dµ ln(n)2

ε5 · ( 64d ln(n)4

ε7δ )1+ε−1

, T = O(nnz(X)), α = (1 + aε), and
P = δ + 1

a .

Note that setting a = δ−1 and substituting ε with εδ in the second item yields a (1+ε) approximation
with probability at least 1− 2δ.

For the variance-based regularization, where we consider the full objective function f(Xβ), we have
Theorem 3. Let X ∈ Rn×d be a µ-complex matrix for bounded µ < n. Let ε, δ > 0, let a > 1
and set V = {Xβ | f1(Xβ) ≤ ln(2)(1− ε)}. Then there is a distribution over sketching matrices
S ∈ Rr×n and a corresponding weight vector w ∈ Rr, for which X ′ = SX can be computed in T
time in a single pass over a turnstile data stream such that (X ′, w) is a weak weighted (V, α, ε)-sketch
for f with failure probability at most P , where

• r = O(n
0.5+cµd2 ln3(n)

ε5 ·max{d, ln(n), ε−1, δ−1, µ}+ d5µ2 ln(n)5
√
n

δε7 ), for arbitrary constant
1 ≥ c > 0, T = O(nnz(X)), α = 1 + a

c , and P = δ + 1
a .

We note that for generality of our results we specify a tradeoff between our d1+c dependence and an
arbitrarily large constant approximation error α = 1 + 1/c. We stress that specific parameterizations
yield strictly improved results over previous work. For instance we improve the ≥ 8-approximation
of (Munteanu et al., 2021) within Õ(µ7d5) to a 2-approximation within Õ(µd2) by choosing c = 1.
We further improve several lopsided ℓ1 → ℓ1 embedding results to a factor of 2 where previous
approximations gave only O(d log d) (Sohler & Woodruff, 2011), O(log d) (Woodruff, 2021), or ≥ 8
(Clarkson & Woodruff, 2015a) or gave only non-convex estimators in the sketch space (Backurs et al.,
2016) along with larger superlinear dependencies on d.

Technical description of the sketch Our contributions lie mainly in the improved and refined
theoretical analyses. The sketching matrices of Theorems 1-3 are the same as in (Munteanu et al.,
2021) up to small but important algorithmic modifications specified in the textual description below,
and in pseudo-code, see Algorithm 1 in the appendix. The sketching matrix consists of O(log n)
levels. In each level we take a subsample of all rows i ∈ [n] at a different rate and hash the sampled
items uniformly to a small number of buckets. All items that are mapped to the same bucket are
summed up. This corresponds to a CountMin sketch (Cormode & Muthukrishnan, 2005) applied to
the subsample taken at each level. More specifically, we will use the following parameters:
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• hm: the number of levels,
• Nh: the number of buckets at level h,
• ph: the probability that any element xi is sampled at level h.

As we read the input, we sample each element xi for each level h ≤ hm with probability ph. The
sampling probabilities are exponentially decreasing, i.e., ph ∝ 1/bh for some b ∈ R with b > 1. The
weight of any bucket at level h is set to 1/ph. At level hm, we have phm ∝ 1

n . It thus corresponds
to a small uniform subsample and the number of buckets is equal to the number of rows that are
sampled, i.e., Nu := Nhm

≈ nphm
=: npu. At level 0 we sample all rows, i.e., p0 = 1 and the

number of buckets is either the same as for the levels h ∈ (0, hm) or less. Consequently level 0 is
a standard CountMin sketch of the entire data. All levels h ∈ (0, hm) have the same number of
buckets Nh = N . For obtaining subquadratic dependence on µ, d in item 1 of Theorems 1 and 2, the
sketch at level 0 is densified, which means that each element is hashed to a number of s > 1 buckets.
The idea of the sketching algorithm is that for each fixed β ∈ Rd we partition the coordinates of Xβ
into weight classes depending on their contribution to the objective function. Each level approximates
well a certain range of weight classes if their total contribution is large enough. For example the
highest level hm will cover all the elements in small weight classes and the lowest level 0 will capture
the so-called heavy hitters that appear rarely but have a significant contribution to the objective.
Another algorithmic change is randomizing the size of the sketch at level 0, which is crucial for
obtaining a (1 + ε)-approximation. For the exact details we refer to the analysis and Assumption A.1.

3 HIGH LEVEL DESCRIPTION OF OUR NOVEL ANALYSIS

Several details of the analysis, such as assumptions on the parameters, technical lemmas, and proofs
are deferred to the appendix. We start by splitting the functions f1 and f2 into multiple parts:
Lemma 3.1. It holds that nf1(Xβ) =

∑
xiβ>0 |xiβ| +

∑n
i=1 ℓ(−|xiβ|) and similarly we have

that nf2(Xβ) =
∑

xiβ>0 |xiβ|2 + 2
∑

xiβ>0 ℓ(−|xiβ|) · |xiβ| +
∑n

i=1 ℓ(−|xiβ|)2.

This can be used in the following way: if all xiβ make only small contributions then uniform sampling
performs well. This is not the case for all parts of f but it holds for some ’small’ parts of f that
appear in the splitting introduced in Lemma 3.1.

Next we deal with the remaining ’large’ parts of f . We will first analyze the approximation for a
single β. To this end fix β ∈ Rd and set z = Xβ. Our goal is to approximate ∥z+∥1 :=

∑
i:zi>0 zi

where z+ ∈ Rn
≥0 is the vector that we get by setting all negative coordinates of z to 0. We assume

w.l.o.g. that ∥z∥1 = 1. We can do this since v 7→ ∥v+∥1 is absolutely homogeneous. In order
to prove that ∥(Sz)+∥1 approximates ∥z+∥1 well, we define weight classes: given q ∈ N we set
W+

q = {i ∈ [n] | zi ∈ (2−q−1, 2−q]}. Our analysis applies with slight adaptations to ℓ1 regression
preserving ∥z∥1 for the residual vector z = Xβ − Y . The analysis is entirely in the appendix due to
the page limitations. We give a high level description for preserving ∥z+∥1 needed for logistic loss.

Contraction bounds We set qm = log2(
n(µ+1)

ε ) = O(ln(n)) since n ≥ max{µ, ε−1}. We say that
W+

q is important if ∥W+
q ∥1 ≥ ε′ := ε

µqm
and set Q∗ = {q ≤ qm | W+

q is important }. The idea is
that the remaining weight classes can only have small contributions to ∥z+∥1, so it suffices to analyze
Q∗. To prove the contraction bound for z, i.e., that ∥(Sz)+∥1 ≥ (1− cε)∥z+∥1 holds for an absolute
constant c, it suffices to show that the contributions of important weight classes are preserved. For a
bucket B we set G(B) :=

∑
j∈B zj and G+(B) = max{G(B), 0}. In fact, we show that for each

level h, there exists an ’inner’ interval Qh = [qh(2), qh(3)] such that if W+
q for q ∈ Qh is important,

then there exists a subset W ∗
q ⊆ W+

q such that each element of W ∗
q is sampled at level h and such

that
∑

i∈W∗
q
G(Bi) ≥ (1 − ε)∥W+

q ∥1 · ph, where Bi is the bucket at level h containing zi. Since

the weight of all buckets at level h is equal to p−1
h we have that the contribution of W ∗

q is indeed
at least (1 − ε)∥W+

q ∥1. The choice of our parameters then guarantees that
⋃

Qh = N and thus
for any important weight class there is at least one level where it is well represented. Finally, we
construct a net of size |Nk| = exp(O(d log(n))). We ensure that the contraction bound holds for
each fixed net point z ∈ Nk with failure probability at most δ

|Nk| which will dominate – among other
parameters – the size of our sketch. By a union bound, the contraction result holds for the entire net
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with probability at least 1− δ. The net is sufficiently fine, such that we can conclude the contraction
bound by relating all other points z = Xβ ∈ Rn to their closest net point.

Dilation bounds We will also show that the expected contribution of any weight class is at most
2∥W+

q ∥1 or even less. To this end we increase the number of buckets N and apply a random shift at
level 0, i.e., we choose the number of buckets at level 0 randomly. We investigate again each level
separately and prove that for each level h there exists an ’outer’ interval Q′

h = [qh(1), qh(4)] such
that for any q /∈ Q′

h the weight class Wq makes no contribution at level h at all. More specifically we
show that no element of Wq appears at level h for q < qh(1) and that for any bucket B at level h that
contains only elements of

⋃
q>qh(4)

Wq it holds that G(B) ≤ 0.

Then we show that if N is large enough it holds that for each q ∈ N there are at most two levels
h such that q ∈ Q′

h and that the expected contribution of any weight class at any level is bounded
by ∥W+

q ∥1. We conclude that the expected contribution of any weight class is at most 2∥W+
q ∥1.

Increasing the size of N increases the size of the ’inner’ interval [qh(2), qh(3)] =: Qh ⊂ Q′
h while

the size of Q′
h remains (almost) unchanged such that |Q′

h|/|Qh| approaches 1. As a consequence,
this also decreases the number of indices q ∈ N that appear in two intervals of the form Q′

h. More
precisely, we show that for each k ∈ N we can increase N in such a way that only a 1/k fraction of
the weight classes appear in two of those intervals. Note that all weight classes that appear only in a
single Q′

h have an expected contribution of ∥W+
q ∥1. Recall that all indices are considered on level 0.

This is handled by applying a random shift, implicitly setting q0(3) randomly in an appropriate way
such that the expected contribution of any weight class W+

q is bounded by at most (1 + 1/k)∥W+
q ∥1.

Extension to variance-based regularized logistic regression We show that our algorithm also
approximates the variance well under the assumption that roughly f1(Xβ) ≤ ln(2). We stress that
this assumption does not rule out the existence of good approximations. Indeed, even the minimizer
is contained as observed in the preliminaries, since we have that minβ∈Rd f(Xβ) ≤ f(0) = f1(0) =

ln(2). Focusing on a single z = Xβ, we need to show that
∑

i:zi>0 z
2
i is approximated well, which

is done very similarly to the analysis for
∑

i:zi>0 zi sketched above, but with several adaptions to
account for the squared loss function. We note that the increased sketching dimension in terms of

√
n

comes from the inter norm inequality ∥x∥1 ≤
√
n∥x∥2. Lemma E.14 in the appendix shows that this

dependence can not be avoided using the CountMin-sketch. It does not rule out other methods that
may allow a lower sketching dimension. We stress that other known standard sketches do not work
for asymmetric functions since they confuse the signs of contributions leading to unbounded errors
for our objective function or plain logistic regression, see (Munteanu et al., 2021).

4 EXPERIMENTS

We implemented our new sketching algorithm into the framework of Munteanu et al. (2021)5.
Pseudocode can be found in Appendix G. The crucial difference is that at level 0 of our sketch,
each element gets mapped to multiple buckets instead of only one. Sketch (old) denotes the sketch
used in (Munteanu et al., 2021) and is highlighted in red in the plots. Sketchs is the sketch where
each entry is mapped to s ∈ {2, 5, 10} buckets at level 0. Each sketch was run with 40 repetitions
for various target sizes. Real-world benchmark data was downloaded automatically by the Python
scripts: the Covertype data consists of 581, 012 cartographic observations of different forests with 54
features. The Webspam data consists of 350, 000 unigrams with 127 features from web pages. The
Kddcup data consists of 494, 021 network connections with 41 features. On the real-world data we
see in Figure 1 slightly improved performances over the previous sketch for Covertype and Webspam.
On the Kddcup data we see a slightly weaker performance. We also see that increasing the sparsity
parameter s too much results in a worse performance, which is especially true for λ > 0 (partly in
the appendix). This indicates that the variance term is large for Kddcup and the

√
n dependence

dominates the sketching size necessary to decrease the error in the squared variance-regularization
term. We created a synthetic data set that has multiple heavy hitters for the sake of showing the
benefits of the new sketch. A detailed description of our construction can be found in Appendix G,
along with intuition why it is complicated for the old sketch, while our new sketch can handle it
much better. The data set consists of n = 40, 000 points and the dimension is d = 100. We see in
Figure 1 (bottom left) that the increase in the number of buckets each elements is hashed to improves

5code available at https://github.com/Tim907/oblivious_sketching_varreglogreg
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Figure 1: Comparison of median approximation ratios of the old sketch vs. the new sketch with
various settings for the sparsity s ∈ {2, 5, 10} as well as for the regularization parameter λ ∈ {0, .1}
for real-world benchmark data (rows 1-2). Comparison of median approximation ratios and sketching
times (row 3, left, middle) for our synthetic data. Comparison to the Cauchy sketch (row 3, right).

from approximation ratios between 7 and 8 for the old sketch to 3 or even 2 approximations for the
modified sketches. The sketching times are only slightly increased for larger values of s, allowing
for fast processing time (bottom middle). We omitted the time plots for the other data sets and
parameterizations since the general picture is consistently as expected: Sketchs is almost s times
slower than Sketch (old). We added another comparison between our Sketch and the Cauchy sketch
for an ℓ1 regression problem (bottom right). We see that the new sketch, using any degree of sparsity
s ∈ {2, 5, 10}, outperforms the Cauchy sketch by a large margin in terms of approximation factor
(while being a lot faster to apply than the dense matrix multiplication). More plots and discussion can
be found in Appendix G. We also discuss stochastic gradient descent (SGD) together with supporting
experiments in Appendix G. While SGD performs well on real-world data (though not better than
sketching), it suffers from arbitrarily bad errors when applied to our synthetic data.

5 CONCLUSION

We obtain significantly improved bounds on the number of rows that are sufficient for obliviously
sketching logistic regression on µ-complex data up to an O(1) factor. Our bounds are almost linear in
terms of the dimension d and a data dependent complexity parameter µ that bounds the complexity of
data reduction techniques for logistic regression and related loss functions. Our results are achieved
by modifying the sketching approach of Munteanu et al. (2021), which allows a change of perspective
and facilitates a fine-grained analysis of the contributions of single levels in the sketch. As a result,
we also develop the first oblivious sketch for obtaining a (1 + ε)-approximation, albeit with an
exponential dependence on 1/ε which is likely to be required for our estimator due to corresponding
hardness results on sketching ℓ1 norms. We also extend the analysis to work for a variance-based
regularized version of logistic regression which combines the ℓ1 and ℓ2 related loss functions and
is of great practical relevance for reducing generalization error in statistical learning. It remains a
challenging open question whether we can further reduce the upper bounds to or below O(µd) or
increase the lower bounds from Ω(µ + d) to or above Ω(µd). It would be interesting to study our
sketching techniques under assumptions such as sparsity that allow to get below linear sketching
dimension (Mai et al., 2023).
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A OMITTED DETAILS FROM SECTION 2

For technical reasons we make the following assumption:
Assumption A.1. We assume that:

hm = min

{
i ∈ N | Mi

bN
≤ 12 ln(n)

}
(1)

N ≥ 32m1+c
1 q1+c

m hc
mµ/ε6 (2)

b =
Nε5

32m1qmµ
≥ 18µ

ε
(3)

m1 = ln(δ−1) +O(d ln(n))) (4)

pu ≥ 64µm1

ε2n
. (5)

Here c is some constant used in the proof of Theorem 2. Since we want our sketch to have fewer than
n rows we will also assume that n ≥ ε−1, µ, d, δ−1. We also assume that ε ≤ 1/4.

We will further use the following probability tools:
Proposition A.1. [Bernstein’s Inequality](Bernstein, 1924) Let X1, . . . , Xn be independent zero-
mean random variables. Suppose that |Xi| ≤ M holds almost surely for all i. Then, for all positive t
it holds that

P

(
n∑

i=1

Xi ≥ t

)
≤ exp

(
−

1
2 t

2∑n
i=1 E [X2

i ] +
1
3Mt

)
.

Proposition A.2 (Chernoff bound (Chernoff, 1952)). Let X =
∑n

i=1 Xi, where Xi = 1 with
probability pi and Xi = 0 with probability 1 − pi, and all Xi are independent. Let µ = E(X) =∑n

i=1 pi. Then for all δ ∈ [0, 1] it holds that

P (|X − µ| ≥ δµ) ≤ 2 exp(−δ2µ/3)

and for any δ > 1 it holds that
P (|X − µ| ≥ δµ) ≤ 2 exp(−δµ/3)

Lemma A.3. Let y be a binomially distributed random variable with parameters n, p. Let n′ ∈ N.
Then if n′ ≥ pn we have that

P (|y − pn| > n′) ≤ 2 exp (−n′/3)

Else if n′ = εpn we have that
P (|y − pn| > n′) ≤ 2 exp (−εn′/3)

Proof of Lemma A.3. Note that E(y) = pn. Using the Chernoff bound we get that if n′ ≥ pn

P (|y − pn| > n′) ≤ 2 exp(−(n′/np)np/3) = 2 exp(−n′/3).

If n′ = εpn the Chernoff bound implies that
P (|y − pn| > n′) ≤ 2 exp(−ε2np/3) = 2 exp (−εn′/3) .

Lemma 3.1 in the main body splits the objective into ’large’ and ’small’ parts which we handle
separately.

Proof of Lemma 3.1. Note that for r ∈ R it holds that
ℓ(r) = ln (1 + er) = ln

((
e−r + 1

)
er
)

= ln
(
e−r + 1

)
+ ln(er) = ℓ(−r) + r.

Now the first equation follows immediately by ℓ(xiβ) = xiβ + ℓ(−xiβ) = |xiβ| + ℓ(−|xiβ|)
for xiβ > 0 and ℓ(xiβ) = ℓ(−|xiβ|) for xiβ ≤ 0. Further we have that (xiβ + ℓ(−xiβ))

2 =
(xiβ)

2 + 2ℓ(−xiβ)xiβ + ℓ(−xiβ)
2 Thus the second equality follows by substituting ℓ(xiβ)

2 with
|xiβ|2 + 2ℓ(−|xiβ|)|xiβ| + ℓ(−|xiβ|)2 = (xiβ)

2 + 2ℓ(−xiβ)xiβ + ℓ(−xiβ)
2 for xiβ > 0 and

ℓ(−|xiβ|)2 for xiβ ≤ 0.
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B ESTIMATING THE SMALL PARTS OF f

We can bound the ’small’ parts using the following lemma:
Lemma B.1. For arbitrary i ∈ [n] it holds that ℓ(−|xiβ|) < 1 and also 2ℓ(−|xiβ|)|xiβ| +
ℓ(−|xiβ|)2 ≤ 3.

Proof. First observe that ℓ(−|xiβ|) ≤ ℓ(0) = ln(2) < 1, proving the first part of the lemma.

Next note that

ℓ(−|xiβ|) = ln(1 + exp(−|xiβ|)) =
∫ 1+exp(−|xiβ|)

1

1

t
dt

≤
∫ 1+exp(−|xiβ|)

1

1 dt = exp(−|xiβ|).

Using that ln(t) ≤ |t| for all t > 0 we conclude that

ℓ(−|xiβ|)|xiβ| ≤ exp(ln(|xiβ|)− |xiβ|) ≤ e0 = 1.

Now combining everything we get that

2ℓ(−|xiβ|)|xiβ|+ ℓ(−|xiβ|)2 ≤ 2 + 12 ≤ 3.

Next we note that the optimal value of f(Xβ) is bounded from below:
Lemma B.2. (Munteanu et al., 2021) For all β ∈ Rd it holds that nf(Xβ) ≥ nf1(Xβ) ≥
n
2µ (1 + ln(µ)) = Ω

(
n
µ (1 + ln(µ))

)
.

We use the previous two lemmas to show that our sketch approximates the given parts of f well
enough with high probability. To this end, we set g1(t) = ℓ(−|t|), g2(t) = 2ℓ(−|t|)|t| + ℓ(−|2t|)
and g(t) = g1(t) + λg2(t).
Lemma B.3. Given any β ∈ Rd with failure probability at most 2 exp(−m1) the event E0 holds that∣∣∣∣∣∣

n′∑
i=1

wig(x
′
iβ)−

n∑
i=1

g(xiβ)

∣∣∣∣∣∣ ≤ ε ·max

{
n∑

i=1

g(xiβ),
n

2µ

}
≤ εf(Xβ).

Proof of Lemma B.3. The total weight of all buckets in a level less than hm is at most
∑hmax

h=1 b−h =

b−1 · 1−b−hmax

1−b−1 ≤ 2
b ≤ ε

6µ . Now let k ∈ {1, 2}. For i ∈ [n], consider the random variable
Xi = gk(zi) if zi is at level hm, and Xi = 0 otherwise. Then we have

E = E

(
n∑

i=1

Xi

)
=

n∑
i=1

pugk(zi) = pu

n∑
i=1

gk(xiβ).

Further we have Xi ≤ 3 by Lemma B.1. It holds that

E

(
n∑

i=1

X2
i

)
=

n∑
i=1

pugk(zi)
2 ≤ pu

n∑
i=1

3g(xiβ) = 3E.

We set

L = pu ·max

{
n∑

i=1

gk(xiβ),
n

2µ

}
≥ E.

By Assumption A.1 we have that pu ≥ 64µm1

ε2n . Thus, using Bernstein’s inequality we get that

P

(∣∣∣∣∣
n∑

i=1

Xi − E

∣∣∣∣∣ ≥ ε

2
· L

)
≤ exp

(
−ε2L2/8

3E + E

)

14
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= exp

(
−ε2L

32

)
≤ exp

(
−ε2pun/µ

64

)
≤ exp(−m1).

Using the union bound for k = 1 and k = 2 yields that

P

∣∣∣∣∣∣
n′∑
i=1

wig(x
′
iβ)−

n∑
i=1

g(xiβ)

∣∣∣∣∣∣ > ε ·max

{
n∑

i=1

g(xiβ),
n

2µ

} ≤ 2 exp(−m1).

By Lemma B.2 we have f(Xβ) ≥ n
2µ . It also holds that f(Xβ) ≥

∑n
i=1 g(xiβ). We thus conclude

that ε ·max
{∑n

i=1 g(xiβ),
n
2µ

}
≤ εf(Xβ).

C ESTIMATING THE LARGE PARTS ∥z∥1 AND ∥z+∥1

Lemma C.1. It holds that
∑

q∈Q∗ ∥W+
q ∥1 ≥ (1− 2ε)∥z+∥1.

Proof of Lemma C.1. First note that∑
zi<2−qm

zi ≤ n · ε

(µ+ 1)n
= ε/(µ+ 1).

Second note that
∑

q≤qm,q /∈Q∗ ∥W+
q ∥1 ≤ qm · ε

(µ+1)qm
≤ ε/(µ+ 1). By the µ-condition we have

that ∥z−∥1 ≤ µ∥z+∥1 and thus we get that 1 = ∥z−∥1 + ∥z+∥1 ≤ µ∥z+∥1 + ∥z+∥1. Consequently,
∥z+∥1 ≥ 1

µ+1 and
∑

q∈Q∗ ∥W+
q ∥1 ≥ ∥z+∥1 − 2ε

(µ+1) ≥ (1− 2ε)∥z+∥1.

C.1 ANALYSIS FOR A SINGLE LEVEL

Fix h ∈ [0, hm]. First consider the number of elements at a fixed level h. We can view it as a binomial
random variable with parameters n and ph since the probability for any row to appear at level h is
ph. Since we fix h in this subsection, we set M = Mh = phn, p = ph = M

n and N = Nh. We set

U ⊂ [n] to be the set of elements that are sampled at level h. We also set µz =
∑

zi<0 |zi|∑
zi>0 |zi| ≤ µ.

This and the following subsection are dedicated to proving the existence of bounds qh(1), qh(2),
qh(3) and qh(4) as described in the high level overview, Section 3. More precisely we show the
following:
Lemma C.2. With probability at least 1 − δ

hm
the weight classes Wq for q ≥ q(M,N)(4) :=

log2(γ
−1
2 ) := log2(

2N ln(Nhmax/δ)
pε2 ) and q ≤ q(M,N)(1) := log2(

µzδ
phmax

) have zero contribution
to
∑

B G+(B), i.e., for any bucket B we have
∑

zi∈B\Ir zi ≤ 0 where Ir = {i ∈ [n] | zi ∈
Wq, q ∈ [q(M,N)(1), q(M,N)(4)]}. Further, with failure probability at most exp(−Ω(m1)) there
exists, for each log2(

8qmµzm1

ε3p )) =: q(M,N)(2) ≤ q ≤ q(M,N)(3) := log2(
Nε2

4p ), a set W ∗
q such that∑

i∈W∗
q
G(Bi) ≥ (1− ε)2∥W+

q ∥1 · M
n . It thus holds that

q(M,N)(2)− q(M,N)(1) = log2

(
8qmm1hm

ε3δ

)
q(M,N)(3)− q(M,N)(2) = log2

(
Nε5

32m1µqm

)
=: log2(b)

q(M,N)(4)− q(M,N)(3) = log2

(
8 ln(Nhm/δ)

ε4

)
.

If N = M then we set q(M,N)(3) = q(M,N)(4) = ∞. If M = n then we set q(M,N)(1) =
q(M,N)(2) = 0. We set qh(i) = q(Mh,Nh)(i) for i ∈ {1, 2, 3, 4} and Qh = [qh(2), qh(3)] to be the
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well-approximated weight classes, and Rh = [qh(1), qh(4)] to be the relevant weight classes at level
h.

We further define the following threshold and set:

γ1 :=
p

3m1

Y1 := {i ∈ [n] | |zi| ≥ γ1}

Here Y1 is the ‘set of large elements’. We set Bh to be the set of all buckets at level h. Recall that
m1 ∈ R is a lower bound on the negative logarithm of the failure probability, which we will need
later when union bounding over all failure probabilities. Also recall that G(B) =

∑
i∈B zi is the

sum of all rows in a bucket B. The following lemma yields the inner bounds, i.e., bounds for qh(2)
and qh(3), which are the weight class indices that are well represented by U . The first two items
show that there are at most εN buckets at level h that either contain a large element or have a large
sum of small contributions. The third item shows that if Wq has sufficiently many elements, then
there exists a large subset W ∗

q where each element is in a bucket with no other large entry such that
∥W ∗

q ∥1 is close to ∥W+
q ∥1 · M

n . The fourth item shows that
∑

zi∈W∗
q
G(Bi) is close to ∥W ∗

q ∥1.

Lemma C.3. The following hold:

1) |Y1 ∩ U | ≤ εN/2 with failure probability at most exp(−m1);

2) Let B = {B ∈ Bh |
∑

i∈B\Y1
|zi| ≤ 4p

εN }. Then |B| ≥ (1− ε
2 )N with failure probability

at most exp(−m1);

3) Assume that q ≥ log2(
8qmµzm1

ε3p ) and that W+
q is important or |Wq| ≥ 8m1ε

−2 · p−1.
Then with failure probability at most exp(−m1) there exists W ∗

q ⊂ W+
q ∩ B such that

∥W ∗
q ∥1 ≥ (1 − ε)2∥W+

q ∥1 · p and each element of W ∗
q is in a bucket in B containing no

other element of Y1;

4) If q ≤ log2(
Nε2

4p ) and W ∗
q as in 3) exists, then with failure probability at most exp(−m1) it

holds that
∑

i∈W∗
q
G(Bi) ≥ (1− ε)∥W ∗

q ∥1.

Proof. 1) Note that |Y1| ≤ γ−1
1 since ∥z∥1 = 1 and that we can view |Y1 ∩ U | as a binomial random

variable with parameters |Y1| and p = M
n . Thus, the expected number of elements of Y1 at level h is

bounded by |Y1| · M
n ≤ p

γ1
= 3m1 ≤ εN

4 since N ≥ 12m1 (see Assumption A.1). Thus, we get by
Lemma A.3 that

P

(
|Y1 ∩ U | ≥ εN

2

)
≤ P

(
|Y1 ∩ U | − |Y1| · p ≥ εN

4

)
≤ P (|Y1 ∩ U | − |Y1| · p ≥ 3m1)

≤ exp (−3m1/3) ≤ exp(−m1).

2) For i ∈ T = [n]\Y1 we set Xi = |zi| if i ∈ U and Xi = 0 otherwise. Since
∑

i∈T |zi| ≤ ∥z∥1 = 1
we have that E(

∑
i∈T Xi) = p ·

∑
i∈T |zi| ≤ p. Since all ‘large elements’ are in Y1 we have that

Xi < γ1 for all i ∈ [n] and thus

E

(∑
i∈T

X2
i

)
=
∑
i∈T

p|zi|2 ≤
∑
i∈T

pγ1|zi| = pγ1
∑
i∈T

|zi| ≤ pγ1.

Using Bernstein’s inequality we get

P

(∑
i∈T

Xi ≥ 2p

)
≤ exp

(
− p2/2

pγ1 + pγ1/3

)
≤ exp

(
− p

3γ1

)
= exp(−m1).

This implies that
∑

i∈T Xi ≤ 2p with failure probability at most exp(−m1). Now if
∑

i∈T Xi ≤ 2p

then there can be at most εN
2 buckets B with G(B \ Y1) ≥ 4p

εN .
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3) First note that if q ≥ log2(
8qmµzm1

ε3p ) is important then 2−q · |W+
q | ≥ ∥W+

q ∥1 ≥ ε
qmµz

, which
implies that |W+

q | ≥ 2qε
qmµz

≥ 8m1ε
−2 · p−1. Assume that all entries of Y1 \W+

q have been assigned
and let B′ ⊂ B be the buckets of B with no elements from Y1 \W+

q . By 1) and 2) there are at least
(1− ε)N buckets in B′. For zi ∈ W+

q consider the random variable that takes the value Zi = zi if
i ∈
⋃

B∈B′ B and Zi = 0 otherwise. Set Z =
∑

zi∈W+
q
Zi. We have Zi = zi if element i is sampled

at level h and sent to a bucket in B′, which happens with probability at least p · (1−ε)N
N = (1− ε)p.

We thus have for the expected value of Z that

E(Z) ≥ (1− ε)p · ∥W+
q ∥1 ≥ (1− ε)p · 2−q−1 · |W+

q | ≥ (1− ε) · 2−q−1 · 8m1ε
−2

≥ 2−q · 3m1ε
−2.

Further, the maximum value of any Zi is 2−q and the probability that Zi = zi is upper bounded by p.
Consequently, the variance of Z is bounded by∑

zi∈W+
q

E(Z2
i ) ≤

∑
zi∈W+

q

pz2i ≤ 2−q
∑

zi∈W+
q

pzi = 2−qE(Z).

Using Bernstein’s inequality we get that

P
(
Z < (1− ε)2p · ∥W+

q ∥1
)
≤ P (Z − E(Z) > εE(Z))

≤ exp

(
−ε2E(Z)2/2

2−qE(Z) + 2−qεE(Z)/3

)
≤ exp

(
−ε2E(Z)

3 · 2−q

)
≤ exp (−m1) .

We set W ∗
q = {zi ∈ W+

q | Zi = zi}.

4) By 2) and 3) we have that any entry zi ∈ W ∗
q is in a bucket B with

∑
j∈B\{i} |zj | ≤

4p
εN . Thus,

we have for zi ≥ 4p
ε2N that

∑
j∈Bi

zj ≥ zi − 4p
εN ≥ (1− ε)zi. Now we conclude∑

i∈W∗
q

G(Bi) ≥
∑
i∈W∗

q

(1− ε)zi = (1− ε)∥W ∗
q ∥1.

Note that if all buckets contain only a single element then we can remove the condition q ≤ log2(
Nε2

4p ).
Hence, we can set q(M,N)(3) = q(M,N)(4) = ∞ if N = M (respectively, h = hm).

For the outer bounds, i.e., the borders of the interval of weight classes that can have a non-negligible
contribution to U , we need the following parameters defining the set of small elements:

γ2 :=
pε2

3N ln(Nhmax/δ)

Y2 = {i ∈ [n] | |zi| ≤ γ2}

We further set E to be the expected value of an entry chosen uniformly at random from Y2.
Lemma C.4. The following hold:

1) If E ≤ −ε/n, then for any bucket B that contains only elements of Y2, we have G(B) =∑
i∈B zi ≤ 0 with failure probability at most δ

Nhmax
.

2) U contains no element i with zi ≥ phmax

δ with failure probability at most µzδ
hmax

.

Proof. 1) First consider a single bucket B containing only elements of Y2. For i ∈ [n], let Xi be a
random variable that attains the value Xi = zi if i ∈ B and Xi = 0 otherwise. The expected value
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of G(B) =
∑

i∈[n] Xi is E′ := n · p
N · E ≤ −pε

N . Further, we have that

E

∑
i∈[n]

X2
i

 =
∑
i∈Y2

p

N
· z2i ≤ γ2 ·

∑
i∈Y2

p

N
· |zi| = γ2

p

N

since all Xi are bounded by γ2 by assumption. Thus, applying Bernstein’s inequality yields

P (G(B) > 0) ≤ P

∑
i∈[n]

Xi − E′ ≥ |E′|

 ≤ exp

(
−|E′|2/2

γ2
p
N + γ2|E′|/3

)

≤ exp

(
−ε · p/(N)

2γ2(p/(N |E′|) + 1/3)

)
≤ exp

(
−ε · p/(N)

2γ2(ε−1 + 1/3)

)
≤ exp

(
−ε2 · p/(N)

3γ2

)
≤ exp

(
− ln

(
Nhmax

δ

))
=

δ

Nhmax
.

2) Recall that
∑

zi>0 zi ≤ 1/µz . Thus, there are at most nδ
µzMhmax

entries with zi ≥ Mhmax

nδ . The
expected number of those entries in U is thus at most nδ

µzMhmax
· Mn ≤ δ

hmax
, which also upper bounds

the probability of at least one entry with zi ≥ Mhmax

nδ being contained in U .

Putting both lemmas together we get all bounds qh(i) except q0(2), which will be handled in the next
subsection.

C.2 HEAVY HITTERS

In this subsection we will analyze the level containing all entries. Our goal is to show that we
can indeed set q0(2) = 0 in Lemma C.2. Let U be as before and assume that M = n. Let
QH = {q ∈ Q0 | |Wq| ≥ 8m1ε

−2} where Q0 = {q ≤ log2(
8qmµm1

ε3 )}. We set H =
⋃

q∈QH
Wq to

be the class of heavy hitters.

We let u ∈ Rn
≥0 denote the vector whose coordinates ui denote the i-th ℓ1-leverage scores, i.e.,

ui = maxβ∈Rd
|xiβ|∑

j∈[n] |xjβ| .

Lemma C.5. (Munteanu et al., 2021) If ui is the k-th largest coordinate of u, then for z in the
subspace spanned by the columns of X it holds that |zi| ≤ d

k∥z∥1. Further, it holds that
∑n

i=1 ui ≤ d.

Lemma C.6. Let Y3 = {i | ui ≥ γ3} and N1 = |Y3| where γ3 = ε3

8qmµm1
. Further, for j ∈ Y3

let Cj = {B |
∑

i∈B\{j} ui ≥ εγ3}. Then for all j ∈ Y3 we have that |Cj | is bounded by
N2 = d(εγ3)

−1. Further if N ≥ N1N2κ
−1 for κ ∈ (0, 1/2), then with probability 1 − 2κ, each

member of Y3 is in a bucket in B0 \ Cj .

Proof. Since by Lemma C.5 it holds that
∑n

i=1 ui ≤ d, there can be at most d 1
εγ3

= N2 buckets B
with

∑
i∈B ui ≥ εγ3. In particular this implies that |Cj | ≤ N2. The probability of any element of

j ∈ Y3 getting assigned to a bucket in Cj is at most N2

N ≤ κ
N1

. Using the union bound the probability
that any element j ∈ Y3 is assigned to a bucket in B0 \ Cj is at most κ.

We apply Lemma C.6 with κ = δ. We denote by E1 the event that all coordinates in j ∈ Y3 are
in a bucket in B0 \ Cj . By Lemma C.6 E1 holds with probability at least 1 − δ for an appropriate
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N = N ′
0 = N1N2δ

−1 =
64d2q2mµ2m2

1

δε7 = O(
d2q2mµ2m2

1

δε7 ). For any entry zi ∈ H we have zi ≥ γ3 and
thus by Lemma C.5, we have i ∈ Y3. It remains to show that the remaining entries in the buckets
containing a heavy hitter only have a small contribution.

Lemma C.7. Assume E1 holds. Then for any zi ∈ H we have G(Bi) ≥ (1− ε)zi.

Proof. Let zi ∈ H . Note that by Lemma C.5 i ∈ Y3. By E1 we have that
∑

j∈B\{i} uj ≤ εγ3 ≤ εzi.
We conclude that

G(Bi) ≥ zi −
∑

j∈Bi\{i}

|zj | ≥ zi −
∑

j∈Bi\{i}

uj ≥ zi − εzi ≥ (1− ε)zi.

C.3 CONTRACTION BOUNDS FOR A SINGLE POINT

We set Uh to be the rows zi sampled at level h. Combining previous subsections we get the following
lemma:

Lemma C.8. Assume that E1 holds. Denote by z′i the i-th row of SXβ for i ∈ n′. Then with failure
probability at most (2hm + 2qm)e−m1 it holds that∑

i∈n′,z′
i≥0

wiz
′
i ≥ (1− 4ε)∥(Xβ)+∥1.

Proof. By Lemma C.3 and Lemma C.7 we have that for each important weight class W+
q there exists

a subset W ∗
q ⊆ Uh with

∑
i∈W∗

q
G(Bi) ≥ (1− ε)2∥W+

q ∥1ph. For q ∈ QH we can set W ∗
q = W+

q .
Then using Lemma C.1 we get∑

i∈n′,z′
i≥0

wiz
′
i ≥

∑
q∈Q∗

p−1
h

∑
i∈W∗

q

G(Bi)

≥
∑
q∈Q∗

(1− ε)2∥W+
q ∥1

≥ (1− 2ε)(1− ε)2∥(Xβ)+∥1 ≥ (1− 4ε)∥(Xβ)+∥1.

C.4 DILATION BOUNDS

Given β ∈ Rd and z = Xβ set Z0 = Z0(β) ⊂ Z = {z1, . . . , zn} to be the set of the (1−ε)n largest
entries ordered by absolute value. In other words, we remove the εn smallest entries. Similarly we
set Z1 = Z1(β) ⊂ Z to be the set of the (1− 2ε)n largest entries. Again we assume that ∥z∥1 = 1.
Our next goal is to show that if f(z) is small then

∑
zi∈Z0

zi remains negative even if we remove the
smallest entries. Here small means negative with large absolute value. This shows that the assumption
of Lemma C.4 1) is fulfilled.

Lemma C.9. If f(Xβ) < (1− 2ε)f(0) then it holds that∑
zi∈Z0,zi≤0

|zi| ≥ (1 + ε)
∑
zi≥0

|zi|

Proof. Let X1 denote the matrix X where the columns not corresponding to an entry of Z1 are
removed. We denote by f̃ the function f restricted to |Z1| entries, i.e., f̃(Xβ) =

∑
xi∈X1

ℓ(xiβ).
Since ℓ is always larger than 0, removing 2εn entries can only reduce f . We thus have that

f̃(0) = (1− 2ε)f(0) ≥ f(Xβ) = f(Z) ≥ f̃(Z1).

Now consider the function ϕ(r) = f̃(r · Xβ). Note that the derivative of ϕ at zero is given by
ϕ′(0) =

∑
xi∈X1

e0

e0+1 · xiβ = 1
2 ·
∑

zi∈Z1
zi. Since f̃ is convex ϕ is also convex. In particular this
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means that f̃(Xβ) < f̃(0) implies ϕ′(0) < 0. Thus it must hold that
∑

zi∈Z1
zi < 0, or equivalently,∑

zi∈Z1,zi<0 |zi| >
∑

zi∈Z1,zi>0 |zi|. Since all entries in Z0 \ Z1 are less than or equal to any entry
in Z0, we have that ∑

zi∈Z0,zi<0

|zi| ≥
1

1− ε

∑
zi∈Z1,zi<0

|zi| ≥ (1 + ε)
∑
zi>0

|zi|.

The following lemma gives us an upper bound on the expected value of G+(Z).
Lemma C.10. If for all i ≤ hm − 1 it holds that q(MiNi)(4) < q(Mi+kNi+k)(1) and N0 ≥ N ′

0, then
the expected contribution of any weight class W+

q is at most k · ∥W+
q ∥1.

Proof. Consider any weight class W+
q . For any level h it follows by Lemma C.2 that if q /∈

[q(MhNh)(1), q(MhNh)(4)] then W+
q has zero contribution at level h, i.e., either there are no elements

of W+
q at level h or we have W+

q ⊂ Y1 and for any bucket B of level h it holds that
∑

i∈Y1∩B zi ≤ 0.
At any level the expected contribution of W+

q is bounded by p−1
h ·

∑
i∈W+

q
phzi = ∥W+

q ∥1. This
upper bound would be tight if all entries of Z were positive. Hence, the expected contribution of W+

q

is upper bounded by the number of levels h with q ∈ [q(MhNh)(1), q(MhNh)(4)]. Since q(MhNh)(1)
and q(MhNh)(4) are monotonically increasing in h, it follows that if q(MiNi)(4) < q(Mi+kNi+k)(1)
then any q can be contained in at most k intervals of the form [q(MhNh)(1), q(MhNh)(4)], concluding
the lemma. See Figure 2 for an illustration.

h = 0

h = 1

h = 2

h = hm

q0(2) = 0 q0(3) q0(4)

q1(2)q1(1) q1(3) q1(4)

q2(1) q2(2) q2(3) q2(4)

qhm
(1) qhm

(2) qhm
(3) = qm

. . .

q

Wq is relevant at levels 0, 1, 2.

Wq is well represented at level 1.
If the green and the blue block do not touch i.e. if qh−1(4) < qh+1(1),
then the expected contribution of any weight class is at most twice its
original contribution.

Figure 2: Illustration of Lemma C.10 and Lemma C.11.

Lemma C.10 can be used to show that the expected contribution of any weight class to G+(Z) is at
most twice its total weight:

Lemma C.11. If we choose Ni = N := max{N ′
0,

2048m2
1µ ln(Nhm/δ)q2mhm

ε12δ } for all i ∈ [hm], and
Mi solving the equation q(Mi−1,N)(3) = q(Mi,N)(2) then the expected contribution of any weight
class W+

q is at most 2∥W+
q ∥1.

Proof. We set qi(j) = q(MiNi)(j). We first show that q(i+2)(1)− qi(4) can be expressed using the
terms qi+1(3)− qi+1(2), (qi+2(2)− qi+2(1)) and (qi(4)− qi(3)), which are the same for each i if
the number of buckets at each level is identical, i.e., for all j ≤ hq it holds that Nj = Ni. Observe
that

q(i+2)(1)− qi(4) = qi+2(2) + qi+2(1)− qi+2(2)− (qi(3) + qi(4)− qi(3))

= qi+2(2)− qi(3)− (qi+2(2)− qi+2(1))− (qi(4)− qi(3))

= qi+1(3)− qi+1(2)− (qi+2(2)− qi+2(1))− (qi(4)− qi(3)).

Figure 2 illustrates those three terms. Using Lemma C.2 we can bound the sum of the two subtracted
terms by

(qi+2(2)− qi+2(1)) + (qi(4)− qi(3)) = log2

(
8qmm1hm

ε3δ

)
+ log2

(
8 ln(Nhm/δ)

ε3

)
= log2

(
64m1 ln(Nhm/δ)qmhm

ε7δ

)
.
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By Lemma C.2 we have that qi+1(3)− qi+1(2) ≥ log2

(
Nε5

32m1µqm

)
. Thus, combining both equations

we get that

q(i+2)(1)− qi(4) = log2

(
Nε5

32m1µqm

)
− log2

(
64m1 ln(Nhm/δ)qmhm

ε7δ

)
= log2

(
Nε12δ

2048m2
1µ ln(Nhm/δ)q2mhm

)
.

If N ≥ 2048m1µ ln(Nhm/δ)q2mhm

ε12δ then we have q(i+2)(1)− qi(4) ≥ 0 and thus by Lemma C.10, the
expected contribution of any weight class W+

q is at most 2∥W+
q ∥1.

If N <
2048m2

1µ ln(Nhm/δ)q2mhm

ε12δ we have the following adaptation of the lemma:

Lemma C.12. If for some k ∈ N we choose Ni = N ≥ 32m1µqm
ε5 ·

(
64m1 ln(Nhm/δ)qmhm

ε7δ

)1/(k−1)

for all i ∈ [hm], and Mi solving the equation q(Mi−1,N)(3) = q(Mi,N)(2), then the expected
contribution of any weight class W+

q is at most k∥W+
q ∥1.

Proof. We generalize the proof of Lemma C.11. We can substitute q(i+k)(1)− qi(4) as follows:

q(i+k)(1)− qi(4) = q(i+k)(1)− q(i+k)(2) + qi(3)− qi(4) + q(i+k)(2)− qi(3)

= q(i+k)(2)− qi(3)− (q(i+k)(2)− q(i+k)(1))− (qi(4)− qi(3))

= q(i+k−1)(3)− qi+1(2)− (q(i+k)(2)− q(i+k)(1))− (qi(4)− qi(3))

=

k−1∑
j=1

q(i+j)(3)− qi+j(2)− (q(i+k)(2)− q(i+k)(1))− (qi(4)− qi(3)).

The difference to the proof of Lemma C.11 is the telescoping sum. We have that

k−1∑
j=1

q(i+j)(3)− qi+j(2) = (k − 1) · log2
(

Nε5

32m1µqm

)
= log2

((
Nε5

32m1µqm

)k−1
)
.

Thus if N ≥ 32m1µqm
ε5 ·

(
64m1 ln(Nhm/δ)qmhm

ε7δ

)1/(k−1)

we have that
∑k−1

j=1 q(i+j)(3)− qi+j(2) ≥

log2

(
64m1 ln(Nhm/δ)qmhm

ε7δ

)
.

Further note that (qi+2(2) − qi+2(1)) + (qi(4) − qi(3)) = log2

(
64m1 ln(Nhm/δ)qmhm

ε7δ

)
as before.

We conclude that q(i+k)(1)− qi(4) > 0. Consequently, applying Lemma C.10 finishes the proof.

Next we want to show how we can reduce the expected contribution of all weight classes below
2∥W+

q ∥1. To this end we first increase the number of buckets at each level so as to get

log2

(
Nε5

32m1µqm

)
≥ k log2

(
64m1 ln(Nhm/δ)qmhm

ε7δ

)
.

Note that the expected contribution of any important weight class W+
q is at least ∥W+

q ∥1. Moreover,
the above choice ensures that all but a k-th fraction of weight classes have an expected contribution of
exactly ∥W+

q ∥1, and only the remaining k-th fraction has a larger expected contribution that crucially
is still bounded by 2∥W+

q ∥1. Then the last step is to add a random shift so that the probability of
each weight class W+

q for having an expected contribution of 2∥W+
q ∥1 is at most 1

k . To simplify
notation we set N ′

1 = 32m1µqm
ε5 and N ′

2 = 64m1 ln(n)qmhm

ε7δ and assume that n ≥ Nkhm/δ.

Lemma C.13. Let γ = 1
k < 1 for some k ∈ N. Assume that N0 is chosen uniformly at random from

N (1), . . . N (1/γ) where N (i) = N ′
0 ·N ′i

2 . Further let Ni = N = N ′
1 ·N ′k+1

2 for any i > 0. Then
the expected contribution of any weight class W+

q is at most (1 + γ)∥W+
q ∥1.
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Proof. First note that

log2

(
Nε5

32m1µqm

)
− k log2

(
64m1µ ln(n)qmhm

ε7δ

)
= log2(N/N ′

1)− log2(N
′k
2 ) ≥ 0.

This shows that the relation of weight classes that are relevant on two levels to the weight classes that
are relevant on only one level is 1 : k. By choosing N0 at random we introduce a shift by i log2(N

′
2),

which is the maximal length of a block [qi−1(1), qi(4)]. Hence, for each q ∈ N there can be only one
i such that q is relevant in two levels. This implies that the expected contribution of W+

q is at most
k−1
k · ∥W+

q ∥1 + 1
k · 2∥W+

q ∥1 = (1 + 1
k )∥W

+
q ∥1.

C.5 NET ARGUMENT

To get a weak weighted sketch we need the contraction bounds not just for a single solution but for
all β ∈ Rd. For now we ignore the variance regularization and focus only on f1, i.e., on plain logistic
regression. We first show that if the distance of two vectors v, v′ ∈ Rn is small then |f1(v)− f1(v

′)|
is also small.

Lemma C.14. For any v, v′ ∈ Rn with ∥v − v′∥1 ≤ ε it holds that |f1(v)− f1(v
′)| ≤ ε.

Proof. Since ℓ′(v) = ev

ev+1 ≤ 1 we get that

|f1(v)− f1(v
′)| ≤

n∑
i=1

|ℓ(vi)− ℓ(v′i)| ≤
n∑

i=1

|vi − v′i| = ∥v − v′∥1

which proves the lemma.

Lemma C.15. Assume that for β ∈ Rd it holds that |f1(X ′β)−f1(Xβ)| ≤ ε. Then for any β′ ∈ Rd

with ∥Xβ −Xβ′∥1 ≤ ε/(bhmhm) it holds that |f1(Xβ′)− f1(X
′β′)| ≤ 3ε.

Proof. It holds that ∥X ′(β − β′)∥1 = ∥SX(β − β′)∥1 ≤ bhmhm∥X(β − β′)∥1 ≤ ε since for each
i ∈ [n] there are at most hm columns j such that Sij ̸= 0 and each entry of S is bounded by bhm .
Thus, using the triangle inequality and applying Lemma C.14 yields

|f1(Xβ′)− f1(X
′β′)| ≤ |f1(X ′β′)− f1(X

′β)|+ |f1(X ′β)− f1(Xβ)|+ |f1(Xβ)− f1(Xβ′)|
≤ ε+ ε+ ε ≤ 3ε.

Lemma C.16. There exists a net N ⊂ Rd of size |N | = exp (O(d ln(n))) such that for any point
y ∈ Rd with ∥Xy∥1 ≤ nµ there exists a point y′ ∈ N such that ∥Xy′ −Xy∥1 ≤ ε

µbhmaxhm
.

Proof. We set

N =

{
β = v · ε

dbhmhm
| v ∈ Zd with ∥v∥∞ ≤ dnµbhmaxhm

ε

}
. (6)

Then for any y ∈ R with ∥Xy∥1 ≤ nµ the point Xy′ = ⌊dbhmhm

ε · Xy⌋ · ε
dbhmhm

is in N and

it holds that ∥Xy − Xy′∥1 ≤ d · ε
dbhmhm

= ε
bhmhm

. Further we have |N | ≤
(

d2nµb2hmh2
m

ε2

)d
=

exp (O(d ln(n)).

Combining Lemma C.15 and Lemma C.16 we get:

Lemma C.17. There exists a net N ⊂ Rd with |N | = exp (O(d ln(n))) such that if |f1(X ′β) −
f1(Xβ)| ≤ ε holds for any β ∈ N , then for any β′ ∈ Rd with ∥Xβ′∥1 ≤ nµ it holds that
|f1(X ′β′)− f1(Xβ′)| ≤ 3ε.
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C.6 CONSTANT FACTOR APPROXIMATION CHANGES

To prove the first part of Theorem 2 we need one more tweak in level 0. Since we only aim to achieve
a constant factor approximation with constant probability we can assume that ε and δ are constant.

Heavy hitters - alternative version

There is another way of handling heavy hitters. Using it we can reduce the sketch size at the cost of
running time. The idea is that each row gets sampled multiple times. More precisely, we replace level
0 by the following sketch: At level 0 we map each element to s = 8m1qmµ/ε2 rows. Technically we
are getting rid of heavy hitters this way. To compensate the fact that each element appears multiples
times, we set the weight of buckets of level 0 to w0 = 1/s.

C.7 PROOF OF THEOREM 2

We are now ready to prove Theorem 2:

Proof of Theorem 2. If β = 0 is a 1 − 2ε approximation, then we get the dilation bounds for free
since f1w(X

′β) = ln(2) = f1(Xβ). Otherwise let β∗ be the minimizer of f1(Xβ). Note that β∗

satisfies the assumption of Lemma C.9.

1) We fix constants ε = 1/8 and δ = 1/8.

We use the alternative approach for handling heavy hitters and define Mi and Ni as in Lemma C.12
for some constant k = 1 + 1

c and set hm = min{i |Mi ≤ N}.

By Lemma C.12 the expected contribution of any weight class is at most k∥W+
q ∥1. Thus using

Markov’s inequality we can bound f1w(SXβ∗) ≤ akf1(Xβ∗) with probability 1
a for any a ∈ N. In

other words, it is constant with constant probability. By our choice of Mi and Ni, the contraction
bounds hold for any Xβ with failure probability at most (2hm + 2qm + 2)e−m1 by combining
Lemma C.8 and Lemma B.3. Setting m1 = O(d ln(n)) and using Lemma C.17 we get that the
contraction bounds hold for all β ∈ Rd with ∥Xβ∥1 ≤ nµ. We note that the contraction bounds
can be extended to any β ∈ Rd since f1(Xβ) ≈ ∥Xβ∥1 if ∥Xβ∥1 > nµ. We refer to (Munteanu
et al., 2021) for details. Further note that qi(2) < qi(3), and thus hm ≤ log2(2

qm) = O(ln(n)). The
number of buckets at each level is N = 32m1µqm

(1/8)5 · ( 64m1 ln(Nhm/δ)qmhm

(1/8)7 )c. We specify the number
r of rows of SX , which is r = hmN . Since hm, qm = O(ln(n)) and m1 = O(d ln(n)) we get that
r = O(µd1+c ln(n)2+4c). The running time of our algorithm is O(µd ln(n)nnz(X)) since each row
xi gets assigned to O(µd ln(n)) buckets.

2’) Before proving the second part we show that with r = O(µ
2d4 ln(n)7

ε12δ ) and T = O(nnz(X)) we
can get an approximation factor of α = 1+ (1+ ε)a and failure probability of P = δ+ 1

a . There are
only a few differences compared to the proof of the first part: instead of Lemma C.12 we use Lemma
C.11. Hence we need the number of buckets to be

N = max

{
N ′

0,
2048m2

1µ
2 ln(Nhm/δ)q2mhm

ε12δ

}
=

2048m2
1µ

2 ln(Nhm/δ)q2mhm

ε12δ
.

Consequently we have that r = hmN = O(µ
2d4 ln(n)7

ε12δ ). Since every row gets assigned to O(1)
buckets the running time is O(nnz(X)). Now assume that the contraction bound holds for β∗. Then
Y = f1w(SXβ∗) − (1 − ε)f1(Xβ∗) is a positive random variable with expected value at most
(1 + ε)f1(Xβ∗), and thus using Markov’s inequality gives us that Y > a(1 + ε)f1(Xβ∗) holds
with probability at most 1

a . Hence it follows that f1w(SXβ∗) ≤ f1(Xβ∗) + a(1 + ε)f1(Xβ∗) with
failure probability at most 1

a .
2) The proof is again similar to 2’). The only difference is that we use Lemma C.13 instead of Lemma
C.11. Hence the number of buckets at each level is bounded by N = max{N ′

0, N
′
1 ·N ′1+ε−1

2 }. Thus
r = hmN = O(

d2hmq2mµ2m2
1

δε7 + 32dµ ln(n)2

ε5 · ( 64d ln(n)4

ε7δ )1+ε−1

).
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D APPROXIMATING ∥Xβ − Y ∥1

The sketching algorithm is the same as before and also the analysis is very similar to the previous
part. We start with a fixed point z = (X,−Y )β′, where β′ = (β, 1) ∈ Rd and analyze Sz. Again we
assume that ∥z∥1 = 1. Instead of weight classes W+

q we use weight classes Wq = {i ∈ [n] | |zi| ∈
(2−q−1, 2−q]}. Since we are only dealing with absolute values, which are symmetric, we no longer
need to parameterize by µ. We can continue to use the same definitions for qh(1), qh(2) and qh(3)
when setting µ in those bounds to be 1. We will only slightly change qh(3) since we will need another
trick to prove the second outer bound q′h(4).

D.1 DILATION BOUNDS FOR ℓ1

For approximating ℓ1 we need a different approach for qh(4) when bounding the contribution of
small entries at each level. The idea is to use a Ky-Fan norm argument to remove the smallest
contributions from the ℓ1-norm. At a fixed level h we put Bh to be the set of buckets at level h
and B′

h to be the set of buckets with the p2qh(3) ≤ εN
hm

largest entries with respect to |G(B)| where

qh(3) := ln(min{ εN
2hm

, Nε2

4p }). We further define

K(h) =
∑

B∈B′
h

|G(B)|.

Since
⋃

q∈[qh(2),q′h(3)]
W ∗

q contains at most p2q
′
h(3) elements, we have that K(h) ≥ ∥W ∗

q ∥1. We set

q′h(4) = ln( 3Nhm lnNhm/δ
pε ). Set Y2 = Y2(h) = {i ∈ [n] | |zi| ≤ γ2 := cp

N ln(Nhm/δ)}.

Lemma D.1. With failure probability at most δ
hmN it holds that for any bucket B at level h we have

that ∑
i∈B∩Y2

|zi| ≤ max{2 · p · ∥Y2∥1
N

,
p

N

(
∥Y2∥1 +

ε

hm

)
}

Proof. Fix a bucket B at level h. For i ∈ Y2 let Xi = zi if i ∈ B and Xi = 0 otherwise. Then
we have E := E(

∑
i∈Y2

Xi) = p·∥Y2∥1

N . Further we have E(
∑

i∈Y2
X2

i ) =
∑

i∈Y2

p
N · z2i ≤

γ2p
N ·

∑
i∈Y2

|zi| = γ2E. We set λ = max{E, ε
Nhm

} Then using Bernstein’s inequality we get that

P (
∑
i∈Y2

Xi ≥ E + λ) ≤ exp

(
−λ2/2

γ2E + γ2E/3

)

≤ exp

(
−λ2/2

γ2λ+ γ2λ/3

)
≤ exp

(
−λ

3γ2

)
≤ exp

(
−pε

3Nhmγ2

)
≤ exp (− ln(Nhm/δ)) ≤ δ

hmN
.

Lemma D.2. With failure probability at most δ it holds that∑
h≤hm

∑
i∈Y2(h)∩

⋃
B∈B′

h
B

zi ≤ ε

Proof. Using the union bound over the event from Lemma D.1 over all Nhm buckets, using that
|B′

h| ≤ εN/2hm and max{2 · ∥Y2∥1,
(
∥Y2∥1 + ε

hm

)
} ≤ 2 we get that∑

i∈Y2(h)∩
⋃

B∈B′
h
B

zi ≤
εN

2hm
· 2p
N

≤ ε

hm
.

24



Published as a conference paper at ICLR 2023

holds for every level h with failure probability at most δ. Summing up over all levels we get∑
h∈hm

∑
i∈Y2(h)∩

⋃
B∈B′

h
B zi ≤ ε.

We have the following lemmas using similar proofs as in the previous section:

Lemma D.3. If for some k ∈ N we choose Ni = N ≥ 32m1qmhm

ε5 ·
(

64m1 ln(Nhm/δ)qmh2
m

ε6δ

)1/(k−1)

for all i ∈ [hm] and Mi solving the equation q(Mi−1,N)(3) = q(Mi,N)(2), then the expected
contribution of any weight class Wq is at most (k + ε)∥Wq∥1.

Here the additional ε comes from Lemma D.1.

We set N ′′
0 = N ′

0, N ′′
1 = 32m1qmhm

ε5 and N ′′
2 =

64m1 ln(Nhm/δ)qmh2
m

ε6δ and assume that n ≥ Nkhm/δ.

Lemma D.4. Let γ = 1
k < 1 for some k ∈ N. Assume that N0 is chosen uniformly at random from

N (1), . . . N (1/γ) where N (i) = N ′′
0 ·N ′′i

2 . Further let Ni = N = N ′′
1 ·N ′′k+1

2 for any i > 0. Then
the expected contribution of any weight class Wq is at most (1 + γ)∥Wq∥1.

D.2 NET ARGUMENT

For β ∈ Rd+1 we set g1(β) = ∥(X,−Y )β)∥1 and g2(β) = ∥(SX,−SY )β)∥1
Lemma D.5. Assume that for β ∈ Rd+1 it holds that |g1(β)− g2(β)| ≤ ε. Then for any β′ ∈ Rd

with ∥Xβ −Xβ′∥1 ≤ ε/(bhmhm) it holds that |g1(β′)− g2(β
′)| ≤ 3ε.

Proof. It holds that ∥X ′(β − β′)∥1 = ∥SX(β − β′)∥1 ≤ bhmhm∥X(β − β′)∥1 ≤ ε since for each
i ∈ [n] there are at most hm columns j such that Sij ̸= 0 and each entry of S is bounded by bhm .
Also note that ∥gi(v)− gi(v

′)∥1 ≤ ∥v − v′∥1 holds for any two vectors v, v′ ∈ Rd+1. Thus, using
the triangle inequality yields

|g1(β′)− g2(β
′)| ≤ |g2(β′)− g2(β)|+ |g2(β)− g1(β)|+ |g1(β)− g1(β

′)|
≤ ε+ ε+ ε ≤ 3ε.

Lemma D.6. There exists a net N ⊂ Rd with |N | = exp (O(d ln(n))) such that if |g1(β)−g2(β)| ≤
εg1(β) holds for any β ∈ N then for any β′ ∈ Rd+1 it holds that |g1(β′)− g2(β

′)| ≤ 3εg1(β
′).

Proof. We set

N =

{
β = v · ε

dbhmhm
| v ∈ Zd with ∥v∥∞ ≤ dbhmhm

ε

}
. (7)

Then it holds that for any β ∈ Rd+1 with g1(β) = 1 the point (X,−y)β′ = ⌊dbhmhm

ε · (X,−y)β)⌋ ·
ε

dbhmhm
is in N and it holds that ∥(X,−y)β′∥1 ≤ d · ε

dbhmhm
= ε

bhmhm
. Using Lemma D.5 it holds

that |g1(β′) − g2(β
′)| ≤ 3ε ≤ 3εg1(β). Further we have |N | ≤

(
dbhmhm

ε

)2d
= exp (O(d ln(n)).

Now for any r ∈ R and β ∈ Rd+1 with g1(β) = 1 we have that |g1(rβ) − g2(rβ)| = |rg1(β) −
rg2(β)| = r|g1(β)− g2(β)| ≤ 3εr.

E SKETCHING VARIANCE-BASED REGULARIZED LOGISTIC REGRESSION

In this section we show that our algorithm also approximates the variance well under the assumption
that roughly f1(Xβ) ≤ ln(2). We stress that this assumption does not rule out the existence of
good approximations. Indeed, even the minimizer is contained as observed in the preliminaries,
since we have that minβ∈Rd f(Xβ) ≤ f(0) = f1(0) = ln(2). Again we focus on a single z = Xβ

first. What remains to show is that
∑

i:zi>0 z
2
i is approximated well. We set H(z) =

∑n
i=1 z

2
i ,

H+(z) =
∑

i:zi>0 z
2
i and h(y) = y2

H+(z) . By µ-complexity we get that H+(z) ≥ H(z)
µ . We define

W 2
q = {i ∈ [n] | h(zi) ∈ (2−q−1, 2q]} and W 1

q = {i ∈ [n] | zi
∥z∥1

∈ (2−q−1, 2q]}. As the argument
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is almost the same as in the section before, we will only note the differences. We will also use the
same definition of importance, i.e., a weight class W 2

q is important if H+(W 2
q ) ≥ ε

qmµ . Similar
to the previous analysis we have that if W 2

q is important then |W 2
q | ≥ ε2q

qmµ . With those adapted
definitions we proceed by adapting the main lemmas of Section C that finally yield Theorem 3.
Lemma E.1. For any zi ∈ W 2

q there exists q′ ≤ (q − 1)/2 + ln(n)/2 such that zi ∈ W 1
q′ .

Proof. It is well known that ∥z∥1 ≤
√
n∥z∥2. We conclude that

zi
∥z∥1

≥ zi√
n∥z∥2

=
1√
n

z2i
∥z∥22

/√ z2i
∥z∥22

≥ 1√
n
· 2−q−1

2−(q−1)/2
.

Now taking the logarithm proves the lemma.

Contraction bounds Recall that:

γ1 :=
p

3m1

Y1 := {i ∈ [n] | |zi| ≥ γ1}

Here Y1 is the set of ‘large elements’. We redefine µz =
∑

zi>0 z2
i∑

zi<0 z2
i

Lemma E.2. The following hold:

1) |Y1 ∩ U | ≤ εN/2 with failure probability at most exp(−m1);

2) Let B = {B ∈ Bh |
∑

i∈B\Y1
|zi| ≤ 4p

εN }. Then |B| ≥ (1− ε/2)N with failure probability
at most exp(−m1);

3) Assume that q ≥ log2(
8qmµzm1

ε3p )) and that W 2
q is important or that |Wq| ≥ 8m1ε

−2 · p−1.
Then with failure probability at most exp(−m1) there exists W ∗

q ⊂ W 2
q ∩ B such that

∥W ∗
q ∥1 ≥ (1 − ε)2∥W+

q ∥1 · p and each element of W ∗
q is in a bucket in B containing no

other element of Y1;

4) If q ≤ log2(
Nε2√
n4p

) and W ∗
q as in 3) exists, then with failure probability at most exp(−m1)

it holds that
∑

i∈W∗
q
G(Bi) ≥ (1− ε)∥W ∗

q ∥1.

The proof is verbatim to the proof of Lemma C.3. For the 4th part we use Lemma E.1 to reduce the
problem to the weight class W 1

q . This causes an additional term of 1√
n

in the logarithm of q3(M,N).

We also have a change in q4(M,N). More precisely we need two additional factors of ε in γ2:

γ2 :=
Mε4

2Nn ln(Nhmax/δ)

Y2 = {i ∈ [n] | |zi| ≤ γ2}: Set of small elements;

Y +
2 = {i ∈ [n] | |zi| ≤ γ2, zi ≤ 0}: Set of small negative elements;

Y −
2 = {i ∈ [n] | zi ≤ γ2, zi ≥ 0}: Set of small positive elements;

Further we set A :=
∑

zi≥0 zi, A
′ =

∑
zi∈Y −

2
|zi|, A1 =

∑
zi∈Y +

2
|zi| and A2 = A−A1 ≥ 0.

Lemma E.3. If A′ ≥ A(1 + ε) then for any bucket B that contains only elements of Y2 we have that
G(B) =

∑
i∈B zi ≤ M

Nn · (−A2) with failure probability at most δ
Nhmax

.

Proof. Let Xi be the random variable attaining value zi if i ∈ B and 0 otherwise, for i ∈ [n]. The
expected value for G(B) =

∑
i∈[n] Xi is E′ := M

nN · (A′ −A1). Further we have that

E(
∑
i∈[n]

X2
i ) =

∑
i∈Y2

M

nN
· z2i ≤ M

nN
·
∑
i∈Y2

γ2zi ≤
γ2M

nN
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since all Xi are bounded by γ2 by assumption. Applying Bernstein’s inequality thus yields

P (G(B) > 0) ≤ P

∑
i∈[n]

Xi − E′ ≥ ε|E′|

 ≤ exp

(
−ε2|E′|2/2

γ2 ·M/(nN) + εγ2|E′|/3

)

≤ exp

(
−ε3 ·M/(nN)/2

γ2(M/(nNE′) + ε/3)

)
= exp

(
−ε3 ·M/(nN)/2

γ2ε−1((A′ −A1) + 1/3)

)
≤ exp

(
−ε4 ·M/(nN)

2γ2

)
≤ exp

(
− ln

(
Nhmax

δ

))
=

δ

Nhmax
.

Note that εE′ ≤ ε · M
nN · (A′ − A1) ≤ ε · M

nN · A and thus E(
∑

i∈[n] X
2
i ) + εE′ ≤ M

nN · (−A′ +

A1 + εA) ≤ M
nN · (−A2).

Our main lemma thus changes to:

Lemma E.4. With probability at least 1 − δ
hm

the weight classes W 2
q for q ≥ q(M,N)(4) :=

log2(γ
−1
2 ) := log2(

2Nn ln(Nhm/δ)
Mε4 ) and q ≤ q(M,N)(1) := log2(

nδ
Mhm

) have zero contribution
to
∑

B G+(B), i.e., for any bucket B we have
∑

zi∈B\Ir zi ≤ 0 where Ir = {i ∈ [n] | zi ∈
Wq, q ∈ [q(M,N)(1), q(M,N)(4)]}. Further, with failure probability at most exp(−m1), for each
log2(

8qmµm1n
ε3M )) =: q(M,N)(2) ≤ q ≤ q(M,N)(3) := log2(

Nnε2

4Mm1
√
n
) there exists W ∗

q such that∑
i∈W∗

q
G(Bi) ≥ (1− ε)2∥W 2

q ∥2 · M
n . Thus it holds that:

q(M,N)(2)− q(M,N)(1) = log2

(
8qmm1hm

ε3δ

)
q(M,N)(3)− q(M,N)(2) = log2

(
Nε5

32m1µqm
√
n

)
=: log2(b)

q(M,N)(4)− q(M,N)(3) = log2

(
8 ln(Nhm/δ

√
n)

ε6

)
.

If N = M then we set q(M,N)(3) = q(M,N)(4) = ∞. If M = n then we set set q(M,N)(1) =
q(M,N)(2) = 0. We set qh(i) = q(Mh,Nh)(i) for i ∈ {1, 2, 3, 4} and Qh = [qh(2), qh(3)] to be the
well-approximated weight classes and Rh = [qh(1), qh(4)] to be the relevant weight classes at level
h. Note that q(M,N)(1) and q(M,N)(2) stay the same as before.

Heavy hitters The important changes to note here are that we need to replace Lemma C.5 with an
appropriate lemma for the ℓ2-leverage scores and there is an additional factor of 1√

n
in γ4. We further

redefine up to be the ℓ2-leverage scores.

Lemma E.5. (Clarkson & Woodruff, 2015a) If ui is the k-th largest ℓ2-leverage score, then for z
in the subspace spanned by the columns of A it holds that z2i ≤ d

k

∑n
j=1 z

2
j . Further it holds that∑n

i=1 ui = d

The lemma follows as in the case of ℓ1 leverage scores by using an orthonormal basis.

We then apply Lemma C.6 and Lemma E.5 as before: set N1 = dγ−1
3 and N2 = dγ−1

3 · γ−1
4 , where

γ3 = ε3

8qmµm1
and γ4 = 2ε√

nm1
. Further let Y3 (resp. Y4) be the set of coordinates with the N1 (resp.

N2) largest leverage scores. We denote by E2 the event that all coordinates in Y3 are in a bucket with
no other member of Y4. By Lemma C.6, E2 holds with probability at least 1− δ for an appropriate
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N = N
(2)
0 = N1N2δ

−1 = O(
d2q2mµ2m3

1

√
n

δε7 ). For any entry zp ∈ H we have zp ≥ γ3 and thus by
Lemma C.5, we have p ∈ Y3 and for any entry p /∈ Y4 we have zp < γ3 · γ4. It remains to show that
the remaining entries in the buckets containing a heavy hitter only have a small contribution. To this
end we use Bernstein’s inequality. For a coordinate p ∈ [n] we denote by Bp the bucket at level 0
that contains p.
Lemma E.6. Assume E2 holds. Then for any zi ∈ H we have G(Bi) ≥ (1− ε)zi.

Contraction bounds for a single point
Lemma E.7. Assume that E2 holds. Denote by z′i the i-th row of SXβ for i ∈ n′. Then with failure
probability at most (2hm + 2qm)e−m1 it holds that∑

i∈n′,z′
i≥0

wiz
′
i ≥ (1− 6ε)G+(Xβ).

Here the constant before the ε increases for the following reason: assume that for some zi > 0 we
have ∥Bi∥1 ≥ (1− 3ε)zi then it holds that ∥Bi∥21 ≥ (1− 6ε)z2i .

Dilation bounds Here we have to cope with the additional factor of
√
n. Recall that if we choose Mi

solving the equation q(Mi−1,N)(3) = q(Mi,N)(2) then it holds that

q(i+2)(1)− qi(4) = qi+1(3)− qi+1(2)− (qi+2(2)− qi+2(1))− (qi(4)− qi(3)).

We now have

qi+1(3)− qi+1(2) = log2

(
Nε5

32
√
nm1µqm

)
and

(qi+2(2)− qi+2(1)) + (qi(4)− qi(3)) = log2

(
64m1 ln(Nhm/δ)qmhm√

nε9δ

)
.

Further there is a change in LemmaC.10 as we have to deal with possible overhead coming from the
square function. We set R = {i|2−qh(1) > zi > 2−qh(4)} to be the set of relevant (positive) elements
and WR = {zi | i ∈ R}.
Lemma E.8. If

∑n
i=1 zi ≤ 0 and for all i ≤ hm − 1 it holds that q(MiNi)(4) < q(Mi+kNi+k)(1) and

N0 ≥ N ′
0, then the expected contribution of any weight class Y ′

1 is at most k · ∥WR∥22.

Proof. Fix a level h and a bucket B at level h. Recall that
∑

i∈R zi ≤ A2 = A − A1 =∑
i,zi≥2−qh(4) zi. Note that by Lemma E.3 we have that

∑
i∈Y ′

1∩B ≤ ph(−A2)
N . Let Zi be the

random variable where Zi = zi if i ∈ R is assigned to B and 0 otherwise. Then the expected value
of Z = max{0,

∑n
i=1 Zi} is ph

N ·A2. Thus it holds that

E(max{G(B), 0}2) ≤ E
(
max{Z − ph(−A2)

N
}2
)

≤ E
(
max{Z − E(Z)}2

)
= Var(Z) ≤ ∥WR∥22.

Lemma C.11 and Lemma C.12 can be adapted as follows:

Lemma E.9. If we choose Ni = N := max{N (2)
0 ,

√
32qmµm1n

0.75

ε2.5 } for all i ∈ [hm] and Mi solving
the equation q(Mi−1,N)(3) = q(Mi,N)(2) then the expected contribution of any weight class Wq is at
most 2∥Wq∥1.

Proof. The proof uses a different idea as before: since N is large enough, we only need 2 levels.
More precisely we want to achieve M2 = N . By our choice of M2 this means

log2(
8qmµm1n

ε3N
) = q(N,N)(2) = q(n,N)(3) = log2(

Nnε2

4n
√
n
)
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or equivalently

N =

√
32qmµm1n1.5

ε5
=

√
32qmµm1n

0.75

ε2.5
.

Lemma E.10. If for some k ∈ N we choose Ni = N ≥ 32m1µqm
ε5 ·

(
64m2

1 ln(n)qmhm
√
n

ε9δ

)1/(k−1)

for

all i ∈ [hm] and Mi solving the equation q(Mi−1,N)(3) = q(Mi,N)(2) then the expected contribution
of any weight class Wq is at most k∥Wq∥1.

The proof is the same as for Lemma C.12.

Net Argument
Lemma E.11. For any v, v′ ∈ Rn with ∥v − v′∥1 ≤ ε it holds that |f2(v)− f2(v

′)| ≤ (f1(v) + ε)ε.

Proof. We have that (ℓ2)′(v) = ev

ev+1 · ℓ(v) ≤ ℓ(v). Further since ℓ′(v) ≤ 1 we have that for any
ν ∈ [0, 1] it holds that |ℓ(v + ν(v′ − v))− ℓ(v)| ≤ (ℓ(v) + ε)ε. Thus we get that

|f2(v)− f2(v
′)| ≤ 1

n
·

n∑
i=1

|ℓ(vi)2 − ℓ(v′i)
2| ≤ 1

n
·

n∑
i=1

(ℓ(v) + ε)ε = (f1(v) + ε)ε

which proves the lemma.

Lemma E.12. Assume that for β ∈ Rd it holds that |f2(X ′β)−f2(Xβ)| ≤ ε. Then for any β′ ∈ Rd

with ∥Xβ −Xβ′∥1 ≤ ε/(bhmhm) it holds that |f2(Xβ′)− f2(X
′β′)| ≤ ε+ 2(f1(Xβ′) + ε)ε.

Proof. It holds that ∥X ′(β − β′)∥1 = ∥SX(β − β′)∥1 ≤ bhmhm∥X(β − β′)∥1 ≤ ε since for each
i ∈ [n] there are at most hm columns j such that Sij ̸= 0 and each entry of S is bounded by bhm .
Thus, by the triangle inequality and applying Lemma E.11 yields

|f2(Xβ′)− f2(X
′β′)| ≤ |f2(X ′β′)− f2(X

′β)|+ |f2(X ′β)− f2(Xβ)|+ |f2(Xβ)− f2(Xβ′)|
≤ (f1(Xβ′) + ε)εb−hm + ε+ (f1(Xβ′) + ε)ε ≤ ε+ 2(f1(Xβ′) + ε)ε.

Combining Lemma C.16 and Lemma E.12 we get:
Lemma E.13. There exists a net N ⊂ Rd with |N | = exp (O(d ln(n))) such that if |f1(X ′β) −
f1(Xβ)| ≤ ε holds for any β ∈ N then for any β′ ∈ Rd with ∥Xβ′∥1 ≤ nµ it holds that
|f2(X ′β′)− f2(Xβ′)| ≤ ε(f2(Xβ′) + f1(Xβ′)).

Proof of Theorem 3 The proof of Theorem 3 works as the proof of Theorem 2, replacing the old
lemmas with the new ones.

E.1 LOWER BOUND

We note that the increased sketching dimension in terms of
√
n comes from the inter norm inequality

∥x∥1 ≤
√
n∥x∥2 and from more subtle details of the sketch. Lemma E.14 shows that there is no way

to get around a factor of
√
n using the CountMin-sketch. The proof gives an example where

√
n is

attained even for obtaining a superconstant (in µ) approximation. It does not rule out the existence of
some other method that allows a lower sketching dimension. For example Count-sketch is known to
work for ℓ1 and ℓ2 norms simultaneously within polylogarithmic size (Clarkson & Woodruff, 2015a).
But we stress that the standard sketches from the literature do not work for asymmetric functions
since they confuse the signs of contributions leading to unbounded errors for our objective function
or even for plain logistic regression, see (Munteanu et al., 2021).
Lemma E.14. There exists a µ-complex data example X where our sketch with o(

√
n) rows fails

to approximate f . Specifically, if λ = 1 it holds for the optimizer β̃ ∈ argminβ∈Rd f(SXβ) that
f(Xβ̃) = ω(ln(µ)2) ·minβ∈Rd f(Xβ).
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Proof. Fix µ > 10 and consider the following data

x0 = (
√
n)

xi = (−1) for i ∈
[
1, n− n

µ

]
xi = (1) for i > n− n

µ

As the example is 1-dimensional we only need to check the ratio for β = 1 and β = −1 in order to
compute µ as multiplying with a scalar does dot not change the ratio between the sum of all positive
points and the sum of all negative points. Also note that the ratio is inverted for β = −1 thus if the
ratio is positive for β = 1 we do not need to check it for β = −1. Note that for β = 1 and z = Xβ it
holds that

∑
zi>0 zi =

√
n+ n

µ and
∑

zi<0 |zi| = n(1− 1
µ ) ≥

√
n+ n

µ if n is sufficiently large. We
thus have have

µ1(X) =
n
(
1− 1

µ

)
√
n+ n

µ

≤ n
n
µ

= µ

Further we have that
∑

zi>0 z
2
i = n+ n

µ ≤ 2n and
∑

zi<0 |zi| = n(1− 1
µ ) ≈ n. Consequently we

get that

µ2(X) =
n+ n

µ

n
(
1− 1

µ

) ≤ 2 < µ

Since d = 1 this proves that our our example is 2µ-complex. Note that the following four facts hold
for any level h:

• If for some c we have that ph ≤ 1/b then with probability 1/b row x0 is not sampled at
level h. In particular this implies that x0 is only present at level 0 with high probability, i.e.
probability at least

∑hm

h=1 ph ≤ 2
b ;

• If x0 is in a bucket with 3
√
n ≥ 2

√
n/(1− 2

µ ) elements then with high probability G(B0) ≤
0;

• If Nh

n ≪ ph ≪ 1 then with high probability G(B) < 0 for any bucket at level h since the
µ−1
µ · n ≫ n

µ negative elements cancel all positive rows;

• If h = hm then roughly µ−1
µ ·Nu are −1 and Nu

µ are 1.

All of these follow from the Chernoff bounds using Lemma A.3. Thus if N0 ≪
√
n/3 then X ′ = SX

mimics the instance X \ {x0}, i.e. the instance X with point x0 removed, as x0 is only appearing
at level 0 where it is canceled by the other points. More precisely X ′ consists of roughly n′ − n′

µ

copies of the point −1 and n′

µ copies of the point 1. After multiplying with the weights we are back to
roughly n− n

µ times the point −1 and n
µ times the point 1. To keep the presentation simple we only

consider the instance X ′ = −(X \ {x0}). The proof works the same for other sketched instances
that we obtain using the above facts. Consider the function

nf1(X
′r) = (n− n

µ
) · ℓ(−r) +

n

µ
· ℓ(r) = n · ℓ(−r) +

nr

µ
.

Thus, we have f1(X
′r) = ℓ(−r) + r

µ . Using that ℓ(r) < r + 1 for all r > 0 we get

nf(X ′r) = nf1(X
′r) +

n∑
i=1

(xi − f1(X
′r))2

≤ n · ℓ(−r) +
nr

µ
+

n(r + 1)2

µ
+ (n− n

µ
) · ℓ(−2r)

≤ 2n · ℓ(−r) +
nr

µ
+

n(r + 1)2

µ
.
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Using that ℓ(−r) ≤ e−r it holds that

f(X ′r) ≤ 2e−r +
r

µ
+

(r + 1)2

µ
.

Taking the derivative we get

f ′(X ′r) ≤ −2e−r +
1

µ
+

2(r + 1)

µ
.

which is 0 if and only if r = − ln( 2r+3
µ ) + ln(2) = Ω(ln(µ)). This implies that for r̃ =

argminr∈Rf(Xr) we have that r̃ = Ω(ln(µ)). Now consider our original loss function f(Xr̃).
Here we have that

nf(Xr) = nf1(Xr) +

n∑
i=1

(xi − f1(Xr))2 ≥ n · ℓ(−r) +
nr

µ
+ (

√
n · r)2/2

≥ n · r2/2.

In particular we have that f(Xr̃) = Ω(ln(µ)2). However for r∗ minimizing f(Xr) we have that
nf(Xr) ≤ f(0) = ln(2) = O(1).
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F ADDITIONAL EXPERIMENTAL RESULTS

0 5000 10000 15000 20000
reduced size

1.00

1.01

1.02

1.03

1.04

1.05
m

ed
ia

n
ap

pr
ox

im
at

io
n

ra
ti

o
Covertype, λ = 0

Sketch (old)

Sketch2

Sketch5

Sketch10

0 2500 5000 7500 10000 12500 15000
reduced size

1.0

1.2

1.4

1.6

1.8

2.0

m
ed

ia
n

ap
pr

ox
im

at
io

n
ra

ti
o

Webspam, λ = 0

Sketch (old)

Sketch2

Sketch5

Sketch10

10000 15000 20000 25000 30000 35000 40000

reduced size

1

2

3

4

5

6

7

8

9

10

m
ed

ia
n

ap
pr

ox
im

at
io

n
ra

ti
o

Kddcup, λ = 0
Sketch (old)

Sketch2

Sketch5

Sketch10

0 5000 10000 15000 20000
reduced size

1.00

1.01

1.02

1.03

1.04

1.05

m
ed

ia
n

ap
pr

ox
im

at
io

n
ra

ti
o

Covertype, λ = 0.1

Sketch (old)

Sketch2

Sketch5

Sketch10

0 2500 5000 7500 10000 12500 15000
reduced size

1.0

1.2

1.4

1.6

1.8

2.0

m
ed

ia
n

ap
pr

ox
im

at
io

n
ra

ti
o

Webspam, λ = 0.1

Sketch (old)

Sketch2

Sketch5

Sketch10

10000 15000 20000 25000 30000 35000 40000
reduced size

20

40

60

80

100

m
ed

ia
n

ap
pr

ox
im

at
io

n
ra

ti
o

Kddcup, λ = 0.1

Sketch (old)

Sketch2

Sketch5

Sketch10

0 5000 10000 15000 20000
reduced size

1.04

1.06

1.08

1.10

m
ed

ia
n

ap
pr

ox
im

at
io

n
ra

ti
o

Covertype, λ = 0.5

Sketch (old)

Sketch2

Sketch5

Sketch10

0 2500 5000 7500 10000 12500 15000
reduced size

1.0

1.5

2.0

2.5

3.0

m
ed

ia
n

ap
pr

ox
im

at
io

n
ra

ti
o

Webspam, λ = 0.5

Sketch (old)

Sketch2

Sketch5

Sketch10

10000 15000 20000 25000 30000 35000 40000
reduced size

20

40

60

80

100

m
ed

ia
n

ap
pr

ox
im

at
io

n
ra

ti
o

Kddcup, λ = 0.5

Sketch (old)

Sketch2

Sketch5

Sketch10

0 5000 10000 15000 20000
reduced size

1.075

1.100

1.125

1.150

1.175

1.200

m
ed

ia
n

ap
pr

ox
im

at
io

n
ra

ti
o

Covertype, λ = 1

Sketch (old)

Sketch2

Sketch5

Sketch10

0 2500 5000 7500 10000 12500 15000
reduced size

1.0

1.5

2.0

2.5

3.0

m
ed

ia
n

ap
pr

ox
im

at
io

n
ra

ti
o

Webspam, λ = 1

Sketch (old)

Sketch2

Sketch5

Sketch10

10000 15000 20000 25000 30000 35000 40000
reduced size

20

40

60

80

100

m
ed

ia
n

ap
pr

ox
im

at
io

n
ra

ti
o

Kddcup, λ = 1

Sketch (old)

Sketch2

Sketch5

Sketch10

1000 1500 2000 2500 3000 3500 4000
reduced size

2

4

6

8

10

m
ed

ia
n

ap
pr

ox
im

at
io

n
ra

ti
o

Synthetic data

Sketch (old)

Sketch2

Sketch5

Sketch10

0.10 0.15 0.20 0.25 0.30
median sampling time (s)

2

4

6

8

m
ed

ia
n

ap
pr

ox
im

at
io

n
ra

ti
o

Synthetic data

Sketch (old)

Sketch2

Sketch5

Sketch10

Figure 3: Comparison of the median approximation ratios of the old sketch versus the new sketch
with various settings for the sparsity s ∈ {2, 5, 10} as well as for the regularization parameter
λ ∈ {0, .1, .5, 1} for different real-world benchmark data (top, middle). Comparison of median
approximation ratios (bottom left) and sketching times (bottom right) for our synthetic data.
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G ADDITIONAL MATERIAL

Comment on stochastic gradient descent (SGD) and supporting experiments SGD does not work
in the turnstile data stream setting (where positive and negative updates are allowed), and is inherently
sequential. In contrast, oblivious linear sketching allows for simple handling of turnstile data streams
and distributed or parallel computations, which we motivate in our paper.

Our bounds are multiplicative error guarantees that are relative to the optimal loss f(XβOPT ). Known
regret or generalization results for SGD bound the probability of misclassification P (yixiβ < 0) < ε,
which allows to ignore a few highly important (and expensive) points and give an additive error on the
loss |f(XβSGD)− f(XβOPT )| ≤ B. Here B depends on properties of f , X , and on the distance of
an initial guess β0 to the optimal solution ∥β0 − βOPT ∥. Thus B cannot be charged uniformly for
the optimal loss, and instead can be arbitrarily large.

The reason SGD and online gradient descent do not work in our setting is that they miss (in most
iterations) highly important points when there are only few of them (this is also the issue with uniform
sampling). This was pointed out in previous related work, e.g., (Munteanu et al., 2018, Section C)
and (Munteanu et al., 2021, Section 6), who constructed synthetic data with only 2 out of n such
important points and additionally demonstrated empirically how bad SGD can perform even on mild
data with µ = 1.

Below we add SGD to our empirical results on real world data. SGD performs quite well, though not
better than sketching. The reported performance of SGD is the median approximation ratio over 21
independent repetitions of one full pass over the data, to be a baseline comparable to the sketches.
We note that plotting the iteration-wise error would make the results for SGD look much worse.

For our synthetic data (described in detail below), instead of 2 out of n heavy points (as in previous
work), we have Θ(d) out of n heavy points. Since SGD misses those in most batches, the instance
looks separable to SGD in almost all iterations, although the original instance is inseparable. This
results in approximation ratios around 15 000 (note the logarithmic scale on the vertical axis). In
contrast, our sketch and the previous sketch give small constant approximations.
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Figure 4: Median approximation ratios for plain logistic regression (λ = 0). SGD is compared to the
old sketch as well as the new sketch with various settings for the sparsity s ∈ {2, 5, 10} on different
real-world benchmark data, and on our synthetic data.
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Added experiments for ℓ1-regression We implemented the Cauchy sketch (Indyk, 2006; Sohler
& Woodruff, 2011; Woodruff, 2021) that simply consists of i.i.d. standard Cauchy entries. The
sketching matrix is then multiplied by the data matrix and the sketched ℓ1 regression problem is
solved. The plots show the median approximation ratio over 21 repetitions for each target size of
the sketch. We see that the new sketch, using any degree of sparsity s ∈ {2, 5, 10}, outperforms the
Cauchy sketch by a large margin in terms of approximation factor (while being a lot faster to apply
than the dense matrix multiplication).
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Figure 5: Comparison of the median approximation ratios for ℓ1-regression of the Cauchy sketch
versus our new sketch with various settings for the sparsity s ∈ {2, 5, 10} for different real-world
benchmark data.

Synthetic data set The synthetic data set consists of 2n = 40 000 data points. The dimension of the
data points is d = 100.

• There are (n − n/10 − 2d) points of the form (−1,−1, ...,−1). The optimization of β
focuses on these points.

• (n/10) points are of the form (1, 1, ..., 1). These points are only added to obtain clean plots.
If they are omitted, then the gap between the optimal β on the original data and the optimal
β on a bad sketch or uniform sample becomes worse, and “wiggly”.

• d points are of the form (−n,−n, . . . ,−n). They are oriented in the same direction as the
first set of points. They will mostly be ignored in the optimization since there are only a few
of them, but they can cancel the following heavy hitters.

• For each i ∈ [d], we add one vector of the form (n · ei), where ei is ith standard basis vector.
These points are the heavy hitters pointing away from most other points. For any good
relative error sketch, it is crucial to preserve all of them;

• We add n times the point (0, 0, . . . , 0). These points are needed to ensure that the instance
works in a labeled setting (to be a natural data set for logistic regression).

• The labels of all points unequal to the all zero vector are set to 1. All zero vectors are
assigned the label −1.
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The idea behind this instance is as follows: if the sketch maps any point of the form (n · ei) into the
same bucket as a (−n,−n, . . . ,−n)-vector, then the instance will become almost separable, so the
sketch will have a cheap solution, meaning that there exists some β such that the logistic loss on the
sketch is low. However, on the original instance, the logistic loss of the same β will be large due to
the loss associated with (n · ei)β. This implies a large approximation ratio. For small sketch sizes,
the old sketch has a relatively high probability for this bad event to happen, when hashing each point
into a single bucket. Our new sketch will likely preserve all points of the form (n · ei) on most of the
multiple sub levels. This preserves the cost even if our sketch size is small (almost linear).

Pseudocode of our sketching algorithm Algorithm 1 implements the first step of the sketch & solve
paradigm for approximating logistic or ℓ1 regression. The changes in comparison with (Munteanu
et al., 2021) are highlighted in red.

Algorithm 1 Oblivious sketching algorithm for logistic regression.
Input: Data X ∈ Rn×d, number of rows k = N · hm + Nu, parameters b > 1, s ≥ 1 where
N = s ·N ′ for some N ′ ∈ N;
Output: weighted Sketch C = (X ′, w) ∈ Rk×d with k rows.;

1: for h = 0 . . . hm do ▷ construct levels 0, . . . hm of the sketch
2: initialize sketch X ′

h = 0 ∈ RN×d at level h;
3: initialize weights wh = bh · 1 ∈ RN at level h;
4: set w0 = w0

s ; ▷ adapt weights on level 0 to sparsity s
5: for i = 1 . . . n do ▷ sketch the data
6: for l = 1 . . . s do ▷ densify level 0
7: draw a random number Bi ∈ [N ′];
8: add xi to the ((l − 1) ·N ′ +Bi)-th row of X ′

0;
9: assign xi to level h ∈ [1, hm − 1] with probability ph = 1

bh
;

10: draw a random number Bi ∈ [N ];
11: add xi to the Bi-th row of X ′

h;
12: add xi to uniform sampling level hm with probability phm = 1

bhm
;

13: Set X ′ = (X ′
0, X

′
1, . . . X

′
hm

);
14: Set w = (w0, w1, . . . whm

);
15: return C = (X ′, w);
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