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ABSTRACT

Unified multimodal models (UMMSs) have shown remarkable advances in un-
derstanding and generating text and images. However, prevailing evaluations
treat these abilities in isolation, such that tasks with multimodal inputs and out-
puts are scored primarily through unimodal reasoning: textual benchmarks em-
phasize language-based reasoning, while visual benchmarks emphasize reason-
ing outcomes manifested in the pixels. As such, existing benchmarks rarely re-
quire the use of one modality to guide, verify, or refine outputs in the other.
They therefore fail to capture a central aspiration of unified multimodal mod-
els, namely to support seamless reasoning across modalities. We address this
gap with R, a human-annotated benchmark that explicitly targets recipro-
cal cross-modal reasoning, which contains 1,285 tasks grounded in 2,048 images,
spanning two complementary settings. Verbally-augmented reasoning for vi-
sual generation evaluates whether models can use structured verbal prompts and
reasoning chains to guide faithful image synthesis. Visually-augmented reason-
ing for verbal generation evaluates whether models can generate intermediate
visualizations that strengthen their own reasoning processes. Experiments on 17
state-of-the-art UMMs reveal two key findings: (i) cross-modal reasoning capabil-
ities strongly correlate with visual generation performance, particularly for inter-
leaved image—text generation; and (ii) current models remain severely limited in
visual-augmented reasoning, showing relative strength in perception and physical
modeling but weakness in logical tasks. These results highlight reciprocal cross-
modal reasoning as a critical frontier for enabling true omnimodal generation.

PN

% More information on Anonymous Page: https://anony0923.github.io.

wr

3 £ R-IG R-TG z
%‘% %’ g gg”& Input Image Instruction Question  Input Image g
- Ny ) g' after 3 seconds trajectory? Go N
Cag, . o A A R b e, &
Sa, Natural Scionce(i S5 World Model
Culture & Art fompore Unified Multimodal Models
Synthetic “ | i a
Image Gen Mottomay Text Gen
Logic “Matical Language . ‘a Visual
S Reasoning i eey . Reasoning 2 Visual S
a® & Common Sense %A‘% - vt Perception Oa[,d/
«M’ Q. =i
2 %
g 3 % I 5 %)
i ; Y we D i A\ m) i |615,345) (300,330 H
g Output Image Ground Truth ~ Ground Truth Output Ans. -
Figure 1: The R benchmark. R evaluates UMMs through reciprocal cross-modal rea-

soning: ROVER-IG (left) requires generating images with language-augmented reasoning, while
ROVER-TG (right) requires generating text answers with visually-augmented reasoning.

1 INTRODUCTION

The development of unified multimodal models (also referred to as omnimodal models) has sparked
considerable interest in their understanding and generation capabilities across images and text (Co-
manici et al., 2025; Hurst et al., 2024; Tong et al., 2024; Deng et al., 2025b; Xu et al., 2025b).
However, prevailing evaluations treat these abilities in isolation, such that tasks with multimodal
inputs and outputs are scored primarily through unimodal reasoning: textual benchmarks emphasize
language-based reasoning, while visual benchmarks emphasize reasoning outcomes manifested in
the pixels. On the language side, evaluation focuses on generating text in response to an image and
an accompanying question, thereby testing perceptual understanding (Chen et al., 2024; Liu et al.,
2024; Yu et al., 2024) and reasoning (Lu et al., 2023; Yue et al., 2024; Wang et al., 2024; Hao et al.,
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Figure 2: Overview of ROVER-IG, the benchmark for evaluating how unified multimodal models
generate images under intensive verbal reasoning. The benchmark spans 4 domains (natural science,
culture and art, common sense, and logic), instantiated across 7 reasoning subtasks.

2025; Gao et al., 2025). On the vision side, evaluation centers on generating images conditioned on
either instructions or text-image pairs, thereby testing direct image generation (Ghosh et al., 2023;
Ma et al., 2024; Niu et al., 2025) or image editing (Kawar et al., 2023; Zhang et al., 2023; Ma et al.,
2024; Sheynin et al., 2024; Yu et al., 2025; Liu et al., 2025b; Wu et al., 2025¢).

Existing benchmarks rarely evaluate the use of one modality to guide, verify, or refine outputs of
the other modality. They therefore fail to capture a central aspiration of unified multimodal models,
namely the ability to support seamless reasoning across modalities. We refer to this capability as
reciprocal cross-modal reasoning as illustrated in Figure 1, meaning the use of information from
one modality to inform and improve outputs in another. To benchmark such capability in current
unified multimodal models, We present R, a human-annotated and rigorously verified bench-
mark for reciprocal cross-modal reasoning. R comprises over 1,200 tasks grounded in about
2,048 images and targets two complementary settings: (i) verbally-augmented reasoning for vi-
sual generation, including 4 conceptual domains (natural science, culture and art, common sense,
and logic) with high complexity are instantiated across 7 reasoning types: temporal, spatial, causal,
synthetic, quantitative, abstract, and mathematical. Each instance provides a textual prompt with
an initial image and a chain of constraints that a correct output image must satisfy. (ii) visually-
augmented reasoning for verbal generation, including 6 task variants spanning 3 problem types:
physical world modeling for manipulation and dynamics prediction, logical assistance for geome-
try and puzzle solving, and visual perception enhancement. Instances interleave turns of text and
images, requiring the model to emit visual intermediates that make downstream reasoning auditable.

Evaluating reciprocal cross-modal reasoning requires assessment of both reasoning steps and the
resulting outputs. Text-only metrics overlook visual fidelity, while image-only metrics cannot verify
whether the image reflects valid reasoning. Human evaluation provides accurate judgments but is
prohibitively expensive at scale. To address this, we adopt a multi-dimensional protocol that com-
bines an automated VLM judge with expert validation on stratified samples. The judge is supplied
with rubric cards and reference assets and scores along three reasoning-specific dimensions: (i)
the logical coherence of domain-specific reasoning processes, (ii) the alignment of generated out-
puts with target descriptions or ground-truth answers, and (iii) the consistency between intermediate
reasoning steps and the final images or answers. For visual generation tasks, the framework addi-
tionally incorporates established image consistency and quality metrics (Hu et al., 2023; Wu et al.,
2023; Kirstain et al., 2023; Xu et al., 2023; Brooks et al., 2023). The judge is calibrated with expert
explanations, and its agreement with expert evaluations is reported, following recent LLM-as-judge
methodologies (Kim et al., 2023; Hu et al., 2023).

Through extensive evaluation of 17 unified multimodal models, our experiments reveal two key
findings. First, cross-modal reasoning capabilities are strongly correlated with visual generation
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Figure 3: Overview of ROVER-TG, the benchmark for evaluating visually-augmented reasoning
in verbal generation. The benchmark spans 3 scenarios and 6 subtasks: physical world modeling,
logical assistance, and visual perception enhancement.

performance. Especially, models that support interleaved image-text generation achieve superior
reasoning and generation results, suggesting that interleaved training data plays a crucial role in de-
veloping cross-modal reasoning. Second, unfortunately, current unified models remain severely lim-
ited in visually-augmented reasoning. Although models perform relatively well on physical world
modeling and visual perception, they remain weak on logic-intensive tasks. This gap indicates that
perception over pixels transfers more readily than the acquisition of abstract visual concepts and
the ability to reason systematically over them. Taken together, these results underscore the role of
reciprocal cross-modal reasoning in enabling transfer across modalities when unified models engage
in omnimodal generation.

Our main contributions are summarized as follows:
* We introduce R, the first benchmark that explicitly targets reciprocal cross-modal reason-
ing for visual generation and interleaved multimodal reasoning.

* We provide a principled task taxonomy and a verification ready instance design with process
targets and visual artifacts, together with a multi dimensional protocol that scores coherence,
alignment, and step to output consistency.

* We report a comprehensive study across 17 close-sourced and open-sourced unified models, re-
vealing sizable gaps and a strong correlation between interleaved generation capability and cross-
modal reasoning effectiveness.

2 RELATED WORKS

Reasoning for Image Generation. With the emergence of UMMs, multimodal reasoning has gar-
nered increasing attention from the research community. However, the majority of existing work re-
mains focused on instruction comprehension, namely leveraging input images to perform instruction
translation and subsequently generate corresponding visual outputs (Jin et al., 2024; Huang et al.,
2024; Yang et al., 2024; He et al., 2025; Wu et al., 2025¢). Unified-Bench (Yan et al., 2025) em-
ploys iterative image-text generation to measure the degree of unification between comprehension
and generation models. RISEBench (Zhao et al., 2025) extends beyond prior work by introducing
LMM-as-a-judge to evaluate visual rationality in addition to assessing image consistency, yet re-
mains limited to computing similarity scores against human-provided ground truth. However, these
benchmarks lack comprehensive evaluation beyond image consistency, particularly overlooking the
intermediate processes of reasoning, such as whether the reasoning is sound and whether reasoning
aligns with generation. In contrast, R represents the first benchmark to investigate the inter-
play between reasoning and generation. A detailed comparison can be found in Table 1. A more
detailed discussion of related work about unified multimodal models and interleaved reasoning can
be found in Appendix F.
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Table 1: Summary of Multimodal Reasoning Benchmarks. We compare existing works from
aspects including: 'interleave: supports multi-image or multi-turn inputs; process evaluation: eval-
uates intermediate reasoning steps; vision necessity: requires reasoning grounded in visual under-
standing; *multidimensional evaluation: scores models along multiple dimensions; hybrid evalu-
ation: uses GPT-based judgments instead of purely visual metrics; ® manual annotations: whether
manual annotations and filtering are applied; “scale: dataset scale; types: data categories.

Process  Vision . Hybrid Manual
Benchmark Venue Inter. Eval Necess. Multi. Eval Anno. Scale #Types
ReasonPix2Pix (Jin et al., 2024) arXiv'24 40,212 1
MetaQuery-Instruct (Pan et al., 2025) arXiv’'25 v v 2.4M -
EditWorld (Yang et al., 2024) MM’25 10,000 7
Reason50K (He et al., 2025) arXiv’'25 51,039 4
WorldGenBench (Zhang et al., 2025) arXiv’25 v v 1,072 2
Unified-Bench (Yan et al., 2025) arXiv’'25 100 1
ReasonEdit (Huang et al., 2024) CVPR24 v 219 1
KRIS-Bench (Wu et al., 2025¢)  NeurlPS'25 v v v 1,267 7
RISEBench (Zhao et al., 2025)  NeurlPS'25 v v v v 360 4
R Ours v v v v v v 1,285 24

3 R BENCHMARK

3.1 VERBALLY-AUGMENTED REASONING FOR VISUAL GENERATION

We introduce ROVER-IG, a benchmark designed to evaluate how UMMs generate images when
guided jointly by not only visual understanding but also intensive verbal reasoning.

Taxonomy. It spans 4 domains and 7 reasoning subtasks, each demanding complex text-driven
reasoning chains to direct image generation and test models’ ability to integrate text-augmented
reasoning with visual synthesis. Figure 2 provides a visual overview of our benchmark taxonomy
and representative examples.

* Domains. We categorize tasks across 4 distinct areas: Nature Science encompasses scientific
phenomena, experimental processes, and fundamental laws of nature; Culture Art includes artis-
tic creation, cultural artifacts, humanities, and aesthetic principles; Common Sense covers every-
day scenarios requiring intuitive understanding and practical reasoning; Logic focuses on abstract
patterns, mathematical relationships, and formal reasoning systems.

* Reasoning subtasks. We define 5 core reasoning capabilities: Temporal involves sequence pre-
diction, progression analysis, and time-based changes; Spatial requires understanding geometric
relationships, perspective changes, and spatial visualization; Causal connects cause-effect rela-
tionships and mechanism understanding; Synthetic combines multiple elements through creative
integration and novel object generation; Quantitative involves numerical changes, scaling oper-
ations, and mathematical relationships. The Logic domain additionally includes two specialized
reasoning types: Abstract for pattern completion and logical inference, and Mathematical for
formal mathematical principles applied to visual generation.

Data collection. We curated our dataset through a systematic multistage process, beginning with
human experts selecting candidate images from large-scale web image datasets. For each selected
image, domain experts and large language models collaboratively generated reasoning tasks that re-
quire genuine visual understanding and complex reasoning chains. Each task includes 4 key compo-
nents: the reasoning prompt specifying the required generation results, target descriptions detailing
expected visual outcomes, domain-specific keywords identifying relevant concepts that should guide
the reasoning process, and optionally target reference images for validation purposes. All generated
tasks underwent final human verification to confirm the complexity and rationality of reasoning. Our
final dataset comprises 904 visual generation tasks involving 1094 images, with both single-image
and multi-image generation scenarios distributed across all reasoning types and domains.

Evaluation metrics. Ideally, the evaluation protocol should cover both the reasoning process and
the resulting outputs. As human evaluation is prohibitively costly at scale, we automated the evalua-
tion following LMM-as-judge. We assess model performance across 5 rubric dimensions designed to
capture the effectiveness of reasoning-to-generation workflows. Reasoning Process (RP) evaluates
the quality of verbal reasoning through logical structure, domain knowledge application, reasoning
type-specific validation, and completeness assessment. Reasoning Visual (RV) measures how well
the generated visual output matches target descriptions and demonstrates correct reasoning princi-
ples. Reasoning Alignment (Align.) specifically quantifies the consistency between verbal reason-
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Figure 4: Example outputs on ROVER-IG. Each row corresponds to one reasoning subtask, with the
input on the left and outputs from representative unified multimodal models shown across columns.
Verbal reasoning outputs are shown in Figure 10.

ing processes and visual generation outcomes, addressing whether models can effectively translate
reasoning into visual results. Visual Consistency (VC) ensures that non-target elements remain un-
changed during reasoning-guided generation, validating precise control capabilities. Image Quality
(IQ) assesses the technical excellence and visual coherence of generated images, including structural
coherence, visual fidelity, and absence of generation artifacts.

3.2 VISUALLY-AUGMENTED REASONING FOR VERBAL GENERATION

We then introduce ROVER-TG, the benchmark counterpart for evaluating how UMMs generate
language responses guided by interleaved reasoning with visually-augmented rationale. Unlike text-
only Chain-of-Thought, we examine scenarios where models generate intermediate visual represen-
tations to facilitate reasoning. This interleaved reasoning paradigm reflects human cognitive patterns
that integrate verbal and visual thinking for complex problem solving (Barsalou, 1999).

Taxonomy. We focus on 3 scenarios, with 381 tasks where visual generation genuinely enhances

reasoning beyond text-only rationale, as shown in Figure 3: physical world simulation, logical prob-

lem solving with visual aids, and enhanced visual perception through generated representations.

* Physical world model. Tasks require models to function as world simulators, generating inter-
mediate visual states to understand physical processes and spatial relationships. World models in
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Figure 5: Example outputs on ROVER-TG. Each row corresponds to one reasoning scenario, with
the input on the left and outputs from representative UMMSs shown across columns.

this context are predictive systems that simulate how environments evolve over time, given initial
conditions and actions. Models must generate intermediate process images from robotic obser-
vations and physical video frames, then utilize these visualizations for embodied task planning,
spatial reasoning, action prediction, and object motion trajectory prediction.

* Logical assistance. Tasks involve generating visual aids to solve abstract logical problems, sim-
ilar to how humans draw auxiliary lines, diagrams, or visual representations to facilitate logical
reasoning. Models must create helpful visual elements that make implicit relationships explicit
and support step-by-step logical inference processes.

* Visual perception enhancement. Tasks focus on generating supportive images to improve per-
formance on challenging visual perception problems, including multi-view reasoning and jigsaw
puzzles. The generated images in Chain-of-Thought serve as intermediate representations that
reduce hallucinations and improve accuracy in visual understanding tasks.

Data curation. Our dataset compilation draws from diverse sources including robotics datasets,
physical simulation videos, logic puzzles, and challenging perception tasks. Each task includes
the initial images, verified ground-truth answers, and the referenced reasoning images (except for
a small subset of tasks). The visual reasoning images come either from human-annotated super-
vision or from the original video data, such as geometric auxiliary lines or robot-arm trajectories.

Crucially, our curation process ensures that generated visuals serve as active reasoning compo-
nents rather than decorative elements, thereby fully leveraging omnimodal generation capabilities to
tackle complex problem-solving scenarios.

Evaluation metrics. Similarly, we automated the evaluation using a VLM judge across 3 rubric
dimensions. Interleaved Reasoning Quality (IR) evaluates the plausibility and relevance of in-
termediate visual representations through physical/logical correctness, task-specific utility, visual
coherence, and reasoning completeness. Final Answer Accuracy (Acc.) measures whether the
model’s final reasoning outcome matches the provided ground truth answer across all three scenario
types. Reasoning-Answer Alignment (Align.) quantifies how effectively generated images con-
tribute to reaching correct conclusions, examining causal relationships between visual aids and final
outputs, reasoning chain coherence, and whether the visual generation process was necessary for
successful task completion.

4 EXPERIMENT

4.1 SETUP

Models. We evaluate a diverse set of models across different categories. For closed-source UMMs,
we assess three state-of-the-art systems: Gemini 2.5 Flash Image (a.k.a Nano Banana) (Comanici
et al., 2025), Gemini 2.0 Flash (Comanici et al., 2025), and GPT-5 (Hurst et al., 2024). For open-
source UMMs, we evaluate ten representative models including BAGEL-Think and BAGEL (Deng
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Table 2: Main Results on Verbally-Augmented Visual Generation. We evaluate 13 closed- and
open-source unified models across four conceptual domains. Performance is measured using three
key metrics: Reasoning Process (RP), which assesses the logical quality of the verbal reasoning;
Alignment (Align.), which quantifies the consistency between the reasoning process and the gener-
ated visual output; and Reasoning Visual (RV), which measures how well the final image reflects
the target description. Interleaved models that support text—image generation report RP and Align.
scores, whereas non-interleaved models generate only images and therefore report RV only.

Verbally-Augmented Reasoning Nature Science Culture / Art Common Sense Logic Overall
for Visual Generation RP  Align. RV RP  Align. RV RP  Align. RV RP  Align. RV RP  Align. RV

Closed-source Unified Models

Nano Banana (Comanici et al., 2025) 648 888 773 681 819 766 61.8 850 748 786 661 551 67.0 823 732
Gemini 2.0 Flash (Comanici et al., 2025) 64.1 88.4 68.8 628 787 719 578 744 66.1 745 632 426 648 786 623
GPT-5 (Hurst et al., 2024) 61.7 879 713 634 802 726 563 772 653 754 602 458 642 764 637

Open-source Unified Models

BAGEL-Think (Deng et al., 2025a) 581 642 540 532 780 637 501 694 559 577 262 208 543 644 527
BAGEL (Deng et al., 2025a) - - 359 - - 492 - - 420 - - 27.1 - - 40.5
Step1X-Edit v1.2 (Liu et al., 2025a) 297 597 462 314 716 506 287 610 461 775 355 184 370 603 435

UniCoT (Qin et al., 2025) 524 689 382 573 692 639 531 643 563 503 231 215 507 563 474
BLIP30-NEXT (Chen et al., 2025a) - - 362 - - 457 - - 402 - - 205 - - 35.6
Janus-Pro-7B (Chen et al., 2025b) - - 27.0 - - 396 - - 36.5 - - 20.1 - - 30.8
Emu2-Gen (Sun et al., 2023) - - 30.1 - - 436 - - 382 - - 205 - - 33.1
OmniGen2 (Wu et al., 2025¢) - - 274 - - 423 - - 392 - - 202 - - 322
Show-02 (Xie et al., 2025) - - 266 - - 49 - - 403 - - 204 - - 33.0

Table 3: Performance on visually-augmented reasoning. We evaluate 6 leading unified and lan-
guage models across three problem types, comparing two distinct reasoning modes. Text denotes
standard textual reasoning, where the model generates a final answer directly from the prompt.
Vis.-Aug. denotes visually-augmented reasoning, where the model generates intermediate visual
artifacts to support its final answer. We report on the quality of Interleaved Reasoning (IR), Align-
ment (Align.), and Final Answer Accuracy (Acc.).

Vis.-Aug. Reasoning Physical World Model Logical Assistant Visual Perception Overall
for Verbal Generation Mode 1 Align. Acc. IR Align. Acc IR Align. Acc. IR Align. Acc.

Closed-source Unified Models
Nano Banana (Comanici et al., 2025) Vis.-Aug. 32.1 382 546 33.6 504 69.7 523 594 760 393 493 66.7

Text - - 46.7 - - 66.6 - - 712 - - 61.5
Gemini 2.0 Flash (Comanici et al., 2025) Vis.-Aug. 20.1 267 428 224 379 66.1 395 468 619 273 371 569
Text - - 402 - - 67.6 - - 624 - - 56.7
GPT-5 (Hurst et al., 2024) Vis.-Aug. 308 42.1 442 332 587 702 547 519 736 395 509 626
Text - - 392 - - 68.7 - - 66.8 - - 58.2

Open-source Unified Models
BAGEL-Think (Deng et al., 2025a) Vis.-Aug. 22.3 247 266 21.8 239 487 312 343 585 251 27.6 44.6

Text - - 249 - - 482 - - 580 - - 452
UniCoT (Liu et al., 2025b) Vis.-Aug. 23.1 224 237 206 228 461 342 453 590 259 264 429
Text - - 246 - - 471 - - 533 - - 41.6
Reasoning Language Models
GPT-40 (Liu et al., 2025b) Text - - 357 - - 682 - - 673 - - 58.5

et al., 2025b), UniCoT (Qin et al., 2025), SteplX-Edit v1.1/v1.2 (Liu et al., 2025b), BLIP30-
NEXT (Chen et al., 2025a), Janus-Pro-7B (Chen et al., 2025b), Emu2-Gen (Sheynin et al., 2024),
Show-02 (Xie et al., 2025), OmniGen2 (Wu et al., 2025c). We also compare against specialized
image editing models, including Qwen-Image-Edit (Wu et al., 2025a), FLUX.1 Kontext (Labs et al.,
2025), UltraEdit (SD3) (Zhao et al., 2024), VAREedit-8B (Mao et al., 2025). Additionally, we
include reasoning language models such as GPT-40 (Hurst et al., 2024) to present verbal-only rea-
soning baselines. All evaluation details are provided in Appendix E.

Evaluation Protocol. We employ GPT-4.1 as the automatic judge to assess model outputs across
multiple dimensions. All metrics are scored on a 5-point scale (1-5) and normalized to a 0-100
scale for consistent comparison. For VQA problems in ROVER-TG with objective answers, Acc.
denotes exact answer accuracy.

4.2 VERBALLY-AUGMENTED REASONING FOR VISUAL GENERATION

Cross-modal reasoning capabilities and alignment strongly correlate with visual generation
effectiveness. The consistent pattern across all models and dimensions in Table 2. Closed-source
models excel in reasoning processes and demonstrate strong alignment performance, which directly
contributes to their superior visual generation quality. In contrast, open-source models show notably
weaker verbal reasoning during visual generation tasks—their reasoning processes (RP) are ap-
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Table 4: Visual performance comparison with image editing models on ROVER-IG benchmark.
We evaluate image editing models and unified models, measuring Reasoning Visual (RV), Visual
Consistency (VC), and Image Quality (IQ) performance.

Nature Science Culture / Art Common Sense Logic
RV vC 1Q RV vC 1Q RV vC 1Q RV vC 1Q

Visual Generation Quality Overall

Image Editing Models
Qwen-Image-Edit (Wu et al., 2025a) 467 69.1 898 625 696 952 531 742 944 304 645 872 471
FLUX.1 Kontext (Labs et al., 2025) 374 619 835 449 0646 888 423 621 8.0 202 506 782 409

UltraEdit(SD3) (Zhao et al., 2024) 27.0 43.6 757 452 426 790 279 373 747 252 60.1 76.1 346
VAREUit-8B (Mao et al., 2025) 346 643 754 465 585 782 336 590 750 174 46,6 57.1 375
Step1X-Edit v1.1 (Liu et al., 2025a) 382 757 855 505 627 838 352 679 8.3 161 611 859 421

Step1X-Edit v1.2 (Liu et al., 2025a) 462 768 80.6 506 630 792 461 672 796 184 61.1 722 574

Closed-source Unified Models

Nano Banana (Comanici et al., 2025) 773 857 870 766 784 892 748 87.1 938 551 703 810 79.6
Gemini 2.0 Flash (Comanici et al., 2025) 68.8 720 81.1 719 653 832 66.1 764 912 426 680 793 721
GPT-5 (Hurst et al., 2024) 713 699 905 726 588 96.0 653 809 872 458 749 866 749

Open-source Unified Models
BAGEL-Think (Deng et al., 2025a) 540 655 780 637 658 71.6 559 769 802 208 487 766 62.9
BAGEL (Deng et al., 2025a) 359 536 699 492 502 719 420 591 730 271 592 798 3738

proximately 38% lower and alignment (Align.) performance falls about 31% short of closed-source
models. This substantial reasoning gap translates into correspondingly diminished visual genera-
tion (RV) performance that is approximately 39% lower than closed-source models. This finding
confirms that cross-modal reasoning capabilities serve as a strong contributor to visual-generation
effectiveness on ROVER-IG, with stronger reasoning processes and better alignment generally en-
abling superior visual output quality.

Models capable of interleaved image-text generation demonstrate superior visual generation
performance. Our results reveal a significant performance gap between models that support inter-
leaved generation and those limited to single-turn, single-modality outputs. Among the open-source
models evaluated, those with interleaved generation capabilities demonstrate markedly superior per-
formance on Reasoning Visual (RV) metric—approximately 38.1% higher than non-interleaved
models. This performance advantage suggests that reasoning and generation processes are syn-
ergistic, effectively enhancing the model’s performance in visual expression tasks.

UMMs demonstrate absolute advantages over image editing models across visual quality met-
rics on reasoning-dependent tasks. As shown in Table 4, UMM:s substantially outperform special-
ized image editing models across all visual quality metrics on ROVER-IG. While existing editing
models excel at complex text rendering and precise image editing consistency, they fundamentally
lack the internal reasoning capabilities required for our reasoning-dependent visual generation tasks.
This performance gap fully demonstrates that R effectively evaluates cross-modal reasoning
capabilities essential for visual generation.

4.3  VISUALLY-AUGMENTED REASONING FOR VERBAL GENERATION

Current UMMs exhibit limited capacity in reasoning, constraining their ability to leverage
cross-modal reasoning for improved performance. The evaluation in Table 3 reveals that even
the best-performing models struggle with interleaved reasoning processes, with the highest average
Interleaved Reasoning (IR) score reaching only 39.5% overall. This fundamental limitation pre-
vents models from fully utilizing interleaved reasoning to enhance final answer accuracy. Models
with weaker interleaved reasoning capabilities show minimal or no improvement in final accuracy
compared to pure text-based reasoning.

Models demonstrate superior interleaved reasoning performance on visual perception tasks
compared to logical reasoning challenges. Across all model categories, interleaved reasoning
yields more consistent improvements on physical world modeling and visual perception tasks than
on logical tasks, even though the gains on world modeling tasks remain modest. This weakness
in logical reasoning is often characterized by a disconnect between conceptual understanding and
visual execution; for instance, a unified model may correctly outline the logical steps for a geometry
problem but struggle to generate a precise corresponding diagram with auxiliary lines (Figure 5).
This performance disparity likely stems from the scarcity of high-quality logical interleaved training
data, but may also reflect the inherently different reasoning demands of these task types.
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Figure 6: Cascade reasoning evaluation across EditWorld and ROVER. EditWorld (Yang et al.,
2024), a world knowledge-driven editing benchmark evaluated with CLIP-I and CLIP-T, is included
to highlight how ROVER fundamentally differs from conventional image-editing tasks. Each per-
centage above the bars denotes the relative difference between FLUX+GPT and FLUX, and between
BAGEL-Think and BAGEL. Cascade reasoning yields gains on EditWorld but does not transfer to
ROVER.
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Figure 7: Analysis of reasoning capabilities across different models.

4.4 FURTHER ANALYSES AND DISCUSSIONS

Cross-modal Reasoning matters for UMMSs. To validate that UMMSs perform cross-modal reason-
ing internally and that this mechanism cannot be replicated through external models serving as inter-
mediate reasoning agents, we conduct a comparative analysis in Figure 6 between BAGEL (UMM),
FLUX.1 Kontext (Labs et al., 2025), and its GPT-4o-refined cascade variant (FLUX+GPT). Key
findings are: (1) UMMs enable superior cross-modal reasoning. The think mechanism consistently
improves performance on ROVER, boosting visual consistency by 11.9%. Results on EditWorld,
where lower CLIP-I indicates more substantive edits, show that external textual refinement can ben-
efit editing tasks but does not translate to the cross-modal reasoning required by ROVER. This con-
trast demonstrates that cross-modal reasoning cannot be transferred through cascade architectures,
and that UMMSs must integrate reasoning and vision internally to produce emergent multimodal
insights. (2) Cascade reasoning is not a substitute for cross-modal reasoning. Although GPT-40 re-
finement yields a small improvement on EditWorld (e.g., +1.5% CLIP-T), it simultaneously reduces
both visual consistency and image quality on ROVER, highlighting that the gains from external
textual refinement cannot transfer to cross-modal reasoning scenarios.

Coherence between reasoning subtasks. Figure 7a reveals uneven performance across reasoning
dimensions, with models excelling in temporal, spatial, and causal reasoning while struggling with
abstract and mathematical tasks. This pattern indicates that current UMMs better handle concrete,
observable phenomena than symbolic reasoning, particularly evident in quantitative tasks where
severe counting hallucinations occur. The correlation matrix in Figure 7b shows strong interde-
pendence among physical reasoning types: temporal-spatial, causal-temporal, and synthetic-causal
correlations suggest shared mechanisms for processing spatiotemporal relationships. Conversely,
abstract reasoning correlates weakly with physical reasoning (0.64 to 0.67) but strongly with mathe-
matical reasoning, indicating it develops as a distinct, independent capability from concrete reason-
ing skills.
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Reliability of the evaluation protocol. To evaluate the reliability of VLM-as-a-judge scores, we
conducted a user study with 8 human experts across 10 UMMSs with 1000 instances. We report
the Pearson correlation coefficient () and Mean Absolute Error (MAE) between expert ratings and
GPT-4.1 scores, also compared against Gemini-2.5-Pro evaluations, as shown in Figure 8. The re-
sults demonstrate that GPT-4.1 maintains strong alignment with human expert judgments across all
evaluation dimensions. Visual-quality-related metrics such as Image Quality show strong human-
VLM agreement. Reasoning-related metrics exhibit larger discrepancies due to the inherent hallu-
cination tendencies in VLM when processing complex multimodal reasoning metrics, though these
variations remain within acceptable bounds. The modest differences between GPT-4.1 and Gemini-
2.5-Pro evaluations suggest reasonable cross-VLM consistency, with limited impact from the choice
of VLM evaluator.

Pearson Correlation Coefficient (r) 1 Mean Absolute Error (MAE) |
* 0.92 0.94 1
0.86 079 0.92
08 o7 0.75078 72075 08 07 069074
- : 0.61 : 062268
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Figure 8: Evaluation reliability of GPT-4.1 across five assessment dimensions. Left: Pearson cor-
relation coefficients between GPT-4.1 and human experts (red) versus GPT-4.1 and Gemini-2.5-Pro
(blue). Right: Mean Absolute Error for the same comparisons.

5 CONCLUSION

In this paper, we introduce the first benchmark R for reciprocal cross-modal reasoning, which
systematically evaluates 17 unified multimodal models across 23 diverse task types in both verbal
reasoning for visual generation and interleaved multimodal reasoning scenarios. Our evaluation
exposes substantial performance gaps in current models and establishes that interleaved generation
capabilities are strongly correlated with cross-modal reasoning effectiveness. These findings expose
critical limitations in existing UMMSs and provide insights for advancing cross-modal reasoning
capabilities in future omnimodal models.
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REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our results. Detailed descriptions of our exper-
imental setup, including evaluation and judgement details, are provided in Appendix E.

THE USE OF LARGE LANGUAGE MODELS (LLMS)

In this work, large language models (LLMs) are employed in three limited ways: (i) to polish the
writing and improve linguistic clarity of the paper; (ii) to assist in sanity-checking data consistency
during dataset construction; and (iii) to serve as auxiliary judges in evaluation. Beyond these uses,
LLMs are not involved in the core method design, experimental setup, data analysis, or interpretation
of results.
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A DATA DEFINITION

A.1 DATA SOURCES

The majority of images in our benchmark were sourced from internet repositories under Creative
Commons licenses to ensure compliance with academic usage requirements. Additionally, we in-
corporated a curated subset from three established datasets: PhysBench (Chow et al., 2025), PD-
3M (Meyer et al., 2024), and the Unsplash Lite dataset'. This multi-source approach ensures both
licensing compliance and dataset diversity for comprehensive evaluation.

B VISUAL REASONING DATA CURATION

This section provides additional details on the curation and validation of visual reasoning data used
in our benchmark.

Logical reasoning tasks. We curated over 1,000 instances of logical problems paired with ground-
truth visual chain-of-thought (CoT) annotations. To verify that these annotations function as mean-
ingful intermediate reasoning signals, we conducted an automatic sanity check using GPT-5. Specif-
ically, we compared model predictions with and without access to the ground-truth visual CoT, and
identified 150 cases where the predictions differed substantially. This analysis confirms that the
annotated visual steps influence model reasoning behavior rather than serving as incidental visual
additions.

Visual and physical reasoning tasks. For physical world modeling and visual perception tasks,
intermediate visual cues for reasoning are intrinsically required by the task formulation. All physi-
cal reasoning tasks include reasoning images extracted from robot-manipulation videos or physics-
based simulator rollouts, which provide the necessary evidence for predicting physical outcomes.
Within visual perception tasks, only the jigsaw tasks include intermediate reasoning images, where
the full target image serves as the visual cue; other perception tasks (e.g., spatial reasoning) do not
contain such referenced reasoning images.

We summarize the statistics of reasoning images in Table 5. During evaluation, these reasoning
images are provided to the VLM judge when applicable, with task-specific prompts instructing the
judge on how to compare the referenced reasoning images with the model-generated visual reason-
ing steps; when a task does not include reasoning images, the prompt specifies which aspects of the
model-generated reasoning should be checked (e.g., object identities, spatial layout, or transforma-
tion consistency).

Physical World Logical Visual Perception (Jigsaw)

Reasoning Images 78 150 78

Table 5: Reasoning images counts across different domains in ROVER-TG.

C RELIABILITY OF EVALUATION FOR ROVER-TG.

To evaluate the reliability of VLM-as-a-judge scores for ROVER-TG, we conducted a user study
with 8 human experts across 10 unified models with 1000 instances. We report the Pearson correla-
tion coefficient (") and Mean Absolute Error (MAE) between expert ratings and GPT-4.1 scores, also
compared against Gemini-2.5-Pro evaluations, as shown in Figure 9. Overall, GPT-4.1 demonstrates
high reliability for both Interleaved Reasoning Quality (IR) and Reasoning-Answer Alignment
(Align.). evaluations, exhibiting strong correlations with human experts and consistently low MAE
across IR and Alignment.

'"https://github.com/unsplash/datasets
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Figure 9: Evaluation reliability of GPT-4.1 in Interleaved Reasoning Quality (IR) and Reasoning-
Answer Alignment (Align.). Left: Pearson correlation coefficients between GPT-4.1 and human
experts (green) versus GPT-4.1 and Gemini-2.5-Pro (purple). Right: Mean Absolute Error for the
same comparisons.

D EXTENDED EXAMPLES

Figure 10 provides the complete reasoning traces corresponding to the cases shown in Figure 4.
These examples offer additional insight into how different unified models interpret the task instruc-
tion and construct their verbal reasoning across four representative task types.

E EXPERIMENT DETAILS

E.1 VLM AS JUDGE

ROVER-IG We employed GPT as an automated judge to assess five critical dimensions as men-
tioned in Section 3. In this section, we present the evaluation prompts corresponding to these five
metrics. Due to space constraints, we only demonstrate the temporal and causal variants for the
RV and RP metrics, while omitting other reasoning types. These evaluation metrics encompass: (1)
Reasoning Process (RP), which evaluates the quality of verbal reasoning through logical structure,
domain knowledge application, reasoning type-specific validation, and completeness assessment
(Figures 11 and 14); (2) Reasoning Visual (RV), which measures how well the generated visual
output aligns with target descriptions and demonstrates correct reasoning principles (Figures 12-13
and 15-16); (3) Reasoning Alignment (Align.), which quantifies the consistency between ver-
bal reasoning processes and visual generation outcomes, addressing whether models can effectively
translate reasoning into visual representations (Figures 17—-18); (4) Visual Consistency (VC), which
ensures that non-target elements remain unchanged during reasoning-guided generation, thereby
validating precise control capabilities (Figure 19).

ROVER-TG We also provide prompts for Interleaved Reasoning (IR) and Alignment (Align.)
in ROVER-TG. IR evaluates whether the model’s interleaved reasoning correctly reflects the visual
evidence required by each task type. For physical tasks, the judge compares the predicted trajec-
tories with the provided rollout trace frames; for jigsaw perception tasks, with the full reference
image; and for logical or mathematical tasks, with the ground-truth auxiliary constructions and geo-
metric relationships specified in the provided reasoning figure. Alignment then assesses whether the
model’s reasoning genuinely uses these visual cues rather than relying solely on text-based heuris-
tics.

E.2 MODEL SETUP
Unified Models

* Bagel (Deng et al.,, 2025a) is an open-source multimodal foundation model featuring 7B
active parameters (14B total) trained on large-scale interleaved multimodal data. BAGEL
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Nano Banana

GPT-5

BAGEL-Think

Verbal Reasoning

Reveal how this tulip
bouquet transforms
after a week of neglect.

After 7 days without changing
the water, the tulips should
show signs of wilting, drooping,
and possibly some discoloration
in the leaves and petals.

Iimagine the tulips will look
wilted with many petals drooping
or falling off. The leaves will have
lost some of their vibrant green
color, looking yellowed or brown
and limp. Some flowers might be
completely limp over the vase.

The original image shows fresh
tulips in a vase on a wooden table.
I would ensure the tulips appear
wilted and drooping, with some
petals possibly starting to curl or
droop downward.

What these apple slices
will look like after being
soaked in salt water for
5 minutes, then left
exposed to air?

Soaking apple slices in salt water
helps prevent enzymatic
browning. This means the slices
should appear less browned than
untreated apples would after an
hour of air exposure.

The salt inhibits browning by
slowing oxidation. After being left
out for 1 hour, they would likely
appear only slightly darker or have
minimal browning at the edges or
surfaces.

Apples contain an enzyme called
polyphenol oxidase, which reacts
with oxygen in the air to produce a
brownish discoloration. When
soaked in salt water, the enzyme
activity is temporarily suppressed,

slowing down this browning process.

Spatial

Nano Banana

Quantitative

Nano Banana

BAGEL-Think

BAGEL-Think

Verbal Reasoning

Generate the scenic
landmark view from this
red map pin location.

The user has provided a map
image with a red pin indicating
"Golden Gate View Point." This
location is known for its iconic
views of the Golden Gate Bridge
and the surrounding San
Francisco Bay area.

Looking at the map, the red pin is
at the Golden Gate View Point, a
famous scenic spot near the Golden
Gate Bridge in San Francisco. The
San Francisco city skyline is visible
in the background.

The focus is on capturing the iconic
Golden Gate Bridge and its
surroundings. The image would
likely show the bridge spanning
the water, with a clear view of its
suspension cables and towers.

Display this still life
with fruits removed
only from the plate.

The fruits on the plate are one
yellow, one red, and one green
fruit. The fruits to the left of
the plate (two red/green
apples) should remain.

I plan to remove only the fruits
sitting on the plate, filling the
plate area with the patterned
tablecloth fabric, while keeping
the two fruits at left on the
actual table intact.

The plate should be empty,
and the fruits should be
placed on the table surface
instead of the plate.

Figure 10: Verbal reasoning examples in ROVER-IG. We present complete examples of the verbal
reasoning produced by unified models (Nano Banana, GPT-5, and BAGEL-Think).

demonstrates superior performance compared to current state-of-the-art open-source Vision-
Language Models (VLMs) such as Qwen2.5-VL and InternVL-2.5 on standard multimodal
understanding benchmarks, while achieving text-to-image generation quality competitive
with specialized models such as Stable Diffusion 3. We adopt the officially recommended
parameters and prompts throughout our experiments. Specifically, we employ the following sys-
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tem prompts: VLM_THINK_SYSTEM_PROMPT = "You should first think about
the reasoning process in the mind and then provide the user with
the answer. The reasoning process is enclosed within <think>
</think> tags, i.e. <think> reasoning process here </think>
answer here" GEN_THINK_SYSTEM_PROMPT = "You should first think
about the planning process in the mind and then generate the
image. The planning process is enclosed within <think> </think>
tags, i.e. <think> planning process here </think> image here"

* BLIP30-NEXT (Chen et al., 2025a) is an open-source unified multimodal foundation model with
3B parameters for both image understanding and generation. We adopt the image editing check-
point (https://huggingface.co/BLIP30/BLIP30-NEXT-edit—-VAE) and the infer-
ence code from the official repository (https://github.com/JiuhaiChen/BLIP30).

* Uni-CoT (Qin et al., 2025) is a unified chain-of-thought reasoning framework extending Bagel-
7B-MoT with 7B active parameters (14B total) and a self-reflection mechanism for multimodal
reasoning. We follow the prompt format and inference configuration (cfg_text_scale=4)
from the official repository (https://github.com/FrOzenCrane/UniCoT).

* Emu2-Gen (Sheynin et al., 2024) is a generative multimodal model with 37B parameters support-
ing text-to-image generation and image editing through a diffusion-based pipeline. We use the
official checkpoint (https://huggingface.co/BAATI/Emu2-Gen) for evaluation.

* Janus-Pro (Wu et al., 2025b) is a novel autoregressive framework that unifies multimodal un-
derstanding and generation. We use the official 7B checkpoint (https://huggingface.
co/deepseek—ai/Janus—Pro-7B) and inference code for Janus-Series from https:
//github.com/deepseek—-ai/Janus.

* Show-02 (Xie et al., 2025) perform the unified learning of multimodal understanding and genera-
tion on the text token and 3D Causal VAE space. We use the official 7B checkpoint (https:
//huggingface.co/showlab/show—02-7B) and the inference code from https://
github.com/showlab/Show-o.

* OmniGen2 (Wu et al., 2025c) is a unified multimodal generative model that demonstrates
enhanced computational efficiency and modeling capacity. In contrast to its predecessor Om-
niGen v1l, OmniGen2 employs a dual-pathway decoding architecture with modality-specific
parameters for text and image generation, coupled with a decoupled image tokenization
mechanism. For experimental evaluation, we utilize a fixed temporal offset parameter of
3.0, set the text guidance scale to 5.0 and image guidance scale to 1.5. The nega-
tive prompt is configured as " (((deformed))), blurry, over saturation,
bad anatomy, disfigured, poorly drawn face, mutation, mutated,
(extra_limb), (ugly), (poorly drawn hands), fused fingers, messy
drawing, broken legs censor, censored, censor.bar". All inference proce-
dures employ the default 50-step sampling schedule.

Image Editing Models We establish the models listed in Table 4 as baselines, comprising six
open-source models: UltraEdit (SD3) with diffusion architecture, FLUX.1 Kontext, VAREdit-8B
with VAR architecture, Qwen-Image-Edit employing MLLM combined with diffusion models,
Step1X-Edit v1.1, and SteplX-Edit v1.2. We strictly adhered to the default hyperparameters pro-
vided in the official GitHub repositories or Hugging Face (Jain, 2022) implementations of these
baseline models. In the following descriptions, we enumerate the key parameter configurations:

* Owen-Image-Edit (Wu et al., 2025a): An image editing variant of Qwen-Image that extends the
foundational 20B Qwen-Image model’s distinctive text rendering capabilities to instruction-based
image editing tasks, enabling precise textual modifications within images. The architecture in-
corporates a dual-pathway approach where the input image is simultaneously processed through
Qwen2.5-VL for semantic understanding and control, and through a VAE encoder for visual ap-
pearance preservation and manipulation. This design enables comprehensive editing capabilities
encompassing both semantic content modification and visual appearance refinement. Inference is
conducted with the following hyperparameters: random seed = 0, true_cfg_scale = 4.0,
negative prompt = "",and num_inference_steps = 50.

* FLUX.I Kontext (Labs et al., 2025): A 12 billion parameter rectified flow transformer architecture
designed for instruction-guided image editing. The model employs flow matching techniques to
enable coherent image modifications based on textual instructions. We utilize guidance_scale
= 2.5 for all experiments to ensure optimal generation quality while maintaining editing fidelity.
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 UltraEdit (Zhao et al., 2024): This model is trained on approximately 4 million instruction-based
editing samples built upon the Stable Diffusion 3 (Sauer et al., 2024) architecture. It supports
both free-form and mask-based input modalities to enhance editing performance. For consis-
tency across all experiments, we exclusively employ its free-form variant. We note that since
UltraEdit is trained on the SD3 architecture, its performance metrics may not fully reflect the
intrinsic improvements attributable to its specialized editing dataset. We utilize the “Bleach-
Nick/SD3_UltraEdit_-w_mask” model variant in free-form editing mode with a blank mask ini-
tialization. The evaluation is conducted with hyperparameters num_inference_steps=50,
image_guidance_scale=1.5, guidance_scale=7.5, and negative_prompt="" to
maintain consistency with our experimental protocol. Inference is performed at 512x512.

* VAREdit-8B (Mao et al., 2025): A visual autoregressive (VAR) framework for instruction-guided
image editing, built upon Infinity (Han et al., 2025). This approach reframes image editing as a
next-scale prediction problem, achieving precise image modifications through the generation of
multi-scale target features. We employ the following hyperparameters: classifier-free guidance
scale cfg=3. 0, temperature parameter tau=0 . 1, and random seed seed=42.

o SteplX-Edit vl.1 (Liu et al., 2025a): Stepl1X-Edit leverages the image understanding capabilities
of multimodal large language models (MLLMs) to parse editing instructions and generate editing
tokens, which are subsequently decoded into images using a DiT-based network. We utilize the
following inference parameters: num_inference_steps=28, true_cfg_scale=6.0, and
seed=42.

o SteplX-Editvi.2 (Liuet al., 2025a): An enhanced version of Step1X-Edit featuring improved rea-
soning edit capabilities and superior performance. We employ num_inference_steps=28,
true_cfg_scale=4.0, seed=42, enable_thinking.mode=True, and
enable_reflection.mode=False.

F MORE RELATED WORKS

Unified Multimodal Models (UMMs) represent a paradigm of architectures designed to seamlessly
integrate multimodal comprehension and generation capabilities within a singular, cohesive frame-
work. To achieve this unified objective, seminal works (Karypis et al., 1999; Wu et al., 2025b;
Chen et al., 2025b) leverage image tokenization strategies, employing autoregressive next-token
prediction paradigms to generate visual tokens. Building upon these foundations, Show-o (Xie
et al., 2025) introduces discrete diffusion scheduling mechanisms to enhance the token prediction
process and improve generation fidelity. Subsequent developments, driven by the pursuit of en-
hanced image synthesis quality, incorporate diffusion-based or flow-matching heads (Lipman et al.,
2022) integrated with shared transformer architectures (Deng et al., 2025a; Ma et al., 2025; Zhou
etal., 2024). Alternative approaches within the UMM paradigm maintain powerful pretrained back-
bone in a frozen state for reasoning tasks, while routing their intermediate feature representations
through learnable query mechanisms to external image generation modules (Pan et al., 2025; Wu
et al., 2025d). However, the comprehensive evaluation of synergistic relationships between multi-
modal understanding, reasoning, and generation in UMMs remains largely unexplored, with existing
benchmarks inadequately assessing whether these capabilities exhibit mutual enhancement or coor-
dination deficiencies.

Interleaved Reasoning. Drawing inspiration from human cognition, where visual counterfactu-
als facilitate reasoning processes (Roese, 1997), recent works have incorporated analogous inter-
leaved reasoning mechanisms into UMMs by mapping visual inputs to symbolic representations
(e.g., images or bounding boxes) (Wei et al., 2022; Lei et al., 2024). Xu et al. (2025a) explored pure
visual reasoning that relies solely on visual representations without dependence on textual modal-
ities. Zebra-CoT (Li et al., 2025) trains UMMs with interleaved text-image reasoning trajectories,
enabling human-like visual thinking capabilities. In contrast, this work focuses on investigating
cross-modal reasoning and the consistency of reasoning between visual and linguistic modalities.
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Interleaved Reasoning (IR)

You are evaluating the visual reasoning quality for a LOGICAL/
MATHEMATICAL problem (typically geometry).

## Task Understanding

Logical problems require the model to generate a useful visual aid
that includes:

— Auxiliary lines, constructions, or geometric relationships

- Angle marks, labels, or annotations

— Visual elements that help solve the problem

- NOT just a replication of the original figure, but meaningful
additions

## What You’ll Receive

— Problem Prompt: {prompt}

- Ground Truth Answer: {answer}

— Text Reasoning from Models: {reasoning_text}

— Image 1: Original Problem Image (shows the initial geometry
problem figure)

— Image 2: Ground Truth Reasoning Image (shows what correct
auxiliary constructions look like)

— Image 3: Generated Image by the model (the visual aid to evaluate

)
## Evaluation Criteria

Your task: Strictly compare Image 3 (generated) against Image 2 (
ground truth) while referencing Image 1 (problem).

CRITICAL REQUIREMENT: If Image 3 uses a completely different
approach from Image 2, give 1 point.

CRITICAL: If Image 3 is clearly wrong or does not match GT
constructions, prefer giving 1 point.

You need to assess whether the generated image (Image 3)
demonstrates similar auxiliary constructions to Image 2.

### High Quality Visual Aid (Score 4-5):

— Includes nearly all auxiliary constructions shown in Image 2 (GT)

- Construction approach closely matches Image 2

— Same key lines, circles, perpendiculars, or geometric elements

— Clearly labeled or annotated where helpful

- May differ slightly in visual style but uses the same
mathematical strategy

### Medium Quality Visual Aid (Score 3):

— Includes majority of key constructions from Image 2 (GT)
- Construction approach generally matches Image 2

- Missing 1-2 secondary elements

- Strategy aligns with GT overall

### Poor Quality Visual Aid (Score 2):

— Only includes some constructions from Image 2, missing many key
elements

— Approach partially aligns with Image 2 but with significant gaps

- Or uses a completely different approach from Image 2

— Adds limited value

##4# Failed Visual Aid (Score 1):

- No meaningful auxiliary constructions

— Simply replicates Image 1 without useful additions
- Constructions are irrelevant or incorrect

— Generated image does not help solve the problem
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Alignment in TG

You are evaluating the reasoning alignment for a LOGICAL/
MATHEMATICAL problem (typically geometry).

## Task Understanding

Logical problems require the model to:

1. Generate a visual aid with auxiliary constructions (auxiliary
lines, angle marks, labels, annotations)

2. Observe and analyze the generated visual aid

3. Use the visual information to solve the problem and provide an
answer

CRITICAL for Geometry Problems:

— Most geometry problems can be solved through pure algebraic or
symbolic reasoning without visual aids

— The purpose of the visual aid is to provide insights that make
the solution easier or more intuitive

— Just mentioning "I drew auxiliary lines" does not prove the model
actually used them

— Be skeptical: Did the model truly gain insights from observing
the visual aid, or did it just use algebra?

## What You’ll Receive

— Problem Prompt: {prompt}

- Ground Truth Answer: {answer}

- Image 1l: Original problem image

- Image 2: Ground truth reasoning image (correct auxiliary
constructions)

- Image 3: Generated image by the model (model’s visual aid)

— Model’s Answer Text: {model_answer}

## Evaluation Criteria

STEP 1 - Check Generated Image Quality (Compare Image 3 with GT
Image 2):

— WRONG: Completely incorrect constructions, missing all key
elements, or just copies Image 1 —-> Give 1 point

— POOR: Different approach from GT, major errors, or missing most
key constructions -> Give 1 point

— ADEQUATE: Has majority of key constructions, matches GT approach
-> Can consider scores 3-5

STEP 2 - Check Text Alignment (only if Image 3 is ADEQUATE) :

### Strong Alignment (Score 4-5):

— Model explicitly references the generated constructions in its
reasoning

- Answer derived by observing and analyzing the visual aid

— Describes specific constructions or geometric relationships from
the image

— Clear evidence the model used the visual aid

### Weak Alignment (Score 2-3):

- Mentions constructions but does not clearly analyze them

- Some connection but vague about using visual information

- Answer may be correct but unclear whether derived visually or
algebraically

### No Alignment (Score 1):

- No evidence the model used the generated image

— Pure symbolic reasoning without visual grounding
- Answer contradicts image or shows no connection
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Prompt for Reasoning Process of Temporal

You are a professional Al evaluation specialist with expertise in temporal reasoning assessment.

You will be given:

1. **Original Image**: the starting point

**Task Instruction*: the temporal reasoning task to perform

3. **Dimension**: the knowledge domain (science/humanity/common_sense/logic)
4. **Keywords**: relevant domain concepts and principles for this task
5
6.

)

**Target Description**: expected visual outcomes after temporal reasoning
**Think Output**: the reasoning text generated by the model

Your Objective:
Evaluate ONLY the **actual text content** provided in the "Think Output" section. You must analyze the reasoning quality
based solely on what is written there. Do NOT generate or evaluate your own reasoning - only assess the provided text.

CRITICAL: If the Think Output is empty, contains only placeholder text, or says "No think output available", you MUST
give a score of 1 and explain that no actual reasoning was provided. Do NOT create your own reasoning to evaluate.

Note: Keywords are domain-specific concepts that should be considered or applied in the reasoning. Target Description
shows what the final visual outcome should look like, helping you assess if the reasoning process is heading in the right
direction.

## Process Evaluation Criteria:

- **Logical Structure**: Is the reasoning well-organized and sequential?

- *Domain Knowledge**: Does the text show correct understanding of domain principles?
- *Temporal Logic**: Does the reasoning follow correct temporal causality?

- **Completeness**: Are all necessary reasoning steps included?

## Evaluation Steps:

1. **Parse Reasoning Steps**: Extract the main reasoning steps and conclusions from think output

2. **Domain Knowledge Check**: Verify keyword-related principles and target description are correctly applied in text;
ensure reasoning follows domain-specific scientific/cultural/commonsense/logical principles; reject violations of established
domain knowledge

3. **Temporal Logic Validation**: Check temporal causality and progression logic in reasoning

4. **Completeness Assessment**: Ensure no critical reasoning steps are missing from the process

## Evaluation Scale (1 to 5):

- **5 Perfect Process Logic**: All reasoning steps are logically sound, domain-accurate, and demonstrate complete mastery of
the task requirements

- **4 High Quality Process**: Reasoning achieves 80-90%+ of requirements with only minor gaps or imperfections that don't
affect core logic

- **3 Adequate Process**: Reasoning meets basic requirements (60-70%) but has noticeable flaws or missing important
elements

- **2 Poor Process**: Reasoning has major logical errors or fails to address most requirements (30-50% achievement)

- **1 Failed Process**: Written reasoning is fundamentally flawed, missing, or completely off-track (<30% achievement)

### Example: Plant Growth

**Task**: "Show what this seedling will look like after 3 months"

**Think Output**: "I need to consider how plants grow over time. In 3 months, through photosynthesis, the leaves will
expand to capture more sunlight, the stem will elongate to support the growing plant, and the root system will develop
underground to absorb more nutrients."

**Evaluation**:

. **Process Steps**: v Identifies photosynthesis as growth mechanism, ¥ Considers multiple plant parts
**Domain Knowledge**: v Correctly applies plant biology principles, ¥ 3-month timeframe appropriate
**Temporal Logic**: v Sequential growth process described, v Cause-effect relationships clear
**Completeness**: v Major growth aspects covered, v Underground and above-ground development

Juy

b 89 [

— **reasoning_process_score**: 5 (Comprehensive and accurate reasoning process)

## Input

**QOriginal Image**

**Task Instruction**: {prompt}
*Dimension**: {dimension}
**Keywords**: {keywords}

**Target Description**: {target_description}
**Think Output**: {think_output}

## Output Format
{

"reasoning_process_score": X,
"reasoning": "1. Process Steps 2. Domain Knowledge Check 3. Temporal Logic Validation 4. Completeness Assessment"

k”

Figure 11: Prompt used for evaluating the reasoning process of temporal (RP).
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Prompt for Reasoning Visual of Temporal \

You are a professional Al evaluation specialist with expertise in temporal reasoning assessment.

You will be given:

1. **Original Image**: the starting point

**Generated Image**: the result after temporal reasoning

3. **Task Instruction**: the temporal reasoning task to perform

4.**Dimension**: the knowledge domain (science/humanity/common_sense/logic)
5. **Keywords**: relevant domain concepts and principles for this task
6.
7.

1

**Target Description**: expected visual outcomes after temporal reasoning
**Target Image** (if available): reference image showing the expected result

Note: Keywords are domain-specific concepts that should be considered or applied in the reasoning. Target Description shows
what the final visual outcome should look like, helping you assess if the visual result aligns with expectations. If a Target Image
is provided, use it as the primary reference for evaluation; otherwise, rely on the Target Description.

Your Objective:
Evaluate whether the **generated image** matches the target description (and target image if available) and demonstrates
correct temporal reasoning. Focus on comparing the visual result with the expected outcomes.

## Visual Temporal Logic Principles:

- **Sequential Progression**: Visual changes follow natural temporal order

- **Causality Over Time**: Each visual stage logically leads to the next

- **Process Continuity**: No impossible visual jumps or missing critical stages
- **Time-Scale Consistency**: Visual changes match the specified time duration

## Domain-Specific Considerations:

- **Science**: Apply scientific principles and natural laws; verify that reasoning follows established scientific facts and theories;
reject unscientific claims or impossible phenomena

- *Humanity**: Consider cultural, historical, and social contexts; ensure reasoning respects cultural norms and historical
accuracy; avoid cultural insensitivity or anachronisms

- *Common Sense**: Use everyday knowledge and practical understanding; verify reasoning aligns with real-world experience
and logical expectations; reject unrealistic or impractical scenarios

- *Logic**: Follow formal reasoning and mathematical principles; ensure logical consistency and mathematical accuracy; reject
logical fallacies or mathematical errors

## Evaluation Steps:

1. **Target Match**: Does the generated image match the target description (and target image if available)?

2. **Visual Changes Analysis**: What has visually changed from original to generated image?

3.**Domain Knowledge Check**: Do visual changes align with keyword-related principles? Ensure visual reasoning follows
domain-specific scientific/cultural/commonsense/logical principles; reject violations of established domain knowledge

4. **Temporal Logic Validation**: Is the visual progression temporally sound?

## Evaluation Scale (1 to 5):

- **5 Perfect Target Match**: Generated image **precisely matches** target description (and target image if available) with
**flawless temporal logic**; all required temporal changes are present and accurate with **zero gaps or errors**

- **4 High Quality Match**: Generated image achieves 80-90%+ of target requirements with only minor details missing or
slightly incorrect; core temporal changes are correct

- **3 Adequate Match**: Generated image meets basic requirements (60-70%) but has notable gaps, wrong aspects, or
incomplete temporal changes

- **2 Poor Match**: Generated image fails most target requirements (30-50% achievement) with major gaps or incorrect
temporal reasoning

- **1 Failed Match**: Generated image completely fails to match target or shows fundamental temporal logic errors (<30%
achievement)

### Example 1 (Score: 5): Perfect Plant Growth

**Task**: "Show what this seedling will look like after 3 months"

**Dimension**: "science"

*Keywords**: "plant development, photosynthesis, growth"

**Target Description**: "leaves expanded and more numerous; stem visibly longer; root system extended underground”

**Evaluation**:

1. **Visual Changes**: v Leaves significantly expanded, ¥ Stem clearly elongated, v' Root system visible underground

2. **Domain Knowledge**: ¥ Growth follows photosynthesis principles perfectly, ¥ 3-month timeframe accurate

3. **Temporal Logic**: v All development stages shown correctly, v Natural growth progression

k 4. **Completeness**: ¥ All major growth aspects visible, ¥' Above and below ground development J

Figure 12: Prompt template for evaluating visual-temporal reasoning capabilities (RV). (Continued
in Figure 13)
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Prompt for Reasoning Visual of Temporal \

— **reasoning_visual_score*: 5 (Perfect temporal reasoning with complete visual representation)

### Example 2 (Score: 4): Good Plant Growth

**Task**: "Show what this seedling will look like after 3 months"

**Dimension**: "science"

**Keywords**: "plant development, photosynthesis, growth"

**Target Description**: "leaves expanded and more numerous; stem visibly longer; root system extended underground”

**Evaluation**:

1. **Visual Changes**: v’ Leaves expanded, ¥ Stem elongated, X Root system not visible

2. *Domain Knowledge**: v Growth follows photosynthesis principles, ¥ 3-month timeframe appropriate
3. **Temporal Logic**: v Sequential development stages shown, X Missing intermediate growth phases

4. **Completeness*™: ¥ Major growth visible, X Underground development not represented

— **reasoning_visual_score**: 4 (Strong visual progression but incomplete representation)

### Example 3 (Score: 2): Poor Plant Growth

**Task**: "Show what this seedling will look like after 3 months"

**Dimension**: "science"

**Keywords**: "plant development, photosynthesis, growth"

**Target Description**: "leaves expanded and more numerous; stem visibly longer; root system extended underground"

*, 1

**Evaluation**:

1. **Visual Changes**: X Leaves barely changed, X Stem same length, X No root development

2. **Domain Knowledge**: X Growth doesn't follow photosynthesis principles, X 3-month timeframe ignored
3. **Temporal Logic**: X No clear development stages, X Unrealistic growth pattern

4. **Completeness**: X Minimal growth visible, X Most requirements not met

— **reasoning_visual_score**: 2 (Poor temporal reasoning with minimal visual changes)

### Example 4 (Score: 1): Failed Plant Growth

**Task**: "Show what this seedling will look like after 3 months"

**Dimension**: "science"

**Keywords**: "plant development, photosynthesis, growth"

**Target Description**: "leaves expanded and more numerous; stem visibly longer; root system extended underground"

**Evaluation**:

1. **Visual Changes**: X Plant appears dead/wilted, X No growth visible, X Wrong direction
2. **Domain Knowledge**: X Completely violates plant biology, X Shows impossible outcomes
3. *Temporal Logic**: X No logical progression, X Contradicts natural growth

4. **Completeness**: X No target requirements met, X Fundamental misunderstanding

— **reasoning_visual_score**: 1 (Complete failure of temporal reasoning)

## Input

*Image 1: Original Image** (the starting point)

**Image 2: Generated Image** (the result after temporal reasoning)

**Image 3: Target Image** (if available, the reference showing expected result)
**Task Instruction**: {prompt}

*Dimension**: {dimension}

**Keywords**: {keywords}

**Target Description**: {target_description}

## Output Format

{{

"reasoning_visual_score": X,

"reasoning": "1. Target Match 2. Visual Changes Analysis 3. Domain Knowledge Check 4. Temporal Logic Validation"
1

- /

Figure 13: Prompt template for evaluating visual-temporal reasoning capabilities (RV). (Continued
from Figure 12)
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Prompt for Reasoning Process of Causal \

You are a professional Al evaluation specialist with expertise in causal reasoning assessment.
You will be given:

**QOriginal Image**: the starting point

**Task Instruction**: the causal reasoning task to perform

**Dimension**: the knowledge domain (science/humanity/common_sense/logic)
**Keywords**: relevant domain concepts and principles for this task

**Target Description**: expected visual outcomes after causal reasoning

**Think Output**: the reasoning text generated by the model

o U 09 9 1=

Your Objective:
Evaluate ONLY the **actual text content** provided in the "Think Output" section. You must analyze the reasoning quality based
solely on what is written there. Do NOT generate or evaluate your own reasoning - only assess the provided text.

CRITICAL: If the Think Output is empty, contains only placeholder text, or says "No think output available", you MUST give a
score of 1 and explain that no actual reasoning was provided. Do NOT create your own reasoning to evaluate.

Note: Keywords are domain-specific concepts that should be considered or applied in the reasoning. Target Description shows
what the final visual outcome should look like, helping you assess if the reasoning process is heading in the right direction.

## Causal Logic Principles:

- **Cause-Effect Relationships**: Clear connection between cause and observed effect
- **Mechanism Consistency**: Intermediate steps follow logical causal chains

- **Intervention Logic**: Applied changes produce expected outcomes

- **Causal Completeness**: All necessary causal factors are represented

## Domain-Specific Considerations:

- **Science**: Apply scientific principles and natural laws; verify that reasoning follows established scientific facts and theories;
reject unscientific claims or impossible phenomena

- *Humanity**: Consider cultural, historical, and social contexts; ensure reasoning respects cultural norms and historical accuracy
avoid cultural insensitivity or anachronisms

- **Common Sense**: Use everyday knowledge and practical understanding; verify reasoning aligns with real-world experience
and logical expectations; reject unrealistic or impractical scenarios

- **Logic**: Follow formal reasoning and mathematical principles; ensure logical consistency and mathematical accuracy; reject
logical fallacies or mathematical errors

## Evaluation Steps:

1. **Identify Causal Chain**: What cause-effect sequence is demonstrated?

2. **Domain Knowledge Check**: Does causation follow keyword-related principles and target description? Ensure reasoning
follows domain-specific scientific/cultural/commonsense/logical principles; reject violations of established domain knowledge
3. **Mechanism Validation**: Are causal steps logically connected and complete?

4. **Effect Assessment**: Do observed effects match expected causal outcomes?

## Evaluation Scale (1 to 5):

- **5 Perfect Causal Logic**: All cause-effect relationships follow domain principles flawlessly with complete mastery of
requirements

- **4 High Quality Causal Logic**: Causal reasoning achieves 80-90%+ of requirements with only minor causal inconsistencies that
don't affect core logic

- **3 Adequate Causal Logic**: Causal reasoning meets basic requirements (60-70%) but has noticeable flaws or missing important
elements

- **2 Poor Causal Logic**: Causal reasoning has major causal errors or fails to address most requirements (30-50% achievement)
- **1 Failed Causal Logic**: Causal reasoning is fundamentally flawed, missing, or violates basic causal principles (<30%
achievement)

### Example: Potato Oxidation Prevention

**Task**: "Apply lemon juice to prevent these cut potatoes from browning"

**Dimension**: "science"

**Keywords**: "citric acid, enzymatic browning, oxidation prevention"

**Target Description**: "cut potatoes remain white/pale after lemon juice application”

**Evaluation**:

. **Causal Chain**: v' Lemon juice applied to potato surfaces, v’ Potatoes remain white/pale

2. **Domain Knowledge**: v Citric acid prevents browning, v' Application method appropriate

3. **Mechanism Validation**: v Chemical prevention process shown, X Some areas missed during application

. **Effect Assessment**: v Most potato pieces remain unbrowned, X One piece shows slight browning

— **reasoning_process_score**: 4 (Sound causal reasoning with minor application gaps)

## Input

**QOriginal Image**

**Task Instruction**: {prompt}

*Dimension**: {dimension}

**Keywords**: {keywords}

**Target Description**: {target_description}

**Think Output**: {think_output}

## Output Format

it

"reasoning_process_score": X,

"reasoning": "1. Causal Chain 2. Domain Knowledge Check 3. Mechanism Validation 4. Effect Assessment"

N /

Figure 14: Prompt template for evaluating process of causal reasoning capabilities (RP).

—_

-
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Prompt for Reasoning Visual of Causal N

You are a professional Al evaluation specialist with expertise in causal reasoning assessment.

You will be given:

**QOriginal Image**: the starting point

**Generated Image**: the result after causal reasoning

**Task Instruction**: the causal reasoning task to perform

**Dimension**: the knowledge domain (science/humanity/common_sense/logic)
**Keywords**: relevant domain concepts and principles for this task

**Target Description**: expected visual outcomes after causal reasoning
**Target Image** (if available): reference image showing the expected result

SUE Q= 09 )=

Note: Keywords are domain-specific concepts that should be considered or applied in the reasoning. Target Description shows
what the final visual outcome should look like, helping you assess if the visual result aligns with expectations. If a Target Image
is provided, use it as the primary reference for evaluation; otherwise, rely on the Target Description.

Your Objective:
Evaluate whether the **visual changes** in the generated image correctly demonstrate causal reasoning following domain
principles. Focus on comparing the visual result with the expected outcomes.

## Visual Causal Logic Principles:

- **Cause-Effect Relationships**: Visual changes show clear cause-effect connections
- **Mechanism Consistency**: Visual intermediate steps follow logical causal chains
- *Intervention Logic**: Visual applied changes produce expected outcomes

- **Causal Completeness**: Visual representation includes necessary causal factors

## Domain-Specific Considerations:

- **Science**: Apply scientific principles and natural laws; verify that reasoning follows established scientific facts and the ories;
reject unscientific claims or impossible phenomena

- **Humanity**: Consider cultural, historical, and social contexts; ensure reasoning respects cultural norms and historical
accuracy; avoid cultural insensitivity or anachronisms

- *Common Sense**: Use everyday knowledge and practical understanding; verify reasoning aligns with real-world experience
and logical expectations; reject unrealistic or impractical scenarios

- **Logic**: Follow formal reasoning and mathematical principles; ensure logical consistency and mathematical accuracy; reject
logical fallacies or mathematical errors

## Evaluation Steps:

1. **Target Match**: Does the generated image match the target description (and target image if available)?

2. **Visual Changes Analysis**: What causal effects are visually apparent?

3. **Domain Knowledge Check**: Do visual changes align with keyword-related principles? Ensure visual reasoning follows
domain-specific scientific/cultural/commonsense/logical principles; reject violations of established domain knowledge

4. **Mechanism Validation**: Are visual causal steps logically connected and complete?

## Evaluation Scale (1 to 5):

- **5 Perfect Target Match**: Generated image perfectly matches target description (and target image if available) with correct
causal logic

- **4 High Quality Match**: Generated image achieves 80-90%+ of target requirements with only minor details missing or
slightly incorrect; core causal changes are correct

- **3 Adequate Match**: Generated image meets basic requirements (60-70%) but has notable gaps, wrong aspects, or
incomplete causal changes

- **2 Poor Match**: Generated image fails most target requirements (30-50% achievement) with major gaps or incorrect causal
reasoning

- **1 Failed Match**: Generated image completely fails to match target or shows fundamental causal logic errors (<30%
achievement)

#4# Example 1 (Score: 5): Perfect Potato Prevention
**Task**: "Apply lemon juice to prevent these cut potatoes from browning"

**Dimension**: "science"
**Keywords**: "citric acid, enzymatic browning, oxidation prevention"
\**Target Description**: "cut potatoes remain white/pale after lemon juice application” /

Figure 15: Prompt template for evaluating visual causal reasoning capabilities (RV). (Continued in
Figure 16)
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Prompt for Reasoning Visual of Causal \

**Evaluation**:

1. **Target Match**: v All potatoes remain white/pale, v Lemon juice clearly applied

2. **Visual Changes**: v Lemon juice visible on potato surfaces, v' Potatoes maintain original color

3. **Domain Knowledge**: v Citric acid prevention shown correctly, v Application method appropriate
4. **Mechanism Validation**: v Chemical prevention process visible, v Complete coverage achieved

— **reasoning_visual_score**: 5 (Perfect causal reasoning with complete prevention)

### Example 2 (Score: 3): Adequate Potato Prevention

**Task**: "Apply lemon juice to prevent these cut potatoes from browning"
**Dimension**: "science"

**Keywords**: "citric acid, enzymatic browning, oxidation prevention"

**Target Description**: "cut potatoes remain white/pale after lemon juice application”

**Evaluation**:

1. **Target Match**: X Some potatoes show browning, X Incomplete prevention

2. **Visual Changes**: v’ Lemon juice partially applied, X Some areas missed

3. **Domain Knowledge**: v Basic citric acid concept shown, X Application incomplete
4. **Mechanism Validation**: X Chemical prevention partially failed, X Coverage gaps

— **reasoning_visual_score**: 3 (Adequate causal reasoning with partial prevention)

### Example 3 (Score: 1): Failed Potato Prevention

**Task**: "Apply lemon juice to prevent these cut potatoes from browning"
**Dimension**: "science"

**Keywords**: "citric acid, enzymatic browning, oxidation prevention"

**Target Description**: "cut potatoes remain white/pale after lemon juice application”

**Evaluation**:

**Target Match**: X All potatoes heavily browned, X No prevention visible
**Visual Changes**: X No lemon juice visible, X Potatoes completely oxidized
**Domain Knowledge**: X No citric acid application shown, X Wrong approach
**Mechanism Validation**: X No chemical prevention, X Complete failure

= [ 1=

— **reasoning_visual_score**: 1 (Complete failure of causal reasoning)

## Input

*Image 1: Original Image** (the starting point)

*Image 2: Generated Image** (the result after causal reasoning)

**Image 3: Target Image** (if available, the reference showing expected result)
**Task Instruction**: {prompt}

*Dimension**: {dimension}

**Keywords**: {keywords}

*Target Description**: {target_description}

## Output Format
{

"reasoning_visual_score": X,
"reasoning": "1. Target Match 2. Visual Changes Analysis 3. Domain Knowledge Check 4. Mechanism Validation"
H

- /

Figure 16: Prompt template for evaluating visual causal reasoning capabilities (RV). (Continued
from Figure 15)
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Prompt for Reasoning Alignment \

You are a professional Al evaluation specialist with expertise in causal reasoning assessment.
You will be given:
You are a professional Al evaluation specialist focusing on process-visual reasoning alignment assessment.

You will be given:

1. **Original Image**: the starting point

2. **Generated Image**: the reasoning result

3. **Task Instruction**: what reasoning should be performed

4.**Think Output**: the reasoning process text generated by the model

Your Objective:
Evaluate whether the **reasoning process text** and the **visual reasoning result** are aligned and consistent with each other.
Focus on whether what the model thought and what the model visually produced match.

## Alignment Evaluation Criteria:

- **Process-Visual Consistency**: Do the written reasoning steps match the visual changes?

- **Conclusion Coherence**: Do text conclusions align with visual outcomes?

- **Step-by-Step Alignment**: Does each reasoning step in text correspond to visual evidence?
- **Logical Consistency**: Are there contradictions between thought process and visual result?

## Domain-Specific Considerations:

- **Science*: Apply scientific principles and natural laws; verify that reasoning follows established scientific facts and the ories;
reject unscientific claims or impossible phenomena

- *Humanity**: Consider cultural, historical, and social contexts; ensure reasoning respects cultural norms and historical
accuracy; avoid cultural insensitivity or anachronisms

- *Common Sense**: Use everyday knowledge and practical understanding; verify reasoning aligns with real-world experience
and logical expectations; reject unrealistic or impractical scenarios

- *Logic**: Follow formal reasoning and mathematical principles; ensure logical consistency and mathematical accuracy; reject
logical fallacies or mathematical errors

## Key Questions:

1. **Does the visual result reflect the written reasoning?** Are the visual changes consistent with what was described in the
think output?

2. **Are the conclusions aligned?** Do both process and visual reasoning reach the same conclusions?

3. **Is the reasoning coherent?** Are there contradictions between what was thought and what was visually produced?

4.**Is the task prompt correctly understood?** Do both the process text and visual result demonstrate correct understanding of
what the task is asking for?

## Evaluation Scale (1 to 5):

- **5 Perfect Alignment**: Process text and visual result are **completely consistent** and mutually supporting with **zero

contradictions**; all process claims match visual evidence exactly; AND both correctly understand and implement the task
rompt

E)’**4 I-};igh Quality Alignment**: Process and visual achieve 80-90%+ alignment with only minor inconsistencies that don't affect

core reasoning; AND both generally follow the task prompt correctly

- **3 Adequate Alignment**: Some alignment present (60-70%) but clear discrepancies between process and visual reasoning;

notable inconsistencies exist; OR good internal alignment but significant misunderstanding of task prompt

- **2 Poor Alignment**: Minimal alignment (30-50%) with major contradictions between written process and visual result;

significant mismatches; OR both process and visual fundamentally misunderstand the prompt

- **1 No Alignment**: Process text and visual result are contradictory or completely unrelated (<30% alignment); OR complete

failure to understand task prompt

- /

Figure 17: Prompt template for evaluating reasoning alignment capabilities (Align.). (Continued in
Figure 18)
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Prompt for Reasoning Alignment ™\

## CRITICAL ALIGNMENT CONSTRAINT:

** Alignment score cannot exceed visual reasoning score by more than 1 point.**
- If visual reasoning = 1, alignment can be at most 2

- If visual reasoning = 2, alignment can be at most 3

- If visual reasoning = 3, alignment can be at most 4

- If visual reasoning = 4-5, alignment can be 4-5

This ensures logical consistency: you cannot have high alignment with poor visual reasoning.

## Reasoning Steps:

**Extract Process Claims**: What does the think output claim will happen or should be done?

**Identify Visual Evidence**: What changes are actually visible in the generated image?

**Compare Alignment**: Do the process claims match the visual evidence?

**Assess Consistency**: Are there any contradictions between thought and visual result?

**Evaluate Prompt Understanding**: Do both the process text and visual result correctly understand and implement the
task prompt requirements?

6. **Domain Knowledge Check**: Do both process and visual reasoning follow domain-specific
scientific/cultural/commonsense/logical principles? Ensure alignment respects established domain knowledge and reject
violations of domain principles

7.**Apply Alignment Constraint**: Ensure alignment score does not exceed visual reasoning quality by more than 1 point

Lol Sl

o

## Input

*Image 1: Original Image** (the starting point)
*Image 2: Generated Image** (the reasoning result)
**Task Instruction**: {prompt}

**Think Output**: {think_output}

## Output Format

i

"reasoning_alignment_score": X,

"reasoning": "1. Process Claims 2. Visual Evidence 3. Alignment Comparison 4. Consistency Assessment 5. Prompt
Understanding 6. Domain Knowledge Check 7. Alignment Constraint”

1

- /

Figure 18: Prompt template for evaluating reasoning alignment capabilities (Align.). (Continued
from Figure 17)
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Prompt for Reasoning Visual Consister

You are a professional visual evaluation specialist focusing on image consistency assessment.

You will be given:

1. **Original Image**: the starting point

2. **Generated Image**: the result after reasoning/editing

3. **Task Instruction**: the reasoning or editing task performed

Your Objective:
Evaluate whether **non-target elements** in the generated image remain **visually consistent** with the original image. Focus
exclusively on elements that should NOT have changed according to the task instruction.

## Consistency Evaluation Guidelines:

### Elements to Preserve:

- *Background Elements**: Scenery, environment, setting details not mentioned in task

- *Unrelated Objects**: Items not involved in the reasoning/editing process

- **Structural Elements**: Basic composition, layout, perspective (unless task requires change)
- **Identity Preservation**: People, animals, or objects should maintain their core identity

- **Style Consistency**: Overall visual style, lighting conditions, color palette

### Elements That May Change (Task-Dependent):

- **Target Objects**: Items explicitly mentioned in the task instruction

- **Direct Consequences**: Changes that logically result from the intended transformation
- **Process Effects**: Visual effects directly caused by the reasoning process

## Evaluation Scale (1 to 5):

- **5 Perfect Consistency**: All non-target elements remain **visually identical** to original with **zero unintended changes**;
perfect preservation of all non-instructed elements

- **4 Minor Inconsistency**: **Minimal unintended changes** that are barely noticeable and don't affect coherence; only very
small discrepancies

- **3 Noticeable Inconsistency**: **Clear unintended changes** in background or unrelated elements that affect coherence;
notable inconsistencies exist

- **2 Significant Inconsistency**: **Multiple unintended changes** that significantly compromise visual coherence; major
inconsistencies

- **1 Severe Inconsistency**: **Major unintended alterations** that make image appear largely different; fundamental
consistency breakdown

## Reasoning Steps:

**Identify Target Elements**: What elements should change according to the task?
**Isolate Preserve Elements**: What elements should remain unchanged?

. **Compare Preservation**: Are the preserve elements visually consistent with original?
**Assess Impact**: How do any inconsistencies affect overall visual coherence?

o=

## Input

**Image 1: Original Image** (the starting point)

**Image 2: Generated Image** (the result after reasoning/editing)
**Task Instruction**: {prompt}

## Output Format

{f

"visual_consistency_score": X,

"reasoning": "1. Target Elements 2. Preserve Elements 3. Preservation Comparison 4. Impact Assessment"

1

(N

/

Figure 19: Prompt template for evaluating visual consistency (VC.). (Continued from Figure 19)
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Prompt for Image Quality

You are a professional image quality assessor specializing in Al-generated content evaluation.

You will be given:
1. *Generated Image**: an Al-generated image to evaluate

Your Objective:
Evaluate the **perceptual quality** of the Al-generated image, focusing on technical excellence, visual coherence, and absence
of generation artifacts.

## Quality Assessment Dimensions:

### Structural Coherence

- **Anatomy/Geometry**: Correct proportions, realistic structures, proper object shapes
- **Spatial Relationships**: Logical positioning, appropriate scale relationships

- *Compositional Logic**: Coherent scene layout, proper perspective

### Visual Fidelity

- **Texture Quality**: Realistic surface textures, appropriate material appearance

- **Detail Clarity**: Sharp important details, appropriate level of detail throughout
- **Color Accuracy**: Natural color distribution, proper lighting/shadow

### Generation Artifacts

- **Duplication Issues**: Repeated elements, phantom objects, merged features

- **Blending Problems**: Unnatural transitions, ghosting effects, edge artifacts

- **Distortion Errors**: Warped features, impossible geometries, scale inconsistencies

##t# Overall Naturalness

- **Photorealism**: Does the image look natural and believable?

- **Coherent Style**: Consistent visual style throughout the image
- **Professional Quality**: Would this pass as high-quality content?

## Evaluation Scale (1 to 5):

- **5 Excellent Quality**: **Professional-grade image** with **no noticeable artifacts or flaws**; perfect technical excellence and
photorealistic quality

- **4 Good Quality**: **High-quality image** with **one minor flaw** that doesn't affect overall impression; minimal quality
issues

- **3 Acceptable Quality**: **Decent image** with **some noticeable flaws** but overall usable; clear quality problems exist

- **2 Poor Quality**: **Multiple significant flaws** that detract from image usability; major quality problems

- **1 Very Poor Quality**: **Major structural problems**, severe artifacts, unusable quality; fundamental quality breakdown

## Quality Checklist:

For each dimension, mark v (satisfactory) or X (problematic):
- Structural coherence: v/ X

- Visual fidelity: v//X

- Artifact-free: v/ X

- Overall naturalness: v'/X

## Reasoning Steps:

1. **Structural Analysis**: Assess geometric and anatomical correctness

2. **Fidelity Evaluation*: Check texture, detail, and color quality

3. **Artifact Detection**: Identify any generation artifacts or distortions

4. **Naturalness Assessment**: Evaluate overall believability and professional quality

## Input
**Generated Image**

## Output Format

{

"image_quality_score": X,

"reasoning": "1. Structural Analysis 2. Fidelity Evaluation 3. Artifact Detection 4. Naturalness Assessment"

1

-

/

Figure 20: Prompt template for evaluating image quality (IQ.). (Continued from Figure 20)
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