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Abstract

Offline preference optimization allows fine-tuning
large models directly from offline data, and has
proved effective in recent alignment practices.
We propose generalized preference optimization
(GPO), a family of offline losses parameterized
by a general class of convex functions. GPO en-
ables a unified view over preference optimiza-
tion, encompassing existing algorithms such as
DPO, IPO and SLiC as special cases, while natu-
rally introducing new variants. The GPO frame-
work also sheds light on how offline algorithms
enforce regularization, through the design of the
convex function that defines the loss. Our analysis
and experiments reveal the connections and sub-
tle differences between the offline regularization
and the KL divergence regularization intended
by the canonical RLHF formulation. In a con-
trolled setting akin to Gao et al. (2023), we also
show that different GPO variants achieve sim-
ilar trade-offs between regularization and per-
formance, though the optimal values of hyper-
parameter might differ as predicted by theory. In
all, our results present new algorithmic toolkits
and empirical insights to alignment practition-
ers. Please see https://arxiv.org/pdf/
2402.05749 for the full version of the paper.

1. Introduction
Reinforcement learning from human feedback (RLHF) has
been a canonical paradigm for aligning powerful AI systems
along human values (Christiano et al., 2017; Ouyang et al.,
2022), as demonstrated by recent advances in large language
models (LLMs) (Achiam et al., 2023; Team et al., 2023).
RLHF consists of two steps: reward modeling, which trains
a reward model rϕ to capture human preferences from a
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Figure 1. Illustration of offline preference optimization losses
E(yw,yl)∼µ [f (ρθ)] as a function of the difference of log ratio
ρθ = log πθ(yw)/πref(yw) − log πθ(yl)/πref(yl). DPO applies
the (scaled) logistic loss 1

log 2
log(1 + exp(−ρθ)), SLiC applies

the hinge loss max(0, 1 − ρθ), while IPO applies the squared
loss (ρθ − 1)2. As a result, many popular offline losses can be
understood as convex approximations to the 0-1 loss that measures
the binary classification accuracy. Any other convex loss alterna-
tives to the above examples provide offline preference optimization
losses not in the existing literature, as we show in Table 1.

dataset of pairwise comparison; and regularized policy opti-
mization, which aligns the AI systems against the learned
reward model, more formally as below

max
θ

Ey∼πθ
[rϕ(y)]︸ ︷︷ ︸

reward maximization

−βKL(πθ, πref)︸ ︷︷ ︸
regularization

.

Lately, directly aligning AI systems from pairwise com-
parison datasets has become increasingly common (e.g.,
Rafailov et al., 2023; Azar et al., 2024; Zhao et al., 2023),
as evidenced by progress in open source models (e.g., Jiang
et al., 2024). Compared to canonical RL algorithms, such
methods are more computationally efficient as they do not
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require expensive sampling from the models. They also
avoid learning reward models altogether, and effectively
replace RLHF with a supervised learning problem, which is
convenient from various practical perspectives. We refer to
such methods as offline preference optimization, as they seek
to optimize human preferences using offline datasets. Here,
offline stresses the fact that such datasets are not generated
by interactive data collections from the learned model.

Our first contribution is to provide a unifying view over
notable existing offline preference optimization algorithms,
such as DPO (Rafailov et al., 2023), IPO (Azar et al., 2024)
and SLiC (Zhao et al., 2023). To this end, we propose GPO
(Generalized Preference Optimization), which parameter-
izes preference optimization losses via a family of convex
functions f , with DPO, IPO, and SLiC as special cases (see
Figure 1 for a preview of the instantiations). The central
insight to our derivation is that one can interpret the prob-
lem of reward modeling as a supervised binary classification
problem (Hastie et al., 2009). The rich literature on super-
vised binary classification paves the way to unifying existing
offline preference optimization algorithms, and naturally in-
troduces new algorithms not yet in the current literature.
The GPO formulation also helps better understand the al-
gorithmic trade-offs between different variants, particularly,
the strength of regularization, which we further dive into.

With a unifying view over offline preference optimization
algorithms, our second contribution is to dive into the regu-
larization mechanism induced by offline losses. We see that
the tail behavior of the convex function f , governs the effec-
tive strength of regularization induced between πθ and πref,
which offers insight on the choice of hyper-parameters such
as β. We identify the offline regularization, computed based
on the offline dataset, and show how it generally differs
from the KL divergence intended in the initial formulation.
Our analysis and empirical results hint at some challenges to
enforcing the KL divergence constraints with offline losses,
revealing some of the subtleties of the ‘equivalence’ argu-
ments adopted in prior work to derive offline losses (see also
Theorem 1 for a more general version of the equivalence
argument).

The paper is organized as follows:

• In Section 2, we present GPO, generalized policy op-
timization, which parameterizes offline preference op-
timization algorithms through a convex function. This
recovers a few popular algorithms as special cases and
offers insights to offline alignment algorithms in general.

• In Section 3, we expand on the derivation of reward
modeling as a binary classification problem. Our insight
allows for connecting a rich literature on supervised
classification to the designs of offline alignment, which
paves the way to the GPO formulation.

• In Section 4, we dive into how offline preference opti-

mization induces regularization between πθ and πref dur-
ing optimization. We identify an offline regularization
loss, the effective regularization that offline algorithms
enforce, and show how it differs from the KL divergence
through analysis and experimental study. We also show
how the design of f introduces different strength of reg-
ularization, and how hyper-parameters should be chosen
adaptive to f .

• In Section 5, we start with a controlled setting akin to
Gao et al. (2023) and show the regularization vs. perfor-
mance trade-off for different GPO variants. By varying
β and learning stages during training, the policy per-
formance initially increases followed by decrease, as
predicted by the Goodhart’s law. We observe similar
trade-offs across different GPO variants, though the best
hyper-parameter can differ significantly due to different
inherent strengths of the regularization, as suggested by
theory. In a LLM summarization task, we also confirm
similar performance across different GPO variants (up
to tuning in β).

2. A general family of offline preference
optimization losses

In the case of language model alignment, we optimize a
policy πθ that outputs response y ∼ πθ(·|x) given prompt x.
Given two responses y, y′ ∈ Y , a human rater provides
feedback by picking out the preferred response. This allows
relabeling the two responses as (yw, yl) corresponding to
the win-loss responses. Such pairwise preference data is
usually collected offline and can come from a variety of
sources in practice, which we denote as a behavior policy
µ. Henceforth, when the context is clear we remove the
dependency on the prompt x for simplicity.

Importantly, we do not make any assumption on the pref-
erence structure p(y ≻ y′), e.g., it may not come from a
Bradley-Terry (BT) model (Bradley and Terry, 1952), a com-
mon assumption made in prior work (Rafailov et al., 2023).
Below, we unify ways to derive various existing offline
preference optimization losses for learning from pairwise
human feedback.

2.1. A recipe to derive preference optimization losses

Assuming access to a reward function rϕ, the regularized
policy optimization objective (Ouyang et al., 2022) is

max
πθ

Ey∼πθ
[rϕ(y)]− βKL (πθ, πref) . (1)

To be clear about the KL definition, we have for any two
distributions π, π′: KL (π, π′) := Ey∼π

[
log π(y)

π′(y)

]
. The

solution to the regularized objective above can be written
analytically as π∗

θ(y) ∝ πref(y) exp
(
β−1rϕ(y)

)
.
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Given a pair of responses (yw, yl), we can train the reward
model rϕ through supervised learning. A convenient class
of loss function is defined through the difference rϕ(yw)−
rϕ(yl): we can think of rϕ(yw)− rϕ(yl) as predicting how
likely yw is preferred to yl. From the discussion above,
we see that this difference is equivalent to the log ratio
difference of the optimal policy to Eqn (1)

rϕ(yw)− rϕ(yl) = β

(
log

π∗
θ(yw)

πref(yw)
− log

π∗
θ(yl)

πref(yl)

)
.

(2)

Hence intuitively, any loss defined through the reward dif-
ference rϕ(yw)− rϕ(yl) can introduce a loss over πθ.

A central insight of this work is framing reward learning as
a supervised binary classification problem. We leave a more
detailed derivation to Section 3, which provides additional
insights. Letting f : R→ R be a scalar function, in general
the reward learning loss (to be minimized) can be written as

E(yw,yl)∼µ [f (rϕ(yw)− rϕ(yl))] . (3)

Before moving on, note that the difference rϕ(yw)− rϕ(yl)
is reminiscent of the BT model assumption. However, we
argue that it is more sensible to relate this parametric form
to the fact that the RLHF formulation (Eqn 1) is a maximiza-
tion problem, and hence imply that each response can be
characterized as a single scalar rϕ(y). We provide a more
detailed discussion in Section 3.

Many existing offline preference optimization losses can be
cast in this general form by replacing the reward difference
by the log ratio difference,

E(yw,yl)∼µ

[
f

(
β ·

(
log

πθ(yw)

πref(yw)
− log

πθ(yl)

πref(yl)

))]
.

(4)

Henceforth, we denote the log ratio difference as ρθ :=

log πθ(yw)
πref(yw) − log πθ(yl)

πref(yl)
and the above loss can be rewritten

as E(yw,yl)∼µ [f (βρθ)]. A general recipe to derive offline
preference optimization losses is to start with a supervised
learning loss function f for reward learning, and replace
the reward difference by ρθ (see, e.g., Hastie et al., 2009
for a nice overview of such loss functions). We can identify
the specific functions f for the most common choices; see
illustrations of the losses in Figure 1 with β = 1.

• DPO: f(βρθ) = − log σ(βρθ) with σ being the sigmoid
function, applies the logistic loss (Hastie et al., 2009).
The loss can also be written as log(1 + exp(−βρθ)).

• IPO: f(βρθ) = (βρθ − 1)
2, the squared function

(Rosasco et al., 2004), can be understood as applying
linear regression to the probability that yw is preferred
(Hastie et al., 2009).
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Figure 2. Illustration of notable examples of binary classification
loss functions, including both examples (logistic, squared and
hinge) that have led to existing offline preference optimization
algorithms, as well as others (exponential, truncated squared, Sav-
age) that produce novel losses.

• SLiC: f(βρθ) = max(0, 1 − βρθ) is the hinge loss
function, stemming from the max-margin (support vec-
tor machine) paradigm (Boser et al., 1992; Cortes and
Vapnik, 1995). The original SliC algorithm (Zhao et al.,
2023) also includes a supervised learning component,
which we do not discuss here.

2.2. GPO: A generalized family of offline preference
optimization algorithms

Building on the discussion above, in general, any prop-
erly defined supervised learning loss f for reward model-
ing can translate into a preference optimization objective
E(yw,yl)∼µ [f(βρθ)]. We provide a table of a few notable
supervised learning losses developed in the decades-old
literature, each loss mapping into an offline preference opti-
mization algorithm.

As discussed above, some of them have already translated
into existing methods. We note a few examples without
offline preference optimization counterparts:

• Exponential loss: f(βρθ) = exp(−βρθ), the loss func-
tion for the AdaBoost algorithm (Freund and Schapire,
1995).

• Truncated quadratic: f(βρθ) = (max (0, 1− βρθ))
2

(Bartlett et al., 2006), a truncated variant of the squared
loss, is also a smooth approximation to the hinge loss.

• Savage loss: f(βρθ) = 1/ (1 + exp(βρθ))
2 (Masnadi-
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Table 1. Side-by-side correspondence between existing offline preference optimization losses and convex supervised learning losses.
Among a rich variety of convex supervised learning losses developed in the literature, logistic log loss (Hastie et al., 2009), hinge loss
(Cortes and Vapnik, 1995) and squared loss (Rosasco et al., 2004) have offline preference optimization algorithmic counterparts. Other
notable losses, such as the exponential loss (Freund and Schapire, 1995), truncated quadratic loss (Bartlett et al., 2006) and Savage loss
(Masnadi-Shirazi and Vasconcelos, 2008) can form novel offline preference optimization algorithms.

SUPERVISED LEARNING LOSSES f(βρθ) OFFLINE PREFERENCE OPTIMIZATION

LOGISTIC LOG LOSS log (1 + exp(−βρθ)) DPO (RAFAILOV ET AL., 2023)
HINGE LOSS max (0, 1− βρθ) SLIC (ZHAO ET AL., 2023)
SQUARED LOSS (βρθ − 1)2 IPO (AZAR ET AL., 2024)
EXPONENTIAL LOSS exp(−βρθ) N/A
TRUNCATED QUADRATIC LOSS (max(0, 1− βρθ))

2 N/A
SAVAGE LOSS 1/(1 + exp(βρθ))

2 N/A

Shirazi and Vasconcelos, 2008) which have proved ro-
bust to outliers in data and found applications in boosting
algorithms.

Rosasco et al. (2004); Bartlett et al. (2006) give a more
exhaustive list of convex supervised learning losses and
their discussions.

A key motivating argument for the offline preference opti-
mization algorithms (Rafailov et al., 2023; Azar et al., 2024;
Zhao et al., 2023) is that minimizing the offline losses for
the policy πθ is equivalent to obtaining the optimal regular-
ized policy against a loss minimizing reward model. We
can extend the conclusion to this general family of offline
preference optimization algorithms.
Theorem 1. (Equivalence of optimal solutions) Let π∗

θ be
the global minimizer of the offline preference optimization
loss in Eqn (4). π∗

θ is the same as the optimal regularized
policy (according to Eqn (1)) for a reward function that
globally minimizes the loss Eqn (3).

3. Reward modeling viewed as a binary
classification problem

Here, we take a step back and dive into the derivation that
converts reward modeling into a supervised binary classi-
fication problem. We provide a brief background on the
basic setup, and how it relates to reward modeling (see, e.g.,
Hastie et al., 2009 for a more comprehensive introduction).

In binary classification, given a pair of feature and label
(z, l) with z ∈ Rk and l ∈ {−1, 1}, the aim is to predict
ℓ̂(z) ∈ R as a function of the feature, and use sign

(
ℓ̂(z)

)
as the classifier, in the hope that it can match the ground
truth label y. The classification accuracy can be written
as 1

2E
[
sign

(
ℓ̂(z) · l

)]
+ 1

2 ∈ [0, 1] and an equivalent loss
function is

E
[
1− sign

(
ℓ̂(z) · ℓ

)]
. (5)

The above loss, known as the 0-1 loss (see the dotted dark

curve in Figure 1) is non-convex. Instead of directly opti-
mizing it, we can take smooth convex functions f : R→ R
and approximate the loss as

E
[
f
(
ℓ̂(z) · ℓ

)]
.

Taking this back to the case of reward modeling, given a
pair of responses (y1, y2), we construct a sample for binary
classification by setting the label ℓ = 1 if y1 ≻ y2 and
ℓ = −1 otherwise.

Thinking of (y1, y2) as the feature from which to make
prediction, in general the prediction would be a bi-variate
function ℓ̂(y1, y2) that can depend on both y1 and y2 in an
arbitrary form. For a pointwise reward model that depends
on a single response rϕ : Y → R, an intuitive parame-
terization would be to take the difference of two rewards
ℓ̂(y1, y2) = rϕ(y1) − rϕ(y2). The corresponding binary
classification loss is

Ey1∼µ,y2∼µ [I [y1 ≻ y2] f (rϕ(y1)− rϕ(y2))]

+ Ey1∼µ,y2∼µ [I [y2 ≻ y1] f (rϕ(y2)− rϕ(y1))] .

Equivalently, we can write the loss as in Eqn (3)

E(yw,yl)∼µ [f (rϕ(yw)− rϕ(yl))] .

The above result offers a number of interesting implications,
which we expand on in the next section.

3.1. Characterizing what the reward model learns

Drawing inspiration from the supervised learning literature,
we can reason about properties of the reward models ob-
tained by minimizing the convex loss function f . This can
translate into effects on the downstream optimized policies
due to the equivalence in Eqn (2). Some discussions are in
order below.

The Bradley-Terry assumption and analytic forms of
reward models. As alluded to earlier, the design of the
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reward modeling loss as a function of the reward difference
rϕ(yw) − rϕ(yl) should be interpreted as a result of the
reward maximization formulation of RLHF. Implicitly, the
maximization formulation assumes that there is a total order
on all the responses (i.e., they can be ranked in a monotonic
order), which intuitively is captured by the BT assumption
to a large extent. Meanwhile when there is no total order,
the formulation Eqn (1) would not be perfect, and one might
need to resort to alternative solution concepts such as Nash
equilibrium (Munos et al., 2024; Swamy et al., 2024).

In general, one should train a pairwise preference model
ℓ̂(y1, y2) = rϕ(y1, y2) rather than pointwise reward mod-
els, for which there could be characterizations on the prop-
erties of the learned model that we discuss below. For
pointwise models the analytic forms are only available in
a few special cases drawn from prior work. We discuss
two notable examples: (1) the logistic loss, under the as-
sumption that the ground truth preference satisfies a BT
model p(y1 ≻ y2) = σ (r∗(y1)− r∗(y2)), then the opti-
mal reward obtained by minimizing Eqn (3) is a constant
shift from r∗ (Rafailov et al., 2023); (2) for the squared
loss, where the optimal reward is a constant away from
p(y ≻ µ) = Ey′∼µ [p(y ≻ y′)] without further assumptions
on the ground truth preference. For interested readers, note
that the discussion here also provides an alternative way to
derive the IPO algorithm distinct from the original deriva-
tion in Azar et al. (2024).

A case study of logistic loss vs. hinge loss. Consider-
ing the special case when the preferred and non-preferred
samples are separable, the hinge loss will find the optimal
separating hyperplane that maximizes the margin between
the two sets of samples. Drawing inspiration from the classic
comparison between logistic regression and support vector
machines (Hastie et al., 2009), we note that the logistic
loss will find a similar decision boundary (i.e., sign of the
prediction), but it will try to increase the magnitude of the
prediction ℓ̂(yw, yl) to infinity. Such behavior is alluded to
in the IPO work (Azar et al., 2024) as a failure case of DPO.
In general, convex loss functions with a fast-decaying tail
(e.g., hinge loss for SLiC) or upwards tail (e.g., squared loss
for IPO) will alleviate such issues. In Section 4, we will
illustrate such insights in combination with policy optimiza-
tion.

General requirement on the convex function f . Not
all convex functions f can lead to valid loss functions for
binary classification. For our study, we further assume
f ′(0) < 0, i.e., f locally decreases at ρθ = 0. This means
that the minimizer of f is obtained at some ρθ > 0, and in-
tuitively would push the reward difference rϕ(yw)− rϕ(yl)
in the right direction. Intriguingly, this condition is related
to Bayes consistency (Rosasco et al., 2004; Bartlett et al.,

2006), i.e., under which condition can the prediction func-
tion ℓ̂(y1, y2) recover the same sign as the preference prob-
ability sign (2p(y1 ≻ y2)− 1). We provide discussions for
interested readers in Appendix C.

4. Understanding regularization in offline
preference optimization

In this section, we seek to gain a better understanding of the
regularization implicitly enforced by the offline preference
optimization algorithms.

Though in general it is challenging to characterize the full
learning dynamics of the offline algorithms, we provide
analysis from a few angles, which might shed light on how
the regularization works. Recall that in the RLHF formu-
lation (Eqn 1), the KL regularization is a key element; we
will see its connections to the offline regularization.

4.1. How do offline losses enforce regularization

As hinted at before, henceforth will we consider the class of
convex loss functions that are locally decreasing at ρθ = 0,
i.e., f ′(0) < 0. All the examples in Table 1 satisfy this
property.

To shed light on how such loss functions entail preference
optimization while enforcing regularizers, we consider the
Taylor expansion around ρθ = 0, which is a valid approx-
imation when ρθ is small, i.e., πθ does not deviate much
from πref.

E(yw,yl)∼µ [f(βρθ)]︸ ︷︷ ︸
offline loss

≈ f(0) + f ′(0)β · E(yw,yl)∼µ [ρθ]︸ ︷︷ ︸
preference optimization

+
f ′′(0)β2

2
· E(yw,yl)∼µ

[
ρ2θ
]

︸ ︷︷ ︸
offline regularization

,

The expansion implies that when the approximation is valid,
the offline algorithms all resemble the case where f is the
squared loss (i.e., the IPO loss (Azar et al., 2024)). We
provide more discussion in Appendix B. Minimizing the
Taylor-expanded objective achieves two purposes: prefer-
ence optimization and regularization towards the reference
policy. Indeed, minimizing the first-order term

f ′(0)β · E(yw,yl)∼µ[ρθ]

encourages πθ to place more weight on the preferred re-
sponse yw over yl, hence maximizing pairwise human pref-
erence.

To see the effect of the regularization, when f ′′(0) > 0
observe that the second-order term

f ′′(0)β2 · E(yw,yl)∼µ

[
1

2
ρ2θ

]
(6)
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is minimized at ρθ = 0, in which case πθ(y) = πref(y) for
all y in the support of µ. In general, this loss will encourage
πθ to stay close to πref. We call the above µ-weighted
squared loss. Importantly, the global minimizer of the
KL divergence between πθ and πref is also a minimizer of
the µ-weighted squared loss (i.e., both minimized when
πθ = πref).

When the approximation is valid, the GPO problem with
a regularizer β is corresponds to the IPO problem with
regularizer |f ′′(0)/f ′(0)| · β, and this quantity determines
the relative strength of the regularization. The coefficient
|f ′′(0)/f ′(0)| interestingly relates to how convex loss func-
tions are theoretically built-in to be regularized for better
generalization (Masnadi-Shirazi and Vasconcelos, 2015).
This may inform the design of offline preference optimiza-
tion algorithms with another theoretical perspective.

Intuition about the full gradient update. The Taylor
expansion is only valid near ρθ = 0 and except for the
special case of squared loss (IPO), drops higher order terms.
For example, the expansion does not work natively for SLiC,
which employs a non-smooth convex function. Though
understanding the full learning dynamics is challenging,
we can provide some intuitions about how the full gradient
update enforces πθ to stay close to πref: consider the gradient
update for when β = 1,

θ ← θ − E(yw,yl)∼µ [f
′(ρθ)∇θρθ] . (7)

Starting from 0, suppose ρθ takes a very high value. This
means potentially πθ places many more weights on certain
responses than πref, which is what the KL divergence regu-
larization seeks to prevent. For the offline update, since f
is convex, a few cases are possible: case I: f ′(ρθ) < 0 (for
logistic, exponential and Savage loss), ρθ will continue to
increase but with a vanishing gradient; hence the regular-
ization is still in place. Meanwhile for case II: f ′(ρθ) ≤ 0
(for hinge, smoothed quadratic and squared loss), ρθ will
stop updating or be pushed downwards. As a result, in case
II the gradient update explicitly does not allow πθ(y) to
deviate from πref(y) for individual responses y, effectively
enforcing a stronger regularization with a fixed value of β.

In Figure 5 in Appendix A, we illustrate the effect of strong
regularization using the 3-action bandit example presented
in Azar et al. (2024), where a simple offline dataset with
three pairs of examples are used for training softmax pa-
rameterized policies: (y1, y2), (y2, y3), (y1, y3). Examples
are uniformly sampled from the distribution. Since y1 is
the strongest response, we expect the algorithms to assign
high weights to πθ(y1), causing deviation from πref which is
uniform. The example is meant to illustrate the undesirable
behavior of DPO, which tends to push up the probability of
y1, despite the intended regularization. See Appendix A for
more details on the setup.

We generalize their observations by noting that for any given
values of β, case I losses will keep pushing up the probabil-
ity of a winning action y1, whereas case II losses enforce the
constraint much more conservatively, preventing determin-
istic policies. In practice where preferences over responses
are almost never deterministic, we will see that case I losses
are also reasonably well behaved.

Choosing the right value for β. If we understand the tail
behavior of the convex function as determining the natural
regularization strength of the offline algorithm, the hyper-
parameter β needs to chosen accordingly, if one desires a
fixed level of regularization. For example, the logistic loss
(i.e., DPO) requires a higher value of β to enforce the same
level of regularization as the squared loss (i.e., IPO) and the
hinge loss (i.e., SLiC), as also exemplified in Figure 5.

4.2. Offline regularization vs. KL regularization

Henceforth we will resort back to the offline regulariza-
tion: µ-weighted squared loss, and understand its difference
against the KL divergence regularization. We start with the
gradient of the µ-weighted squared loss

Ey∼µ

[
∇θ

1

2
ρ2θ

]
which seeks to decrease the squared error that measures the
discrepancy between πθ and πref, at samples generated by
µ. For the KL divergence, we can show that its gradient is
equivalent to the µ-weighted squared loss with µ = πθ

∇θKL(πθ, πref) = Ey∼πθ

[
∇θ

1

2
ρ2θ

]
. (8)

In other words, we can understand the gradient to the KL
divergence as minimizing the discrepancy with on-policy
samples under πθ, rather than offline samples from µ. We
detail the derivation in Appendix B; note a highly similar
result was also derived in (Richter et al., 2020).

In summary, both losses enforce the squared penalty on sam-
ples from µ vs. online samples from πθ. We can envision
cases when the µ-weighted squared loss is being minimized,
the KL divergence might not decrease as desired. We detail
a mixture of Gaussian toy counterexample in Appendix A.

This example is meant to illustrate that the arguments used
in prior work on offline preference optimization (Rafailov
et al., 2023), which heavily rely on the global minimization
of objectives, may not always be true in practice: locally
minimizing the µ-weighted squared loss might not lead to
decrease in the KL divergence. However, the silver lining
is that near πθ = πref, the two losses are highly correlated;
we will validate the observations on such a low-dimensional
example with a language modeling study.

6



Generalized Preference Optimization: A Unified Approach to Offline Alignment

0.5 0.0 0.5 1.0 1.5 2.0 2.5
log ( , ref)

3

2

1

0

1

2

3

4

lo
gE

y
[1 2

2 ]

= 0.001
= 0.01
= 0.1
= 0.5
= 1.0
= 5.0
= 10.0
= 100.0

1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6
log ( , ref)

1.0

0.5

0.0

0.5

1.0

1.5

2.0
Logistic
Square
Hinge
Exponential
Truncated quadratic
Savage

Figure 3. Tracing out KL divergence vs. µ-weighted squared loss during offline preference optimization. (Left) With f being the
squared function, we show the trajectories for a range of βs. Importantly, the initial data point for which πθ = πref is dropped for
better visualization, see Appendix A for the complete plot. Note that as β increases, the algorithm maintains a better constraint on the
µ-weighted squared loss, which also induces a constraint on the KL divergence. (Right) We pool over different βs and show trajectories
for different GPO variants. See Appendix A for individual plots for each variant. Overall, all algorithmic variants enjoy similar constraint
properties, with most variants being slightly more stable than the logistic variant.

4.3. Analyzing a language modeling example

In the case of language modeling, where πθ, πref, µ are se-
quential categorical distributions, we measure the correla-
tion between the KL divergence KL (πθ, πref) and the µ-
weighted squared loss Ey∼µ

[
1
2ρ

2
θ

]
during offline training.

We consider the summarization task similar to (Roit et al.,
2023), where the offline dataset is an open source summa-
rization dataset collected with human feedback labels (Sti-
ennon et al., 2020). We give more details in Appendix A.

For each experiment, we choose a fixed value of regular-
ization β. Then, we initialize πθ from πref and minimize
the offline preference losses over the dataset. As the train-
ing progresses, we record sample-based estimates of the
KL divergence and µ-weighted squared loss over time, and
trace them out in Figure 3 left plot for when f is a squared
function. We show both loss functions in the log scale.

Importantly, we have dropped from the plot the initial data
point for which πθ = πref and both losses are zero, otherwise
the whole plot will look unbalanced (since log 0 ≈ − inf).
See the full plot in Appendix A. We make a few comments
regarding the current plot.

Correlation between the two losses. There appears to
be two phases in Figure 3 left plot. When β is large, and
when the µ-weighted squared loss is maintained at a lower
level, we see a better correlation between the two losses.
Meanwhile, when β is small and the µ-weighted squared

loss grows quickly during optimization, its correlation with
KL divergence becomes more elusive (see purple and blue
data points on the left plot). Such observations echo the
mixture of Gaussian examples, where in the vicinity of πθ =
πref, the two losses have similar trends; the misalignment
happens when we deviate too much from the origin.

Though the correlation between the two losses seem to break
when πθ is too far away from πref, the silver lining is that for
offline algorithms, the optimization always starts with the
origin πθ = πref, and one may expect a better control over
the KL divergence through the µ-weighted squared loss.

More variations in KL compared to µ-weighted loss.
For Figure 3 left plot, in the regime where the KL divergence
and µ-weighted squared loss are better correlated (areas
inside the grey bounding box), we see an order of magnitude
more drastic variations in the KL divergence (10−0.5 →
101.5) than the µ-weighted squared loss (10−1.5 → 100.5).

This hints at the challenge of maintaining the KL divergence
constraint by controlling the µ-weighted squared loss. In-
deed, since the offline preference optimization algorithms
directly optimize for the µ-weighted squared loss in the
vicinity of the origin πθ = πref, even small changes in the
µ-weighted squared loss can induce much bigger changes
in the KL divergence. This might become a source of insta-
bility during optimization. However, the degree to which
such instability can be mitigated by other hyper-parameter
choices such as learning rate, might vary case-by-case.
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Comparison across different GPO variants. In Figure 3
right plot we compare the constraint contours across dif-
ferent GPO variants listed in Table 1. For each variant we
sweep the βs but for visualization we pool across results
from all βs, see Appendix A for individual plots.

Overall, different variants follow a similar pattern, with most
variants being slightly more robust compared to the logistic
loss, which seems to induce slightly bigger variations in the
KL divergence compared to other alternatives.

5. Empirical study of GPO variants
We now carry out a set of experimental comparison between
different GPO algorithms, and to study their empirical be-
havior and validate theoretical insights.

5.1. Trade-offs between KL divergence and
performance

As the offline alignment optimization progresses, the policy
πθ starts to drift away from the initial anchor policy πsft.
When measured in terms of the ground truth performance,
there is a trade-off between model performance and KL
divergence from the initialization. We adopt a synthetic
setting similar to (Gao et al., 2023) to study this trade-off.

Concretely, we take the summarization task introduced
above and train a XXL model (11 billion parameters) as
the golden preference model, using similar training setting
as Munos et al. (2024). This preference model will be used
as the golden judgement. Since the preference model carries
out side by side comparison, we also train a golden policy
as the fixed baseline to compare against. We provide more
technical details in Appendix A. For each fixed convex loss
function, we sweep over values of the regularization coeffi-
cient β. For each β, we train the model for 2 ·104 steps with
a constant learning rate (10−5 and 3 · 10−5). We evaluate
checkpoints every 2k steps for a total of 20k training steps.

In Figure 4 (left), we trace the performance of trained check-
points over time, plotting their golden evaluation perfor-
mance against the golden policy. Each dot corresponds to a
checkpoint evaluation, for a particular value of β, learning
rate and convex function loss. We group the results by the
convex function loss. A few observations are in order: (1)
We observe the over-optimization effect compatible with
Goodhart’s law Gao et al. (2023), wherein as the KL di-
vergence increases, the golden performance evaluation first
increases and then decreases as a result of over-optimization.
The key difference is that (Gao et al., 2023) is for online
RLHF, while our case is offline optimization; (2) For differ-
ent loss functions, the overall trade-off curves look similar.
Concretely, the peak performance is similar and is obtained
at a similar level of KL divergence. This suggests that for
any choice of the convex loss function, a choice of β and

training step can lead to a specified level of performance.

In Figure 4 (right), we break down the trade-off curve with
respect to the regularization coefficient β. We show the
case for the logistic loss, though other losses have a similar
breakdown (see Appendix A for full results). For each β
(with a unique color), different data points correspond to dif-
ferent stage of training for the same experiment and hence
tracing out a trend of KL divergence vs. win rate. We make
a few observations: (1) Data points seem to piece together
seamlessly at the soft boundaries between βs, this means
given a fixed value of β, one can probably obtain a speci-
fied level of KL divergence and win rate performance, by
training the policy for a certain number of steps. However,
different βs are not equal: in the case of logistic loss, β ∼ 1
seems to obtain the best overall performance across training,
while β = 0.01 can easily train the policy to have large KL
divergence, resulting in degraded performance; meanwhile,
β = 100 puts a larger constrain the policy near πsft, making
it difficult to obtain the best performance across training.

Impact of β. We now closely investigate the impact that
β has on the performance and KL regularization dynamics
of various GPO variants. Figure 7 (left) shows the peak
performance of various algorithms as a function of β. As
seen from the plot, the peak performance of squared and
truncated squared loss is obtained at generally lower β ∼ 1,
whereas the peak performance for other variants are ob-
tained at higher β ∼ 10. There is some variations of the
peak win rate (e.g., exponential seems to be slightly better
than others) but this might not be statistically significant.

While the observation suggests the fact that different algo-
rithms require different values of βs to perform the best,
it can be explained by the fact that different loss functions
induce distinct strengths of regularization as a function of
β, as predicted by theory. In Figure 7 (right) we show the
median KL divergence during training as a function of β,
for different convex loss functions. When β is small and
regularization is weak, there is little distinction between
different variants. This is compatible with the results in Fig-
ure 3: the offline algorithm enforces regularization through
the weighted squared loss, and its correlation with KL di-
vergence is weak when the regularization is small. At large
values of βs, the correlation between offline regularization
and KL divergence is much stronger. And indeed, we see
squared and truncated squared loss enforce stronger reg-
ularization than other variants, with logistic, exponential
and Savage being in the same league and hinge loss in the
middle.

5.2. Model-based side by side evaluation

The synthetic setting has provided many insights into the
trade-offs between regularization and policy performance,
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Figure 4. Left: Tracing KL divergence vs. golden win rate performance for different GPO variants. Each data point corresponds to a
policy obtained during training with a particular value of β and convex function loss. For each loss variant, we pool data points across βs
and different stages of training. Overall, the trade-off curves of GPO variants look similar. Right: Tracing the trade-off for the logistic loss
(DPO), grouped according to the regularization coefficient β. As β increases, the regularization effect is larger and during training, and
the policies tend to have smaller KL divergence against πsft.

and how they are modulated by choices of β and convex
loss functions. We now carry out a final set of experiments
on the summarization task, using settings described in prior
work (Munos et al., 2024; Calandriello et al., 2024).

We consider the side-by-side comparison metric used by
Munos et al. (2024), where we compare the checkpoint per-
formance against a fixed opponent πref. The comparison is
made by a prompted PaLM-2 model (Anil et al., 2023) over
an evaluation set of 2000 summary samples. The prompted
model judges which response is of higher quality. See Ap-
pendix A for evaluation details.

Examining the performance across βs, we see that when β
is small, the optimization tends to be more effective, achiev-
ing the best performance at about β ∈ [0.1, 1] across the
board, with similar peak performance. The performance
experiences a bigger drop when β becomes large. When
making pairwise comparison across different GPO variants,
we see that their performance is generally on par with one
another; choosing the right β appears more critical. Due to
space limits, we present these comparisons in Appendix A.

6. Discussions and conclusion
We have presented GPO, a generalized approach to deriving
offline preference optimization losses for LLM alignment.
GPO presents a continuous spectrum of loss functions, en-
compassing DPO, IPO and SLiC as special instances. By
deriving GPO through the rich literature on binary classi-

fication, we have presented a more unified way to reason
about the strength of regularization and what the optimized
policy seeks to capture.

We have shown the connections between the offline reg-
ularization and the KL regularization, which the RLHF
formulation seeks to enforce. The two types of regulariza-
tion are different in general. However, optimizing from the
origin, we see empirical evidence that the two losses are
correlated, alluding to the fact that enforcing KL divergence
through offline optimization is possible though maybe more
challenging.

We have also showed the regularization vs. performance
trade-off between different GPO variants. Overall, the reg-
ularization vs. performance trade-off is similar for differ-
ent algorithms. As predicted by theory, different convex
loss variants induce inherently distinct strengths for regu-
larization, which impacts the optimal value of β for each
algorithm (i.e., squared loss needs a smaller β than logistic).

Our results have a number of limitations and provide av-
enues for future work. Our framework is based on the
reward maximization formulation of RLHF, and hence still
encounters theoretical issues when the ground truth prefer-
ence structure is complex. A future direction would be to
connect GPO with alternative solution concepts for align-
ment such as Nash equilibrium (Munos et al., 2024). Our
framework also only deals with offline losses with a con-
trastive form, and does not handle supervised learning based
losses (Zhao et al., 2023).
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Impact statement This paper presents work whose goal
is to advance the field of Machine Learning. There are many
potential societal consequences of our work, none which we
feel must be specifically highlighted here.
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A. Experiment details and additional results
We provide further details and additional results on experiments across the paper.

A.1. Bandit experiment

To illustrate the regularization properties of various GPO variants, we have employed the bandit experiment introduced in
(Azar et al., 2024). We consider a 3-action bandit problem where the dataset consists of three possibilities

(y1, y2), (y2, y3), (y1, y3).

Sampling from the offline dataset consists in uniformly sampling from the pairs. We then train softmax parameterized
policies with exactly the same setup as (Azar et al., 2024). Note that with logistic, exponential and Savage loss, because the
tail does not vanish fast enough, the policy converges to the greedy action y1 even with regularization at β = 1. While for
the other three losses, thanks to stronger regularization, πθ(y1) maintains closer distance to πref(y1).

Full empirical results are presented in Figure 5.

A.2. A mixture of Gaussian counterexample

We find the counterexample by parameterizing all related distributions as mixtures of Gaussians with 3 modes. It is not
difficult to construct numerical counterexamples as shown in the paper, with ≤ 5 simulations.

The offline distribution µ is parameterized as µ = 1
3N (u1, 0.05

2) + 1
3N (u2, 0.05

2) + 1
3N (u3, 0.05

2) where u1, u2, u3 are
i.i.d. uniform between−1 and 1. The reference policy is fixed as πref =

3
10N (−0.8, 0.12)+ 4

10N (0, 0.12)+ 3
10N (0.8, 0.12).

The optimized policy πθ is a constant shift away from πref. The particular choice of the parameters are fairly ad-hoc and
other choices of hyper-parameters should lead to clear counterexamples as well. Since for mixtures of Gaussians, both the
KL divergence and the µ-weighted squared loss do not yield analytic forms. Instead, we draw 2000 samples to estimate
both losses as unbiased estimates.

Figure 6 (left) shows the probability density functions of the toy distributions πref and µ. In Figure 6 (right), we show the
KL divergence and the µ-weighted squared loss, both in log scales, as a function of c ∈ [−1, 1]. The squared loss has a few
minima, with some of them being remote from c = 0. This means gradient descent on the squared loss may not lead to
smaller KL in general, though they are both globally minimized at πθ = πref for c = 0. See Appendix A for the plot of the
pdfs of µ and π.

A.3. Language modeling experiments

We consider the summarization task similar to (Roit et al., 2023), where the offline dataset is an open source summarization
dataset collected with human feedback labels (Stiennon et al., 2020). The base model is T5X (Roberts et al., 2023), a
family of LLMs based on encoder-decoder transformer architecture. Throughout, we train large-sized models with 700M
parameters. During training, we apply a constant learning rate of 10−5 with batch size b = 32. We use the Adafactor
optimizer (Shazeer and Stern, 2018) with a decay rate of 0.8. Each model is trained for 2× 105 steps in total.

The evaluation follows from (Munos et al., 2024) where they consider the side-by-side comparison metric between two
models. A default baseline model is the supervised fine-tuned baseline πref. The comparison is made by a prompted PaLM-2
model (Anil et al., 2023), where the model judges which response is of higher quality. The evaluation set consists of 2000
examples, each containing a paragraph to summarize. The prompted model is given the paragraph, as well as the two
summaries generated by the two compared models, to deliver a final verdict.

Tracing KL divergence and µ-weighted squared loss. For each experiment (with a fixed convex function f and fixed β),
we evaluate intermittently the µ-weighted squared loss on the learner and the KL divergence on the evaluator. The evaluator
is carried out every 2000 steps where we train for a total of 20000 steps. We also evaluate every 200 steps for the first 2000
steps since the initial stage during training presents the most salient changes in the µ-weighted squared losses.

The tracing plot for individual GPO variant is shown in Figure 9 for better visualization.
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Figure 5. Bandit example (Azar et al., 2024) to illustrate the regularization effect of different GPO variants. Convex loss functions with a
fast decaying tail or upwards tail (hinge, truncated quadratic and squared loss) will penalize response-level deviations from πθ to πref,
effectively enforcing a stronger regularization. Other convex losses we exhibit here generally have a slower decaying tail, and will more
likely converge to deterministic policies in pathological cases (e.g., deterministic preference).

A.4. Trade-off between performance and KL divergence

All experiments are carried out with T5X models (Raffel et al., 2020) with the T5X data and compute framework (Roberts
et al., 2023). To create a synthetic setup similar to Gao et al. (2023), we take the summarization dataset and train a golden
preference model with the XXL model (11 billion parameters). Then we use the XXL model to relabel the offline dataset,
and all offline experiments going forward are carried out with this relabeled dataset.

Since the preference model requires side by side comparison, we also train a golden policy using online IPO (Calandriello
et al., 2024) using the golden preference model. This policy is denoted golden because it makes use of the golden preference
model during training, and should arguably obtain the best possible performance over time. We use this policy as the
reference policy during evaluation.

All policies are trained with the Large T5X model (110 million parameters) using offline preference optimization variants
outlined in the paper.

Full results on the breakdown of KL divergence vs. win rate. Figure 8 shows the win rate performance and KL
divergence trade-off curves across different algorithmic variants of GPO. For each algorithmic variant, the data points
are grouped by the regularization coefficient β. Overall, different algorithmic variants exhibit trade-off pattern and their
dependency on β is similar too.

It is worth noting that compatible with results reported in Figure 7, all algorithmic variants achieve the peak performance at
the same value of KL divergence but with a different value of β. This is the result of the fact that different loss functions
have different natural strength of regularization.

Side by side evaluation. We subsample 256 prompts from the training set and generate responses from both the golden
policy and the target policy to compare against. We then use the preference model to judge the win rate between the two sets
of responses, and average across the subsampled prompt set.

A.5. Model-based side by side evaluation

We now discuss experimental results on the summarization task with model-based side by side evaluation. While previous
study on the KL divergence vs. win rate trade-off is carried out in a synthetic setting, here we train models with the open
sourced summarization dataset (Stiennon et al., 2020) and prompt a PaLM-2 model (Anil et al., 2023) for side by side
evaluation. We adopt identical evaluation setup as in (Munos et al., 2024) and (Calandriello et al., 2024).

Win rate results. In Figure 10, we show the win rate of various algorithmic variants in a side-by-side comparison against
the supervised fine-tuned checkpoint πref. For two identical models, the win rate should be 0.5. We observe that the best
performance is usually obtained at β ∈ [0.1, 1], with similar performance across different fs. Interestingly, when β becomes
too large, the win rate drops more quickly across all methods.
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Figure 7. Left: 90%-th percentile performance during training for different values of βs. We use the 90%-th percentile as an estimate of
the best possible performance under a fixed β. Different GPO variants seem to peak at different values of β: noticeably, squared loss
and truncated squared loss peak at about β = 1 while others mostly peak at slightly larger values β ∼ 10. Right: Median values of KL
divergence during training, as a function of β for different GPO variants. When β is small, different variants have little distinction; when
β is large (strong regularization) and fixed, squared and truncated squared loss tend to incur smaller KL divergence compared to other
variants.
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Figure 8. Tracing the trade-off between performance and KL divergence for the various loss functions. For each loss function, the data
points are grouped according to the regularization coefficient β. We see that different algorithmic variants exhibit similar patterns both in
terms of the general trade-off curves, as well as the dependency of the curves on β.

In Figure 11, we show the side by side comparison across GPO variants. For each variant, we take the checkpoint with
β = 0.1 since this appears to be a value where all algorithms work reasonably, according to the win rate against the
supervised fine-tuned checkpoint. The win rate comparison across GPO variants suggests that they perform mostly similar.

B. Proof and derivations of theoretical results
We provide more detailed proof to a few important theoretical results in the paper.

Theorem 1. (Equivalence of optimal solutions) Let π∗
θ be the global minimizer of the offline preference optimization

loss in Eqn (4). π∗
θ is the same as the optimal regularized policy (according to Eqn (1)) for a reward function that globally

minimizes the loss Eqn (3).

Proof. The proof is straightforward. Indeed, note that if we seek to minimize Eqn (3) with rϕ, we can reparameterize
the reward function as rϕ(y) = β log πθ(y)

πref(y)
+ z with normalizing constant z that depends on πθ. Then if r∗ϕ is the global

minimizer to Eqn (3), the corresponding πθ(y) ∝ πref(y) exp(β
−1r∗ϕ(y)) must be the global minimizer to Eqn (4).

B.1. Derivation of the gradient of KL divergence and µ-weighted squared loss

By definition we have KL (πθ, πref) = Ey∼πθ

[
log πθ(y)

πref(y)

]
, its gradient contains two terms

∇θKL (πθ, πref) = Ey∼πθ

[
log

πθ(y)

πref(y)
∇θ log πθ(y)

]
+ Ey∼πθ

[∇θ log πθ(y)]︸ ︷︷ ︸
=0
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Figure 9. Tracing out KL divergence vs. µ-weighted squared loss during offline preference optimization, for individual GPO variants.
This plot separates the data from Figure 3 for better visualization.

The second term vanishes because it is the expectation of a score function with respect to the distribution itself. Meanwhile,
for the µ-weighted squared loss, we rewrite the original definition as

1

2
E(yw,yl)∼µ

[
ρ2θ
]
=

1

2
E(y1,y2)∼µ

[(
log

πθ(y1)

πref(y1)
− log

πθ(y2)

πref(y2)

)2
]
,

where the equality is based on the fact that the order of (yw, yl) does not impact the expectation. Now, taking the gradient of
the above loss with µ = πθ,

E(y1,y2)∼πθ

[
∇θ

1

2
ρ2θ

]
= E(y1,y2)∼µ

[
1

2

(
log

πθ(y1)

πref(y1)
− log

πθ(y2)

πref(y2)

)
(∇θ log πθ(y1)−∇θ log πθ(y2))

]
,

=(a)
1

2
E(y1,y2)∼πθ

[
log

πθ(y1)

πref(y1)
∇θ log πθ(y1) + log

πθ(y2)

πref(y2)
∇θ log πθ(y2)

]
=(b) Ey∼πθ

[
log

πθ(y)

πref(y)
∇θ log πθ(y)

]
.

Here, (a) follows from the fact the cross term vanishes because y1, y2 are independent; (b) follows from the fact that y1, y2
are identically distributed. This proves the desired equality in Eqn (8).

Relation to results from (Richter et al., 2020). A highly related result has been derived in (Richter et al., 2020), relating
the gradient of the KL divergence to the gradient of the variance of the log ratio. We provide a simple derivation here. Note
that when µ = πθ, the µ-weighted squared loss indeed evaluates to a variance

E(yw,yl)∼µ

[
1

2
ρ2θ

]
= V

[
log

πθ(y)

πref(y)

]
.

To see this note that if Y, Y ′ are i.i.d. samples then 1
2E

[
(Y − Y ′)2

]
= V [Y ].
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Figure 10. Win rate of various GPO methods against the supervised fine-tuned baseline πref, as a function of β. Almost all algorithmic
variants obtain the best performance at β ∈ [0.1, 1], with similar peak performance.

B.2. Discussion on Taylor expansions of the GPO losses

Assume that f is smoothly differentiable and convex, and f ′(0) < 0, then the GPO problem with the second order Taylor
expansion recovers the squared loss with β′ = f ′′(0)β

|f ′(0)| . Note that the squared loss is effectively the IPO loss.

To see this, by the second order Taylor approximation to f around ρθ = 0, we have

E(yw,yl)∼µ [f(βρθ)] ≈ f(0) + f ′(0)β · E(yw,yl)∼µ [ρθ] +
f ′′(0)β2

2
· E(yw,yl)∼µ

[
ρ2θ
]

= f(0) +
f ′(0)2

2f ′′(0)

(
f ′′(0)

|f ′(0)|
βE(yw,yl)∼µ [ρθ]− 1

)2

− f ′(0)2

2f ′′(0)

≡(a) E(yw,yl)∼µ

[(
f ′′(0)β

|f ′(0)|
ρθ − 1

)2
]
,

where for (a) we have rearranged terms and the equivalence is up to constants. Indeed, we see that the Taylor-expanded
GPO loss is equivalent to the IPO loss with β′ as defined above.

C. Discussion on Bayes consistency for the learned reward model
Here we provide a brief background on Bayes consistency. Using the notation from Section 3, we consider binary
classification loss of the following form with a convex function f

E
[
f
(
ℓ̂(z) · ℓ

)]
where l ∈ {−1, 1} is the ground-truth label and ℓ̂(z) is the prediction. The Bayes optimal classifier, which minimizes the 0-1
classification error, depends on the probability p(ℓ = 1|z), which is ℓ̂∗(z) = sign (2p(ℓ = 1|z)− 1). The Bayes consistency
result (Rosasco et al., 2004; Bartlett et al., 2006) state the following.

Theorem 2. (Bayes consistency) Assume f is convex, and continuously differentiable and f ′(0) < 0. Then let ℓ̂(z) be the
global minimizer to the binary classification loss, then sign

(
ℓ̂(z)

)
= ℓ̂∗(z).
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Figure 11. Win rate of various GPO methods against one another. We take all checkpoints at β = 0.1 since this is a value where all
variants have reasonable performance. We show the color coded win rates in a matrix.

We refer readers to Rosasco et al. (2004) for the easy-to-follow proof. The high level idea is to show that at the global
minimizer, assuming p(ℓ = 1|z) > 1/2, we should expect ℓ̂(z) > 0. Intuitively, this should be the case since f ′(0) < 0 and
is convex, so the minimizer should be at the right hand side of the origin.

C.1. Discussion of pairwise preference model

We now discuss properties of the pairwise preference model, where the prediction ℓ̂(y1, y2) is parameterized as a general
bi-variate function ℓ̂(y1, y2) = rϕ(y1, y2) of y1, y2 rather than the difference of two univariate functions rϕ(y1)− rϕ(y2).
We conjecture that some of the results will transfer to pointwise reward models in practice, e.g., when the BT assumption
approximately makes sense. Making precise of such approximations is left to future work.

An intuitive requirement for the prediction ℓ̂(y1, y2) is that it gets the sign of the preference correct, which is defined through
p(y1 ≻ y2). More concretely, one might seek the follow property

sign
(
ℓ̂(y1, y2)

)
= sign (p (y1 ≻ y2)− 1/2) (9)

Interestingly, the right-hand side of Eqn (9) corresponds to the Bayes optimal classifier, which minimizes the classification
loss in Eqn (5). The convex loss functions we consider in this work (e.g., all examples in Table 1) all satisfy the property
that if l(y1, y2) is parameterized as a general preference model (rather than a pointwise reward model, see e.g., (Munos
et al., 2024)), then by minimizing the loss we find ℓ̂(y1, y2) that satisfies Eqn (9), a result stemming from Bayes consistency
(Rosasco et al., 2004; Bartlett et al., 2006).

However, even if different loss functions produce the same sign, the predictions ℓ̂(y1, y2) can differ drastically depending on
f . In the main paper we have provided a case study example of logistic loss vs. hinge loss, borrowing inspirations from the
study in Hastie et al. (2009).
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