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Abstract

In this work, we investigate the robustness of001
BERT using four word substitution-based at-002
tacks. We combine a human evaluation of in-003
dividual word substitutions and a probabilistic004
analysis to show that between 96% and 99% of005
the analyzed attacks do not preserve semantics,006
indicating that their success is mainly based007
on feeding poor data to the model. To further008
confirm that, we introduce an efficient data009
augmentation procedure and show that many010
successful attacks can be prevented by includ-011
ing data similar to adversarial examples during012
training. Compared to traditional adversarial013
training, our data augmentation procedure re-014
quires 30× less computation time per epoch,015
while achieving better performance on two out016
of three datasets. We introduce an additional017
post-processing step that reduces the success018
rates of state-of-the-art attacks below 4%, 5%,019
and 8% on the three considered datasets. Fi-020
nally, by looking at constraints for word substi-021
tutions that better preserve the semantics, we022
conclude that BERT is considerably more ro-023
bust than previous research suggests.024

1 Introduction025

Recent research in computer vision (Szegedy et al.,026

2014; Goodfellow et al., 2015) and speech recog-027

nition (Carlini and Wagner, 2018) has shown that028

neural networks are vulnerable to changes that are029

invisible to humans. This means that it is possible030

to imperceptibly modify a certain sample, e.g., an031

image, such that the neural network changes its032

prediction. These modified examples are called033

adversarial examples, and the process of generat-034

ing them is often referred to as attacking a neural035

network. Following the outstanding success of ad-036

versarial examples in computer vision (Szegedy037

et al., 2014; Goodfellow et al., 2015; Madry et al.,038

2018; Carlini and Wagner, 2017), a considerable039

research effort has been dedicated to studying ad-040

versarial attacks in Natural Language Processing041

(NLP) (Papernot et al., 2016; Alzantot et al., 2018; 042

Zhang et al., 2019; Ren et al., 2019; Jin et al., 2020; 043

Li et al., 2020; Garg and Ramakrishnan, 2020). 044

However, since natural language tokens are non- 045

differentiable, finding adversarial examples that are 046

truly imperceptible to humans is extremely chal- 047

lenging in NLP. For research on textual adversar- 048

ial attacks to be reliable, the generated examples 049

must preserve the semantic meaning of the origi- 050

nal examples, which is often neglected in current 051

research. Therefore, we observe that as the effec- 052

tiveness of the existing attacks increases, the line 053

between adversarial examples and nonsensical text 054

becomes blurry. 055

In this work, we show that despite the general 056

consensus that textual adversarial attacks should 057

preserve semantics (Morris et al., 2020a; Ren et al., 058

2019; Jin et al., 2020; Li et al., 2020; Garg and Ra- 059

makrishnan, 2020), current attacks are designed to 060

optimize certain metrics, such as success rate, and 061

neglect the importance of semantic preservation. 062

We combine a human evaluation with a simple 063

probabilistic analysis to show that between 96% 064

and 99% of the adversarial examples on BERT 065

(Devlin et al., 2019) created by four different state- 066

of-the-art attack methods do not preserve semantics. 067

Additionally, we propose a two-step procedure con- 068

sisting of data augmentation and post-processing 069

for defending against adversarial examples.1 Our 070

results show that we can eliminate up to two-thirds 071

of the successful attacks by simply including data 072

similar to the adversarial examples. Further, we 073

can revert between 70% and 92% of the remaining 074

adversarial examples using a post-processing step 075

that consists of deciding by majority voting from 076

several noisy versions of the input example. Com- 077

pared to adversarial training strategies, our method 078

results in a speedup of almost 30× per training 079

epoch while achieving better robustness on two of 080

the three considered datasets without losing classi- 081

1We will release the code with the publication of this work.
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fication performance.082

2 Related Work083

Papernot et al. (2016) were the first to introduce ad-084

versarial examples in text. In the following years, a085

number of different attacks were proposed. Alzan-086

tot et al. (2018) use a population-based optimiza-087

tion algorithm for creating adversarial examples,088

while Zhang et al. (2019) use Metropolis-Hastings089

(Metropolis et al., 1953; Hastings, 1970). Further090

word substitution based attacks were proposed by091

Ren et al. (2019); Jin et al. (2020); Li et al. (2020)092

and Garg and Ramakrishnan (2020), which we dis-093

cuss in more detail in Section 3.1.094

Regarding adversarial defense, some studies095

that introduced attacks also incorporated the cre-096

ated adversarial examples during training (Alzantot097

et al., 2018; Ren et al., 2019). However, due to098

the high cost of running these attacks, they can-099

not create sufficiently many adversarial examples,100

achieving only minor improvements in robustness.101

Wang et al. (2021a) present the Synonym Encod-102

ing Method (SEM), a method that uses an encoder103

that maps clusters of synonyms to the same em-104

bedding. Although this method works well, it105

also limits the expressive capacity of the network.106

Wang et al. (2021b) propose a method for fast ad-107

versarial training called Fast Gradient Projection108

Method (FGPM) that is limited to models with non-109

contextual word vectors as input. On BERT, Meng110

et al. (2021) use a geometric attack that allows for111

creating adversarial examples in parallel and there-112

fore leads to faster adversarial training. Another113

line of work is around certified robustness through114

Interval Bound Propagation (Jia et al., 2019; Huang115

et al., 2019); unfortunately, these approaches cur-116

rently do not scale to large models and datasets.117

There is little work analyzing in-depth or ques-118

tioning current synonym-based adversarial attacks119

in NLP. Among those, Morris et al. (2020a) find120

that adversarial attacks often do not preserve se-121

mantics using a human evaluation. We extend this122

line of work by providing a probabilistic analysis123

that shows that adversarial examples do not pre-124

serve semantics according to human judgment.125

3 Background126

For a classifier f : S → Y and some correctly127

classified input s ∈ S, an adversarial example128

is an input s′ ∈ S, such that f(s) 6= f(s′), and129

sim(s, s′) ≥ tsim, where sim(s, s′) ≥ tsim is a130

constraint on the similarity of s and s′. For text 131

classification, s = {w1, w2, ..., wn} is a sequence 132

of words. Common notions of similarity are the 133

cosine similarity of counter-fitted2 word vectors 134

(Mrkšić et al., 2016), which we will denote as 135

coscv(wi, w
′
i), or the cosine similarity of sentence 136

embeddings from the Universal Sentence Encoder 137

(USE) (Cer et al., 2018), which we will denote as 138

cosuse(s, s
′). Note that this is a slight abuse of no- 139

tation since s and s′ are just sequences of words. 140

This notation should be interpreted as follows: we 141

first apply USE to s and s′ to get two sentence vec- 142

tors and then calculate the cosine similarity. The 143

same holds for coscv(wi, w
′
i), where we first ob- 144

tain the counter-fitted word vectors of wi and w′
i. 145

Also, note that whenever we talk about the cosine 146

similarity of words, it refers to the cosine similarity 147

of words in the counter-fitted embedding. Simi- 148

larly, USE score refers to the cosine similarity of 149

sentence embeddings from the USE. 150

3.1 Attacks 151

We consider four different attacks in our experi- 152

ments, which exchange words from the input se- 153

quence with other words of similar meaning from 154

a candidate set. 155

TextFooler Jin et al. (2020) propose TextFooler, 156

which builds its candidate set from the 50 nearest 157

neighbors in a vector space of counter-fitted word 158

embeddings. The constraints are coscv(wi, w
′
i) ≥ 159

0.5 ∀i and cosuse(s, s
′) ≥ 0.878.3 160

Probability Weighted Word Saliency (PWWS) 161

Ren et al. (2019) use WordNet4 synonyms to con- 162

struct a candidate set. This method uses no addi- 163

tional constraints. 164

BERT-Attack Li et al. (2020) present an attack 165

based on BERT itself. BERT-Attack uses a BERT 166

Masked-Language Model (MLM) that proposes 48 167

possible replacements to form the candidate set. 168

The constraints are: cosuse(s, s
′) ≥ 0.2, and a 169

maximum of 40% of all words can be replaced. 170

BAE Garg and Ramakrishnan (2020) propose an- 171

other attack based on a BERT MLM. BAE uses the 172

2Counter-fitting is a procedure that injects antonym and
synonym constraints into static word embeddings.

3The original value is 0.841 on the angular similarity be-
tween sentence embeddings, which corresponds to a cosine
similarity of 0.878.

4https://wordnet.princeton.edu/
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Dataset
Attack Success Rate (%)

TextFooler PWWS BERT-Attack BAE

AG News 84.99 64.95 79.43 14.27
Yelp 90.47 92.23 93.47 31.50

IMDB 98.16 98.70 99.03 57.13

Table 1: Attack success rates of the different attacks
on fine-tuned BERT-base-uncased models.

top 50 candidates of the model to build the candi-173

date set and tries to enforce semantic similarity by174

requiring cosuse(s, s
′) ≥ 0.936.175

4 Setup176

We use the BERT-base-uncased model provided177

by the HuggingFace Transformers library (Wolf178

et al., 2019) for all our experiments and rely on179

the TextAttack library (Morris et al., 2020b) for the180

implementations of the different attacks.181

We fine-tune BERT for two epochs on AG News,182

Yelp,5 and IMDB. To evaluate the attacks, we ran-183

domly sample 1000 examples from each test-set184

for running the attacks. The clean accuracies of185

our models are 94.57% on AG News, 97.31% on186

Yelp, and 93.77% on IMDB. The attack success187

rates, defined as the percentage of attack attempts188

that produce adversarial examples, for the different189

attacks are shown in Table 1. It is worth noting that190

the average sequence length on IMDB is 279, com-191

pared to 44 and 46 on AG News and Yelp, which192

makes IMDB easier to attack (see Appendix E).193

Further, it is interesting that BAE, which requires194

a much higher sentence similarity than BERT-195

Attack, is considerably less effective despite be-196

ing otherwise similar. However, is a high sentence197

similarity sufficient to ensure semantic similarity?198

This is a part of what we investigate using a human199

evaluation.200

5 Quality of Adversarial Examples201

To investigate the quality of adversarial examples,202

we conduct a human evaluation on the word substi-203

tutions performed by the different attacks. In the204

following, we call a word substitution a perturba-205

tion. Then, we perform a probabilistic analysis to206

generalize the results on individual perturbations207

to attacks, which usually consist of multiple pertur-208

bations.209

5We restricted ourselves to examples in Yelp which have
fewer than 80 words to save computing resources.

5.1 Human Evaluation 210

For the human evaluation, we rely on labor crowd- 211

sourced from Amazon Mechanical Turk.6 We col- 212

lect 100 pairs of [original word, attack word] for 213

every attack and another 100 pairs for every at- 214

tack where the context is included with a window 215

size of 11. For the word-pairs, inspired by Morris 216

et al. (2020a), we asked the workers to react to the 217

following claim: “In general, replacing the first 218

word with the second word preserves the meaning 219

of the sentence.” For the words with context, we 220

presented the two text fragments on top of each 221

other, highlighted the changed word, and asked 222

the workers: “In general, the change preserves 223

the meaning of the text fragment.” In both cases 224

the workers had seven answers to choose from: 225

“Strongly Disagree”, “Disagree”, “Somewhat Dis- 226

agree”, “Neutral”, “Somewhat Agree”, “Agree”, 227

“Strongly Agree”. We convert these answers to a 228

scale from 1-7, where higher is better. Finally, to 229

measure voter agreement, we calculate the aver- 230

age number of workers who voted within ±1 of 231

the mean score for a perturbation. Screenshots and 232

more details about the two evaluations can be found 233

in Appendix F. 234

Table 2 shows the results of this human analysis. 235

Our evaluation shows that humans generally tend to 236

disagree that the newly introduced word preserves 237

the meaning. This holds for all attacks, and regard- 238

less of whether we show the word with or without 239

context. Critically, in our human evaluation, we dis- 240

play the words and passages that are changed and 241

ask the evaluators to assess exclusively these pieces 242

of text. Conversely, human studies asking whether 243

two long text documents that differ only on a few 244

words are similarJin et al. (2020); Li et al. (2020), 245

are likely to obtain a higher agreement since the 246

evaluators will hardly consider the details closely 247

enough. 248

Regarding the different attacks, it becomes clear 249

from the results in Table 2 that building a candidate 250

set from the first 48 or 50 candidates proposed by a 251

language model (as in BERT-Attack and BAE) does 252

not work without an additional constraint on the 253

word similarity. The results on BAE further make 254

it clear that a high sentence similarity according to 255

the USE score is no guarantee for semantic similar- 256

ity. PWWS and TextFooler receive similar scores 257

for word similarity, but the drop in score for PWWS 258

when going from word similarity to text similarity 259

6https://www.mturk.com/
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Attack
Word Similarity Text Similarity

Avg. (1-7) Above 5 (%) Above 6 (%) Avg. (1-7) Above 5 (%) Above 6 (%)

TextFooler 3.88 22 7 3.47 24 12
PWWS 3.83 21 6 2.70 13 6

BERT-Attack 2.27 4 4 2.55 7 3
BAE 1.64 0 0 1.85 3 2

Table 2: Average human scores on a scale from 1-7 and the percentage of scores above 5 and 6 (corresponding to
the answers “Somewhat Agree” and “Agree”) for the different attacks and when the words were shown with (text
similarity) or without (word similarity) context.

3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0

Th

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16

Pr
ob

.o
fv

al
id

at
ta

ck

TextFooler
PWWS
BERT-Attack
BAE

Figure 1: Probability that an attack is valid according to
our probabilistic analysis, for the different attacks and
for different thresholds Th.

indicates that while the synonyms retrieved from260

WordNet are usually related to the original word,261

the relation is often wrong in the given context.262

TextFooler receives the highest scores in this anal-263

ysis, but even for TextFooler, just 22% and 24% of264

the perturbations were rated above 5, which corre-265

sponds to “Somewhat Agree”.266

The voter agreement on these results is 3.57 out267

of 5 for the words with context and 6.78 out of 10268

for the words without context.269

5.2 Probabilistic Estimation of Valid Attacks270

Our human evaluation is based on individual pertur-271

bations. However, an attack usually changes multi-272

ple words. Therefore, to understand how many of273

the successful attacks are valid attacks, we need to274

define valid perturbations and valid attacks.275

Definition 5.1 (Valid Perturbation). A valid per-276

turbation is a perturbation that receives a human277

score above some threshold Th.278

Definition 5.2 (Valid Attack). A valid attack is an279

attack consisting of valid perturbations only.280

Sensible values for Th are in the range 5-281

6, which corresponds to “Somewhat Agree” to282

“Agree”. In order to get an estimate for the per-283

centage of valid attacks, we perform a simple prob- 284

abilistic analysis. Let Aval, Pval and Ai
val denote 285

the events of a valid attack, a valid perturbation and 286

a valid attack given that there are exactly i pertur- 287

bations, respectively. Further, let p(i) denote the 288

probability that an attack perturbs i words. Using 289

this notation, we can approximate the probability 290

that a successful attack is valid as 291

p(Aval) =

N∑
i=1

p(i)p(Ai
val)

≈
N∑
i=1

p(i)p(Pval)
i,

(1) 292

where N is the maximum number of allowed per- 293

turbations. With the data from our human evalua- 294

tion and the collected adversarial examples, we can 295

obtain an unbiased estimate for this probability as 296

p̂(Aval) =
N∑
i=1

p̂(i)

(
count[Sh ≥ Th]

npert

)i

, (2) 297

where Sh is the average score of the workers for a 298

perturbation, npert is the total number of perturba- 299

tions analyzed by the workers for any given attack, 300

and p̂(i) can be estimated using counts. 301

The results of this analysis are shown in Fig- 302

ure 1 as a function of the threshold Th. It can be 303

seen that if we require an average score of 5 for all 304

perturbations, we can expect around 4% of the suc- 305

cessful attacks from TextFooler to be valid, slightly 306

less for PWWS, below 2% for BERT-Attack, and 307

just around 1% for BAE. In other words, between 308

96% and 99% of the successful attacks can not be 309

considered valid according to the widely accepted 310

requirement that adversarial examples should pre- 311

serve semantics. 312

This analysis assumes that perturbations are in- 313

dependent of each other, which is not true because 314

every perturbation impacts the following perturba- 315

tions. Nevertheless, we argue that this approxima- 316

tion tends to result in optimistic estimates on the 317
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true number of valid attacks for the following rea-318

sons: 1) When an attack is already almost success-319

ful, all attacks except for PWWS try to maximize320

sentence similarity on the last perturbation, making321

the last perturbation generally weaker. 2) We as-322

sume that in a sentence with multiple changes, a hu-323

man is generally less likely to say that the meaning324

is preserved, even if the individual perturbations325

are considered valid.326

6 Adversarial Defense327

We have shown that current attacks use lenient con-328

straints and, therefore, mostly produce adversarial329

examples that should not be considered valid, but330

finding suitable thresholds on the constraints is dif-331

ficult. Before discussing realistic thresholds, we332

show that we can defend against a large propor-333

tion of adversarial examples even for permissive334

constraints (in terms of the validity of the perturba-335

tions).336

Our defense consists of a gradient-based data337

augmentation procedure followed by a post-338

processing step.339

Data Augmentation340

1. Initialize thresholds trr ∈ (0, 100], which341

corresponds to the maximum percentage of342

words to augment in an input sequence, and343

tcv ∈ (0, 1), which represents the minimum344

cosine similarity between the original and the345

perturbed word.346

2. During training, for every input s in a batch,347

the importance I of a word w consisting of348

vectors vj ∈ R768 in BERT’s initial embed-349

ding is estimated as350

Iw =
∑
vj∈w

vj · ∇vjL(θ, s, y), (3)351

where θ are the parameters of BERT, L is the352

loss function and y is the label. Using this353

importance metric, the trr percent of most354

important words is marked; and the union of355

the words considered as stop-words by the356

four attacks is filtered out.357

3. Then, for each word marked as important358

according to (2), a candidate set C =359

{w′
1, ..., w

′
n} is built with the 50 nearest neigh-360

bors in the counter-fitted embedding space,361

which also present a cosine similarity greater362

than tcv. To account for the fact that all attacks 363

tend to favor words with low cosine similar- 364

ity, the replacement w′
i ∈ C for the original 365

word w is chosen from the candidate set with 366

probability: 367

p(w′
i) =

1− coscv(w,w′
i)∑

w′
j∈C

1− coscv(w,w′
j)
. (4) 368

The augmented batch is then appended to the 369

original batch, increasing the batch size by a 370

factor of two. 371

This data augmentation procedure makes the 372

model more robust against attack words with co- 373

sine similarity greater than tcv. If we expect BERT 374

to be robust against these kinds of replacements, 375

this is the least we should do. Otherwise, we can- 376

not expect the model to generalize to the attack’s 377

input space, which is significantly larger than the 378

input space during fine-tuning. 379

The second step of our defense is a post- 380

processing step based on ensembling. This step 381

builds on the robustness to random substitutions 382

obtained from data augmentation. 383

Post-processing 384

1. For every text that should be classified, N 385

versions are created. In each version, trr per- 386

cent of the words (which are not stop-words) 387

are selected uniformly at random. Then, as 388

in the data augmentation step, each of these 389

words wi is exchanged by another uniformly 390

sampled word from a candidate set C consist- 391

ing of the 50 nearest neighbors with cosine- 392

similarity above tcv with respect to wi. 393

2. Finally, the output logits are added up for the 394

N versions and the final prediction is made 395

according to the maximum value. Formally, 396

let lj(s) denote the value of the j-th logit for 397

some input s; the prediction ypred is made 398

according to 399

ypred = argmax
j

N∑
i=1

lj(si). (5) 400

7 Defense Evaluation 401

First, we apply to all attacks the constraint 402

coscv(wi, w
′
i) ≥ 0.5 ∀i and run the attacks on the 403

following configurations: a model trained normally 404

(N); a model trained using our data augmentation 405
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Dataset Method Clean
Acc. (%)

Attack Success Rate (%)

TextFooler PWWScv50 BERT-Attackcv50 BAEcv50

AG News

N 94.57 84.99 16.38 20.72 0.32
DA 94.82 52.37 10.73 18.61 –

DA+PP 93.84 ± 0.07 3.93 ± 0.41 2.55 ± 0.31 3.73 ± 0.29 –
DA+MA5 93.72 ± 0.12 14.11 ± 0.48 4.61 ± 0.41 7.52 ± 0.48 –

N+PP 87.89 ± 0.16 10.32 ± 0.48 5.0 ± 0.31 5.59 ± 0.36 –

Yelp

N 97.31 90.47 33.26 49.53 0.41
DA 97.10 29.79 10.52 16.49 –

DA+PP 96.59 ± 0.06 4.37 ± 0.39 2.54 ± 0.15 4.86 ± 0.33 –
DA+MA5 95.40 ± 0.10 10.23 ± 0.59 4.62 ± 0.36 7.38 ± 0.38 –

N+PP 94.50 ± 0.08 6.07 ± 0.47 5.22 ± 0.48 7.35 ± 0.61 –

IMDB

N 93.77 98.16 65.77 88.44 3.07
DA 94.21 48.31 29.49 40.91 –

DA+PP 92.59 ± 0.06 5.81 ± 0.45 4.53 ± 0.26 7.83 ± 0.37 –
DA+MA5 92.49 ± 0.12 12.05 ± 0.87 8.36 ± 0.36 13.0 ± 0.64 –

N+PP 88.35 ± 0.09 10.52 ± 0.46 9.3 ± 0.39 13.3 ± 0.55 –

Table 3: Effectiveness of defense procedure for different attacks modified with the constraint coscv(wi, w
′
i) ≥

0.5 ∀i.

procedure (DA); and a model trained with data aug-406

mentation that uses our post-processing method407

(DA+PP). Additionally, we provide a baseline for408

our post-processing procedure by masking 5% of409

all tokens with the [MASK] token (DA+MA5; for410

details see Appendix B). Furthermore, we show411

the impact of applying the post-processing step412

without data augmentation (N+PP). Given that the413

post-processing step is probabilistic, we run the414

evaluation 10 times for each combination of dataset415

and attack. We report the mean and standard devia-416

tion of accuracy and attack success rates across the417

10 runs.418

7.1 Results419

The results of the evaluation are shown in Table420

3. We can see that simply using the data augmen-421

tation step of our adversarial defense already pre-422

vents up to two-thirds of the attacks without losing423

accuracy. This result indicates that adversarial ex-424

amples for text classification are closely related to425

the data on which the model is fine-tuned and that426

state-of-the-art attacks rely on examples that are427

out-of-distribution with respect to the training data.428

When we additionally apply our post-processing429

procedure, between 70% and 92% of the remain-430

ing attacks are reverted. The DA+PP configura-431

tion reaches the lowest attack success rate across432

datasets and attack, while reducing the clean ac-433

curacy by only 1.18% in the worst case (IMDB).434

Finally, when we compare DA+MA5 to N+PP, we435

see that the former reverts significantly fewer at-436

tacks than DA+PP and the latter degrades the clean437

accuracy. These results demonstrate the validity of 438

our method as a defense against adversarial attacks. 439

In terms of the performance of the attacks, these 440

results show that with the constraint on cosine 441

similarity of words applied, TextFooler is by far 442

the most effective attack, at least before post- 443

processing. There is a simple reason for this, 444

TextFooler already has that constraint and is the 445

only attack out of the four to choose its candidate 446

set directly from the counter-fitted embedding used 447

to calculate the cosine similarity. On the other end 448

of the spectrum, BAE’s attacks success rate drops 449

close to zero. This is because the intersection of 450

the set of words proposed by the MLM, the set 451

of words with cosine similarity greater than 0.5, 452

and the set of words keeping the USE score above 453

0.936 is small, leaving very few valid candidates. 454

A similar observation can be made for PWWS, al- 455

though not as pronounced. 456

There is one more reason why TextFooler is 457

more effective compared to the other attacks, de- 458

spite an additional constraint on the USE score. 459

While attacking a piece of text, this constraint on 460

the USE score is not checked between the current 461

perturbed text s′ and the original text s, but instead 462

between the current perturbed text s′ and the pre- 463

vious version s′′. This means that by perturbing 464

one word at a time, the effective USE score be- 465

tween s and s′ can be a lot lower than the threshold 466

suggests. When discussing the effect of raising 467

thresholds to higher levels in the next section, we 468

do so by relying on TextFooler as the attack be- 469

cause it is the most effective, but we adjust the 470
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Dataset Method
Attack Success Rate (%)

TFcv50 TFuse88
cv50 TFuse85

cv70 TFuse90
cv70 TFuse90

cv80

AG News
N 88.79 24.95 22.52 11.63 7.51

DA 55.58 16.11 10.79 7.12 4.50
DA+PP 4.49 ± 0.39 3.31 ± 0.28 2.07 ± 0.16 1.91 ± 0.17 0.99 ± 0.17

Yelp
N 91.40 49.22 42.59 25.18 11.09

DA 38.46 13.74 10.34 7.78 2.87
DA+PP 5.04 ± 0.35 3.9 ± 0.34 2.12 ± 0.21 2.28 ± 0.17 0.71 ± 0.13

IMDB
N 98.38 82.51 79.16 61.77 42.76

DA 51.58 37.95 28.51 24.73 19.48
DA+PP 5.81 ± 0.26 5.78 ± 0.4 3.56 ± 0.32 3.14 ± 0.28 2.67 ± 0.16

Table 4: Effectiveness of defense procedure for different combinations of thresholds.

constraint on the USE score to always compare to471

the original text. We believe this is the right way472

to implement this constraint, and more importantly,473

it is consistent with how we gathered data from474

Amazon Mechanical Turk.475

7.2 Adjusted Thresholds476

Next, we adjust the thresholds on the similarity con-477

straints of the TextFooler (TF) attack such that the478

generated adversarial examples are better aligned479

with human judgement. In the notation used in480

Table 4, TFuseY
cvX corresponds to TextFooler with481

coscv(wi, w
′
i) ≥ 0.X ∀i and cosuse(s, s

′) ≥ 0.Y .482

A special case is TFcv50, which corresponds to483

TextFooler without the constraint on the USE score.484

As expected, stronger constraints on the gener-485

ation of adversarial examples rapidly reduce the486

success rate of the attack. In particular, TFuse88
cv50 ,487

which corresponds to TextFooler with the same488

constraints as in the original implementation but489

without allowing the adversarial text to drift away490

from the original text, already decreases the at-491

tack success rate significantly. Regarding our492

proposed defense, data augmentation already de-493

creases the attack success rates from 84.99 to 16.11494

on AG News, from 90.47 to 13.74 on Yelp, and495

from 98.16 to 37.95 on IMDB. If we apply post-496

processing, we can revert most of the attacks across497

all datasets and attack configurations.498

All in all, we see that when increasing the thresh-499

olds on the constraints (refer to Figure 5 in Ap-500

pendix F to see that these are still not particularly501

strong constraints), the success rate of the attack502

drops significantly in all cases. This makes evident503

that when evaluated in a fair setup, where the ad-504

versarial examples are required to be semantically505

similar to the original sentence, BERT is consider-506

ably more robust than previous work suggests.507

7.3 Data Augmentation vs. Adversarial 508

Training 509

While adversarial training provides the model with 510

data from the true distribution generated by an at- 511

tack, our data augmentation procedure only approx- 512

imates that distribution. The goal is to trade robust- 513

ness for speed. However, similar to Ivgi and Berant 514

(2021), we find that our procedure can even be 515

superior to true adversarial training in some cases. 516

We compare two different strategies for adver- 517

sarial training. ADVnaive denotes the simplest pro- 518

cedure for adversarial training in text classification: 519

collect adversarial examples on the training set and 520

then train a new model on the extended dataset con- 521

sisting of both adversarial examples and original 522

training data. We use TextFooler to collect these 523

adversarial examples. On the complete training 524

set, this results in 103′026 adversarial examples on 525

AG News, 179′335 on Yelp, and 23′831 on IMDB. 526

For a more complex adversarial training, we follow 527

Meng et al. (2021) by creating adversarial exam- 528

ples on the fly during training. We denote this 529

method as ADV. 530

We compare the performance of data augmenta- 531

tion and adversarial training in Table 5. Interest- 532

ingly, ADVnaive does not result in an improvement 533

on Yelp and IMDB. We hypothesize that this is be- 534

cause Yelp and IMDB are easier to attack, resulting 535

in weaker training data for the extended dataset. 536

For example, 26% of the created adversarial ex- 537

amples on Yelp differ by only one or two words 538

from the original text. On AG News this holds 539

for just 11% of the adversarial examples. Further- 540

more, the average word replacement rate on Yelp 541

is 16% compared to 24% on AG News. The same 542

argument would also explain why, surprisingly, we 543

reach higher robustness on Yelp and IMDB with 544
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Dataset Method Clean
Acc. (%)

Training
Time (h:min) Epochs

Attack Success Rate (%)

TextFooler PWWScv50 BERT-Attackcv50

AG News

Normal 94.57 0:19 2 84.99 16.38 20.72
DA 94.82 5:33 12 52.37 10.73 18.61

ADV 92.83 160:15 12 34.54 6.50 9.38
ADVnaive 94.26 45:14 2 56.20 12.50 17.44

Yelp

Normal 97.31 0:32 2 90.47 33.26 49.53
DA 97.10 9:08 12 29.79 10.52 16.49

ADV 95.94 107:56 5 59.52 14.64 25.52
ADVnaive 96.65 56:53 2 95.12 33.09 47.61

IMDB

Normal 93.77 0:17 2 98.16 65.77 88.44
DA 94.21 5:31 12 48.31 29.49 40.91

ADV 92.006 – 36 75.36 – –
ADVnaive 93.16 34:19 2 100.00 62.75 88.79

Table 5: Comparison of data augmentation and adversarial training.

our data augmentation procedure compared to ADV.545

On IMDB, presumably due to the longer sequence546

lengths, we used the results from Meng et al. (2021)547

where available. It should also be mentioned that548

we trained ADV for fewer epochs on Yelp due to549

computational constraints.550

Finally, the training times reported in Table 5551

clearly show the large gains in compute time that552

our defense method provides in comparison to ad-553

versarial training. Considering that the training554

data increases by a factor of two, the overhead per555

epoch is only around 50% compared to normal556

training. Compared to ADV, we reach a speedup557

per epoch of almost 30×.558

8 Limitations559

In practice, our post-processing step cannot be de-560

coupled from a black-box attack. It would be in-561

teresting to see how successful an attack can be562

when the whole system, including post-processing,563

is regarded as a single black-box model. We hy-564

pothesize that our defense would remain effective565

because the attack can rely much less on its search566

method for finding the right words to replace. We567

leave this analysis for future work.568

One potential inconvenience of our defense is569

that it can not be applied if a deterministic answer570

is required. However, in many applications, such as571

spam filtering or fake news detection, we are only572

interested in making a correct decision as often as573

possible while being robust to a potential attack.574

6Results taken from Meng et al. (2021).

9 Conclusion 575

Using a human evaluation, we have shown that 576

most perturbations introduced through adversarial 577

attacks do not preserve semantics. This is contrary 578

to what is generally claimed in studies introduc- 579

ing these attacks (Jin et al., 2020; Ren et al., 2019; 580

Garg and Ramakrishnan, 2020; Li et al., 2020). We 581

believe that the main reason for this discrepancy is 582

that recent research has focused on optimizing the 583

success rate of textual adversarial attacks and has 584

neglected the importance of preserving semantic 585

meaning. However, in order to find meaningful 586

adversarial examples that could help us better un- 587

derstand current models, we need to bring semantic 588

preservation back into the equation. 589

Our experiments show that when semantic 590

preservation is enforced, a state-of-the-art model 591

like BERT is much more robust against adversar- 592

ial attacks than reported in the existing literature. 593

By using a simple data augmentation procedure 594

that approximates the attack perturbations, a sig- 595

nificant amount of adversarial examples can be 596

prevented. This result emphasizes that the vulner- 597

ability of BERT against adversarial attacks stems 598

mainly from the use of out-of-distribution data at in- 599

ference time. In comparison to adversarial training, 600

our data augmentation method is almost 30× more 601

computationally efficient, and thus, it easily scales 602

to large datasets and multiple epochs of training. 603

Finally, our novel post-processing step completes 604

our defense procedure and shows that most attacks 605

can be prevented in a probabilistic setting without 606

a severe impact on clean accuracy. 607
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Ethical Considerations608

In our experiments, we did not notice any sensitive609

or offensive information in our datasets or gener-610

ated adversarial examples. However, one should611

note that it is still possible that the language models612

or augmentations used in our paper might gener-613

ate sensitive or even offensive texts in rare cases.614

Hence, necessary precautions should be addressed615

when using our method in conditions like health-616

care or large-scale scenarios.617
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Dataset N
Reverted Attacks (Mean/Std) (%)

TextFooler PWWScv50 BERT-Attcv50

AG
News

4 92.13 / 0.65 75.39 / 3.35 78.7 / 1.94
8 92.49 / 0.79 76.27 / 2.87 79.94 / 1.54
16 92.81 / 0.53 78.24 / 1.95 80.17 / 0.85
32 92.97 / 0.24 76.57 / 1.61 81.07 / 0.88

Yelp

4 83.94 / 1.49 74.31 / 3.28 68.56 / 3.02
8 85.33 / 1.32 75.88 / 1.4 70.5 / 1.97
16 85.81 / 1.26 76.37 / 1.88 70.81 / 1.12
32 86.26 / 0.74 76.96 / 0.79 71.31 / 2.16

IMDB
4 87.2 / 1.13 84.19 / 1.43 80.36 / 1.27
8 87.96 / 0.92 84.62 / 0.88 80.85 / 0.91
16 87.86 / 0.77 85.2 / 0.68 82.09 / 0.78

Table 6: Effectiveness of post-processing for different
number of versions.

A Number of versions in post-processing731

In order to understand the impact of the number732

of versions N created during the post-processing733

step, we can make the following analysis: Let us734

consider the augmented inputs as instances of a735

discrete random variable X . For x ∈ X and a clas-736

sification problem with K classes, let lcorrect(x)737

denote the value of the logit corresponding to the738

correct label and lj(x) denote the value of the j-739

th logit corresponding to a wrong label, such that740

j ∈ {1, ...,K − 1}. We are only interested in the741

differences gj(x) = lcorrect(x) − lj(x). Ideally,742

we would like to make a decision based on the ex-743

pectations of gj(X). An attack should be reverted744

if and only if745

E[gj(X)] =
∑
x∈X

gj(x)pX(x) ≥ 0 ∀j, (6)746

where pX(x) = 1
|X| . Because we cannot enumer-747

ate over all instances x, we approximate this with748

sums over just N instances749

N∑
i=1

gj(xi)

N
≥ 0 ∀j. (7)750

These are unbiased estimates of the expectations751

in (6) for any choice of N . By multiplying with752

N and plugging in the definition of gj(x), it can753

be verified that a decision based on (7) reverts the754

same attacks as a decision based on (5). The expec-755

tation estimates become more and more accurate756

as we increase N . Since we are making a discrete757

decision based on whether the expectations are≥ 0,758

the estimate is more likely to be correct with more759

samples. If we assume that the true expectation760

Dataset Method Clean Acc. (%) Reverted (%)

AG News

MA5 93.62 63.24
MA10 92.14 62.76
MA20 87.30 57.34
MA30 76.25 50.01

Yelp

MA5 95.19 59.00
MA10 93.98 61.42
MA20 90.53 60.83
MA30 86.91 59.25

IMDB

MA5 92.47 71.74
MA10 89.90 68.67
MA20 83.51 62.56
MA30 78.76 59.52

Table 7: By masking random tokens instead of ex-
changing words, more than half of the attacks can be
reverted. However, the clean accuracy drops.

is positive in most cases, this means we can gen- 761

erally expect a higher number of reverted attacks 762

for higher N . Being more precise on the estimate 763

also means we generally tend to make the same 764

decision every time on the same example, there- 765

fore reducing the variance in the reverted attack 766

rate. Table 6 shows results on reverted attacks for 767

4, 8, 16 and 32 versions (4, 8, and 16 on IMDB 768

because of memory constraints) and generally con- 769

firms this. However, the results are already quite 770

good with just four versions, so this is a trade-off 771

between speed and accuracy, as creating N ver- 772

sions increases the batch size during inference by a 773

factor N . 774

B Baseline for post-processing 775

Instead of replacing words with other words in Step 776

2 of our defense procedure, one could also think of 777

other ways of slightly perturbing the adversarial ex- 778

amples to flip the label back to the correct one. To 779

show that our method is superior to such simple per- 780

turbations, Table 7 shows the results of a baseline 781

procedure in which we replace randomly chosen 782

words with the [MASK] token. The reverted col- 783

umn shows an average over all attacks. Indeed, a 784

significant portion of attacks can be reverted by 785

masking just 5% of the words. However, further 786

improving on that by masking more tokens fails, 787

and the clean accuracy drops substantially. This is 788

contrary to our procedure, in which we exchange 789

40% of the words with just a minimal decrease in 790

accuracy. 791
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Figure 2: Distribution of cosine similarities of words.

C Word Frequencies792

We observe that attacks frequently introduce words793

that rarely occur during training. Table 8 shows me-794

dian word occurrences (Occ. column) of original795

words and attack words in the training set for dif-796

ferent attacks. The results are striking and a further797

justification for using data augmentation. It is also798

interesting to see that BERT-Attack acts differently799

in that regard. We assume this is because BERT-800

Attack has the weakest constraints (no constraint801

on cosine similarity of words and a weak constraint802

on USE). This could allow BERT-Attack to find803

more effective perturbations than other attacks that804

have to choose from a set of more similar words805

and then rely on the ones the model does not know.806

Table 8 further shows that attacks often use807

words with higher relative frequency in other808

classes. Column GT reveals the percentage of times809

that the original words and attack words have the810

highest relative frequency (word occurrences in811

class divided by the total number of words in the812

same class) in the ground truth class. It can be813

observed that attacks often introduce words with814

higher relative frequency in a different class. This815

raises whether there is some justification in the816

model’s decision to change its prediction. After all,817

for a simpler model based on word statistics, we818

would not be surprised about a change in predic-819

tion if sufficiently many words are exchanged with820

words that appear more often in other classes.821

D Cosine Similarities of Words822

In a counter-fitted embedding, perfect synonyms823

are supposed to have a cosine similarity of 1, and824

perfect antonyms are supposed to have a cosine825

Dataset Attack
Orig. Word Att. Word

Occ. GT (%) Occ. GT (%)

AG
News

TextFooler 736 67.31 18 24.63
PWWS 889 60.04 24 16.06

BERT-Att. 585 65.92 344 22.91
BAE 617 52.66 4 9.31

Yelp

TextFooler 4240 72.79 19 44.60
PWWS 5715 74.56 13 33.76

BERT-Att. 4521 75.27 3398 35.55
BAE 4601 76.03 44 41.87

IMDB

TextFooler 1362 69.25 47 41.48
PWWS 1598 67.73 66 34.80

BERT-Att. 1408 70.22 1016 36.27
BAE 1221 67.44 23 45.12

Table 8: Median word occurrences of original words
and attack words in training set (Occ.) and percentage
of times that words have the highest relative frequency
in ground truth class (GT).

similarity of 0. Figure 2 shows the distribution 826

of cosine similarities for the four attacks on all 827

datasets. 828

E Sequence Length vs Attack Success 829

Rate 830

Longer input sequences are, in general, easier to 831

attack. To see this, take an attack without constraint 832

on sentence similarity (PWWS, for example). As- 833

suming a maximum replacement rate of 0.4, the 834

number of potential adversarial examples for an 835

input sequence of length l is (0.4 · l)|C|, where |C| 836

is the size of the candidate set. 837

F Details on Human Evaluation 838

We relied on workers who completed at least 5000 839

HITs with over 98% success rate. For the word- 840

pairs, we showed the workers 100 pairs of words in 841

a google form. In order to ensure a good quality of 842

work, we included some hand-designed test cases 843

at several places and rejected workers with strange 844

answers on these word-pairs. These test cases 845

were [good, bad], [help, hindrance] (expected 846

answer “Strongly Disagree” or “Disagree”) and 847

[sofa, couch], [seldom, rarely] (expected answer 848

“Strongly Agree” or “Agree”). In a first test run, 849

surprisingly, many workers agreed on antonyms 850

like good and bad, which is why we added a note 851

with an example and emphasized that this is about 852

whether the meaning is preserved and not about 853

whether both words fit into the same context. Work- 854

ers were paid 2.0$ for one HIT with 100 pairs and 855

4 test cases. We showed every pair of words to ten 856
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Figure 3: Screenshot of the human evaluation used to
evaluate words with context.

workers and calculated the mean. A screenshot of857

the form can be found in Figure 4. For the words858

with context, we used the internal Amazon form859

because it allowed for a clearer presentation of the860

two text fragments (see Figure 3). We always pre-861

sented five pairs of text fragments in one HIT and862

rejected workers that submitted the hit within less863

than 60s to ensure quality. Workers were paid 0.5$864

for one HIT with five pairs. We showed every pair865

of text fragments to five workers and calculated the866

mean.867

F.1 Metrics vs. Human868

Figure 5 shows the probability that a perturbation869

is considered valid (for Th = 5) as a function of870

cosine similarity of words and as a function of871

USE score. The plots are based on the 400 words872

with context from the different attacks which were873

judged by humans. We use left-aligned buckets874

of size 0.05, i.e., the probability of a valid pertur-875

bation for a given cosine similarity x and metric876

m ∈ {coscv(·, ·), cosuse(·, ·)}, is estimated as877

count[(Sh ≥ Th) ∧ (m ∈ [x, x+ 0.05))]
count[m ∈ [x, x+ 0.05)]

. (8)878

It can be observed that there is a strong positive cor-879

relation between both metrics and the probability880

that a perturbation is considered valid, confirming881

both the validity of such metrics and the quality of882

our human evaluation. However, the exact prob-883

abilities have to be interpreted with care, as the884

analysis based on one variable does not consider885

the conditional dependence between the two met-886

rics.887

G Datasets888

For our experiments, we use three different text889

classification datasets: AG News, IMDB, and Yelp.890

Figure 4: Screenshot of the Google form used to evalu-
ate similarity of words.

On Yelp, we only used examples consisting of 80 891

words or less. Especially comparing to ADV would 892

have been much harder otherwise. Statistics of the 893

three datasets are displayed in Table 9. 894

Dataset Labels Train Test Avg Len

AG News 4 120’000 7’600 43.93
Yelp 2 199’237 13’548 45.69

IMDB 2 25’000 25’000 279.48

Table 9: Statistics of the three datasets.

AG News (Zhang et al., 2015) is a topic classifi- 895

cation dataset. It is contructed out of titles and 896

headers from news articles categorized into the 897

four classes “World”, “Sports”, “Business”, and 898

“Sci/Tech”. 899

Yelp (Zhang et al., 2015) is a binary sentiment clas- 900

sification dataset. It contains reviews from Yelp. 901

Reviews with one or two stars are considered nega- 902

tive, reviews with three or four stars are considered 903

positive. 904

IMDB is another binary sentiment classification 905

dataset. It contains movie reviews labeled as posi- 906

13



0.5 0.6 0.7 0.8 0.9 1.0

Cosine-Similarity of Words

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Pr

ob
.o

fv
al

id
pe

rt

0.80 0.83 0.86 0.89 0.92 0.95 0.98

USE Score

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Pr
ob

.o
fv

al
id

pe
rt

Figure 5: The probability that a perturbation is considered valid by a human, as a function of cosine similarity of
words (left) and USE score (right). Th is set to 5, i.e. an average score of 5 is required to be considered valid.

tive or negative.907

H Implementation908

Training We use bert-base-uncased from hug-909

gingface8 for all our experiments. The normal mod-910

els were fine-tuned for two epochs with a learning911

rate of 2e-5. We restrict the maximum input length912

to 128 tokens on AG News and Yelp. For IMDB,913

the maximum input length is set to 512. For the914

training with data-augmentation, we train for 12915

epochs with a starting learning rate of 2e-5 and916

a linear schedule. We evaluate the robustness on917

an additional held-out dataset after every epoch.918

For a threshold of 0.5 on the cosine similarity of919

words, the robustness reaches its peak after the last920

epoch. However, we find that two or three epochs921

are already enough for larger thresholds on the co-922

sine similarity of words. All our experiments are923

conducted on a single RTX 3090.924

Attacks We use TextAttack9 for the implementa-925

tions of all attacks, including the ones with adjusted926

thresholds. For adversarial training, we adapt the927

code from Meng and Wattenhofer (2020).928

8https://huggingface.co/transformers/
9https://textattack.readthedocs.io/en/

latest/
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