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ABSTRACT

Large language models (LLMs) show strong performance across natural language
processing (NLP), mathematical reasoning, and programming, and recent large
reasoning models (LRMs) further emphasize explicit reasoning. Yet their com-
putational limits—particularly spatial complexity constrained by finite context
windows—remain poorly understood. While recent works often focus on prob-
lems within the NP complexity class, we push the boundary by introducing a novel
benchmark grounded in two PSPACE-complete regular expression (regex) prob-
lems: equivalence decision (RegexEQ) and minimization (RegexMin). PSPACE-
complete problems serve as a more rigorous standard for assessing computational
capacity, as their solutions require massive search space exploration. We perform
a double-exponential space exploration to construct a labeled dataset of over a
million regex instances with a sound filtering process to build the benchmark. We
conduct extensive evaluations on 6 LLMs and 5 LRMs of varying scales, revealing
common failure patterns such as verbosity and repetition. With its well-defined
structure and quantitative evaluation metrics, this work presents the first empiri-
cal investigation into the spatial computational limitations of LLMs and LRMs,
offering a new framework for evaluating their advanced reasoning capabilities.

1 INTRODUCTION

The recent success of large language models (LLMs) has rapidly expanded their applications beyond
traditional natural language processing (NLP) tasks to domains such as mathematical reasoning and
programming. In particular, the emergence of large reasoning models (LRMs) has significantly
advanced performance in areas of reasoning where conventional LLMs have struggled (Wei et al.,
2022; Yao et al., 2023a;b). While the range of tasks that LLMs can handle continues to grow
and their achievements are remarkable, a more fundamental question remains: how much compu-
tational power do LLMs actually possess? Theoretically, LLMs are often claimed to be Turing-
complete (Pérez et al., 2019; 2021), yet such arguments rely on unrealistic assumptions, such as
infinite context length, that are inconsistent with the practical constraints of models. Several recent
studies (Fan et al., 2024a;b; Bampis et al., 2024) have attempted to measure LLMs’ computational
capabilities by employing benchmarks based on NP-hard problems. However, the actual limitations
of LLMs are more closely tied to context length, which represents limited memory, and from this
spatial perspective, analyses of their computational boundaries remain underexplored. Thus, empir-
ically identifying the limits of LLMs’ computational capacity under spatial constraints remains both
a challenging and essential.

Fortunately, there is a class of problems, PSPACE, that requires polynomial space and is known to
be harder than NP unless NP=PSPACE. One of the most well-known PSPACE-complete problems is
determining a winning strategy in games such as chess or Go (Schaefer, 1978; Lichtenstein & Sipser,
1980; Storer, 1983), where the difficulty stems from the enormous search space. PSPACE-complete
problems often require massive exploration since, under pure space constraints, it is possible to tra-
verse the entire search space by imposing an ordering. Due to this characteristic, PSPACE-complete
problems may admit local optima that differ from global optimum, which makes them particularly
suitable for evaluating the reasoning ability of LLMs. However, there is a key obstacle that their
intractability makes the construction of labeled datasets highly challenging. Moreover, these prob-
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lems are difficult to evaluate quantitatively, as assessing the degree of error in incorrect outputs is
often non-trivial.

PSPACE
Not Yet Explored

NP

Beyond PSPACE

PSAT
[39]

RegexMin
[Ours]

TSP
[15, 16, 40]

Connected Component
[40]

Shortest Distance
[15, 16, 40]

Knapsack
[15, 16]

RegexEq
[Ours]

Minimum 
Vertex Cover

[40]

Sorted Array Search 
[15, 16]

Figure 1: Overview diagram for the complex-
ity class. In this work, we target PSPACE-
complete problems, a class that has received
relatively little exploration so far. The papers
cited in the figure are as follows: Fan et al.
(2024a) [15], Fan et al. (2024b) [16], Sub-
ramanian et al. (2025) [39], and Tang et al.
(2025) [40]

In order to overcome these limitations, we focus
on two well-known problems, regex minimiza-
tion and equivalence decision. Regexes are a fun-
damental representation of regular languages—
the simplest class in formal language theory—
and are widely used in practice for tasks such as
string search, pattern matching, and text prepro-
cessing (Thompson, 1968a). Regex minimization
and equivalence decision are practically important,
as they contribute to producing more concise ex-
pressions and mitigating vulnerabilities such as
Regex Denial of Service (ReDoS) (Li et al., 2022).
Despite their practical relevance, the binary deci-
sion problem of testing equivalence between two
regexes is PSPACE-complete, and minimizing a
regex is also PSPACE-complete (Meyer & Stock-
meyer, 1972). While these tasks also require mas-
sive exploration to establish ground truth labels,
they offer naturally defined quantitative metrics,
which enable the evaluation of model outputs and
intermediate reasoning steps. In addition, due to
the wide applicability of regex and their frequent
appearance in code, all pretrained LLMs consid-
ered in our study have prior knowledge of regex.
This reduces inequality across models stemming
from differences in pretraining and makes these
tasks particularly suitable for evaluation.

Building on this well-defined foundation, we construct labeled datasets for the two regex-related
PSPACE-complete tasks While pretrained LLMs demonstrate some level of understanding without
additional training, they nevertheless struggle to solve the tasks. Trained models also show only
limited generalization, performing well on regexes of lengths similar to those seen during training
but failing to maintain performance on unseen lengths. This highlights the intrinsic difficulty of
the tasks beyond mere exposure to training data. Based on these findings, we report discrepancies
between the theoretical capacity and the practical ability of LLMs. We further argue for the neces-
sity of evaluating LLM reasoning under spatial complexity constraints using challenging tasks of
this nature. To this end, we introduce the RegexPSPACE benchmark, constructed through careful
filtering of test sets, and present quantitative evaluation metrics along with results on 6 LLMs and 5
LRMs.

2 RELATED WORKS

One needs a basic background in the theory of computation, to fully understand our work, which is
one of the fundamental areas of research in computer science. Naturally, this paper cannot cover all
relevant material, but we summarize the necessary preliminaries related to our study in Appendix A.
Because our work is the first to construct a dataset, a test set and a benchmark for the complexity
class of PSPACE-complete problems, there is no direct prior work. Instead, we review prior analyses
of the computational capabilities of LLMs, explorations of other complexity classes, and the real-
world applications of regexes to motivate and justify our choice of tasks.

2.1 APPROACHES ANALYZING THE COMPUTATIONAL POWER OF LLMS

Since the advent of deep neural networks, one of the most persistent yet slow-progressing areas of
research has been explaining neural models. Although neural models are undeniably computing
machines that map inputs to outputs, their incorporation of nonlinearities for learning richer repre-
sentations makes interpreting their behavior challenging. Nonetheless, there has been steady the-
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oretical interest in evaluating their fundamental computational abilities, including several analyses
of attention-based models. For instance, Pérez et al. (2021) argued that the Transformer’s attention
structure is capable of simulating a universal Turing machine, while Bhattamishra et al. (2020) fur-
ther analyzed which component of the Transformer network is essential for the Turing-completeness
of the network. More recent work (Dziri et al., 2023; Keles et al., 2023) attempted to analyze the
computational complexity of RNNs, LSTMs, and Transformers by training them as classifiers over
sets of strings. Despite these efforts, such studies often rely on theoretical assumptions or are limited
to small-scale models rather than practically deployed LLMs. Thus, empirical investigations into the
computational power of widely used LLMs remain insufficient and necessary.

2.2 BENCHMARKS FOR EXPLORING LLM COMPUTATIONAL POWER

Motivated by this need, several benchmarks have been proposed to evaluate the capabilities of
LLMs. Fan et al. (2024a) introduced NPHardEval, a benchmark for assessing LLM performance
on NP-hard problems, covering P, NP-complete, and NP-hard classes. As a follow-up, Fan et al.
(2024b) proposed NPHardEval4V, an extension designed to evaluate multimodal LLMs using
image-based tasks. Additionally, Qi et al. (2024) introduced SCYLLA, a benchmark incorporat-
ing problems with diverse time complexities, aiming to show that LLMs can generalize beyond rote
memorization. However, these benchmarks predominantly focus on problems defined in terms of
time complexity, while analyses from the perspective of space complexity remain scarce. Figure 1
summarizes the representative problems and related benchmarks across different complexity classes.
As the table shows, while P and NP problems have been studied relatively extensively, no labeled
datasets or benchmarks exist for PSPACE or beyond, primarily due to the intractability of label-
ing. Moreover, prior benchmarks often rely solely on accuracy-based metrics, making cross-task
comparisons of difficulty and reasoning analysis limited. Our proposed RegexPSPACE benchmark
takes a step further by evaluating the reasoning ability of LLMs on PSPACE-complete problems and
providing task-specific evaluation metrics that enable diversified analysis.

2.3 REAL-WORLD APPLICATIONS OF REGEXES AND RELATION TO LLMS

Among the many PSPACE-complete problems, we chose regex-related tasks for several reasons.
Most importantly, regexes have wide-ranging real-world applications, making the tasks inherently
important. They are practically relevant in natural language processing (NLP), software engineering
(SE), and programming languages (PL) (Davis et al., 2018; Shen et al., 2018; Li et al., 2022; Siddiq
et al., 2024). In particular, finding concise and safe regex representations has always been essential
in optimizing search engines (Thompson, 1968b). Because of their prevalence in search, prepro-
cessing, and other applications, most LLMs have already been exposed to regexes during pretrain-
ing, enabling regex tasks to serve as natural benchmarks without requiring additional fine-tuning.
From a task perspective, regex problems also provide advantages. Although equivalence decision
is PSPACE-complete, existing libraries allow exponential-time testing for shorter lengths, which in
turn enables rigorous evaluation metrics. Such metrics go beyond accuracy, allowing more detailed
analyses of model outputs. Therefore, regex tasks are not only practically important and familiar to
LLMs, but also well-suited as benchmarks due to their support for partial success evaluation through
metrics like equivalence and length ratio.

3 PROBLEM DESCRIPTIONS

We target PSPACE-complete regex problems, specifically the tasks of regex equivalence decision
and regex minimization. To the best of our knowledge, we are the first to propose these tasks as
benchmarks. Therefore, in this section, we provide a clear description of the problems we address.
A more formal definition using precise notation is provided in Appendix A.2.3 and A.2.4.

3.1 REGEXEQ

Regex is a representation method for a set of strings that exhibits regular properties. A regex repre-
senting a given set of strings is not unique—multiple equivalent expressions may exist. Given two
regular expressions, they are considered equivalent if they recognize the same set of strings. The
regex equivalence decision task is to determine whether two given regexes recognize the same set of
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RegexPSPACE Benchmark (1.6k)

RegexEq
Equivalent Pair:

Not Equivalent Pair:
𝑎? + 𝑏∗ 𝑎∗ & 𝑏𝑎 + 𝑏∗ 𝑎∗

𝑎? + 𝑏∗ 𝑎∗ & 𝑎𝑏 + 𝑏∗ 𝑎∗

Train TestValid

Test on Generalized 
Length

Partitioning 243,829k Regexes
into Equivalent 191,754k Classes

RegexMin
Query Regex:

Minimized Regex:
𝑏 + 𝑎∗ 𝑎? + 𝑏∗
𝑏𝑎 + 𝑎∗𝑏∗

𝑐∗𝑎∗ ≡ 𝑎 + 𝑐∗ 𝑎∗

𝑎𝑏 + 𝑎𝑐
≡ 𝑎 𝑏 + 𝑐

(𝑎𝑏 + 𝑎)∗

≡ ab? ∗

⋯

Large Depth
(Intractable to 

label)

Relatively
Small Depth

LRD (1,268k)

URMT (50k)Depth-based Regex Enumeration

Length-based Regex Enumeration
Main Bottleneck

Labeling

Filtering

Datasets Construction (App. C.3)

Model Evaluation (Sec. 5)
Q: Minimize the following regex: Input: 𝑏 + 𝑎∗ 𝑎? + 𝑏∗
A: The minimized regex is 𝑏 + 𝑎∗ a + 𝑏∗ .

Equivalent but not Minimal
Q: Determine the equivalence of the following regexes:

Input 1: 𝑎? + 𝑏∗ 𝑎∗, Input 2: 𝑏𝑎 + 𝑏∗ 𝑎∗

A: 𝑎? + 𝑏∗	is equivalent to 𝑎 + 𝑏∗. 𝑎? + 𝑏∗	is equivalent to
𝑎 + 𝑏∗. 𝑎? + 𝑏∗	is equivalent to 𝑎 + 𝑏∗. 

Repeated Tokens
Q: Determine the equivalence of the following regexes:

Input 1: 𝑎? + 𝑏∗ 𝑎∗, Input 2: 𝑏𝑎 + 𝑏∗ 𝑎∗
A: They are not equivalent.

False Negative
Regex Spaces

Figure 2: Overview of our work. We construct the labeled regex dataset (LRD) and the unlabeled
regex minimization test set (URMT) and label LRD with the massive partitioning of regexes. The
stars on the 3D graph visualize the number of regexes in the dataset and the number of regexes to
examine for calculating minimality. We construct RegexPSPACE by filtering the test set of LRD
and evaluate LLMs and LRMs on our benchmark.

strings, making it a fundamental binary decision problem. The PSPACE-completeness of RegexEq
was reported by (Meyer & Stockmeyer, 1972).

3.2 REGEXMIN

As discussed earlier, a single regex can have multiple equivalent expressions. The goal of Regex
Minimization is to find the shortest regex among all equivalent expressions. Unlike RegexEq, this
task takes a single regex as input and aims to reduce its length as much as possible. Depending on
the allowed operations and the definition of length, regex minimization has several variants. The
most widely used definition measures length based on the number of operators and characters. We
note that throughout this paper we adopt this definition, where concatenation—often omitted be-
tween characters—is also counted as an operator. Although equivalence decision and minimization
belong to the same complexity class, regex minimization in practice requires substantially more
computation and is therefore a harder problem. The PSPACE-completeness of Regex Minimization
was proved by (Meyer & Stockmeyer, 1972).

4 DATASET CONSTRUCTION

We construct three resources for regex problems: a labeled dataset, an unlabeled dataset, and a
benchmark. As noted earlier in Section 3, regex minimization is considerably more difficult in prac-
tice than regex equivalence decision. Therefore, we first construct a dataset for regex minimization
containing more than one million regexes. Since an equivalence decision is inevitably required to
determine the ground truth for minimization, sets of equivalent regexes are naturally obtained as
a byproduct. Randomly splitting this large dataset into training, validating, and testing partitions
yields our first dataset. We restrict the alphabet size and expression depth since double-exponential
exploration is required to enumerate all regexes up to a given length and group equivalent ones into
the same class.

While regexes can be arbitrarily long, enumerating all possible regexes is infeasible since they are
infinite in practice. Therefore, in order to evaluate whether a trained model genuinely performs well
on the task, it is necessary to examine its ability to generalize to instances with lengths unseen during
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training. For this purpose, we construct a test dataset consisting of fifty thousands regexes longer
than those used in the labeled dataset. However, since the labeled dataset already operates near the
practical limit of expression depth, obtaining ground truth for longer regexes is nearly impossible.
Thus, we construct an unlabeled test dataset for assessing generalization. Analysis on computational
effort to construct the dataset is given in Appendix E. This dataset is sampled in a manner similar to
the labeled dataset but does not include ground truth minimal regexes or equivalence labels, and can
therefore only be used for the minimization task. As it lacks ground truth labels, model performance
is evaluated indirectly through equivalence preservation and reduction ratios.

Our preliminary experiments on RegexMin in Appendix F reveal that regex minimization is both
a challenging and intuitively aligned evaluation task, underscoring its value as a benchmark for
reasoning performance. Based on this, we refine the test set of the labeled dataset, augment it with
another PSPACE-complete task of regex equivalence, and curate 1,685 non-trivial regex problems
through careful filtering to construct the Regex Problem Benchmark. Details of the construction
precess are provided in Appendix B.

5 EVALUATION OF LLMS ON REGEXPSPACE

We evaluate a diverse set of pretrained LLMs and LRMs of varying sizes and from different
providers in order to examine LLM performance on RegexPSPACE and identify general trends.
Specifically, we conduct evaluations on six LLMs, including Qwen, Qwen-Coder, Llama, and Phi-4,
as well as six LRMs, including DeepSeek-R1 (DS-R1), Phi-4, and gpt-oss. The models are selected
to investigate the effects of size, reasoning capability, and specialization for code. For each task, we
employ manually crafted prompts and conduct experiments in both zero-shot and five-shot settings.
Detailed information about the models, prompts, and experimental hyperparameters is provided in
Appendix G.

5.1 METRICS

Our evaluation relies on carefully chosen metrics that quantify the validity of model outputs. For
evaluating RegexMin, we report three metrics: minimality, equivalence, and length ratio. For evalu-
ating RegexEq, we report accuracy and F1-score. Details of each metric and their formal definitions
are provided in Appendix G.2.

Metrics for RegexMin Minimality measures the proportion of responses that are equivalent to the
query regex while also having minimal length. Equivalence measures the proportion of responses
that are equivalent to the query regex but not necessarily minimal. Minimality is always less than or
equal to equivalence, and higher values of both metrics indicate better performance. Length ratio,
defined by (Kahrs & Runciman, 2022), is the average ratio of the length of the output regex to that of
the original regex. We treat responses that are not equivalent to the query regex as non-reductions.
Unlike the other metrics, a smaller length ratio indicates better performance. The best achievable
performance on RegexMin is 0.7270.

Metrics for RegexEq Accuracy measures the proportion of correctly predicted labels indicating
whether a given pair of regexes is equivalent. Since binary classification with consistent outputs
of either True or False can trivially achieve 50% accuracy, we additionally report F1-score, which
considers both precision and recall. As the evaluation is performed via prompting, models may
fail to output a valid label. Therefore, F1-score is computed only over outputs where the model
successfully produced either a True or False label. It should not be interpreted in isolation but rather
together with the proportion of invalid outputs.

5.2 OVERALL PERFORMANCE

Task Dependency The experimental results are summarized in Table 1. Overall, the models strug-
gle significantly on the minimization task. From the minimization perspective, most models not only
fail to produce shorter regexes but also struggle to output even equivalent ones, with the proportion
of equivalent outputs falling below 50% for the majority of models. This highlights the inherent dif-
ficulty of the minimization task for current models. In terms of length ratio, while the best achievable
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Table 1: Our main evaluation results on RegexPSPACE. We evaluate 6 LLMs and 5 LRMs across di-
verse model families and sizes. We report zero-shot and 5-shot prompting results on both RegexMin
and RegexEq. For clarity, the best-performing LLMs and LRMs for each metric are highlighted in
bold. We additionally report fail rates, since the F1-score is computed only from correctly parsed
answer. For the length ratio, the best achievable performance on RegexPSPACE is 72.70%.

Model Size Shot RegexMin RegexEq

Min. (↑) Equi. (↑) Ratio (↓) Acc. (↑) F1 (↑) Fail (↓)

Qwen2.5 7B Zero 20.00 25.04 91.67 62.08 59.46 1.66
Five 10.98 14.90 94.71 64.07 63.15 0.86

Qwen2.5-Coder 7B Zero 14.18 21.90 94.05 58.72 51.98 0.53
Five 17.09 40.42 92.94 65.85 72.90 0.00

Llama-3.1 8B Zero 2.31 3.98 98.60 30.45 42.81 46.08
Five 3.50 4.21 97.96 36.11 42.62 34.81

Phi-4 14B Zero 23.32 25.34 90.56 57.06 32.79 2.55
Five 24.63 26.35 90.64 57.00 32.41 0.42

Qwen2.5 14B Zero 27.24 32.40 89.68 63.53 50.63 0.18
Five 20.30 21.90 91.26 69.11 65.74 0.09

Qwen2.5-Coder 14B Zero 28.72 42.08 89.15 55.07 23.33 0.06
Five 31.93 40.83 87.82 58.69 38.40 0.18

DS-R1-Qwen 7B Zero 19.23 28.78 92.57 59.41 48.51 3.74
Five 17.74 23.09 92.87 58.07 51.02 6.26

DS-R1-Llama 8B Zero 1.19 3.09 99.57 24.33 14.07 55.73
Five 1.19 1.96 99.27 29.70 12.00 45.04

DS-R1-Qwen 14B Zero 30.92 35.55 88.46 61.87 74.66 23.20
Five 25.99 30.09 89.53 66.41 81.06 21.04

Phi-4-reasoning 15B Zero 34.84 47.00 87.35 45.46 73.61 42.82
Five 40.83 51.45 86.06 51.84 69.69 33.26

gpt-oss-low 20B Zero 67.36 84.45 78.48 84.96 82.85 0.03
Five 69.02 87.24 77.96 87.98 86.75 0.03

gpt-oss-high 20B Zero 4.57 4.69 97.71 62.94 95.26 34.66
Five 9.02 9.55 95.33 63.15 96.41 34.90

performance is 72.70%, most models achieve only around a 10% reduction. In contrast, performance
is noticeably better on the equivalence decision task, even for models that fail on minimization. We
attribute this difference to the nature of the tasks: equivalence requires only a binary decision of
True or False, whereas minimization requires producing a valid regex that is not only equivalent to
the query but also shorter in length. Furthermore, the RegexEq task is balanced between equivalent
and non-equivalent pairs, meaning that a model consistently outputting only True or only False can
trivially achieve 50% accuracy. In order to address this, we additionally report F1-scores based only
on responses where the model successfully output either True or False.

Model Size Dependency From the perspective of model size, models with 14–15B parameters
or larger generally outperform those with 7–8B parameters. This aligns with common intuition, as
larger models are better equipped to handle long-term massive exploration. Similarly, reasoning
models tend to perform better on minimization tasks compared to non-reasoning models, with rea-
soning models above 14B consistently outperforming non-reasoning ones. However, in equivalence
tasks, 7-8B models and reasoning models do not show a clear advantage over non-reasoning models
in terms of accuracy. Indeed, reasoning models are often observed to generate long sequences of
repetitive phrases during the thinking phase or fail to complete their answers within the token limits.
When F1-score is computed only over valid True/False outputs, reasoning models larger than 14B
show a clear tendency to outperform both smaller models and non-reasoning ones.

Furthermore, we conduct experiments on several non-reasoning 30B models. Across all of those
30B models, we consistently observe excessively long responses that fail to terminate properly. A
detailed analysis of these results is provided in Appendix H.2.
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Few-shot Examples Dependency RegexEq generally benefits from few-shot examples, with per-
formance improving when examples are provided. RegexMin does not always exhibit such gains
in minimality, but most non-reasoning models show a higher proportion of valid regex outputs with
few-shot prompting, suggesting improvements in formatting and adherence to syntactic rules. We
attribute the discrepancy, that few-shot examples help with formatting but not with minimization, to
the fact that heuristics useful for specific examples do not generalize well, a limitation rooted in the
PSPACE-complete nature of the problem. This contrast indicates that few-shot prompting primar-
ily reinforces surface-level regularities rather than enabling deeper optimization, allowing models
to mimic valid structures while still struggling with the combinatorial reasoning required for true
minimization.

Model Dependency The tendencies described above vary across models. Within the Qwen fam-
ily, coder-specialized models consistently outperform their non-coder counterparts, likely because
their ability to handle code naturally transfers to regex. DeepSeek models, Llama models, and the
gpt-oss model in high reasoning mode frequently generate repetitive sequences during the produc-
tion of either thinking or answer tokens. Such repetitions directly hinder response generation and
therefore degrade performance. We further analyze how many failed regex generations could be
attributed to repetition in the following section. Failures caused by repetition are more prevalent in
RegexMin than in RegexEq. We attribute this difference to the nature of minimization, which re-
quires repeatedly exploring similar forms of regex. During this process, models can become trapped
in a repetitive probability distribution. Although sampling-based decoding could potentially miti-
gate this issue compared to greedy decoding, such probabilistic escapes still require large amounts
of decoding and therefore do not constitute a fundamental solution. The best-performing model
overall is gpt-oss, which achieves the strongest results in low reasoning mode. However, in high
reasoning mode, it exhibits frequent repetition issues similar to DeepSeek, often failing to provide
correct answers and generating until hitting the token limit.

5.3 FAILURE CASE ANALYSIS

In the Main Results, we observed that LLMs fail on tasks for a variety of distinct reasons. We
categorize and examine the failure cases to more closely analyze the main challenges faced by
LLMs and to validate our interpretation. For RegexMin, we classify each case into one success type
and five failure types: (1) cases where the model successfully outputs a minimal regex, (2) cases
where the output is not minimal but equivalent, (3) cases where the output is a valid expression but
not equivalent, (4) cases where generation naturally stopped but produced an invalid expression, (5)
cases where failure occurred due to repetition, and (6) cases where the model stopped after reaching
the token limit without repetition. The failure cases are ordered by increasing severity, except for
the last one. The final case—stopping due to the token limit without repetition—indicates that the
model was still in the middle of generation and that the token budget we imposed was insufficient
to produce a complete answer. Therefore, this case differs in both cause and nature from the others,
and its severity is not directly comparable. However, if a model consistently requires more tokens
than others within the same budget, it implies that the model demands more extensive exploration,
which signals inefficiency rather than a positive property. For RegexEq, we report the proportions of
True Positives (TP), True Negatives (TN), False Positives (FP), False Negatives (FN), cases where
generation naturally stopped but yielded an invalid expression, cases where failure occurred due to
repetition, and cases where the model stopped after reaching the token limit without repetition. Due
to space constraints, in this section we only visualize the zero-shot results, while the full analysis is
provided in Appendix H.1.

As shown in both Figure 3 and Figure 4, repetition is particularly pronounced in Llama, DeepSeek,
and the high reasoning mode of gpt-oss. In addition, gpt-oss and phi-4-reasoning frequently termi-
nate generation prematurely due to reaching the token limit. With respect to RegexMin, we also ob-
serve that non-reasoning models, particularly DeepSeek, produce a considerable number of invalid
outputs. These outputs often arise from the use of practical regex notation, mathematical syntax,
or other forms that cannot be easily parsed by rule-based mechanisms. Models without reasoning
capabilities, including Qwen, frequently succeed in producing syntactically valid outputs. However,
these are rarely equivalent to the target regex or minimal in form.
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Figure 3: Case analysis bar chart of the zero-shot prompting results on RegexMin. The outcomes
are categorized into Minimality, Not minimal but equivalent, Not equivalent but valid, Invalid but
completed answers, Repetition, and Incomplete outputs.
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TP TN FP FN Invalid Repeated Stopped

Figure 4: Case analysis bar chart of the zero-shot prompting results on RegexEq. The outcomes
are categorized into the components of the confusion matrix, together with Invalid but completed
answers, Repetition, and Incomplete outputs.

For RegexEq, the patterns of repetition and invalid outputs across models are broadly similar to
those observed in RegexMin. Overall, models tend to output negative decisions more frequently than
positive ones, revealing a systematic bias toward judging two regexes as non-equivalent. In contrast
to its behavior on RegexMin, where gpt-oss often failed by repetition or incomplete outputs, its
performance on RegexEq shows a higher proportion of correct answers and a substantial reduction
in repetition. The incidence of invalid outputs is also markedly lower compared to RegexMin,
confirming once again that equivalence checking is a relatively easier task for models to handle.
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5.4 CORRELATION AMONG PERFORMANCE, ANSWER LENGTH, AND INPUT SIZE

One of our objectives in studying PSPACE-complete problems was to examine how problem diffi-
culty, represented by input length, influences both the number of reasoning answer tokens and overall
performance. Since performance variation across models was more pronounced in RegexMin, we
conducted our analysis on this task. As shown in Figure 12, we report model performance with re-
spect to the input query length, alongside the corresponding output token length. In general, longer
inputs make the task more challenging, and solving them effectively tends to require generating more
answer tokens. Indeed, we observed that models achieved higher performance on shorter regexes,
with a slight upward trend in the average number of generated tokens as the input regex length in-
creased. This phenomenon was particularly noticeable in non-reasoning models such as Qwen2.5.
We attribute this to the fact that reasoning models often separate the thinking process into dedicated
thinking tokens, enabling them to “reason” in advance while still producing relatively short answers.

6 CONCLUSION

We introduced RegexPSPACE, the first benchmark to evaluate LLMs and LRMs on PSPACE-
complete regex problems. Our results show a clear gap between models’ theoretical capacity and
their practical performance. Specifically, models struggle with minimization, often failing to pro-
duce equivalent or shorter regexes, while performing relatively better on equivalence tasks. We also
identified common failure patterns, such as verbosity, repetition, and premature stopping. These
findings highlight the intrinsic difficulty of PSPACE-complete reasoning and the current limits of
LLMs under spatial constraints. RegexPSPACE thus provides not only a rigorous evaluation frame-
work but also a foundation for future research aimed at advancing reasoning capabilities beyond
NP-level challenges.

Limitations One limitation of our dataset construction is the restriction to relatively small alphabet
sizes and expression depths, imposed by practical constraints. As the alphabet or depth increases,
the search space grows double-exponentially, making enumeration and minimization significantly
harder. While such restrictions limit the discovery of more complex minimization rules and finer-
grained reasoning abilities of LLMs, some form of limitation is unavoidable, given the infinite nature
of regex. Through the computational cost analysis in Appendix E, we emphasize that our exploration
is already massive and close to the feasible boundary. Extending to longer regex remains nearly
intractable, yet it also represents a meaningful direction for future research.

Another limitation is that we focuse exclusively on regex-related PSPACE-complete problems. Al-
though there are many PSPACE-complete problems, performance on regex tasks may not directly
translate to other domains. Exploring additional PSPACE problems therefore remains an important
open challenge. Nevertheless, the problems we target belong to the PSPACE-complete class and any
other PSPACE problem can be reduced to them. Moreover, we introduce tasks that address com-
plexity classes which have been scarcely explored, providing a valuable starting point for examining
LLMs’ reasoning ability from a spatial perspective. In addition, regex-related problems, particu-
larly minimization, have the advantage of enabling quantitative evaluation even for partial success,
through metrics such as equivalence and length ratio.

Future Works We propose several directions for future work to further extend the explored bound-
aries of LLMs’ computational complexity. First, the most immediate step is to improve the perfor-
mance of LLMs and LRMs on the RegexPSPACE benchmark. Most LLMs demonstrated poor per-
formance on our benchmark, frequently repeating tokens during long reasoning processes or failing
to complete responses within the token limit, both of which highlight current limitations in reason-
ing. Overcoming these issues and enhancing performance would represent an important step toward
advancing the computational complexity capabilities of LLMs.

Beyond this, expanding to other PSPACE-complete domains also remains a significant challenge. As
noted in the limitation section, RegexPSPACE is a valuable starting point, but broader exploration of
PSPACE-complete problems is essential. Such tasks can serve as rigorous standards for measuring
the reasoning capabilities of LLMs. Future research should further analyze and experiment with
massive exploration under limited memory constraints, and investigate strategies for overcoming
these barriers.
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A PRELIMINARY

We cover the basics of formal language theory and computational complexity to aid in understanding
our paper. For a more detailed explanation, refer to the book on the theory of computation by Sipser
(1997).

A.1 FORMAL LANGUAGES AND CHOMSKY HIERARCHY

An alphabet Σ is a finite set of symbols, and a character σ is an element of an alphabet. A string w ∈
Σ∗ is defined as a sequence of characters, and a formal language L is defined as a set of strings over
an alphabet. The Chomsky hierarchy classifies formal languages into four levels based on their
complexity and the type of automaton required to recognize them as illustrated in Table 2.
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Table 2: The Chomsky Hierarchy of Formal Languages.
Type Language Recognizing Automaton

Type-0 Recursively Enumerable Turing Machine (TM)
Type-1 Context-Sensitive Linear-Bounded Automaton (LBA)
Type-2 Context-Free Pushdown Automaton (PDA)
Type-3 Regular Finite Automaton (FA)

A.2 REGULAR LANGUAGES

A language is called a regular language if it can be recognized by either a regular expression
or a finite automaton. We present details of a regular expression and a finite automaton in Sec-
tions A.2.1 and A.2.2, respectively.

A.2.1 REGULAR EXPRESSION

A regular expression (regex) defines a regular language, which forms the most basic set of formal
languages. From a regex, a set of strings is defined, and this set is called its regular language. While
there are several variants, the classical definition of a regex involves a finite alphabet Σ and use two
binary operations, concatenation and union, and one unary operation, the Kleene star. Following the
problem setting of the most recent regex simplification work (Kahrs & Runciman, 2022), we adopt
a definition that includes an additional unary operation, the option. We follows the notations for
regex used in Gruber & Gulan (2010). The form of expressions is as follows: ε, s, x+y, x ·y, x∗, x?

where s ∈ Σ, and x, y are any finite expressions. For an expression x, the corresponding language
L(x) is defined as follows:

• ∅ = {} (An empty language)
• L(ε) = {ε} (An empty string)
• L(s) = {s} ∀s ∈ Σ (A character)
• L(x+ y) = L(x) ∪ L(y) (Union)

• L(x · y) = {vw
∣∣∀v ∈ L(x),∀w ∈ L(y)} (Concatenation)

• L(x?) = L(x) ∪ L(ε) (Option)

• L(x∗) = {w = x1 . . . xn

∣∣∀n ∈ N0,∀x1, . . . , xn ∈ L(x)} (Kleene Star)

By definition, Σ∗ denotes the set of all strings on the alphabet Σ including ε. For convenience,
we denote the space of all regexes over a fixed alphabet Σ as X(Σ). Since theoretical regexes are
defined using unary and binary operations, every regex has a binary expression tree notation, where
all internal nodes are operations.

A.2.2 FINITE AUTOMATON

A finite-automaton (FA) A = (Q,Σ, δ, i, F ) consists of a set Q of states, and alphabet Σ, a transition
function δ : Q × Σ → Q, a start state i ∈ Q, and a set F ⊆ Q of final states. We refer to an FA
as a deterministic FA (DFA) when its transition function δ specifies exactly one next state for each
combination of a state and an input symbol. We refer to an FA as a nondeterministic FA (NFA)
otherwise. An FA A accepts an input w ∈ Σ∗ if a sequence of states q0, q1, . . . , qn ∈ Q exists,
where

1. q0 is a start state i,
2. δ(qi, wi+1) = qi+1, for i = 0, . . . , n− 1, and
3. qn an element of a set F of final states.

A.2.3 EQUIVALENCE DECISION

A regex representing a regular language is not unique, and multiple equivalent expressions may
exist for the same language. Two regexes are defined as equivalent if they recognize the same set
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of strings, i.e., the same language. Formally, the equivalence between two regexes x, y ∈ X(Σ)
is denoted as x ≡ y. In this notation, the regex equivalence decision (RegexEq) is defined as fol-
lows: Given an alphabet Σ and two regexes x, y ∈ X(Σ), determine whether x ≡ y. The most
naive approach for checking regex equivalence is to convert a regular expression into a nondeter-
ministic finite automaton (NFA), transform it into a deterministic finite automaton (DFA), minimize
the DFA, and then compare the minimal DFAs for equivalence. However, the NFA-to-DFA con-
version step (subset construction) requires exponential space, leading to an EXPSPACE procedure.
In fact, it is known that equivalence can be verified within PSPACE by simulating the DFA lazily
with out explicitly constructing it, and more precisely, the problem has been shown to be PSPACE-
complete (Meyer & Stockmeyer, 1972).

A.2.4 MINIMIZATION

In order to formally define regex minimization, we must first specify a measure of regex length.
Although several definitions exist, in this work we follow prior work (Ellul et al., 2004; Lee &
Shallit, 2005; Gruber & Gulan, 2010; Kahrs & Runciman, 2022) and adopt the length defined by
the number of nodes in the expression tree, which is the most widely used definition. Accordingly,
minimal regexes are defined as those with the smallest tree length among all equivalent regexes. We
use the term length of a regex interchangeably with its tree length and denote the tree length of a
regex r by |r|T . For an alphabet Σ and a regex r ∈ X(Σ), we denote the set of regexes equivalent
to r as Xr(Σ) = {x ∈ X(Σ)|x ≡ r}, and the subset of Xr(Σ) with minimal regexes is denoted as
X⋆

r (Σ) = {x ∈ Xr(Σ)|∀y ∈ Xr(Σ), |x|T ≤ |y|T }. Given a regex r ∈ Xr(Σ), the regex minimiza-
tion (RegexMin) is to find a minimal equivalent regex x ∈ X⋆

r (Σ). In practice, regex minimization
requires traversing all regexes of length no greater than that of the input regex and checking equiv-
alence. Since equivalence decision is already PSPACE-complete, and traversing shorter regexes
with some ordering can also be resolved within a polynomial bound, regex minimization is likewise
PSPACE-complete. From a complexity-theoretic perspective, regex minimization and regex equiva-
lence belong to the same class. However, in practice, regex minimization typically requires far more
extensive computation and is therefore considered the more challenging task.

A.3 TURING MACHINE

A Turing machine (TM) M = (Q,Σ,Γ, δ, i, acc, rej) consists of a set Q of states, an input alpha-
bet Σ, a tape alphabet Γ, a transition function δ : Q×Γ→ Q×Γ×{L,R}, an initial state q0 ∈ Q,
an accepting state acc ∈ Q, and a rejecting state rej ∈ Q. A TM is deterministic when for every
combination of a state and a tape symbol, its transition function δ specifies exactly one action. A
TM is nondeterministic otherwise.

A configuration c of a TM M is a string in Γ∗QΓ∗. A configuration c1 yields a configuration c2 if
the TM M can go from c1 to c2 in a single step. A TM M accepts an input w ∈ Σ∗ if a sequence of
configurations c1, c2, . . . , ck ∈ Γ∗QΓ∗ exists, where

1. c1 is a start configuration on input w, which is q0w,
2. each ci yields ci+1, and
3. ck is an accepting configuration.

A.4 COMPLEXITY OF PROBLEMS

The complexity of a problem is formally defined using the concept of a Turing machine, which
generalizes all computing devices. A Turing machine is a computational model consisting of a
single tape of infinite length, a head that operates on the tape, a finite set of states, and a transi-
tion function between these states. Modern computer architectures with unbounded memory are
equivalent in computational power to a Turing machine. If the computation of a Turing machine
is deterministic (resp. nondeterministic), we refer to it as a deterministic (resp. nondeterministic)
Turing machine. The NP class is the set of problems that can be solved in polynomial time by a
nondeterministic Turing machine. The PSPACE class is the set of problems that can be solved by a
Turing machine whose tape usage is bounded by a polynomial function of the input length. It is a
well-known fact that NP is a subset of PSPACE, which implies that PSPACE is at least as hard as
NP unless NP=PSPACE (Sipser, 1997). Furthermore, the notions of completeness and hardness are
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defined via reductions. For a given problem, if any NP (resp. PSPACE) problem can be reduced to
it, then we call the problem NP-hard (resp. PSPACE-hard). If a problem is NP-hard (resp. PSPACE-
hard) and NP (PSPACE), then it is NP-complete (PSPACE-complete). Since PSPACE is believed to
be harder than NP, it follows that PSPACE-complete problems are NP-complete.

As shown in Figure 1 in Section 1, most of the existing labeled datasets address problems in P or
NP, and the performance of LLMs on problems, and the performance of LLMs on problems be-
lieved to be harder—those in PSPACE or beyond—remains largely underexplored. Several studies
have argued that the attention mechanism of LLMs possesses a Turing-complete nature, which lies
far beyond the scope of the diagram. However, experimentally validating whether LLMs actually
exhibit such capability is a different challenge. From the perspective of analyzing the computational
power of LLMs, the context window is often regarded as analogous to the tape (memory) of a Turing
machine. Under this abstraction, LLMs can be viewed as Non-erasing Turing Machines (NETMs),
since they cannot overwrite previously generated tokens. Although NETMs have the same compu-
tational power as general Turing machines, simulating a standard Turing machine requires space
bounded by the number of edits. This implies that simulating PSPACE-complete problems se-
quentially with LLMs would require EXPSPACE, which highlights the fundamental challenge of
enabling LLMs to perform massive exploration.

In fact, there have already been attempts to approximate PSPACE-complete problems (Kautz & Sel-
man, 1992; Kocsis & Szepesvári, 2006; Mahmood & Virtema, 2023). Notably, the generalization
of perfect-information games such as Go and chess leads to PSPACE-complete complexity, and
certain optimization problems, such as partial searchlight scheduling or true quantified boolean for-
mula (TQBF), are also PSPACE-complete. However, such approaches neither provide access to the
ground truth solutions nor offer a reliable way to determine whether a proposed solution is correct.
In contrast, our proposed dataset and benchmark are the first labeled PSPACE-complete dataset con-
structed through massive computation. We further guarantee the correctness of our dataset through
proofs and introduce quantitative metrics that enable rigorous evaluation.

A.4.1 COMPLEXITY CLASSES

Complexity classes are defined over both time and space, which are essential for classifying the
complexity of computational problems. The time complexity class TIME(t(n)) is the collection of
all languages that are decidable by an O(t(n)) time deterministic TM over t : N → R+. The space
complexity class SPACE(f(n)) is the collection of all languages that are decidable by an O(f(n))
space deterministic TM over f : N → R+.

P The class P consists of all decision problems that can be solved by a deterministic TM in poly-
nomial time. That is,

P =
⋃
k

TIME(nk).

NP The class NP consists of languages that have a polynomial-time verifier. A verifier for a
language L is an algorithm A, where

L = {w | A accepts ⟨w, c⟩ some string c}.

The verifier A for L is a polynomial-time verifier if it runs in polynomial time in the length of w ∈ L.

PSPACE The class PSPACE consists of all decision problems that are decidable in polynomial
space on a deterministic TM. In other words,

PSPACE =
⋃
k

SPACE(nk).

Beyond PSPACE There exist complexity classes for languages considered more complex than
those in PSPACE. Two notable examples are EXPTIME and EXPSPACE. EXPTIME contains
problems solvable by a deterministic TM in exponential time, while EXPSPACE contains problems
solvable in exponential space. The following hierarchy holds:

P ⊆ NP ⊆ PSPACE ⊆ EXPTIME ⊆ EXPSPACE.
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A.4.2 REDUCTION BETWEEN PROBLEMS

A reduction is a procedure for converting one problem into another. A polynomial-time reduction
from a problem A to a problem B is an algorithm that converts A into B in polynomial time. If
such a reduction exists, we write A ≤P B. This implies that B is at least as hard as A because an
efficient solution for B would provide an efficient solution for A.

A.4.3 COMPLETE CLASSES

A problem B is C-complete for a complexity class C when the following conditions hold:

1. B is in C, and

2. every A in C is polynomial-time reducible to B.

Problems such boolean satisfiability problem (SAT), blah blah blah, are NP-complete, and the quan-
tified boolean formula (QBF), blah blah blah, are PSPACE-complete. RegexEq and RegexMin from
Sections A.2.3 and A.2.4 also are PSPACE-complete.

A.4.4 HARD CLASSES

A problem B is C-hard if every problem A in a complexity class C is polynomial-time reducible
to B. Unlike a C-complete problem, a C-hard problems is not required to be in the class C. For
instance, a problem can be NP-hard but not be in NP.

B DETAILED DATASET CONSTRUCTION

We introduce a dataset for regex minimization, structured into two components: the Regex Min-
imization Corpus (LRD) and the Extended Regex Minimization Benchmark (URMT). LRD is a
labeled dataset containing regexes and their minimal equivalents. It is partitioned into train, valida-
tion, and test sets. The minimality of a regex is verified by comparing it with all regexes of smaller
lengths. This requirement causes a practical upper bound to the size of the regex minimization
dataset.

Regex minimization, however, is not constrained by length in principle. Evaluating the ability of
a model to generalize beyond observed lengths is therefore necessary. In order to address this, we
construct URMT as a challenging out-of-distribution (OOD) benchmark, containing regexes longer
than those in LRD. URMT is unlabeled and consists only of a test set. Dataset construction follows
two main stages: 1) a bottom-up approach to generate regexes for the dataset and 2) the computation
of minimal tree lengths. The size of alphabet Σ is fixed as four, represented as {a, b, c, d}.

B.1 LRD CONSTRUCTION

LRD is constructed using a bottom-up approach, leveraging the fact that a regex can be represented
as a binary tree. We define the initial set D0 as Σ, representing the base alphabet. The set Dn is then
recursively constructed, where n denotes the tree depth of a regex in Dn. When constructing Dn, we
apply unary operations to elements in Dn−1 and binary operations between elements from D≤n−1

and Dn−1. Binary operations are restricted to cases where the operand from D≤n−1 comes first in
binary operations to control dataset growth. The construction process is described in Algorithm 1.
Since the number of regexes grows exponentially with the depth, we limit LRD to regexes of depths
up to 3. The dataset is partitioned into train, validation, and test sets in a ratio of 20:2:1. The test
set size is relatively smaller to reduce computational costs during LLM inference. Table 3 provides
dataset statistics.

Given a regex, all smaller regexes must be examined to check equivalence to determine the minimal
tree length. Similar to the construction of Dn, we initialize A1 = Σ and recursively construct
An, where n represents the tree length of regexes in An. Unary operations are applied to An−1,
while binary operations are applied to all possible pairs between elements from Ai and An−i−1.
The detailed process is described in Algorithm 4. This recursive definition ensures completeness,
with a proof provided in Appendix D.1. Once A≤n is constructed, regexes are partitioned into
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Induction : Di = {x∗, x? | ∀ x ∈ Di−1} ∪ {x + y, xy, | x ∈ D≤i−1, y ∈ Di−1}

Depth 0 Depth 1 Depth n1

D0 = Σ D1 Dn1

{a, b, c, d} {a∗, a?, (a + b), ...} {(a + b?)∗((cd) + a∗), ...}

Depth 2

D2

{bd + (a + b), ...}

Bottom-up Construction of Dataset

Length 20 Length 21 Length 2n

A1 = Σ A2 A2n

Induction : Ai = {x∗, x? | ∀ x ∈ Ai−1} ∪ {x + y, xy, yx | ∀ j = 1, ..., i− 2, x ∈ Aj, y ∈ Ai−j−1}

{a, b, c, d} {a∗, a?, b∗, ...} {(a + b?)∗((cd) + a∗), ...}

Length 22

A4

{(a + b)?, a∗c, (c + b?), ...}

Calculation of Minimal Tree Length

...

{a∗ + b, (a + a)∗ + b, a ∗ +b?, aa + a∗ + b, ...}
{b?(c + a), b?c + b?a, bc + ba + a + c, ...}

...
{ccdad + cad, (ccd + c)ad, c(cd)?ad, ...}

3. Group equivalent regexes into a class

A≤2n

Repeat until A≤2n becomes empty

1. Pop a pivot x

x = a∗ + b

2. Check DFA equivalence between x
and all remaining regexes in A2n

b

a a

b

a a

̸≡

and sort by tree length

...

Induction : Di = {x∗, x? | ∀ x ∈ D̂i−1} ∪ {x + y, xy, | x ∈ D̂≤i−1, y ∈ D̂i−1}

Depth n1 + 1

Create Dn1+1 and add it to D⋆
n1+1

Di = D̂i ∀i ≤ n1

D̂n1 = sample(Dn1, m regexes)
Create Dn2 and add it to D⋆

n2

D̂n2−1 = sample(Dn2−1, m regexes)

Depth n2

Repeat k times to build {D⋆
n1+1, D

⋆
n1+2, ..., D

⋆
n2
}

...

...

...

...

Build D =
n1⋃
i=0

Di

from A2n

......
Sample regexes from

{D⋆
n1+1, D

⋆
n1+2, ..., D

⋆
n2
}

with the same proportion

1 : 1 : ... : 1

Find the equivalent

class of x ∈ D

Label x with the equivalent

minimal regex

1. Minimality 2. Equivalence 3. Length Ratio

For a model f and x ∈ LRD and URMT

x ≡ f(x)
x ∈ X⋆

x(Σ)

x ≡ f(x) and |f(x)|T
|x|T

Regex Minimization Datasets

Evaluation and Metrics

LRD URMT

Figure 5: The overview of our dataset construction and evaluation. Our dataset consists of regex
minimization corpus (LRD) and extended regex minimization benchmark (URMT), which are con-
structed using a bottom-up approach over tree depth. LRD is labeled using the minimal tree length
calculated in Section B.1.

Algorithm 1 Construction of LRD
Require: Maximum depth n, alphabet Σ

Initialize D0 = Σ
for i = 1 . . . n do
Di ← ∅
for x ∈ Di−1 do
Di ← Di ∪ {concat(x, ‘?’)}
Di ← Di ∪ {concat(x, ‘*’)}

end for
for x ∈ D≤i−1 do

for y ∈ Di−1 do
Di ← Di ∪ {concat(x, ‘+’, y)}
Di ← Di ∪ {concat(x, y)}

end for
end for

end for

equivalence classes. We select a regex from A≤n as a pivot, and all equivalent regexes are grouped
into the same class. The minimal tree length for each class is determined as the smallest tree length
within the group. The proof of minimality and the equivalence class partitioning algorithm are in
Appendix D.1.

This approach requires a quadratic number of comparisons, each taking exponential time, making
it computationally infeasible. We reduce the computation by applying a heuristic based on string
acceptance. This method generates sequences of strings that a regex may accept, allowing regexes
to be partitioned based on acceptance and rejection. Once the regex set is sufficiently reduced,
the remaining comparisons are performed to determine equivalence. This method also helps in
determining whether a regex x has an equivalent regex of length n or less by narrowing down
candidate equivalent regexes. Using this approach, LRD is labeled. Examples of our LRD are in
Appendix C.2.

As mentioned earlier in this section, the process of calculating the equivalence of all regex pairs
requires O(n2) equivalence comparisons. We utilize string acceptance in order to reduce the num-
ber of candidates within a group that can be equivalent to one another. The detailed algorithm is
described in Algorithm 2. For a given string s, a regex that accepts s and another regex that rejects
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s cannot be equivalent. Based on this observation, we use string acceptance as a query to parti-
tion the regex group. First, we categorize regexes based on the alphabet character set they contain.
Then, we check the acceptance of a predefined string sequence. Using the acceptance information
of the string sequence as a binary encoding, we further divide the regexes into potentially equiv-
alent classes. Once the group size becomes sufficiently small, we perform the O(n2) equivalence
comparison to construct the equivalent classes. Although this procedure does not reduce the time
complexity, it reduces the practical running time of partitioning regex groups into equivalent classes.
Also, when a new regex to minimize is given as a query, we can find the candidate equivalent class
by checking string acceptance of the given regex on the predefined string sequence.

Algorithm 2 An algorithm for building Mn

Require: an alphabet Σ, A1, A2, . . . , An, an integer m and the fixed sequence of strings S

A←
n⋃

i=1

Ai

G← map()
for σ ∈ 2Σ do
G[σ]← ∅
label G[σ] as 1

end for
while |A| > 0 do
x← A.pop()
σx ← the alphabet of x
G[σx]← G[σx] ∪ {x}

end while
H ← G.values()
while |H| > 0 do
X ← H .pop()
if |X| > m then
s← S[X.label]
Xsuccess ← ∅
label Xsuccess as X.label≪ 1+1
Xfail ← ∅
label Xfail as X.label≪ 1
for y ∈ X do

if y accepts s then
Xsuccess ← Xsuccess ∪ {y}

else
Xfail ← Xfail ∪ {y}

end if
end for
H ← H ∪ {Xsuccess, Xfail}

else
while |X| > 0 do

x← X.pop()
for y ∈ X do

if y ≡ x then
X .remove(y)
if |y|T < |x|T then

x← y
end if

end if
end for
Mn ←Mn ∪ {x}

end while
end if

end while
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Algorithm 3 Construction of URMT
Require: Number of iterations k, sample size m, depth range [n1, n2], alphabet Σ

for i = 1 . . . n2 do
Initialize D⋆

i ← ∅
end for
for t = 1 . . . k do

Initialize D̂0 = Σ
for i = 1 . . . n2 do

Initialize Di ← ∅
for x ∈ D̂i−1 do

Di ← Di ∪ {concat(x, ‘?’)}
Di ← Di ∪ {concat(x, ‘*’)}

end for
for x ∈ D̂≤i−1 do

for y ∈ D̂i−1 do
Di ← Di ∪ {concat(x, ‘+’, y)}
Di ← Di ∪ {concat(x, y)}

end for
end for
D⋆

i ← D⋆
i ∪Di

D̂i ← sample m regexes from Di

end for
end for
for i = n1 . . . n2 do
Dfinal

i ← sample from D⋆
i

end for

B.2 URMT CONSTRUCTION

The dataset D≤3 consists of short regexes, making it necessary to evaluate performance on longer,
unseen examples to assess generalizability. We provide an unlabeled benchmark with regexes of
depths 4 to 6 to address this. For depths 4 to 6, we construct the sets by sampling m (= 1000)
regexes from the previous depth before applying binary operations. However, this direct sampling
may cause repeated patterns, which distorts the distribution of the benchmark. In order to mitigate
this, we repeat the construction process k (= 10) times, combine the results, and then sample regexes
in a 1:1:1 ratio by depth. The construction process is described in Algorithm 3.

B.3 REGEXPSPACE BENCHMARK CONSTRUCTION

We conduct preliminary experiments on the RegexMin task, as described in Appendix F. The re-
sults show that the overall performance of LLMs remain poor, indicating significant difficulty in
solving this task. Even when prompted with simple instructions or Chain-of-Thought prompting,
the performance has improved marginally. Moreover, experiments with Bart and T5 models trained
from scratch, as well as fine-tuned LLMs, demonstrate strong performance on labeled datasets of
lengths similar to those seen during training, but their performance degrades severely on URMT.
In contrast, proprietary LLMs exhibited far superior reasoning abilities when tested on a small set
of examples where other LLMs consistently failed. In particular, models explicitly categorized as
reasoning models outperformed their non-reasoning counterparts by a substantial margin.

Based on these findings, we concluded that this task offers clear advantages for evaluating the rea-
soning performance of LLMs, and accordingly, we constructed the RegexPSPACE benchmark. This
benchmark was derived from the test split of the labeled regex dataset containing 50,000 regexes, to
which we applied a series of filtering criteria. The four criteria were as follows:

• The regex must not already be minimal

• The equivalence class obtained during construction must contain at least 10 regexes.

• Each regex must have at least 20 positive and 20 negative examples.
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• If multiple regexes are equivalent under one-to-one alphabet mapping (iso morphism), only
one is retained through random sampling.

These criteria were selected to avoid trivial regular expressions and overly simple tasks.

After applying them, we obtain 1,685 regexes from the original 50,000. In order to support the
equivalence task, candidate regex pairs were required. For each of the 1,685 regexes, we label one
equivalent regex and one non-equivalent regex to ensure a balanced dataset. Equivalent regexes
are sampled from those generated during the minimization process. Non-equivalent regexes are
constructed by generating permutations from the set of regexes with the same alphabet within the
benchmark, ensuring that no regex is paired with itself, thereby guaranteeing a certain degree of
hardness.

C DETAILS OF DATASET AND BENCHMARK

C.1 DATASET STATISTICS

In this section, we present detailed statistics of the dataset we constructed. The number of regexes,
their lengths, and the applicable tasks for each split are summarized in Table 3.

Table 3: Dataset statistics of LRD and URMT. LRD consists of train, validation, and test sets, while
URMT consists of test set.

Dataset # of regexes Depth Length Task
Train Validation Test

RegexPSPACE - - 1,685 ≤ 3 ≤ 15 RegexEq, RegexMin
LRD 1,100,000 116,752 50,000 ≤ 3 ≤ 15 RegexEq, RegexMin

URMT - - 50,000 ≤ 6 ≤ 127 RegexMin

C.2 DATASET EXAMPLES

Table 4 presents examples from each of our constructed regex datasets. We report query regex
examples for depths ranging from 0 to 6. As shown in the table, our regexes are fully parenthesized
to explicitly represent depth, whereas the outputs are not. We do not provide the depth of the
minimal regex, since tree depth can vary even for identical regexes depending on how parentheses
are structured.
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Table 4: Examples of our regex minimization dataset. We report the example regexes of depth 0 to
6 sampled from LRD and URMT. LRD contains the minimal equivalent of a regex and the minimal
length, while URMT only contains regexes with their lengths.

LRD, RegexPSPACE
Depth Field Content

0

Query Regex b
Query Length 1
Minimal Regex b
Minimal Length 1
Equivalent Regex −

1

Query Regex ab
Query Length 3
Minimal Regex ab
Minimal Length 3
Equivalent Regex −

2

Query Regex a∗ + a+ d
Query Length 6
Minimal Regex d+ a∗

Minimal Length 4
Equivalent Regex d+ (aa+ (aa)∗)a?

3

Query Regex ((a+ (b∗)) + ((a?) + (b?)))
Query Length 10
Minimal Regex a+ b∗

Minimal Length 4
Equivalent Regex a+ b+ (bbb?b?)∗

URMT
Depth Field Content

4 Query Regex (d+ c)c? + ca+ c+ c+ b∗ + a∗ + bd(b+ a)
Query Length 28

5 Query Regex (ac+ a+ d+ (a+ d)c)adaacdc
(dda? + b+ d+ b∗ + (a+ b)c∗ + b+ c+ a?)

Query Length 55

6 Query Regex

(b∗ + c+ b+ ba∗ + c?(b+ b) + (a+ c)b?)
(c∗cb(a+ c+ cb) + a+ c+ c∗ + bd∗)
+(c∗ + a+ a)(d+ b)ccc?(b+ db)
+dd+ c∗ + d+ aba∗ + c+ d+ d

Query Length 98

D PROOFS FOR CORRECTNESS OF DATASET

D.1 PROOF FOR MINIMALITY

In this section, we discuss algorithms and proofs that were not covered in Section B. More specifi-
cally, our goal is to prove the minimality of the constructed dataset. The proof sketch is as follows:
An generated by Algorithm 4, and Mn generated by Algorithm 5, contain all possible regexes
of length n or less. Moreover, the sequences M1,M2, . . . ,Mn follows an inclusion relationship
M1 ⊂ M2 ⊂ . . . ⊂ Mn, where it contains all Mi for i ≤ n as n increases. Thus, any regex of
length n or less has an equivalent minimal regex included in some Ai for i ≤ n, and by the inclusion
relationship, it must be contained in Mn. This proves that Mn contains all minimal regexes of length
n or less. Furthermore, based on the construction method, we can show that non-minimal regexes
are not included in Mn. This implies that Mn represents the complete set of all minimal regexes of
length n or less.

Lemma D.1. Given an integer n and an alphabet Σ, the set An constructed by algorithm 4 contains
all possible regular expressions on Σ, when considering the equivalence relation as the same.
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Algorithm 4 An algorithm for building An

Require: integer n, alphabet Σ
Initialize A1 = Σ
for i = 2 . . . n do
Ai ← ∅
for x ∈ Ai−1 do

Ai ← Ai ∪ {concat(x,‘?’)}
Ai ← Ai ∪ {concat(x,‘*’)}

end for
for j = 1 . . . i−1

2 do
for x ∈ Aj do

for y ∈ Ai−1−j do
if x ≡ y then

Ai ← Ai ∪ {concat(x,y)}
else
Ai ← Ai ∪ {concat(x,‘+’,y)}
Ai ← Ai ∪ {concat(x,y)}
Ai ← Ai ∪ {concat(y,x)}

end if
end for

end for
end for

end for

Proof. Assume that there exists an regular expression x over Σ such that x /∈ An, and |x|T = n.
Each regular expression can be represented by a binary tree. Denote the binary tree notation of a
regular expression x be T (x), and the left and right subtrees of x be xleft and xright. Let |xleft|T
be j(≥ 1). Since x /∈ Ln, at least one of xleft /∈ Aj or xright /∈ An−1−j is true. By using
the recursion, we can conclude that there exists a single character c ∈ Σ, which is included as a
character in the regex x, but c /∈ A1. This contradicts the fact that A1 = Σ. Thus, there is no regular
expression x /∈ An with |x|T =n.

Algorithm 5 An algorithm for building Mn

Require: A1, A2, . . . , An

A←
n⋃

i=1

Ai

Mn ← List()
while |A| > 0 do
x← A.pop()
for y ∈ A do

if y ≡ x then
A.remove(y)
if |y|T < |x|T then
x← y

end if
end if

end for
Mn ←Mn ∪ {x}

end while

Lemma D.2. Given the sets A1, A2, . . . , An constructed by algorithm 4 and an alphabet Σ, the sets
Mn constructed by algorithm 5 contains all possible regular expressions on Σ, when considering
the equivalence relation as the same.
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Proof. Assume that there is a regular expression x /∈ Mn with |x|T ≤ n. By lemma D.1, x ∈
n⋃

j=1

Aj , and it must be considered by the loop in line 3 of algorithm 5. Then, x should be in Mn,

since the representative of each equivalent class in
n⋃

j=1

Aj is added to Mn. This contradicts the

assumption that x /∈Mn. Thus, Mn contains all possible regular expressions on Σ.

Lemma D.3. Given the sets A1, A2, . . . , Ai, . . . , An constructed by algorithm 4 and an alphabet
Σ, the sets Mi and Mn are constructed by algorithm 5. Then, Mi ⊂ Mn ∀ i = 1, . . . , n, when
considering the equivalence relation with the same tree length as the same.

Proof. Assume that there is a regular expression x ∈ Mi with |x|T = i ≤ n, but x /∈ Mn, when
considering the equivalence relation with the same tree length as the same. By the lemma D.2, there
exists an equivalent regular expression x′ ∈Mn with |x′|T = j ̸= i. Note that i, j ≤ n.

Case1: i < j By the lemma D.1, x ∈
i⋃

k=1

Lk ⊂
n⋃

k=1

Lk. When we compare the tree lengths

of regular expressions during the construction of Mn by algorithm 5, x′ must be discarded and
replaced by x. Thus, j cannot be larger than i.

Case2: j < i By the lemma D.2, x′ ∈
i⋃

k=1

Aj ⊂
i⋃

k=1

Ak. When we compare the tree lengths of

regular expressions during the construction of Mi by algorithm 5, x must be discarded and replaced
by x′. Thus, i cannot be larger than j

Since i ≥ j and i ≤ j, i and j must be the same, which contradicts the assumption. Thus, Mi ⊂Mn

∀i = 1, . . . , n.

Corollary D.4. Given the sets A1, A2, . . . , An constructed by algorithm 4 and an alphabet Σ, the
set Mn constructed by algorithm 5 contains all possible minimal regular expressions on Σ with
|x|T ≤ n, when considering the equivalence relation with the same tree length as the same.

Proof. Assume that there is a minimal regular expression x with |x|T = i ≤ n such that x /∈ Mn.
By the lemma D.2, x ∈ Mi. Then, by the lemma D.3 x ∈ Mn. This contradicts the assumption.
Thus, there is no such x.

Corollary D.5. Given the sets A1, A2, . . . , An constructed by algorithm 4 and an alphabet Σ, the
set Mn constructed by algorithm 5 contains only minimal regular expressions on Σ with |x|T ≤ n,
when considering the equivalence relation with the same tree length as the same.

Proof. Assume that there is a non-minimal regular expression x ∈Mn. There is an minimal regular
expression x′ of x with |x′|T = i ≤ n. Then, x′ must be in Mn by corollary D.4. It contradicts
the assumption because both x and x′ cannot be in Mn by the algorithm 5. Thus, there is no such
x.

Theorem D.6. Given the sets A1, A2, . . . , An constructed by algorithm 4, an alphabet Σ, and the
set Mn constructed by algorithm 5, the follwing statement holds, when considering the equivalence
relation with the same tree length as the same.

x ∈Mn if and only if x ∈ X⋆
x(Σ) where |x|T ≤ n

Proof. It is proved by combining Corollary D.4 and D.5.

E COMPUTATIONAL COST OF DATASET CONSTRUCTION

Our dataset size is determined by the need to exhaustively compare each regex with all shorter ex-
pressions to verify minimality. As the depth or length of regexes increases, the number of candidate
expressions grows double exponentially due to our inducting construction. We report the compu-
tational cost over different sizes of alphabet and different depth. Each following Tables 5 and 6
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contains the number of regexes in the dataset and the number of regexes we need to investigate to
find the minimal regexes. Note that the number of regexes grows in double exponential which makes
it almost impossible to increase depth more than 3. We construct the dataset based on the induction
of the depth which is restricted to 3 allowing the regular expressions with the length at most 15. Al-
though the dataset may appear small, we exhaustively compare a vast number of regexes to identify
the minimal ones, a process that is extremely labor intensive.

Table 5: The number of regexes contained in the dataset constructed by the proposed procedure
depending on the size of alphabet and depth

Size of Alphabet (|Σ|) Depth

0 1 2 3 4 5

2 2 10 170 3.35E+04 1.13E+09 1.29E+18
3 3 18 486 2.58E+05 6.69E+10 4.47E+21
4 4 28 1092 1.27E+06 1.60E+12 2.57E+24
5 5 40 2120 4.69E+06 2.20E+13 4.85E+26
6 6 54 3726 1.43E+07 2.06E+14 4.23E+28
7 7 70 6090 3.80E+07 1.45E+15 2.10E+30
8 8 88 9416 9.05E+07 8.19E+15 6.71E+31
9 9 108 13932 1.97E+08 3.90E+16 1.52E+33

Table 6: The number of regexes to be investigated to find minimal by the proposed procedure de-
pending on the size of alphabet and depth

Size of Alphabet (|Σ|) Depth

0 1 2 3 4 5

2 2 20 6176 2.16E+09 8.46E+20 3.85E+44
3 3 39 20118 2.10E+10 7.63E+22 3.00E+48
4 4 64 48640 1.15E+11 2.21E+24 2.46E+51
5 5 95 98870 4.52E+11 3.31E+25 5.39E+53
6 6 132 179232 1.42E+12 3.20E+26 4.95E+55
7 7 175 299446 3.80E+12 2.26E+27 2.44E+57
8 8 224 470528 9.05E+12 1.26E+28 7.52E+58
9 9 279 704790 1.96E+13 5.86E+28 1.61E+60

F PRELIMINARY EXPERIMENTS ON REGEXMIN

As a form of preliminary experiments, we evaluate three settings on the minimization task: fine-
tuned LLMs, small models trained from scratch, and pretrained LLMs.

F.1 PRELIMINARY EXPERIMENTS

We report the experimental results on LRD in Table 7 and on URMT in Table 8. Results reveal that
pretrained LLMs exhibit poor performance, while fine-tuned and scratch-trained models perform
reasonably well on regexes of lengths similar to those seen during training but fail to generalize to
longer inputs. Notably, although performance improves with larger LLMs, they still fail to min-
imize effectively beyond a few simple heuristics. In constrast, a small case study on proprietary
LLMs demonstrates that some models can solve minimization tasks without additional training, and
proprietary reasoning models in particular perform well on longer regexes. This suggests that the
ability to handle longer contexts is closely tied to reasoning capacity and there is a quite large margin
between open-source and proprietary LLMs to improve.
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Table 7: Main results on LRD. We evaluate two LMs trained on LRD from scratch and five LLMs
from Llama and Qwen family with zero-shot and five-shot prompting. We report the minimality,
equivalence, and length ratio as metrics. The best performance are bolded in each trained LMs and
pre-trained LLMs.

Approach Model Size Shot Min. (↑) Equiv. (↑) Ratio (↓)
Training BART 139M - 85.89±0.07 87.12±0.14 79.66±0.02

T5 223M - 85.56±1.13 86.71±1.16 79.72±0.15

Finetuning Llama3.1 8B - 99.99±0.00 100.00±0.00 77.94±0.00
Qwen2.5 7B - 98.93±0.19 98.93±0.19 78.15±0.04

Prompting

Llama3.1 8B Zero 1.72 5.88 99.39
Five 3.95 10.82 98.54

Llama3.3 70B Zero 13.45 24.27 97.33
Five 21.15 39.82 94.30

Qwen2.5 7B Zero 7.63 16.51 98.91
Five 6.75 15.66 98.17

Qwen2.5-coder 7B Zero 10.48 18.43 97.85
Five 10.67 24.69 97.26

Qwen2.5 72B Zero 20.31 54.52 95.37
Five 23.06 54.33 93.09

CoT
Llama3.3 70B Zero 23.25 37.79 93.31

Five 29.07 41.82 92.48

Qwen2.5 72B Zero 19.09 44.41 91.82
Five 31.13 46.87 90.70

Table 8: Main results on URMT. We evaluate two LMs trained on LRD from scratch and five LLMs
from Llama and Qwen family with zero-shot and five-shot prompting. We report the equivalence,
and length ratio as metrics. The best performance are bolded in each trained LMs and pre-trained
LLMs.

Approach Model Size Shot Equiv. (↑) Ratio (↓)
Training BART 139M - 0.08±0.01 99.93±0.01

T5 223M - 0.05±0.01 99.95±0.01

Finetuning Llama3.1 8B - 0.86±0.09 99.44±0.04
Qwen2.5 7B - 1.23±0.07 99.34±0.01

Prompting

Llama3.1 8B Zero 1.51 99.96
Five 0.26 99.99

Llama3.3 70B Zero 7.16 99.60
Five 2.57 99.73

Qwen2.5 7B Zero 1.79 99.90
Five 0.66 99.95

Qwen2.5-coder 7B Zero 3.28 99.85
Five 1.36 99.95

Qwen2.5 72B Zero 13.99 99.28
Five 6.44 99.50

F.2 EXPERIMENTAL CASE STUDY ON PROPRIETARY MODELS IN REGEXMIN

This section examines how well state-of-the-art LLMs perform in regex minimization based on a
small test set. Using the five-shot prompt, we evaluate GPT-4o, one of the most popular LLMs, GPT-
o1, known for its reasoning capabilities, and DeepSeek-R1, which has recently gained significant
attention as a competitive open LLM. The evaluation set consists of five regexes from the LRD test
set, selected to highlight common failure patterns of LLMs observed, along with two regexes from
each of depths 4, 5, and 6 in URMT, resulting in a total of eleven test cases.

The experimental results are in Table 9 and 10. GPT-4o successfully produces equivalent regexes
in most cases from LRD but reveal clear limitations in regex minimization. As the regex length
increases, it fails to generate equivalent outputs. DeepSeek-R1 successfully minimizes all regexes
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in LRD and handles equivalent regex generation up to depth 4. However, for regexes of depth 5
or higher, it struggles to produce equivalent outputs. GPT-o1 successfully minimizes all regexes in
LRD and generates equivalent regexes for all URMT examples.

Despite being considered models with strong reasoning capabilities, both GPT-4o and DeepSeek-R1
exhibit clear limitations in reasoning when applied to regex minimization. This raises the question
of whether existing LLMs, even those optimized for reasoning, may not be truly reasoning in the
context of structured, algorithmic tasks. At the same time, these findings demonstrate that The con-
sistent performance degradation observed from long regexes in URMT underscores the complexity
of regex minimization and further demonstrates the difficulty of our dataset as a valuable bench-
mark. The results highlight the need for explicit mechanisms that enhance structured reasoning, as
LLMs struggle with systematic transformations required for regex minimization.

G EVALUATION DETAILS

G.1 DETAILS OF LLMS USED FOR EVALUATION

Our evaluation utilizes a diverse set of LLMs to assess performance across various architectures
and training methodologies. The models are distinguished into non-reasoning models and reasoning
models. Non-reasoning models include foundational models known for their strong performance in
various downstream tasks such as question and answering, common sense reasoning, mathematical
reasoning, and code generation. without specific fine-tuning. Reasoning models include LLMs that
are either explicitly designed for complex reasoning or have demonstrated exceptional performance
on reasoning benchmarks.

G.1.1 NON-REASONING MODELS

Llama-3 Llama-3 is a family of LLMs developed and released by Meta AI (et al., 2024a). As the
successor of Llama-2, Llama-3 represents one of the state-of-the-art open-source LLMs, trained on
a significantly larger and more diverse dataset. We utilize Llama-3.1 of 8B size in our experiments
on evaluating RegexEq and RegexMin.

Qwen Qwen is an open-source and multilingual foundation model series developed by Alibaba
Cloud (et al., 2023). Qwen2.5 technical report (et al., 2024b) details post-training with over one
million supervised examples and multi-stage reinforcement learning (RL), along with the model
sizes from 0.5B to 72B, and strong performance across language, math, and coding. The family also
provides 1M-token long-context vairants (et al., 2025a). In our main evaluation, we use Qwen2.5
with 7B and 14B sizes, and we also conduct experiments on Qwen3-A3B with 30B parameters for
additional evaluations in Appendix H.2.

Qwen-Coder Qwen2.5-Coder is a code-specialized branch of Qwen2.5 trained on over 5.5 trillion
additional code-centric tokens and released in six sizes from 0.5B to 32B (Hui et al., 2024). It
reports state-of-the-art results among open-source models on multiple code-generation and repair
benchmarks, while maintaining general language and math skills. We use Qwen2.5-Coder with 7B
and 14B sizes as our non-reasoning baselines for the main evaluation and also conduct experiments
over Qwen3-Coder-A3B of 30B size for an analysis in Appendix H.2.

Phi-4 Phi-4 is a 14B-parameter, decoder-only open-source model developed by Microsoft. It is
designed to provide strong quality at a small scale via carefully curated and synthetic training data;
it is distributed with an emphasis on safety-aligned post-training(Abdin et al., 2024). We use this
model as an LLM baseline.

EXAONE EXAONE, developed by LG AI Research, is a multilingual model family that supports
English, Korean, and Spanish. The latest version, EXAONE-4.0 Bae et al. (2025) enhances its
capabilities for advanced logic and agentic tool usage. We use EXAONE-4.0 with 32B parameters
for an empirical study in Appendix H.2.
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LRD
Field Content

Query Regex (((a+ b) + (b+ c)) + ((b+ d) + (c+ c)))
Minimal Regex (a+ b+ c+ d)
GPT-4o Output (a+ b+ c+ d)

Evaluation Minimal, Length Ratio: 0.4667
DS-R1 Output (a+ b+ c+ d)

Evaluation Minimal, Length Ratio: 0.4667
GPT-o1 Output (a+ b+ c+ d)

Evaluation Minimal, Length Ratio: 0.4667
Query Regex ((a+ (a+ b)) + ((a+ b)(b+ c)))

Minimal Regex ((a+ b)(b+ c)?)
GPT-4o Output (a+ (a+ b)(b+ c))

Evaluation Inequivalent
DS-R1 Output (a+ b)(b+ c)?

Evaluation Minimal, Length Ratio: 0.6154
GPT-o1 Output (a+ b)(b+ c)?

Evaluation Minimal, Length Ratio: 0.6154
Query Regex (((a?)(b∗)) + ((b∗)(b?)))

Minimal Regex (a?b∗)
GPT-4o Output (a?b∗ + b∗b?)

Evaluation Equivalent, Length Ratio: 1.0000
DS-R1 Output (a?b∗)

Evaluation Minimal, Length Ratio: 0.4545
GPT-o1 Output a?b∗

Evaluation Minimal, Length Ratio: 0.4545
Query Regex ((d+ (a?)) + ((b∗) + (b?)))

Minimal Regex (a+ d+ b∗)
GPT-4o Output (d+ a? + b∗)

Evaluation Equivalent, Length Ratio: 0.7000
DS-R1 Output (a+ d+ b∗)

Evaluation Minimal, Length Ratio: 0.6000
GPT-o1 Output (a+ d+ b∗)

Evaluation Minimal, Length Ratio: 0.6000
Query Regex (((b∗)(bb))((d∗)(d∗)))

Minimal Regex (bbb∗d∗)
GPT-4o Output (b∗bb)(d∗)

Evaluation Minimal, Length Ratio: 0.7500
DS-R1 Output ((b∗bb)d∗)

Evaluation Minimal, Length Ratio: 0.7500
GPT-o1 Output ((b∗bb)d∗)

Evaluation Minimal, Length Ratio: 0.7500

Table 9: Case study of state of the art LLMs on LRD. We report case study using GPT-4o, GPT-
o1, and DeepSeek-R1 on LRD test set. We report the type of failure and length ratio for each
example. GPT-4o, the only model without reasoning ability, shows the lowest performance while
others successfully minimize all the examples.

G.1.2 REASONING MODELS

Phi-4 Reasoning Phi-4-reasoning is a 14B open-weight reasoning variant of Phi-4. It is fine-tuned
on CoT traces and further aligned via RL, with a 32K context window (Abdin et al., 2025). The
model reports competitive results on complex reasoning benchmarks such as AIME’24/25, GPQA-
Diamond (Rein et al., 2023), LiveCodeBench (Jain et al., 2025), and MMLU-Pro (Hendrycks et al.,
2021).
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URMT
Query Regex ((((b+ a)(ca))((b∗) + c)) + (((da)∗)((da) + d)))

GPT-4o Output ((a+ b)ca(b∗ + c) + (da)∗d?)
Evaluation Inequivalent

DS-R1 Output ((b+ a)ca(b∗ + c) + d(ad)∗a?)
Evaluation Equivalent, Length Ratio: 0.9565

GPT-o1 Output ((b+ a)ca(b∗ + c) + (da)∗da?)
Evaluation Equivalent, Length Ratio: 0.9565

Query Regex ((((cd)(a+ b)) + ((c?)(ab))) + (((bd)∗)((b+ b)(bc))))
GPT-4o Output (cd(a+ b) + c?ab+ bd∗(b+ b)bc)

Evaluation Inequivalent
DS-R1 Output (cd(a+ b) + c?ab+ b(db)∗bc)

Evaluation Equivalent, Length Ratio: 0.9259
GPT-o1 Output (cd(a+ b) + c?ab+ (bd)∗bbc)

Evaluation Equivalent, Length Ratio: 0.9259
Query Regex (((((a+ a)(bd)) + ((cc)?))(((ad)(b+ b))((ad)(c∗))))((((cc)(a+ a)) + (d∗))

+(((c+ a)(bc))((aa)(bd)))))
GPT-4o Output (a+ b)bd+ (cc)?(ad(b+ b)adc∗ + (cc(a+ a) + d∗ + (c+ a)bcaabd))

Evaluation Inequivalent
DS-R1 Output ((abd+ cc)?adbadc∗(cca+ d∗ + (c+ a)bcaabd))

Evaluation Equivalent, Length Ratio: 0.8889
GPT-o1 Output ((abd+ (cc)?)adbadc∗(cca+ d∗ + (c+ a)bcaabd))

Evaluation Equivalent, Length Ratio: 0.8889
Query Regex (((((c+ c)∗) + ((a∗)(b∗))) + (((dd)(b?))(d+ d))) + ((((d+ d) + (ad)) + (d+ (b+ b)))

+((b+ (dd))((d+ d) + (d+ d)))))
GPT-4o Output ((c+ c)∗ + a∗b∗ + dd(b?)(d+ d) + b+ dd(d+ d))

Evaluation Inequivalent
DS-R1 Output (c∗ + ab+ d(a? + b+ db?d))

Evaluation Inequivalent
GPT-o1 Output (c∗ + a∗b∗ + ddb?d+ a?d+ bd)

Evaluation Equivalent, Length Ratio: 0.5306
Query Regex ((((((d+ a)(b∗))∗) + (((b+ a) + (a+ a))((b+ b) + (bb))))(((a(ba)) + ((ba)(ba)))

+(((c?)(c+ c)) + ((d+ c) + (da)))))(((((d+ c)∗) + ((d+ b) + (d∗))) + (((b+ a)(c∗))
+((a?)(c?)))) + ((((dc) + (bb))((d+ b)(ac))) + (((db)(d∗))((bc)∗)))))

GPT-4o Output ((d+ a)(b∗)∗) + ((a+ b)(b+ bb) + (ba)∗(c?c+ d+ a))(c∗ + d+ b+ d∗)(dc+ bb)
(d+ b)ac+ (dbd∗)(bc)∗

Evaluation Inequivalent
DS-R1 Output ((((a+ d)b∗)∗ + (a+ b)bb?)((a+ ba)ba+ cc? + da?)) + (d+ c)∗ + b

+(a+ b)?c∗ + (dc+ bb)(d+ b)ac+ dbd∗(bc)∗

Evaluation Inequivalent
GPT-o1 Output (((((a+ d)b∗)∗ + (a+ b)bb?)(b?aba+ cc? + da?))((c+ d)∗ + (b+ d∗)

+(a+ b)c∗ + a?c? + ((bb+ dc)(b+ d)ac) + (dbd∗)(bc)∗))
Evaluation Equivalent, Length Ratio: 0.8190

Query Regex ((((((c+ d)d) + ((c∗) + b))(((c∗) + (d∗))((a+ d)(c+ c))))((((c+ c)?)
+((bd)(c+ d))) + (((b∗)a) + ((bb)(c+ c))))) + (((((dd) + (b∗))
+((c+ d)(c+ d)))?)((((c+ d)(bc))((dd)(ad))) + (((dd)(a+ b))((c+ d)(a?))))))

GPT-4o Output ((c+ d)d+ c∗ + b)((c∗ + d∗)(a+ d)cc) + (c+ c)? + bd(c+ d) + (b∗a+ bbcc)
+((dd+ b∗ + (c+ d)(c+ d))?((c+ d)bcddad+ dda+ b(c+ d)a?))

Evaluation Inequivalent
DS-R1 Output ((c∗ + b+ d(c+ d))(c∗ + d∗)(a+ d)c(c? + bd(c+ d) + ba∗ + bbc)

+(b∗ + (c+ d)(c+ d))?((c+ d)bcddad+ dd(a+ b)(c+ d)a?))
Evaluation Inequivalent

GPT-o1 Output (((((c+ d)d+ (c∗ + b))((c∗ + d∗)(a+ d)c))((c? + bd(c+ d)) + ((b∗)a+ bbc)))
+((((dd+ b∗) + (c+ d)(c+ d)))?(((c+ d)bcddad) + ((dd(a+ b))((c+ d)a?)))))

Evaluation Equivalent, Length Ratio: 0.9381

Table 10: Case study of state of the art LLMs on URMT. We report case study using GPT-4o, GPT-
o1, and DeepSeek-R1 on URMT. We report the type of failure and length ratio for each example.
GPT-4o show the lowest performance while GPT-o1 surpasses all other models.

DeepSeek-R1 DeepSeek-R1 introduces an RL-first pipeline for reasoning: R1-Zero, trained with
pure RL on a base model and R1, which employed RL with a small cold-start supervised fine-
tuning (SFT) stage, followed by distillation into smaller dense models ranging from 1.5B to 70B.
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DeepSeek-R1 reports strong pass@1 on AIME’24 and MATH-500, competitive GPQA-Diamond
and high Codeforces ELO. The technical report (DeepSeek-AI, 2025) also provides detailed com-
parisons to OpenAI o1 and o1-mini.

gpt-oss GPT-oss is OpenAI’s open-source, reasoning-oriented mixture-of-experts (MoE) fam-
ily with adjustable reasoning levels with 20B and 120B parameters. Likewise to the above two
reasoning models, the official model card (et al., 2025b) includes comprehensive evaluation on
AIME’24/25, GPQA-D, MMLU, SWE-Bench, Codeforces, and incldues safety assessments.

G.2 DETAILS OF METRICS

G.2.1 MINIMIZATION TASK

We use three evaluation metrics for minimization tasks.

Minimality The most intuitive metric is minimality, which represents the percentage of cases
where the model successfully generates an equivalent minimal regex.

(Minimality) =

∣∣{r ∈ D|f(r) ∈ X⋆
r (Σ)}

∣∣
|D|

Equivalence The second metric is equivalence, which measures the proportion of outputs that
are equivalent to the input regex. Since many generated responses are either non-equivalent or
syntactically invalid, we report the equivalence metric separately for a more detailed analysis. The
minimality metric is stricter than the equivalence metric, as it considers only minimal and equivalent
regexes as success.

(Equivalence) =

∣∣{r ∈ D|f(r) ∈ Xr(Σ)}
∣∣

|D|

Length Ratio Additionally, we use Length Ratio, a metric adopted from previous work (Kahrs
& Runciman, 2022) for regex simplification. The metric is based on the geometric mean of the
length ratio between the original regex and minimized regex. When comparing lengths to calculate
the length ratio, cases where the minimized regex is not equivalent to the original input or becomes
longer are considered as not being reduced. In such cases, the ratio is set to 1, and the geometric
mean is computed. Since URMT does not contain ground-truth minimized regexes, minimality
cannot be measured. Instead, we report equivalence and length ratio for URMT.

(Length Ratio) =
( ∏
x∈D

|f(x)|T
|x|T

) 1
|D|

G.2.2 EQUIVALENCE TASK

The evaluation of model performance on binary decision is grounded in the confusion matrix, which
records the counts of true positives (TP), true negatives (TN), false positives (FP), and false nega-
tives (FN). From this basis, the following standard metrics are defined.

Accuracy Accuracy measures the overall proportion of correctly classified instances. While this
provides an intuitive summary of correctness, it can be misleading in the presence of class imbalance
or in binary classification settings, since high accuracy may be achieved simply by favoring the
majority class.

(Accuracy) =
TP + TN

TP + TN + FP + FN
.
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Precision Precision captures the reliability of positive predictions. It quantifies the fraction of
predicted positives that are truly positive, thus reflecting how well the model avoids false alarms.

(Precision) =
TP

TP + FP
.

Recall Recall evaluates the ability of the model to identify all relevant positives. This metric
reflects the model’s sensitivity to true instances, a property of central importance in contexts where
false negatives are especially costly.

(Recall) =
TP

TP + FN
.

F1-score Precision and recall inherently exhibit a trade-off relationship. Increasing precision typi-
cally requires stricter decision boundaries, which reduces false positives but risks lowering recall by
missing relevant instances. Conversely, relaxing these boundaries can improve recall by capturing
more true positives, but at the expense of precision due to an increase in false positives. This ten-
sion highlights the importance of balancing the two metrics depending on the target application, as
emphasizing one over the other can yield significantly different evaluation outcomes. The F1-score
provides a single measure that balances precision and recall by taking their harmonic mean. This
particularly valuable when neither precision nor recall alone fully characterizes performance, and
when the dataset is imbalaced.

(F1-score) = 2× Precision×Recall

Precision+Recall
.

G.3 EXPERIMENTAL SETTINGS AND HYPERPARAMETERS

In this section, we describe the specific libraries and experimental settings used in our work. From a
hardware and system perspective, experiments are conducted with AMD Ryzen Threadripper 3960X
CPUs, NVIDIA A6000 GPUs, and Rocky Linux 9.6 OS. The libraries and versions employed in-
clude Python 3.10, FAdo 2.2.0, CUDA 13.0, Torch 2.8.0, Huggingface Transformers 4.55.4, Bit-
sAndBytes 0.47.0, Accelerate 1.2.1, Scikit-learn 1.7.2 and Unsloth 2025.3.19.

In order to handle large-scale LLM evaluatations, we employ NF4 quantization from BitsAndBytes
and used greedy decoding. Ensuring fairness under the limitations of memory and computational
resources, we constrain both the maximum number of thinking tokens and the maximum nubmer of
answer tokens. For non-reasoning models, the maximum number of answer tokens is set to 1,024.
For reasoning models, up to 4,096 thinking tokens are allowed, followed by 1,024 answer tokens.
If the reasoning process did not naturally terminate, we insert a special token indicating the end of
thinking before generating the 1,024 answer tokens.

For answer parsing, we instruct models to output their answers within specific tag, \boxed{}, via
prompting. However, some models fail to adhere to the required format. Consequently, we apply
several heuristic rules for parsing, which are summarized in the algorithm below.

G.4 PROMPTS USED FOR MODEL EVALUATION

We employ handcrafted prompts for LLM evaluation. In preliminary experiments on the labeled
dataset, we observe that LLMs often produce practical regular expressions rather than formal ones.
Practical regex differs from formal regex in terms of syntax and operators, particularly by allow-
ing non-regular expressions (e.g., capture groups) and shorhand notations (e.g., [0-9] for a set of
characters, Kleene plus, or exponent notation for character repetition). Such convenience-oriented
operators are generally disallowed in the formal definition of regular expressions and may even vi-
olate regularity. Consequently, these expressions are not supported by the libraries we used or by
prior works on regex simplification that we reference.

Nevertheless, LLMs often generate outputs in this practical form because they are frequently pre-
trained on practical regexes found in code. Therefore, we designed prompts that explicitly discour-
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Algorithm 6 An algorithm for parsing an LLM Output
Require: Model response string s

if s does not contain “boxed” then
for line l in s (reversed) do

if l contains keyword (answer:, answer**) then
return tokens after keyword

end if
end for
for line l in s (reversed) do

if l contains indicative phrase (e.g., “minimal regex”) then
return substring after “is” or “:”

end if
end for
return last line of s

else
Extract substring following “boxed{”
Initialize stack with “{”
Collect characters until delimiters are balanced
a← extracted substring

end if
if a contains “text” then

Repeat stack-based extraction for “text{”
end if
Normalize a by removing white spaces, ˆ, braces
if a contains ‘|’ then
p← True
replace ‘|’ with ‘+’

else
p← False

end if
return a, p
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age the use of practical regex. Each prompt includes the formal definition of regular expressions, the
definition of the specific task, and an explicit requirement that models should not produce practical
regex. For ease of answer parsing, we also required models to enclose their final answer within a
\boxed{} tag.

Depending on the task and few-shot setting, we prepared four types of prompt as provided in Fig-
ures 6, 7, 8, and 9. In the 5-shot setting, additional input-output examples are included. These
few-shot examples were drawn from the training split using the same construction method as for the
benchmark, and five fixed examples are consistently used.
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RegexMin Zero-shot

You are an expert in formal regular expressions, commonly referred to as regex.

The formal regex must follow these rules:
- Allowed operations: concatenation, union (`+`), Kleene star (`*`), and option (`?`).
- Concatenation is implicit (no symbol is written).
- Parentheses `()`specify precedence.
- Do not use practical regex notations such as `|`for union or `+`for repetition.

Your task is to minimize a given formal regex over the fixed alphabet {`a`, `b`, `c`, `d`}.
The minimized regex must be functionally equivalent to the input and have the smallest total
number of symbols, where both characters (`a`, `b`, `c`, `d`) and operations (`+`, `*`, `?`),
and concatenations are counted, but parentheses are not.

Enclose your final answer within `\\boxed{}`.

Minimize the following regex:

Input Regex: $regex
Output:

Figure 6: The zero-shot prompt used for RegexMin. It provides the formal definition of regular
expressions, the task description, instructions prohibiting the use of practical regex, and formatting
guidelines.

RegexEq Zero-shot

You are an expert in formal regular expressions, commonly referred to as regex.

The formal regex must follow these rules:
- Allowed operations: concatenation, union (`+`), Kleene star (`*`), and option (`?`).
- Concatenation is implicit (no symbol is written).
- Parentheses `()`specify precedence.
- Do not use practical regex notations such as `|`for union or `+`for repetition.

Your task is to determine whether two given formal regexes over the fixed alphabet {`a`, `b`,
`c`, `d`} are equivalent. You must output either True or False.

Enclose your final answer within `\\boxed{}`.

Determine the equivalence of the following regexes:

Input Regex 1: $regex1
Input Regex 2: $regex2
Output:

Figure 7: The zero-shot prompt used for RegexEq. It provides the formal definition of regular
expressions, the task description, instructions prohibiting the use of practical regex, and formatting
guidelines.
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RegexMin Five-shot

You are an expert in formal regular expressions, commonly referred to as regex.

The formal regex must follow these rules:
- Allowed operations: concatenation, union (`+`), Kleene star (`*`), and option (`?`).
- Concatenation is implicit (no symbol is written).
- Parentheses `()`specify precedence.
- Do not use practical regex notations such as `|`for union or `+`for repetition.

Your task is to minimize a given formal regex over the fixed alphabet {`a`, `b`, `c`, `d`}.
The minimized regex must be functionally equivalent to the input and have the smallest total
number of symbols, where both characters (`a`, `b`, `c`, `d`) and operations (`+`, `*`, `?`),
and concatenations are counted, but parentheses are not.

Enclose your final answer within `\\boxed{}`.

Below are five input-output examples:

[Example 1]
Input Regex: $example1 input regex
Output: $example1 output

[Example 2]
Input Regex: $example2 input regex
Output: $example2 output

[Example 3]
Input Regex: $example3 input regex
Output: $example3 output

[Example 4]
Input Regex: $example4 input regex
Output: $example4 output

[Example 5]
Input Regex: $example5 input regex
Output: $example5 output

Minimize the following regex:

Input Regex: $regex
Output:

Figure 8: The five-shot prompt used for RegexMin. It provides the formal definition of regu-
lar expressions, the task description, instructions prohibiting the use of practical regex, formatting
guidelines, and includes five few-shot examples.
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RegexEq Five-shot

You are an expert in formal regular expressions, commonly referred to as regex.

The formal regex must follow these rules:
- Allowed operations: concatenation, union (`+`), Kleene star (`*`), and option (`?`).
- Concatenation is implicit (no symbol is written).
- Parentheses `()`specify precedence.
- Do not use practical regex notations such as `|`for union or `+`for repetition.

Your task is to determine whether two given formal regexes over the fixed alphabet {`a`, `b`,
`c`, `d`} are equivalent. You must output either True or False.

Enclose your final answer within `\\boxed{}`.

Below are five input-output examples:

[Example 1]
Input Regex 1: $example1 input regex1
Input Regex 2: $example1 input regex2
Output: $example1 output

[Example 2]
Input Regex 1: $example2 input regex1
Input Regex 2: $example2 input regex2
Output: $example2 output

[Example 3]
Input Regex 1: $example3 input regex1
Input Regex 2: $example3 input regex2
Output: $example3 output

[Example 4]
Input Regex 1: $example4 input regex1
Input Regex 2: $example4 input regex2
Output: $example4 output

[Example 5]
Input Regex 1: $example5 input regex1
Input Regex 2: $example5 input regex2
Output: $example5 output

Determine the equivalence of the following regexes:

Input Regex 1: $regex1
Input Regex 2: $regex2
Output:

Figure 9: The five-shot prompt used for RegexEq. It provides the formal definition of regular ex-
pressions, the task description, instructions prohibiting the use of practical regex, formatting guide-
lines, and includes five few-shot examples.
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H ADDITIONAL EXPERIMENTAL RESULTS

H.1 FULL EXPERIMENTAL RESULTS OF SECTION 5.3

This section provides the complete experimental results for all models and few-shot settings, which
were not detailed in the main paper.
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Figure 10: A bar chart of the case analysis results on RegexMin, including both zero-shot and
five-shot experiments. The outcomes are categorized into the components of the confusion matrix,
together with Invalid but completed answers, Repetition, and Incomplete outputs.
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Figure 11: A bar chart of the case analysis results on RegexEq, including both zero-shot and five-shot
experiments. The outcomes are categorized into the components of the confusion matrix, together
with Invalid but completed answers, Repetition, and Incomplete outputs.
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Figure 12: Final Results of Performance with Respect to Answer Length and Input Size
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H.2 EVALUATION RESULTS OF 30B LLMS ON REGEXPSPACE

We additionally evaluate three more LLMs with 30B parameters under our evaluation settings. How-
ever, despite being recent models, their performance is unexpectedly poor, as shown in Table 12.
Upon inspecting the outputs, we found that these models frequently failed to produce complete an-
swers, often being truncated by the token limit. While analyzing the common cause of failure among
these 30B models, we find that some models could decide whether to engage in reasoning via sys-
tem prompts (e.g., EXAONE), or had been further tuned from such models (e.g., Qwen3-A3B).
Similarly, gpt-oss also allows the extent of reasoning to be controlled via system prompts and, in
high reasoning mode, it often produces overly verbose outputs that either exhausts the token budget
before reaching a correct solution or degenerated into repetitive token sequences.

In order to test this hypothesis, we evaluate Qwen3-A3B on the regex minimization task in a zero-
shot setting, increasing the output token limit to 4,096, as shown in Table 11. The results indicate
that Qwen3-A3B does benefit from a larger token budget. However, the model still frequently fail
to complete its reasoning process, often hitting the maximum token constraint before completing an
answer, though without producing repeated phrases. While verbosity can sometimes help improve
performance, excessive verbosity is counterproductive from a utility perspective, as it consumes
unnecessary tokens without contributing meaningfully to the answer. This suggests that pretrained
models should be trained in a way that mitigates such over-verbosity. Since this behavioral tendency
places these models ambiguously between reasoning and non-reasoning categories, we report the
corresponding experimental results solely in this section.

Table 11: Evaluation results of models with 30B parameters. Despite its large size, the models
perform even worse than the 7B and 8B models.

Model Size Shot RegexMin RegexEq

Min. (↑) Equi. (↑) Ratio (↓) Acc. (↑) F1 (↑) Fail (↓)
Qwen3-A3B 30B Zero 3.56 3.56 97.81 6.71 95.71 92.76

Five 1.90 2.02 98.69 7.21 94.83 92.11

Qwen3-Coder-A3B 30B Zero 3.44 4.33 98.68 8.61 43.10 87.48
Five 6.05 6.82 97.39 8.81 44.27 86.85

EXAONE-4.0 32B Zero 0.42 0.42 99.77 0.30 100.00 99.70
Five 9.14 9.20 96.51 1.07 83.02 98.66

Table 12: Evaluation result of Qwen3-A3B on RegexMin with different token limit. We report the
proportion of responses that failed due to generating repeated tokens, the average number of tokens
generated in failed responses without repetition, and the number of tokens generated in successful
responses. We observe that failed responses typically produced a number of tokens close to the
maximum token limit.

Max Tokens RegexMin Fail w/ R Fail w/o R # Tok. Success # Tok.
Min. (↑) Equi. (↑) Ratio (↓)

1024 3.44 4.33 98.68 0.12 1023.96 835.93
4096 17.63 17.80 91.89 0.89 4093.62 2441.73

39



2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

0% 25% 50% 75% 100%
Proportion

Qwen3-A3B.30B.zero

Qwen3-A3B.30B.five

Qwen3-Coder-A3B.30B.zero

Qwen3-Coder-A3B.30B.five

EXAONE-4.0.32B.zero

EXAONE-4.0.32B.five

Min Equiv Valid Invalid Repeated Stopped

Figure 13: A bar chart of the case analysis results on RegexMin for 30B non-reasoning models.
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Figure 14: A bar chart of the case analysis results on RegexEq for 30B non-reasoning models.
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