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Abstract

Molecular generation and property prediction
have traditionally relied on models with strict
equivariance, particularly preserving E(3) sym-
metries through equivariant models. However,
recent advances in large-scale models suggest
that unconstrained architectures, trained on ex-
tensive datasets, can implicitly learn these sym-
metries. In this work, we explore whether strict
equivariance is required and present Rapidash,
an architecture that allows breaking exact equiv-
ariance constraints. Using this architecture, we
achieve state-of-the-art performance in molecu-
lar generation and property prediction, surpassing
traditional equivariant models.

Code is available on GitHub.

1. Introduction
There is an ongoing debate about the necessity of explicit
structural priors, particularly group-equivariance. A grow-
ing line of work argues that strict equivariance may over-
constrain a model and limit its scalability, and that increas-
ing model capacity and training data (Qu & Krishnapriyan,
2024) can compensate for the lack of built-in symmetry.
This perspective is supported by models like AlphaFold
(Abramson et al., 2024), which train equivariance by data
augmentation. In contrast, several recent works highlight
the limitations of learning equivariance from data alone.
Moskalev et al. (2023) show that learned symmetries can be
unreliable and degrade quickly out-of-distribution. Petrache
& Trivedi (2023) demonstrate that even partial symmetry
alignment can improve generalization. Theoretical results
by Perin & Deny (2024) further highlight that learning equiv-
ariance is fundamentally limited when class orbits are sparse
or poorly separated. Given these competing perspectives, it
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remains unclear under what conditions equivariance leads
to tangible benefits, and when unconstrained models may be
preferable, highlighting the need for a deeper understanding
of this trade-off.

To address this debate, we systematically investigate the
impact of equivariant and non-equivariant models for molec-
ular modeling. We begin by formalizing three core research
questions: (i) how kernel constraints affect expressivity and
generalization, (ii) whether increased representation capac-
ity can close the performance gap between more and less
constrained models, (iii) how different forms of equivari-
ance breaking affect performance.

We approach these questions through both theoretical and
empirical analysis. Theoretically, we show that equiv-
ariant models decompose into symmetry-preserving and
symmetry-breaking components, and provide formal results
linking generalization to pose entropy and inductive bias
alignment. To conduct systematic empirical analysis, we
introduce Rapidash, a unified group convolutional archi-
tecture that enables fine-grained control over equivariance
constraints, input/output representations, and equivariance-
breaking mechanisms. This design supports systematic com-
parisons across a wide range of model variants with varying
degrees of equivariance. Experiments on molecular prop-
erty prediction and generation show that more constrained
equivariant models outperform less constrained alternatives
when aligned with task geometry. Increasing representation
capacity helps both strongly and weakly constrained models,
but does not fully eliminate performance gaps (Fig. 2).

The main contributions of the paper can be summarized as:

• Unified architecture: We introduce Rapidash, a
scalable and modular group convolutional architecture.
This design supports multiple symmetry groups, in-
put/output variants, allowing for equivariance-breaking
and symmetry-breaking options. We achieve state-of-
the-art performance on QM9 molecule generation.

• Theoretical analysis: We provide formal results show-
ing when equivariance and symmetry breaking offer
provable advantages in expressivity and generalization.
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2. Related Work
Wang et al. (2022); van der Ouderaa et al. (2022); Kim
et al. (2023); Pertigkiozoglou et al. (2024) demonstrate
that controlled equivariance breaking can significantly im-
prove performance, also highlighting the benefits of relaxed
group equivariance constraints. Similarly, work by Petra-
che & Trivedi (2023) suggests that models with partial or
approximate equivariance can still exhibit improved gener-
alization compared to fully non-equivariant ones. Equivari-
ant models with higher-order tensor representations (e.g.,
E3GNN, NequIP (Batzner et al., 2022), SEGNN (Brandstet-
ter et al., 2022)) have shown improved data efficiency and
performance for tasks like molecular interatomic potentials,
findings in other domains differ. Thais & Murnane (2023)
reported that Lorentz equivariant models (Brehmer et al.,
2023) offered no clear advantage over non-equivariant coun-
terparts in particle physics. In materials science, though
SO(3)-equivariant Graph Transformers (Liao & Smidt,
2023; Liao et al., 2024) achieved strong results, Qu & Kr-
ishnapriyan (2024) (EScAIP) demonstrated that extensively
scaled non-equivariant models can be competitive or even
superior. Conversely, scaling experiments by Brehmer et al.
(2024) using transformers for rigid-body simulations argued
in favor of equivariant networks.

3. Method
Problem Statement We pose the problem statement as re-
search questions listed as follows: How do different equivari-
ance strategies—ordered from most to least constrained as
previously outlined—impact task performance? If more con-
strained SE(3)-equivariant models outperform T (3)-models
(despite T (3)’s larger theoretical hypothesis space), can scal-
ing T (3)-models (e.g., via channel capacity C or training
duration) close this apparent generalization gap? Does in-
corporating explicit geometric information, such as pose R,
to facilitate symmetry breaking lead to improved empirical
performance compared to models that do not utilize such
information?

3.1. Breaking exact equivariance

Our analysis of expressivity and equivariance constraints
centers on our model, Rapidash (detailed in App. B).
Rapidash employs regular group convolutions by pro-
cessing feature fields f : R3 × S2 → RC over the
position-orientation space. This involves convolution ker-
nels on R3 × S2 that respect the quotient space symmetries
(R3 × S2 ≡ SE(3)/SO(2)), a condition guaranteed to be
met by conditioning message passing layers on the geomet-
ric invariants derived in (Bekkers et al., 2024).

A key theoretical aspect of Rapidash’s architecture is its
fundamental connection to steerable tensor field networks.

Figure 1. Input variations to Rapidash with base space R3×S2 and
SE(3)-equivariant convolutions lifted to S2. It shows equivariance
breaking through different inputs and symmetry breaking by using
a global frame input.

This relationship is established through Fourier analysis on
the sphere S2, where scalar fields can be decomposed into
spherical harmonic coefficients that correspond to features
transforming under irreducible representations of SO(3)—
the building blocks of steerable networks. This equivalence
is formally stated as:

Proposition 3.1 (Equivalence via Fourier Transform). A
regular group convolution operating on scalar fields f :
Rn × Y → RC (where Y is Sn−1 or SO(n)) can be equiv-
alently implemented as a steerable group convolution oper-
ating on fields of Fourier coefficients f̂ : Rn → Vρ (where
Vρ is the space of combined irreducible representations) by
performing point-wise Fourier transforms FY before the
steerable convolution and inverse Fourier transforms F−1

Y

after.

Remark 3.2. This equivalence (discussed further by Bekkers
et al. (2024, Appx. A.1), Brandstetter et al. (2022), and Cesa
et al. (2021)) implies that Rapidash could, in principle,
be reformulated as a tensor field network. Thus, our archi-
tecture inherently represents the capabilities of this widely
used class of steerable networks.

This connection to steerable networks also underpins its
crucial universal approximation property. Building on es-
tablished results for steerable GNNs (Dym & Maron, 2020)
and related equivariant message passing schemes (Villar
et al., 2021; Gasteiger et al., 2021), the SE(3)-equivariant
universal approximation for Rapidash is formally stated
as:

Proposition 3.3 (Universal Approximation for Rapidash).
Rapidash, as an instance of message passing networks
over R3 × S2 with message functions conditioned on the bi-
jective invariant attributes (derived in (Bekkers et al., 2024,
Thm. 1)), is an SE(3)-equivariant universal approximator.
This specific universality follows from (Bekkers et al., 2024,
Cor. 1.1), leveraging the sufficient expressivity of feature

2



Rapidash: Scalable Molecular Modeling Through Controlled Equivariance Breaking

maps over R3 × S2.

Regardless of Rapidash’ strong theoretical expressiv-
ity, practical performance must weigh computational cost
against actual expressivity. G-convs on extended domains
like R3 × S2 involve feature fields of size, e.g., P ×O×C
per point cloud (Points × Orientations × Channels), com-
pared to P ×C for R3-based models. While matching total
features (e.g., O×C in an R3×S2 model to an enhanced C ′

in an R3 model) might suggest a nominally similar capacity,
the O-axis in the former signifies a structured domain where
features are correlated, not merely independent channels.
The true expressive power, related to a model’s hypothesis
space size (Elesedy & Zaidi, 2021), varies with the im-
posed equivariance constraints: T (3)-equivariant R3 convo-
lutions are least constrained, followed by SE(3)-equivariant
R3 × S2 convolutions, and isotropic SE(3)-equivariant R3

convolutions being most constrained. For fair architectural
comparison, we thus must consider scenarios where channel
capacity (C) is maximized within practical limits. This leads
to key research questions:

3.2. Symmetry Breaking and Generalization

This section analyzes generalization performance through
the lens of probabilistic symmetry breaking, as introduced
by Lawrence et al. (2025b) in their SymPE framework.
Their work shows that incorporating informative auxiliary
random variables Z (such as pose information Z ∈ SO(3))
into a stochastic model f(X,Z)—that e.g. takes a featur-
ized point cloud X as input—can positively impact predic-
tive inference, particularly when using jointly equivariant ar-
chitectures. The ability of a model to leverage such an auxil-
iary variable Z is reflected in the effective conditional distri-
bution P(Z|X) that the model implicitly defines. We adopt
this perspective to interpret how a model’s architectural con-
straints, like those in our Rapidash architecture, affect its
ability to use global orientation information, satisfying joint
invariance f(gX, gZ) = f(X,Z) for g ∈ SO(3).

We analyze model expressivity by considering two scenarios
for the conditional distribution P(Z|X) of the auxiliary pose
Z ∈ SO(3). First, if the pose Rknown is explicitly available
, P(Z|X) = δ(Z − Rknown). This provides zero-entropy
pose information, enabling a model f(X,Rknown) to directly
leverage this specific orientation. Second, standard SO(3)-
invariant models finv(X), which do not receive explicit pose
input, operate as if Z is drawn from a maximum entropy
(uniform) distribution. This implies no specific orientation
information is utilized, as derived in Proposition D.1. The
disparity in available pose information—and thus in the
effective entropy of Z—between these scenarios directly
dictates model expressivity:

Corollary 3.4 (Expressivity Gain from Low-Entropy Pose
Information). Let the optimal invariant mapping for a task,

f∗(X,R), depend non-trivially on the canonical orientation
R. Based on the distinct informational content of Z outlined
above: (a) Standard invariant models finv(X) (maximum
entropy pose) lack the expressivity to represent f∗; and (b)
Pose-conditioned models fcond(X,R) (zero-entropy pose)
can represent f∗.

The enhanced expressivity afforded by conditioning on pose
R, as established in Corollary 3.4, is fundamental for en-
abling symmetry breaking. By providing a determinate
canonical reference R, models can disambiguate features
arising from exact or approximate input symmetries, thereby
producing more specific and potentially less symmetric
outputs than standard equivariant models. Crucially, the
well-known generalization advantages of equivariant archi-
tectures (Elesedy & Zaidi, 2021) also extend to models
f(X , Z) that incorporate an auxiliary variable Z for sym-
metry breaking, as formalized by Lawrence et al. (2025b,
Thm. 6.1). This general theorem confirms that structur-
ing models f(X , Z) to be jointly equivariant is critical for
realizing provable generalization gains when an auxiliary
variable Z is introduced (e.g., for symmetry breaking). Our
Proposition D.2 details the application of this principle to
our setting where Z is a known, determinate pose R.

3.3. Rapidash and different variants

Our architecture, Rapidash, is designed with the flexibil-
ity to process both scalar and vector-valued features at its
input and output stages. For instance, it can map input vec-
tors vini (e.g., initial velocities or normals) to spherical sig-
nals and predict output vectors vouti (e.g., displacements) by
appropriately projecting from spherical representations (see
App. B for architectural specifics). This capability allows
Rapidash to naturally incorporate informative geometric
inputs such as global pose, normal vectors, or velocities.
If these inputs are treated as proper geometric objects that
transform consistently under SE(3) actions, their inclusion
can enhance the model’s contextual understanding while
preserving its overall SE(3)-equivariance.

This same flexibility in handling inputs also allows for con-
trolled deviations from strict SE(3)-equivariance within
Rapidash. For example, global coordinates or other geo-
metric data can be supplied as fixed scalar features, which
do not transform canonically under SE(3) actions as true
geometric vectors would (Fig.1). This presents a critical
trade-off: while more input data can be powerful, what is
the impact if it compromises the SE(3)-equivariance prior?
The approximate and relaxed group equivariance approach
suggests that such controlled deviations from strict sym-
metry can be beneficial, potentially improving training dy-
namics and performance. We explore this empirically with
Rapidash, with the mechanisms for deviating from strict
equivariance detailed in Appendix C.
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Table 1. Ablation results on QM9 for property prediction with
metric mean absolute error (MAE) (×10−3).

Models µ (D) α(a3
o) ϵHOMO (eV)

EGNN 29.0 71.0 29.0
DimeNet++ 29.7 43.5 24.6
SE(3)-T 53.0 51.0 53.0

Rapidash (effective equivariance) in R3

Rapidash (SE(3)) 17.41±0.37 53.03±0.92 22.29±0.27

Rapidash (T3) 22.11±1.03 61.97±1.05 25.83±0.25

Rapidash (none) 17.77±0.21 52.22±0.93 22.44±0.15

Rapidash (effective equivariance) in R3 × S2

Rapidash (SE(3)) 10.39±0.33 42.20±1.17 19.30±1.02

Rapidash (SO(3)) 10.44±0.22 42.68±1.04 19.64±0.75

rapidash (none) 10.53±0.17 40.21±0.56 18.69±0.20

4. Experiments
For predicting molecular properties and generating
molecules, we use QM9 (Ramakrishnan R., 2014). We
evaluate the prediction of molecular properties using the
MAE in Tab. 1 and compare these with EGNN (Sator-
ras et al., 2021), Dimenet++ (Gasteiger et al., 2022), and
SE(3)- Transformer (Fuchs et al., 2020). For the molecule
generation, we train a generative model that uses equivari-
ant denoising layers E. For molecular property prediction,
SE(3)-equivariant Rapidash variants consistently outper-
form their T3-equivariant counterparts, and the performance
gap does not close with extended training. The models with
no equivariance are obtained through passing co-ordinate
information as scalar input, while models with effective
equivariance SO(3) uses co-ordinate information as vector
input. Among these model variants, SE(3) model, those
utilizing the R3 × S2 base type achieve superior accuracy
over R3-only versions—highlighting the benefits of direc-
tional input and internal directional representations—and
notably reach performance levels on par with established
state-of-the-art methods on several regression tasks.

To address the effect of scaling the representation capacity
of the models, we perform experiments on two models, one
with SE(3) equivariance and the other with T3 and their
respective inflated models (higher hidden dimensions), see
Fig. 2.

We evaluate molecular generation, see Tab. 2, on metrics
from Hoogeboom et al. (2022b) that include atomic stabil-
ity, molecule stability, as well as a new aggregate metric
discovery, which is a fraction of generated samples that are
jointly valid, unique, and new. We compare our models
with equivariant diffusion model like EDM (Hoogeboom
et al., 2022a), PΘNITA (Bekkers et al., 2024), MuDiff (Hua
et al., 2024), Geometric latent diffusion model (Xu et al.,
2023a), END (Cornet et al., 2024), EquiFM (Song et al.,
2024) and Clifford Diffusion Models (Liu et al., 2025). For
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Figure 2. We plot molecular stability and training time for SE(3)
and T3 equivariant models with a hidden dimension of 256/512(in-
flated) for the molecular generation task on QM9. Inflated models
have representations with higher hidden dimensions, hence in-
creased capacity.

Table 2. Results for unconditional generation task on QM9 dataset.

Models Atom Stability (%) Mol Stability (%) Discovery

GDM-AUG 97.6 71.6 –
EDM ((Hoogeboom et al., 2022a)) 98.7±0.1 82.0±0.4

GeoLDM ((Xu et al., 2023b)) 98.9±0.1 89.4±0.5

PΘNITA ((Bekkers et al., 2024)) 98.9 87.8 -
MUDiff ((Hua et al., 2024)) 98.8±0.2 89.9±1.1

END ((Cornet et al., 2024)) 98.9±0.2 89.1±0.1

EquiFM((Song et al., 2024)) 98.9±0.1 88.3±0.3

CDM (all-grade) (Liu et al., 2025) 99.0±0.2 89.7±1.4

Rapidash (effective equivariance) in R3

Rapidash (T3) 98.57±0.01 81.62±0.15 91.83±0.45

Rapidash (none) 96.74±0.07 72.39±0.50 89.06±0.39

Rapidash (effective equivariance) in R3 × S2

Rapidash (SO(3)) 99.38±0.02 92.91±0.41 90.26±0.20

Rapidash (SE(3)) 99.38±0.01 93.12±0.28 90.78±0.11

Rapidash (none) 99.33±0.06 92.71±0.51 91.54±0.34

this task, the best results are decisively achieved by our
SE(3)-equivariant Rapidash models, again favoring the
R3 × S2 base type, which demonstrate strong molecular
stability in contrast to T3 variants. Remarkably, on this
generative task, these models significantly surpass existing
state-of-the-art performance.

5. Conclusion
Through the introduction of Rapidash, a general regu-
lar group convolutional architecture enabling controlled
comparisons—coupled with targeted theoretical analysis
of equivariance, symmetry breaking, and generalization, we
have sought to provide empirical insights into these critical
trade-offs. Our findings offer a structured understanding of
when and how different equivariance strategies and symme-
try considerations affect model performance for molecular
modeling tasks, thereby offering guidance for future archi-
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tectural design and model selection in this domain.
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A. Mathematical Prerequisites and Notations
Groups. A group is an algebraic structure defined by a set G and a binary operator · : G×G → G, known as the group
product. This structure (G, ·) must satisfy four axioms: (1) closure, where ∀h,g∈G : h · g ∈ G; (2) the existence of an
identity element e ∈ G such that ∀g∈G, e · g = g · e = g, (3) the existence of an inverse element, i.e. ∀g∈G there exists a
g−1 ∈ G such that g−1 · g = e; and (4) associativity, where ∀g,h,p∈G : (g · h) · p=g · (h · p). Going forward, group product
between two elements will be denoted as g, g′ ∈ G by juxtaposition, i.e., as g g′.

For Special Euclidean group SE(n), the group product between two roto-translations g=(x,R) and g′=(x′,R′) is given by
(x,R) (x′,R′)=(Rx′ + x,RR′), and its identity element is given by e=(0, I).

Homogeneous Spaces. A group can act on spaces other than itself via a group action gT : G×X → X , where X is the space
on which G acts. For simplicity, the action of g ∈ G on x ∈ X is denoted as g x. Such a transformation is called a group
action if it is homomorphic to G and its group product. That is, it follows the group structure: (g g′)x=g (g′ x) ∀g, g′ ∈
G, x ∈ X , and e x=x. For example, consider the space of 3D positions X = R3, e.g., atomic coordinates, acted upon by the
group G=SE(3). A position p ∈ R3 is roto-translated by the action of an element (x,R) ∈ SE(3) as (x,R)p=Rp+ x.

A group action is termed transitive if every element x ∈ X can be reached from an arbitrary origin x0 ∈ X through the
action of some g ∈ G, i.e., x=gx0. A space X equipped with a transitive action of G is called a homogeneous space of
G. Finally, the orbit Gx := {g x | g ∈ G} of an element x under the action of a group G represents the set of all possible
transformations of x by G. For homogeneous spaces, X=Gx0 for any arbitrary origin x0 ∈ X .

Quotient spaces. The aforementioned space of 3D positions X=R3 serves as a homogeneous space of G = SE(3), as every
element p can be reached by a roto-translation from 0, i.e., for every p there exists a (x,R) such that p=(x,R)0=R0+
x=x. Note that there are several elements in SE(3) that transport the origin 0 to p, as any action with a translation vector
x=p suffices regardless of the rotation R. This is because any rotation R′ ∈ SO(3) leaves the origin unaltered.

We denote the set of all elements in G that leave an origin x0 ∈ X unaltered the stabilizer subgroup StabG(x0). In
subsequent analyses, the symbol H is used to denote the stabilizer subgroup of a chosen origin x0 in a homogeneous space,
i.e., H=StabG(x0). We further denote the left coset of H in G as g H := {g h | h ∈ H}. In the example of positions
p ∈ X=R3 we concluded that we can associate a point p with many group elements g ∈ SE(3) that satisfy p=g 0. In
general, letting gx be any group element s.t. x=gx x0, then any group element in the left set gx H is also identified with the
point p. Hence, any x ∈ X can be identified with a left coset gxH and vice versa.

Left cosets g H then establish an equivalence relation ∼ among transformations in G. We say that two elements g, g′ ∈ G
are equivalent, i.e., g ∼ g′, if and only if g x0=g′ x0. That is, if they belong to the same coset g H . The space of left cosets
is commonly referred to as the quotient space G/H .

We consider feature maps f : X → RC as multi-channel signals over homogeneous spaces X . Here, we treat point clouds
as sparse feature maps, e.g., sampled only at atomic positions. In the general continuous setting, we denote the space of
feature maps over X with X . Such feature maps undergo group transformations through regular group representations
ρX (g) : X → X parameterized by g, and which transform functions f ∈ X via [ρX (g)f ](x)=f(g−1x) .

Irreducible representations and spherical harmonics Given any representation, there are often orthogonal subspaces
that do not interact with each other, making it possible to break our representation down into smaller pieces by restricting
to these subspaces. Hence, it is useful to consider the representations that cannot be broken down. Such representations
are terms irreducible representations or irreps. Given a group G, V a vector space, and ρ : G → GL(V ) representation,
a representation is irreducible if there is no nontrivial proper subspace W ⊂ V such that ρ|W is a representation of G
over space W . With each irrep there is an associated (harmonic) frequency l. The irreps of SO(3) are given by the
(2l+1)× (2l+1) dimensional rotation matrices called Wigner-D matrices. The central columns of these matrices comprise
the set of 2l + 1 spherical harmonics Y (l)

m : S2 → R, indexed by m = −l, ..., l.

B. Rapidash: A Regular Group Convolution Approach for Flexible Equivariant Modeling
The Rapidash architecture, employed throughout our empirical study, builds upon the efficient SE(3)-equivariant regular
group convolution framework operating on position-orientation space (R3 × S2) as introduced by PΘNITA (Bekkers et al.,
2024). To facilitate a comprehensive investigation into the utility of equivariance and symmetry breaking, Rapidash
extends this foundation by incorporating several key flexibilities: (i) versatile handling of various input and output geometric
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quantities (e.g., scalars, vectors representing positions, normals, or pose information); (ii) enhanced scalability for large
point clouds through multi-scale processing incorporating techniques like farthest point sampling; and (iii) convenient
adaptability to different equivariance constraints, allowing for controlled comparisons between SE(n) and translation-
only (Tn) equivariant models. Like PΘNITA, Rapidash primarily adopts the regular group convolution paradigm,
distinguishing it from steerable G-CNNs or tensor field networks, although fundamental connections exist. This section
elucidates the theoretical underpinnings of this approach.

B.1. Regular vs. Steerable Group Convolutions

Equivariant neural networks for SE(3) are often categorized into regular or steerable (tensor field) approaches (Weiler &
Cesa, 2019).

• Regular Group Convolutions: These typically operate on multi-channel scalar fields defined over a group G or a
homogeneous space X ≡ G/H (like R3 × S2 ≡ SE(3)/SO(2) in our case). Feature fields f : X → RC transform
via the regular representation: [ρ(g)f ](x) = f(g−1x). Convolutions are then a form of template matching of a
kernel k(g−1

y x) with the input signal (Cohen & Welling, 2016; Bekkers, 2019). A key advantage is that point-wise
nonlinearities can be applied directly to these scalar feature maps without breaking equivariance (cf. Bekkers et al.,
2024, Appx. A.1).

• Steerable Group Convolutions / Tensor Field Networks: These operate on feature fields f : Rn → Vρ

where the codomain Vρ is a vector space carrying a representation ρ of SO(n) (often a sum of irreducible rep-
resentations, irreps). Features transform via induced representations, affecting both the domain and codomain:
([Ind

SE(n)
SO(n) ρ](g)f)(x) = ρ(R) f(g−1x) (Weiler et al., 2021). Kernels k(x) must satisfy a steerability constraint

k(Rx) = ρout(R)k(x)ρin(R
−1). While this allows for exact equivariance without discretizing the rotation group (if

using irreps), applying nonlinearities typically requires specialized equivariant operations or transformations to a scalar
basis, as standard element-wise activations on steerable features (vectors/tensors) can break equivariance (Weiler &
Cesa, 2019).

B.2. Rapidash as a Regular Group Convolution and its Relation to Steerable Networks

Rapidash, like PΘNITA (Bekkers et al., 2024), processes feature fields f : R3 × S2 → RC . That is, at each point
x ∈ R3, it maintains a scalar signal fx : S2 → RC defined over the sphere of orientations S2. This aligns with the regular
group convolution paradigm, in which the convolution kernel acts as an R3 ×S2, subject to a symmetry constraint due to the
quotient space structure R3 × S2 ≡ SE(3)/SO(2). Specifically, the SE(3) group convolution over R3 × S2 is of the form

[Lf ](x,n) =

∫∫
k(Rn

T (x′ − x),Rn
Tn′)f(x′,n′)dx′dn′, (1)

with kernel constraint ∀Rz ∈ SO(2) : k(Rx, Rn) = k(x,n) with Rz a rotation around the z-axis. This symmetry
constraint is automatically solved when conditioning message passing layers (such as convolution layers) on the invariants
outlined in (Bekkers et al., 2024, Thm. 1). In terms of these invariants, the resulting discrete group convolution is given by

[Lf ](xi,ni) =
∑

j∈N (i)

k(aij)f(xj ,nj) , (2)

with the invariant pair-wise attributes given bya
(1)
ij

a
(2)
ij

a
(3)
ij

 =

 nT
i (xj − xi)

∥nj ⊥ (xj − xi)∥
nT
i ni

 , (3)

with ⊥ denoting part of the vector nj orthogonal to xj − xi.

As detailed in (Bekkers et al., 2024, App A), the connection between regular and steerable convolutions is established
through Fourier analysis on the group/homogeneous space (Kondor et al., 2018; Cesa et al., 2021). A scalar field fx(n)
over S2 (as used in Rapidash/PΘNITA) can be decomposed into spherical harmonic coefficients (its Fourier transform)
through a spherical Fourier transform. These coefficients for different spherical harmonic degrees correspond to features
transforming under irreducible representations of SO(3), which are the building blocks of steerable tensor field networks.
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Proposition B.1 (Equivalence via Fourier Transform). A regular group convolution operating on scalar fields f : Rn×Y →
RC (where Y is Sn−1 or SO(n)) can be equivalently implemented as a steerable group convolution operating on fields of
Fourier coefficients f̂ : Rn → Vρ (where Vρ is the space of combined irreducible representations) by performing point-wise
Fourier transforms FY before the steerable convolution and inverse Fourier transforms F−1

Y after.

Remark B.2. This equivalence is discussed in depth by Bekkers et al. (2024, Appx. A.1), Brandstetter et al. (2022), and
Cesa et al. (2021). Consequently, Rapidash could, in principle, be reformulated as a tensor field network by operating in
the spherical harmonic (Fourier) domain.

B.3. Universal Approximation

The universal approximation capabilities of equivariant networks are crucial. For steerable tensor field networks, Dym
& Maron (2020) proved universal approximation properties for equivariant graph neural networks. Building on such
results, and the correspondence between regular and steerable views, it has been shown that message passing networks
(which include architectures like Rapidash) conditioned on appropriate invariant attributes over position-orientation space
(Rn × Sn−1) are equivariant universal approximators.

Corollary B.3 (Universal Approximation for Rapidash). Rapidash, as an instance of message passing networks over
R3 × S2 with message functions conditioned on the bijective invariant attributes (derived in Bekkers et al. (2024, Thm. 1)),
is an SE(3)-equivariant universal approximator.

Remark B.4. This follows from Bekkers et al. (2024, Cor. 1.1), which itself builds on universality results for steerable GNNs
(Dym & Maron, 2020) and for invariant networks used to construct equivariant functions (Villar et al., 2021; Gasteiger et al.,
2021). The key is that feature maps over R3 × S2 are sufficiently expressive.

B.4. Advantages of the Regular Group Convolution Viewpoint for Rapidash

Rapidash adopts the regular group convolution viewpoint, working with scalar signals on discretized spherical fibers
(f(x,nk) where nk are grid points on S2). This offers practical advantages:

1. Simplicity of Activation Functions: Since the features f(x,nk) at each grid point are scalars (or vectors of scalars
in the channel dimension), standard element-wise nonlinear activation functions (e.g., GELU, ReLU, SiLU) can be
applied directly without breaking SE(3)-equivariance. This is because the action of g ∈ SE(3) permutes these values
on the fiber or spatially, but the activation acts on each scalar value independently. In contrast, steerable tensor field
networks require specialized equivariant nonlinearities or norm-based activations on higher-order tensors to preserve
equivariance (Weiler & Cesa, 2019), which can limit expressivity or introduce computational overhead.

2. Computational Efficiency of Activations: While steerable networks can apply scalar activations by first performing
an inverse Fourier transform (to get scalar fields), applying the activation, and then a forward Fourier transform (back
to irreps), this incurs significant computational cost at each nonlinearity (cf. Bekkers et al., 2024, Appx. A.1). By
operating directly on scalar spherical signals, Rapidash avoids these repeated transformations. Previous work on
steerable group convolutions has indeed found that element-wise activation functions applied to scalar fields (obtained
via inverse Fourier transforms from steerable vector features) can be most effective (e.g., as implicitly done in some
equivariant GNNs by taking norms or scalar products before activation, or as explicitly discussed for general steerable
CNNs in Weiler & Cesa, 2019).

3. Conceptual Simplicity: The regular group convolution approach, involving template matching of kernels over
signals on G/H , can be more intuitive and closer to standard CNN paradigms than navigating representation theory
and Clebsch-Gordan tensor products often required for constructing steerable tensor field networks. Concepts like
stride/sub-sampling and normalization layers readily transfer to this setting.

While discretizing the sphere S2 introduces an approximation to full SO(3) equivariance (equivariance up to the grid
resolution), empirical results, including those for PΘNITA (Bekkers et al., 2024) and our findings with Rapidash,
demonstrate that this is not detrimental to achieving state-of-the-art performance and robust generalization.
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B.5. Separable group convolutions

Regular group convolutions over the full space SE(3) can be efficiently computed when the kernel is factorized via

kc′c(x,R) = kR
3

c (x)kSO(3)
c (R)k

(channel)
c′c ,

with c, c′ the row and column indices of the ”channel mixing” matrix. Then the group convolution equation can be split into
three steps that are each efficient to compute: a spatial interaction layer (message passing), a point-wise SO(3) convolution,
and a point-wise linear layer (Knigge et al., 2022; Kuipers & Bekkers, 2023). It would result in the group convolutional
counterpart of depth-wise separable convolution (Chollet, 2017), which separates convolution in two steps (spatial mixing
and channel mixing). In particular, for our choice to the group convolution over R3 × S2 using the pair-wise invariants of
(3) the kernel is parametrized as

kc′c(aij) = kR
3

c (a
(1)
ij , a

(2)
ij )kS

2

c (a
(3)
ij )k

(channel)
c′c .

This form allows to split the convolution over several steps, which following (Bekkers et al., 2024) we adapt a ConvNext
(Liu et al., 2022) as the main layer to parametrize Rapidash. Fig. ?? shows the steps performed in this block, relative a
standard ConvNext block over position space only. Here, LN denotes layer norm, and GELU is used as activation function.

C. Sources of Equivariance Breaking
In the study of equivariant deep learning, it is important to distinguish between different notions of ”breaking” symmetries.
Some approaches, such as those explored by Lawrence et al. (2025a) or the pose-conditioning methods analyzed in
Appendix D, utilize architectures that maintain specific (joint) equivariance properties to achieve ”symmetry breaking” in
the output (e.g., an output sample being less symmetric than the input, or overcoming the limitations of standard invariance).
This section, in contrast, focuses on mechanisms by which the strict G-equivariance of a neural network architecture itself
can be compromised or intentionally relaxed, leading to a model that no longer fully adheres to the mathematical definition
of G-equivariance. We categorize these into external and internal sources of equivariance breaking.

C.1. External Equivariance Breaking

External equivariance breaking occurs when an inherently G-equivariant architecture loses its equivariance properties due to
the way inputs are provided to the network. Consider a linear layer L designed to be G-equivariant (e.g., for G = SE(3)).
Let v be a vector input that transforms naturally under the group action, and define xg = g · v as its transformed version,
described in global coordinates. When these coordinates xg are provided, for example, as a set of scalar triplets rather than
as a geometric vector type that the layer is designed to process equivariantly, they may be treated independently by the
network without regard to their collective transformation under G. In such cases, we have:

if x ̸= xg, then often L(xg) ̸= g · L(x) (or L(xg) ̸= L(x) for invariant L) (4)

This means the network processes transformed inputs in a way that does not respect the group symmetry, thereby breaking
the intended G-equivariance of the function L. In contrast, when inputs are specified as types that transform appropriately
under the group action (e.g., as vectors for an SE(3)-equivariant layer that expects vector inputs), equivariance can be
maintained:

L(g · v) = g · L(v) ∀g ∈ G (5)

Moreover, for features that are truly invariant under G (such as one-hot encodings of atom types in QM9, which are invariant
to SO(3) rotations), the group action is trivial:

g · xinv = xinv =⇒ L(g · xinv) = L(xinv) (6)

This ensures that processing these features does not break the network’s overall desired invariance to group transformations
of other, non-invariant inputs.

C.2. Internal Equivariance Breaking

Internal equivariance breaking refers to the deliberate relaxation or incorrect specification of equivariance constraints within
the layers themselves. Even if inputs are provided correctly, the layer operations may not fully respect the symmetry group
G. Recent works have explored various approaches to controlled relaxation, including (Wang et al., 2022):
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• Basis decomposition methods that mix G-equivariant and non-G-equivariant components within a layer.

• Learnable deviations from strict G-equivariance, often controlled by regularization terms.

• Progressive relaxation or enforcement of G-equivariance constraints during the training process.

In some cases, an internally broken layer Lbroken might be expressed as a combination of a strictly G-equivariant part and a
non-G-equivariant part:

Lbroken(X) = Lequiv(X) + αLnon-equiv(X) (7)

where α controls the degree of deviation from strict G-equivariance. Some approaches (e.g., (Wang et al., 2022)) implement
schemes where α is annealed during training.

C.3. Interplay of Equivariance Breaking Mechanisms

In practice, both external and internal equivariance-breaking can occur, sometimes simultaneously, and their effects can
interact. For example, a network might employ layers with relaxed internal constraints (e.g., non-stationary filters) while
also processing geometric inputs (like coordinates) in a manner that externally breaks the intended global symmetry (e.g.,
treating them as independent scalar features). The overall adherence of the model to a specific group symmetry G then
depends on the interplay of these factors. As noted by Petrache & Trivedi (2023), while aligning data symmetry with
architectural symmetry (strict equivariance) is ideal, models with partial or approximate equivariance can still exhibit
improved generalization compared to fully non-equivariant ones.

D. Analysis of Symmetry Breaking and Pose-Conditioning in Equivariant Models
D.1. Standard Invariance and Effective Pose Entropy

This section formalizes the notion that a standard SO(3)-invariant model, when viewed within the framework of a jointly
invariant function f(X,Z), operates as if the auxiliary pose variable Z carries no specific information, i.e., it corresponds to
a maximum entropy distribution over poses.

Proposition D.1 (Standard SO(3)-Invariance as Maximum Effective Pose Entropy). Let f(X,Z) be a function f :
X × SO(3) → Y that is jointly SO(3)-invariant, meaning f(gX, gZ) = f(X,Z) for all g ∈ SO(3). If the output of
f(X,Z) is also required to be standard SO(3)-invariant with respect to X alone, defining a function finv(X) such that
finv(gX) = finv(X) for all g ∈ SO(3), then:

1. The function f(X,Z) must be independent of the auxiliary pose variable Z. Specifically, f(X,Z) = f(X, Id) for any
Z ∈ SO(3), where Id is the identity element in SO(3).

2. Consequently, such a model f(X,Z) (which produces finv(X)) behaves as if Z is drawn from an uninformative,
maximum entropy distribution (e.g., the uniform distribution over SO(3)). The model cannot utilize any specific
orientation information conveyed by Z.

Proof Sketch. To demonstrate part 1, that f(X,Z) = f(X, Id):

1. By the joint SO(3)-invariance of f , we have f(X,Z) = f(Z−1X,Z−1Z) = f(Z−1X, Id).

2. The condition that the output of f(X,Z) is standard SO(3)-invariant with respect to X means that for any fixed second
argument (like Id), the function f(·, Id) must be SO(3)-invariant in its first argument. That is, f(gX, Id) = f(X, Id)
for all g ∈ SO(3).

3. Applying this standard SO(3)-invariance with g = Z−1 to the expression f(Z−1X, Id), we get f(Z−1X, Id) =
f(X, Id).

4. Combining steps 1 and 3: f(X,Z) = f(Z−1X, Id) = f(X, Id).
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This establishes that f(X,Z) is independent of Z.

For part 1, if f(X,Z) is independent of Z, it cannot make use of any particular value of Z to alter its output. From an
informational perspective, Z provides no specific information to the model. This behavior is equivalent to Z being drawn
from a distribution that reflects maximal uncertainty about the pose, which for a compact group like SO(3) is the uniform
(Haar) measure, corresponding to maximum entropy. Thus, the model finv(X) cannot utilize any specific orientation
information that might be notionally carried by Z.

D.2. Proof of Corollary 3.4 (Expressivity Gain from Low-Entropy Pose Information)

Corollary 3.4 states: Let the optimal invariant mapping for a task, f∗(X,R), depend non-trivially on canonical orientation
R. Based on the distinct informational content of Z outlined above: (a) Standard invariant models finv(X) (maximum
effective pose entropy) lack the expressivity to represent f∗; and (b) Pose-conditioned models fcond(X,R) (provided with
zero-entropy pose information) can represent f∗.

Let G = SO(3) be the group of orientations. The optimal mapping f∗ : X ×G → Y (where X is the space for X and Y
for the output) has two key properties:

1. Joint Invariance for an Invariant Task: f∗(gX, gR) = f∗(X,R) for all g ∈ G.

2. Non-trivial Dependence on R: For any given X ∈ X , there exist R1, R2 ∈ G such that R1 ̸= R2 but f∗(X,R1) ̸=
f∗(X,R2). This implies that R is an essential input for determining the output of f∗, not merely a redundant pose of
X that could be factored out by invariance.

Proof of 1: Standard invariant models finv(X) lack the expressivity to represent f∗.

A standard G-invariant model finv(X) is a function finv : X → Y . By definition, its output depends solely on X and
must satisfy finv(gX) = finv(X) for all g ∈ G. For any specific input X0 ∈ X , finv(X0) produces a single, uniquely
determined output value, say Yinv 0.

The model finv(X) does not take R as an explicit input. As established by the principle that standard invariant models
operate with maximum effective entropy regarding an auxiliary pose variable (see Appendix D.1, Proposition D.1), finv(X)
cannot vary its output based on different values of R for a fixed X . Its output is fixed once X is fixed.

Now, consider the target function f∗(X0, R). According to property (2) of f∗, there exist distinct R1, R2 ∈ G such that
f∗(X0, R1) = Y ∗

1 and f∗(X0, R2) = Y ∗
2 , where Y ∗

1 ̸= Y ∗
2 .

If finv(X) were to represent f∗(X,R), then for the input X0, it would need to output Y ∗
1 when the canonical orientation is

R1, and simultaneously output Y ∗
2 when the canonical orientation is R2. However, finv(X0) can only produce its single

output Yinv 0. Since Y ∗
1 ̸= Y ∗

2 , Yinv 0 cannot equal both. Therefore, finv(X) cannot represent the function f∗(X,R) due
to its inability to differentiate its output based on R.

Proof of 2: Pose-conditioned models fcond(X,R) can represent f∗.

A pose-conditioned model fcond(X,R) is a function fcond : X ×G → Y . It explicitly takes both X and R as inputs. It is
designed to satisfy the same joint G-invariance as the target: fcond(gX, gR) = fcond(X,R).

The target function f∗(X,R) is a specific function mapping from the domain X × G to Y that adheres to this joint
G-invariance. We assume that the class of models from which fcond(X,R) is drawn (e.g., sufficiently large neural networks
architected to respect joint G-invariance) are universal approximators for continuous functions on X ×G that satisfy the
given symmetry requirements.

Since fcond(X,R) takes R as an explicit input (representing zero-entropy pose information for that instance, as R is known
and fixed), it has the architectural capacity to make its output depend on R. For a given X0, the model fcond(X0, R) can
learn to produce different outputs for different values of R. Specifically, it can learn to output f∗(X0, R1) when its input R
is R1, and f∗(X0, R2) when its input R is R2.

Given that f∗(X,R) is a well-defined function of (X,R) satisfying the joint G-invariance, and fcond(X,R) is a universal
approximator for such functions with access to both X and R, fcond(X,R) can represent f∗(X,R).
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D.3. Generalization Benefits of Joint Invariance in Pose-Conditioned Models

While App. D established the expressivity advantage of pose-conditioned invariant models fcond(X,R) over standard
invariant models finv(X), one might consider if a sufficiently complex non-equivariant model fneq(X,R), which also
takes pose R as input but lacks structural symmetry constraints, could achieve similar performance. Assuming both
fcond(X,R) (satisfying joint invariance f(gX, gR) = f(X,R)) and fneq(X,R) have sufficient capacity to represent the
optimal invariant solution f∗(X,R), we argue that the equivariant structure of fcond provides superior generalization
guarantees.

This argument leverages theoretical results on the generalization benefits derived from incorporating known symmetries, such
as Theorem 6.1 presented by Lawrence et al. (2025a), which extends foundational work on equivariance and generalization
(Elesedy & Zaidi, 2021).

Proposition D.2 (Generalization Advantage of Jointly Invariant Pose-Conditioned Models). Let X be drawn from a
G-invariant distribution P(X), where G = SO(3). Let R be the provided pose, treated as an auxiliary variable Z = R
with the equivariant conditional distribution P(Z|X) = δ(Z −R). Consider two models predicting an invariant output Y
using inputs (X,R):

• fcond(X,R): A model satisfying joint invariance, fcond(gX, gR) = fcond(X,R).

• fneq(X,R): Any model using the same inputs (X,R) that does not satisfy joint invariance.

Under suitable regularity conditions (as specified in Lawrence et al. (2025a), Thm 6.1) and for a suitable risk function
R(f) = E[L(f(X,R), Y )] (e.g., using L2 loss), the expected risk of the non-equivariant model is greater than or equal to
that of the jointly invariant model:

R(fneq) ≥ R(fcond)

The difference R(fneq) − R(fcond) represents a non-negative generalization gap attributable to the component of fneq
orthogonal to the space of jointly invariant functions.

Remark D.3. This proposition follows from applying Theorem 6.1 (Lawrence et al., 2025a) to our setting. The conditions
are met: P(X) is G-invariant (typically assumed or achieved via augmentation), P(Z|X) = δ(Z −R) is equivariant, and G
acts freely on Z = R ∈ SO(3).

Proposition D.2 provides formal support for preferring the pose-conditioned equivariant (jointly invariant) architecture
fcond(X,R) over an unstructured, non-equivariant model fneq(X,R) that uses the same input information. By incorporating
the known relationship between transformations of the input X and the pose R via the joint invariance constraint, the
equivariant model leverages a useful inductive bias. This bias restricts the hypothesis space to functions consistent with the
underlying geometry, thereby reducing variance and improving expected generalization performance compared to a less
constrained model, even if both models possess sufficient capacity to represent the optimal solution.

E. Implementation details
We implemented our models using PyTorch (Paszke et al., 2019), utilizing PyTorch-Geometric’s message passing and graph
operations modules (Fey & Lenssen, 2019), and employed Weights and Biases for experiment tracking and logging. A
pool of GPUs, including A100, A6000, A5000, and 1080 Ti, was utilized as computational units. To ensure consistent
performance across experiments, computation times were carefully calibrated, maintaining GPU homogeneity throughout.

For all experiments, we use Rapidash with 7 layers with 0 fiber dimensions for R3 and 0 or 8 fiber dimensions for
R3 × S2. The polynomial degree was set to 2. We used the Adam optimizer (Kingma & Ba, 2014), with a learning rate of
1e− 4, and with a CosineAnnealing learning rate schedule with a warm-up period of 20 epochs.

QM9 QM9 dataset (Ramakrishnan R., 2014) contains up to 9 heavy atoms and 29 atoms, including hydrogens. We use the
train/val/test partitions introduced in Gilmer et al. (2017), which consists of 100K/18K/13K samples respectively for each
partition.

Diffusion Model Unlike EDM (Hoogeboom et al., 2022b) that uses a DDPM-like diffusion model with a deterministic
sampler, we use a stochastic sampler proposed in (Karras et al., 2022). We condition the diffusion model with feature scaling
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and noise scaling and combine outputs with skip connections, allowing for faster sampling. The sampler used in this work
implements a stochastic differential equation with a second-order connection.

15


