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Abstract
We consider achieving equivariance in machine
learning systems via frame averaging. Current
frame averaging methods involve a costly sum
over large frames or rely on sampling-based ap-
proaches that only yield approximate equivari-
ance. Here, we propose Minimal Frame Averag-
ing (MFA), a mathematical framework for con-
structing provably minimal frames that are exactly
equivariant. The general foundations of MFA
also allow us to extend frame averaging to more
groups than previously considered, including the
Lorentz group for describing symmetries in space-
time, and the unitary group for complex-valued
domains. Results demonstrate the efficiency and
effectiveness of encoding symmetries via MFA
across a diverse range of tasks, including n-body
simulation, top tagging in collider physics, and
relaxed energy prediction. Our code is available
at https://github.com/divelab/MFA.

1. Introduction
Encoding symmetries in machine learning models has
shown impressive results across diverse disciplines, in-
cluding mathematical problem solving (Puny et al., 2023;
Lawrence & Harris, 2023), generalization ability (Kondor
& Trivedi, 2018; Gui et al., 2022; Li et al., 2023; Gui et al.,
2024), vision (Cohen & Welling, 2016b; Esteves et al., 2020;
Worrall & Welling, 2019), quantum mechanics (Unke et al.,
2021; Chen et al., 2022; Yu et al., 2023), chemistry (Xu
et al., 2021; 2023; Hoogeboom et al., 2022; Batatia et al.,
2022; Stärk et al., 2022; Wang et al., 2023a; Fu et al., 2023),
materials science (Yan et al., 2022; Lin et al., 2023; Luo
et al., 2023; Yan et al., 2024), and physics (Wang et al.,
2020; 2022b). Nevertheless, the derivation of equivariant ar-
chitectures is a non-trivial task and may come at the cost of
expressiveness or increased computational effort (Puny et al.,
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2021; Du et al., 2022; Kim et al., 2023; Duval et al., 2023b;
Pozdnyakov & Ceriotti, 2024). Frame averaging (Puny et al.,
2021) has emerged as a model-agnostic alternative for in-
stilling equivariance in non-equivariant models. Because
the cost of frame averaging operator scales with the size of
the frame, sampling-based approaches have been devised to
enhance efficiency by sacrificing exact equivariance (Kim
et al., 2023; Duval et al., 2023b).

We introduce Minimal Frame Averaging, a mathematical
framework for efficient frame averaging that simultaneously
maintains exact equivariance. Our general theory also en-
ables us to derive minimal frames for a set of groups strictly
larger than those proposed in previous works, including
the Lorentz group, the proper Lorentz group, the unitary
group, the special unitary group, the general linear group,
and the special linear group. Empirically, we demonstrate
the advantages of our method on a variety of tasks spanning
diverse groups, including n-body simulation, isomorphic
graph separation, classification of hadronically decaying top
quarks (top tagging), relaxed energy prediction on OC20,
and prediction of 5-dimenional convex hull volumes.

2. Background
G-equivariance of a function f : V → W is defined such
that actions from G applied on the domain V are applied
equally to the codomain W . Formally, if ρW and ρV are
representations of G in the spaces V andW , respectively,
then for all g ∈ G and x ∈ V ,

f(ρV(g)x) = ρW(g)f(x).

In the special case where ρW(g) = 1, known as the trivial
representation, f is said to be G-invariant. Symmetry pri-
ors that instill equivariance in neural networks can improve
generalization and sample complexity across diverse tasks
with exact and approximate symmetries (Bronstein et al.,
2021; Han et al., 2022; Zhang et al., 2023). In Section 2.1,
we overview prevalent approaches in the sphere of equiv-
ariant machine learning before introducing frame averaging
in Section 2.2.

2.1. Equivariant Machine Learning

Equivariant methods are largely defined in terms of their
choice of internal representation (Duval et al., 2023a; Bron-

1

https://github.com/divelab/MFA


Equivariance via Minimal Frame Averaging for More Symmetries and Efficiency

stein et al., 2021; Han et al., 2022). Scalarization meth-
ods (Schütt et al., 2018; 2021; Gasteiger et al., 2019; 2021;
Köhler et al., 2020; Satorras et al., 2021; Thölke & De Fab-
ritiis, 2021; Jing et al., 2021; Liu et al., 2022; Wang et al.,
2022a; Huang et al., 2022; Dym & Gortler, 2024) achieve
equivariance by transforming geometric quantities such as
vectors into invariant scalars or by manipulating these quan-
tities exclusively by scalar multiplication, and are known to
be universal approximators of equivariant functions (Villar
et al., 2021; Han et al., 2022). Alternatively, group equiv-
ariant CNNs leverage the regular representation, wherein
feature maps and kernels are functions on the group G (Co-
hen & Welling, 2016a; Horie et al., 2021; Wang et al., 2022b;
2023b; Helwig et al., 2023). As this approach requires a
feature vector for each group element, it can become pro-
hibitively expensive in cases where the group is large (Bron-
stein et al., 2021). For G with an infinite number of elements
such as the orthogonal group O(d), network layers may in-
stead map between irreducible representations (Thomas
et al., 2018; Weiler et al., 2018; Anderson et al., 2019;
Brandstetter et al., 2021; Smidt et al., 2021; Batzner et al.,
2022). Although the irreducible approach has been widely
used for equivariance to groups such as O(d), derivation
of the irreducible representations for new groups, such as
the Lorentz group O(1, d− 1) (Gong et al., 2022), is a non-
trivial task (Bronstein et al., 2021). Thus, Ruhe et al. (2023)
venture beyond irreducible representations by employing a
steerable multivector basis which simultaneously maintains
the geometric structure inherent to the data.

2.2. Frame Averaging

While the success of symmetry-preserving frameworks has
been demonstrated in a variety of domains and tasks, the
construction of equivariant architectures that are both ex-
pressive and computationally efficient is challenging (Puny
et al., 2021; Du et al., 2022; Kim et al., 2023; Duval et al.,
2023b; Kiani et al., 2024). Therefore, Puny et al. (2021) pro-
posed frame averaging, an architecture-agnostic approach
to equivariant learning derived from the group averaging
operator (Yarotsky, 2022). Group averaging maps an arbi-
trary function Φ : V → W to a G-equivariant function Φ̂
defined in the case of a finite group G by

Φ̂(x) =
1

|G|
∑
g∈G

ρW(g)Φ(ρV(g
−1)x), (1)

where |G| denotes the cardinality of G and ρW(g) as the
trivial representation gives a G-invariant Φ̂. Computation
of Equation (1) quickly becomes intractable as the cardi-
nality of G grows or in the case of an infinite group. Thus,
the frame averaging operator replaces G in the summation
with a frame F(x) ⊆ G. A special case of interest is a
G-equivariant frame:
Definition 2.1 (G-Equivariant Frame (Puny et al., 2021)).

Given a power set of a finite group G as P(G), a set-valued
function F : V → P(G) \ {∅} is termed a G-equivariant
frame if and only if:

1. G-Equivariance: For all x ∈ V and g ∈ G, F(g · x) =
gF(x), where g · x denotes the action of g on x;

2. Boundedness: For any g ∈ F(x), there exists a con-
stant c > 0 such that ∥ρW(g)∥op ≤ c, where ∥ · ∥op
denotes the induced operator norm overW .

By replacing G in Equation (1) with a G-equivariant frame
F as

⟨Φ⟩F (x) :=
1

|F(x)|
∑

g∈F(x)

ρW(g)Φ(ρV(g
−1)x), (2)

the frame averaging operator ⟨·⟩F achieves equivariance
more efficiently than the group averaging operator (Puny
et al., 2021). Puny et al. (2021) furthermore leverage the
boundedness property in Definition 2.1 to show that the
resulting function ⟨Φ⟩F maintains the expressivity of the
backbone architecture Φ.

3. Methods
In spite of the aforementioned advantages of frame averag-
ing, there are several vital considerations that determine its
effectiveness in equivariant learning tasks. First, the effi-
ciency of the frame averaging operator in terms of runtime
scales with the size of the frame F(x). Thus, in Section 3.1,
we formalize the concept of a minimal frame and derive a
defining property which will enable its computation. Specif-
ically, this property is that the computation of the minimal
frame requires a canonical form, which we formalize in Sec-
tion 3.2. To circumvent challenges that commonly arise
when computing the canonical form, we discuss canonical-
ization on induced G-sets in Section 3.3.

Second, the derivation of a G-equivariant frame depends
directly on the group G. Thus, in Section 4, we derive a
minimal frame for the linear algebraic group defined by
OT ηO = η, with η a diagonal matrix with diagonal en-
tries ±1. This group subsumes a range of groups which
appear frequently in common machine learning tasks, in-
cluding the orthogonal group O(d) and the special orthogo-
nal group SO(d), as well as more specialized groups such
as the Lorentz group O(1, d− 1) which describes symme-
tries of spacetime in particle physics and the unitary group
U(d) describing complex orthogonal matrices. We go on to
derive a minimal frame for the permutation group in Sec-
tion 5, which appears in various graph learning tasks. Be-
yond these groups, we leverage the mathematical framework
developed in Sections 3.1 to 3.3 to derive minimal frame
averaging for a variety of groups in Appendix H, including
Rd,E(d),SE(d),GL(d,R), and SL(d,R).
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3.1. Construction of the Minimal Frame

To more precisely define a frame with minimal size, we
introduce the concept of a minimal frame defined on a G-
set1 S.

Definition 3.1 (Minimal Frame). A minimal frame F̂ :
S → P(G) \ {∅} is a frame such that for any x ∈ S, there
does not exist a frame F with F(x) ⊂ F̂(x).

The following result, proven in Appendix B.2, relates an
arbitrary frame F to the stabilizer of an element of interest
x0 residing in the orbit of x. The stabilizer of x0 is defined
as StabG (x0) := {g ∈ G | g · x0 = x0}, while the orbit
of x is defined as OrbG (x) := {g · x | g ∈ G}. This result
will prove vital in constructing minimal frames.

Lemma 3.1. Given a frame F : S → P(G) \ {∅}, for all
x ∈ S, there exists x0 ∈ OrbG(x) such that StabG(x0) ⊆
F(x0).

Using this result, we next show that for each x ∈ S, F̂(x)
may be derived by selecting a unique representative x0 ∈
OrbG (x) and computing its stabilizer, the proof of which
can be found in Appendix B.3. We refer to x0 = c(x) as
the canonical form with the canonicalization function c, and
its uniqueness is in the sense that all elements in OrbG (x)
share the same canonical form. We discuss the canonical
form in greater detail in Section 3.2 where we find that
identifying a canonical form can be non-trivial depending
on the group G and base space S , although for the purposes
of a general derivation of the minimal frame in the following
result, we simply assume that we have access to it.

Theorem 3.2. For all x ∈ S, let x0 = c(x) = h−1 · x for
some h ∈ G. Define the frame F : S → P(G) \ {∅} such
that F(x) = hStabG(x0); then, F is a minimal frame.

This result shows how a minimal frame F̂(x) is con-
structed through the canonical form x0 such that F̂(x) =
hStabG (x0), and is a generalization of Theorem 3
from Puny et al. (2021), which shows that |F(x)| ≥
|StabG (x)| given any equivariant frame F for invari-
ant frame averaging. However, there are cases where
|StabG (x)| is infinite, e.g., a point cloud lying on a
(d − 2)-dimensional Euclidean subspace embedded in a
d-dimensional Euclidean space under the action of O(d).
While it then appears natural to define the minimal frame
in terms of a measure on the group µ2, the existence of sets
with measure 0 imply that Definition 3.1 is stronger. Specifi-
cally, we might instead define the minimal frame F̂ such that
for all x and equivariant frames F , µ(F̂(x)) ≤ µ(F(x)).
It would then follow that for the set A(x) ⊂ G such that
A(x) ∩ F̂(x) ̸= ∅ and µ(A(x)) = 0, the frame F̃(x) :=

1We provide a brief introduction to relevant topics in group
theory, including G-sets, in Appendix C.

2A brief introduction to measures on groups is in Appendix D.

F̂(x) ∪ A(x) is also minimal, as µ(F̃(x)) = µ(F̂(x)),
whereas F̃ is not minimal by Definition 3.1 since F̂(x) is a
proper subset of F̃(x). However, as proven in Theorem D.5,
minimality in terms of any measure is implied by Defini-
tion 3.1, and thus, Definition 3.1 is stronger.

3.2. The Canonical Form

Equipped with a notion of the minimal frame and how it
is constructed using a canonical form c(x) := x0, we now
formalize c(x) by generalizing the definition of McKay &
Piperno (2014) beyond graphs, and discuss canonicalization
in 2 concrete cases.
Definition 3.3 (Canonical Form). Given an equivalence
relation ∼ on S such that for any x, y ∈ S, x ∼ y if and
only if y ∈ OrbG (x), a canonicalization with respect to ∼
is a mapping c : S → S satisfying the following conditions
for all x, y ∈ S:

1. Representativeness: x ∼ c(x);

2. G-invariance/ Uniqueness: c(x) = c(y) if x ∼ y.

Property 1 in Definition 3.3 requires that the canonical form
is a single element residing in the orbit of x, while Prop-
erty 2 requires that the canonical form be unique within
each orbit. An example of canonicalization is of a symmet-
ric matrix P ∈ Rd×d, where the orthogonal group O(d)
acts by conjugate multiplication. Given the eigendecom-
position P = OTΛO with eigenvalues Λ in an ascend-
ing/descending order, c(P ) = Λ is a valid canonical form,
as Λ is uniquely defined and invariant to actions of O(d) on
P , and furthermore, Λ ∈ OrbO(d)(P ).

In many cases, canonicalization may be elusive. For ex-
ample, consider the canonicalization of P ∈ Rd×n where
the orthogonal group instead acts by left multiplication.
From Theorem 3.2, we must decompose P = ρ(g)R for
g ∈ O(d), ρ(g) ∈ Rd×d, and R ∈ Rd×n as the canonical
form. This may be achieved by a QR decomposition of P ,
however, if P does not have full column rank, R will not be
uniquely defined. This non-uniqueness raises issues in en-
suring that the canonical form satisfies the O(d)-invariance
required by Definition 3.3. In the following section, we
resolve such cases by demonstrating how canonicalization
can instead be performed on an induced G-set to achieve a
unique canonical form.

3.3. Frame Construction on Induced G-Sets

As in the previous example of O(d) acting upon non-full
column rank matrices via left multiplication, there are cases
in which practical attempts at deriving a canonical form
instead give rise to a set of multiple candidates. In order to
satisfy G-invariance, a candidate must be selected in a man-
ner so as to preserve the uniqueness of the canonical form
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within OrbG (x). To do so, we introduce a G-equivariant
function ϕ to remove the ambiguity, and instead compute
the canonical form of ϕ(x) in a space Sϕ which we refer to
as an induced G-set.
Definition 3.4 (Induced G-set). An induced G-set Sϕ is a
G-set induced from the G-set S through a G-equivariant
function ϕ : S → Sϕ such that for all g ∈ G and x ∈ S,
ϕ(g · x) = g · ϕ(x).

A well-chosen ϕ can effectively remove ambiguity in the
canonical form by computing the canonical form on Sϕ
instead of on the original space S, however, it is unclear
how this will be useful for deriving a minimal frame on
S. As we state next and prove in Appendix B.4, due to the
G-equivariance of ϕ, ϕ may be composed with a frame Fϕ

on Sϕ to produce a frame on S, although we note that this
frame is not necessarily minimal.
Theorem 3.5. Given a G-set S and a G-equivariant func-
tion ϕ : S → Sϕ, let Fϕ : Sϕ → P(G) \ {∅} be a frame
with the domain of Sϕ. Then, Fϕ ◦ ϕ is a frame with the
domain of S.

Interestingly, previous methods can be shown to be spe-
cial cases of canonicalization on an induced G-set. For
example, for ϕ(P ) = PP T , the canonical form c(ϕ(P )) is
given by eigenvalues of ϕ(P ), which is exactly the method
of Puny et al. (2021). Additionally, choosing the trivial
map ϕ(P ) = 0 gives the minimal frame F̂ϕ(ϕ(P )) = G
which corresponds to group averaging, as c(ϕ(P )) = 0 and
StabG (0) = G. This illustrates that canonicalization can
be more tractable on the induced G-set, though it is not
necessarily the case that a minimal frame F̂ϕ on the induced
G-set produces a frame F̂ϕ ◦ ϕ which is also minimal on
the base space.

We next derive minimal frames for several groups acting on
subsets of Rd×n. In Section 4, we employ an induced G-set
to derive a minimal frame for the linear algebraic group
Gη(d), which is strictly more general than the previously
mentioned example of O(d). In Section 5, we go on to
consider a case where the minimal frame can be directly
computed on S for the permutation group Sn. Furthermore,
in Table 8, we present induced G-sets which we leverage
to compute canonical forms for a variety of groups and
domains.

4. Linear Algebraic Group
The linear algebraic group Gη(d) includes several well-
known groups: the orthogonal group O(d), the Lorentz
group O(1, d− 1) and the unitary group U(d). By adding a
constraint enforcing determinant equal to 1, Gη(d) can be
extended to include groups like SO(d),SO(1, d − 1) and
SU(d). Gη(d) acts on x ∈ Rd as g · x := Ox, where
ρ(g) = O ∈ Rn×n satisfies OT ηO = η, and η is a d × d

diagonal matrix with diagonal elements ±1. The pseudo-
inner product on Rd is then defined by ⟨x,y⟩ := xT ηy.
Setting η = Id results in Gη(d) = O(d) with the usual
Euclidean inner product. However, as we aim to develop
theory that goes beyond O(d), we encounter η ̸= Id, re-
sulting in non-Euclidean, pseudo-inner products. For ex-
ample, setting η = diag(1,−1, · · · ,−1) ∈ Rd×d gives
Gη(d) = O(1, d− 1), the Lorentz Group. This generality
introduces a multitude of challenges that lead us to define
MFA frames on an induced Gη(d)-set in Section 4.1 and to
develop a generalized QR decomposition for canonicaliza-
tion in Section 4.2 before moving on to derive minimality
and an efficient closed form of the frame averaging opera-
tor in Section 4.3. Furthermore, to encompass the case of
Gη(d) acting on Cd, MFA is extended to unitary groups
in Section 4.5.

4.1. Canonicalization on the Induced Gη(d)-Set

We aim to construct a Gη(d)-equivariant map by applying
the frame averaging operator over a frame F̂(P ), where
P ∈ Rd×n represents a collection of n elements of Rd.
From Theorem 3.2, construction of F̂ requires a canonical
form R̂ = Q̂−1P for ρ−1(Q) ∈ Gη(d), where ρ is the
group representation. While the QR decomposition can
be applied as P = QR, R will only be unique in the
case where P has full column rank, which is necessary
to satisfy the Gη(d)-invariance required by Definition 3.3.
Furthermore, the QR decomposition involves a division by
⟨v1,v1⟩ for the first chosen columns v1 of P . This may
result in division by zero, as due to the non-Euclidean inner
product, ⟨v1,v1⟩ may be 0 even for v1 ̸= 0 ∈ Rd, in which
case we refer to v1 as null.

For these reasons, we transform P to an induced Gη(d)-set
through the map ϕ which selects columns of P such that
ϕ(P ) ∈ Rd×d′

has full column rank and no null columns.
Note that this selection is equivariant as required by Def-
inition 3.4, as Gη(d) acts via left multiplication of P and
the selection is implemented as right multiplication with
M ∈ Rd×d′

as ϕ(P ) = PM . M is constructed by remov-
ing the j-th column from Id if and only if the j-th column
is null or is linearly dependent with respect to the other
non-null vectors. Note that when considering SO(d) and
M constructed so as to select three vectors within every
local two-body system, the methods proposed by Du et al.
(2022) and Pozdnyakov & Ceriotti (2024) can be seen as
special cases of the approach we have taken here.

4.2. Derivation of the Canonical Form via Generalized
QR Decomposition

Despite these considerations, there are still several obstacles
preventing the computation of Q̂ and R̂ directly from the
QR decomposition of ϕ(P ) = QR, and we therefore de-

4



Equivariance via Minimal Frame Averaging for More Symmetries and Efficiency

velop a generalized QR decomposition which allows us to
derive minimal frames for Gη(d). First, there may not be
ĝ ∈ Gη(d) such that ρ(ĝ) = Q, as QT ηQ may not result
in η, and instead give SηST , where S is a permutation
matrix. This is due to the negativity of the pseudo-inner
product and the sequential nature with which the QR decom-
position computes the columns of Q via the Gram-Schmidt
process. For example, consider Gη(d) = O(1, d− 1) with
η = diag(1,−1, · · · ,−1). The first vector v1 used for the
Gram-Schmidt process could be time-like, i.e., ⟨v1,v1⟩ < 0,
such that the first element of QT ηQ is −1 instead of 1. To
counteract this, we introduce S into our generalized QR
decomposition as Q̂ := QS such that Q̂T ηQ̂ = η. Ad-
ditionally, det(Q) = ±1 because the QR decomposition
results in an orthonormal Q, however, groups of Gη(d)
with additional determinant constraints such as SO(d) and
SO(1, d − 1) require that det(Q) = 1. For these groups,
we flip the sign of the elements in one of the columns of Q̂
if det(Q) = −1, which we detail further in Appendix H.2.
These steps have ensured that there exists ĝ ∈ Gη(d) such
that ρ(ĝ) = Q̂.

Second, the classical QR decomposition may not even be a
valid decomposition of ϕ(P ), that is, ϕ(P ) ̸= QR. This is
due to division by the L2-norm ∥u∥ in the computation of
the QR decomposition detailed in Appendix E.1, where u
is an intermediate vector used in the Gram-Schmidt process.
While the standard definition of ∥u∥ is

√
⟨u,u⟩, the pseudo-

inner product may result in ⟨u,u⟩ < 0. Redefining ∥u∥ as√
|⟨u,u⟩| circumvents a complex-valued norm, however,

it also invalidates the decomposition. We therefore define
R̂ := STDηR, where both ST and Dη serve to ensure
Q̂R̂ is a valid decomposition of ϕ(P ). ST cancels S in
Q̂, while Dη is a diagonal matrix with diagonal elements
(Dη)j,j := sign(⟨uj ,uj⟩). The above steps have ensured
that ϕ(P ) = Q̂R̂ with Q̂T ηQ̂ = η. In Appendix E.1, we
further show the uniqueness of R̂, ensuring that R̂ is a valid
canonical form.

4.3. Minimal Frame Averaging on Gη(d)

As discussed in Section 3.3, since R̂ was computed on
an induced Gη(d)-set, it is not necessarily the case that
frames derived from R̂ will be minimal on the base space
Rd×n. In the proof of the following result in Appendix B.6,
we prove this base space minimality by leveraging Theo-
rems 3.2 and 3.5.

Theorem 4.1. Let F̂ϕ be a minimal frame on the Gη(d)-set
induced by ϕ(P ) = PM computed via the generalized
QR decomposition; if the columns of P are non-null, then
F̂ϕ ◦ ϕ is a minimal frame on the original domain Rd×n.

Finally, we discuss practical computation of the frame aver-
aging operator over F̂ϕ ◦ ϕ. Theorem 3.2 implies that we

must next compute StabGη(d)(R̂), which is indeed the route
we will take when d′ = d. However, when d′ < d, there are
infinite Q̂ satisfying ϕ(P ) = Q̂R̂, apparently making the
operator intractable. We therefore employ an alternate form
of the minimal frame given in Lemma B.1 which we prove
to be equivalent to the form established by Theorem 3.2.
This alternate form enables us to derive an efficient closed
form of the operator shown in the following result, the proof
of which is given in Appendix B.7.

Theorem 4.2. Let Q̂, R̂ be computed via the generalized
QR decomposition such that ϕ(P ) = Q̂R̂ ∈ Rd×d′

, and
assume that the columns of P are non-null. Then, there
exists Q0 ∈ Rd×d such that the frame averaging operator
applied to an arbitrary function Φ : Rd×n → Rd×n over
the minimal frame F̂ϕ ◦ ϕ is given by

⟨Φ⟩F̂ϕ◦ϕ(P ) = Q0Φ
(
Q̂−1P

)
,

where d′ columns of Q0 are obtained directly from Q̂, and
the remaining d− d′ columns are all 0 ∈ Rd.

4.4. Efficiency compared to Puny et al. (2021).

Puny et al. (2021) consider O(d) and SO(d). Their method
is equivalent to employing the induced G-set ϕ(P ) = PP T

and performing canonicalization via the eigendecomposi-
tion, which cannot be used for groups such as O(1, d− 1).
Furthermore, for a full column rank non-degenerate (i.e., no
eigenvalues are repeated) matrix P , the size of their frame
is 2d, while the generalized QR decomposition is unique for
both Q̂ and R̂ by Theorem E.1, producing a frame with only
1 element. Additionally, the size of the frame obtained from
the generalized QR decomposition remains 1 in the case of
a full column rank degenerate P , however, relying on the
eigendecomposition of PP T in such a setting will produce
a frame of infinite size. In Appendix H.3, we provide an
eigenvalue perturbation method to solve this degenerate case
for the method of Puny et al. (2021). However, the size of
the resulting frame is still 2d, which is larger than the frame
produced by the MFA method.

4.5. Complex domain

The extension from the real vector space Rd×n to a complex
vector space Cd×n is natural. By changing all the transpose
operations QT to the conjugate transpose operations Q∗ and
inner products to conjugate inner products, the generalized
QR decomposition is conducted as in the real space for
the unitary group U(d). For SU(d), we require that the
magnitude of det(Q̂) ∈ C be 1. This constraint is satisfied
through a scaling det(Q)−1/d and its inverse applied to Q̂

and R̂, respectively.
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5. Permutation Group
We now consider minimal frames for two different spaces
under the action of the permutation group Sn beginning
with the space of undirected graphs in Section 5.1. Using
the results from Section 5.1, we go on to derive minimal
frames for point clouds acted upon by the group formed
from the direct product of Sn and Gη(d) in Section 5.3
under the assumption that we already possess an Gη(d)-
invariant/equivariant backbone model.

5.1. Minimal Frame for Undirected Graphs

Sn acts on the adjacency matrix for an undirected graph
A ∈ Sym(n,R) by conjugate multiplication as g · A :=
STAS, where ρ(g) = S ∈ Rn×n and Sym(n,R) is the set
of n× n real symmetric matrices. To compute the minimal
frame, we leverage ties between our framework and results
from classical graph theory.

Canonicalization of an undirected graph, also known as
canonical labeling, is commonly used to determine whether
2 graphs are isomorphic, i.e., whether the graphs are equiv-
alent up to a node relabeling. Here, c(A1) = c(A2) if and
only if the graph with adjacency matrix A1 is isomorphic to
the graph corresponding to A2. Additionally, computing the
stabilizer for a graph with adjacency matrix A0 corresponds
to the graph automorphism problem, which is to compute
the permutations S which result in a self-isomorphism, i.e.,

{S ∈ Sn | STA0S = A0}, (3)

where Equation (3) can be recognized as StabSn (A0). Thus,
from Theorem 3.2, the minimal frame F̂(A) can be com-
puted by identifying the canonical form c(A) and calculat-
ing the stabilizer StabSn

(c(A)) with a graph automorphism
algorithm. Specifically, we adapt the canonical graph label-
ing algorithm of McKay & Piperno (2014) detailed in Ap-
pendix F which computes both the canonical form and the
stabilizer. The algorithm directly solves the graph automor-
phism problem following an individualization-refinement
paradigm (McKay, 2007). Although this problem is known
to be NP-intermediate, in practice, the time complexity
largely depends on the number of automorphisms. For
graphs with a trivial stabilizer, the time complexity can be
nearly linear as the search tree becomes a list, although for
highly-symmetric graphs, the search tree will expand, giv-
ing a factorial worst-case time complexity. We further detail
the conversion from weighted graphs to unweighted graphs
in Appendix F.2 for applying this algorithm to undirected
weighted graphs.

5.2. Efficiency compared to Puny et al. (2021).

Puny et al. (2021) compute the frame for an adjacency ma-
trix A by sorting the rows of the Laplacian matrix per-
turbed by the diagonal of the summation of eigenvector

outer products, denoted by an equivariant map S(A). In
other words, they compute the frame on an Sn-set induced
by ϕ(A) = S(A). By Theorem 3.5, the resulting frame
is a (possibly non-minimal) frame on the original domain.
On the other hand, as MFA directly constructs frames via
the stabilizer of the canonical form on the original domain
Sym(n,R), the resulting frame is minimal by Theorem 3.2.

Furthermore, Puny et al. (2021) achieve invariant frame
averaging by sampling elements from the frame, where
achieving a greater degree of symmetry requires a larger
sample and therefore incurs greater cost. In contrast, MFA
reduces Equation (2) to a single forward pass of the back-
bone model Φ as

⟨Φ⟩F̂ (A) =
1

|F̂(A)|

 ∑
g∈F̂(A)

ρ(g)

Φ(c(A)). (4)

This is because the MFA frames for adjacency matrices
are constructed directly on the original space (as opposed
to on an induced Sn-set), and thus, for all g ∈ F̂(A),
ρ(g−1)A = c(A), a property which follows from the form
of the minimal frame in Theorem 3.2. In addition to this
substantial improvement in efficiency, our empirical results
in Table 5 demonstrate the superior invariance error of MFA
relative to alternative frame averaging methods.

5.3. Minimal Frame for Point Clouds

We now consider the group formed by the direct product of
the permutation group Sn and the general linear algebraic
group Gη(d). For η = Id, we have the group Sn × O(d),
where further adding a determinant constraint det(ρ(g)) =
1 for all g ∈ Gη(d) gives the group Sn × SO(d). Both of
these groups commonly arise in tasks involving Euclidean
geometries such as molecular property prediction. Alterna-
tively, particle collision simulations involve transformations
in space-time from the group Sn × O(1, d − 1) acting on
relativistic point clouds, where η = diag(1,−1, · · · ,−1).

Generally, for a point cloud with n points in d-dimensional
space represented as P ∈ Rd×n, Sn acts by right multi-
plication, while Gη(d) acts by left multiplication. Given a
Gη(d)-invariant/equivariant function Φ : Rd×n → Rd×n,
we aim to construct a Sn × Gη(d)-invariant/equivariant
function. Formally, for g = (s, o) ∈ Sn × Gη(d), g acts
on P as g · P = OPS, where ρ(g) = (S,O). Observe
that the actions of Sn and Gη(d) on P commute, that is,
(so) · P = (os) · P . Therefore, we leverage the following
result from Puny et al. (2021).

Theorem 5.1 (Puny et al. (2021)). For the groups
G,H whose actions commute, assume the frame
F : V → P(G) \ {∅} is H-invariant and G-equivariant. If
f : V → W is H-invariant/equivariant, then ⟨f⟩F is G×H-
invariant/equivariant.
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Thus, to construct a Sn ×Gη(d) invariant/equivariant func-
tion given Φ, we must derive a frame which is Gη(d)-
invariant and Sn-equivariant, which we will accomplish
via the induced G-set approach described in Section 3.3.
Consider ϕ(P ) = P T ηP , and observe that

ϕ(g · P ) = (OPS)T ηOPS = STϕ(P )S.

Thus, ϕ is Gη(d)-invariant and Sn-equivariant. Furthermore
note that since ϕ(P ) ∈ Sym(n,R) and since Sn acts on
the codomain of ϕ via conjugate multiplication, a minimal
frame on the Sn-set induced by ϕ can be derived following
the methods in Section 5.1. Therefore, from Theorem 3.5,
F := Fϕ ◦ ϕ is a Gη(d)-invariant, Sn-equivariant frame on
Rd×n. Thus, from Theorem 5.1, ⟨Φ⟩F is a Sn × Gη(d)-
invariant/equivariant function. We further prove minimality
of this frame when rank(P ) = d in Theorem G.2.

In the case where Φ is Sn-invariant/equivariant, one can
alternatively apply a Sn-invariant and Gη(d)-equivariant
frame using the G-set induced by ϕ(P ) = PP T , which is
the approach taken by Puny et al. (2021) for Gη(d) = O(d).
However, as stated previously for O(d), degenerate eigen-
values result in a frame of infinite size, in which case the
frame averaging operator is intractable. In contrast, our
approach presented here instead leverages a Sn-equivariant
and Gη(d)-invariant ϕ(P ) = P T ηP and is therefore robust
to degenerate eigenvalues and applicable to more groups.
It is worth noting that if there exists a non-trivial automor-
phism (or stabilizer) of P TP , our Sn × Gη(d)-invariant
frame averaging is invariant to the action of point groups,
which we detail further in Appendix G.

6. Related Work
Similar to Puny et al. (2021), the E(3)-equivariant frames
F(P ) from Duval et al. (2023b) are computed via an eigen-
decomposition with |F(P )| = 8 assuming there are no
degenerate eigenvalues. Duval et al. (2023b) sacrifice exact
equivariance for efficiency by sampling a single g ∈ F(P )
per forward pass such that only one model call is required
instead of eight. The MFA approach detailed in Section 4
also only requires one model call per forward pass, however,
achieves exact equivariance, and is furthermore robust to
degenerate eigenvalues.

Lim et al. (2024) employ a sign-equivariant (or O(1)d-
equivariant) network with an eigenvector from the covari-
ance matrix of the data to achieve O(d) equivariance, reduc-
ing the frame size to one. This method necessitates explicit
sign-equivariance of the backbone architecture and distinct
eigenvalues in the covariance matrix. Similarly, Ma et al.
(2024) select an eigenvector from the covariance matrix un-
der three assumptions constraining the eigenvectors. Our
approach does not require these assumptions, does not ne-
cessitate sign-equivariance, and is insensitive to repeated or

zero eigenvalues.

Kim et al. (2023) also take an approximately equivariant
sampling-based approach to approximate the group averag-
ing operator in Equation (1). Because sampling uniformly
from g ∈ G has high variance, Kim et al. (2023) instead
sample from a learned G-equivariant distribution, thereby
adding the requirement of a G-equivariant neural network
to their framework. In generating elements from O(d), Kim
et al. (2023) employ the QR decomposition to orthogonal-
ize a generated matrix, which by the analysis presented
in Section 4.2 may be a one-to-many mapping, potentially
compromising the G-equivariance of the distribution.

Kaba et al. (2023) also employ a G-equivariant neural net-
work to canonicalize the inputs of a non-equivariant back-
bone architecture. This can be viewed as a learned approach
to canonicalization on induced G-sets described in Sec-
tion 3.3 that instead utilizes a G-equivariant architecture for
ϕ in place of the deterministic ϕ we use here. Because there
may be more than one transformation that canonicalizes the
input, this approach could lead to an ill-posed objective for
ϕ resulting from the one-to-many mapping. An example of
such a case is a point cloud lying on a (d− 2)-dimensional
Euclidean subspace embedded in a d-dimensional Euclidean
space under the action of O(d), where the stabilizer has an
infinite number of elements. For this reason, Kaba et al.
(2023) furthermore note that non-trivial stabilizers reduce
their framework to respect a relaxed definition of equivari-
ance. A further application based on Kaba et al. (2023) is
shown in Mondal et al. (2024).

Because the methods of Kim et al. (2023) and Kaba et al.
(2023) employ neural networks to produce group representa-
tions from the group G, both approaches rely on a contrac-
tion step dependent on G to ensure network outputs are valid
representations. Since this contraction can be non-trivial to
derive, Nguyen et al. (2023) propose to add a loss term in
place of the contraction as a soft constraint on network out-
puts to be valid representations. This allows for the method
of Kim et al. (2023) to be extended to groups for which the
derivation of a contraction is difficult, including O(1, d−1).
Nonetheless, in addition to approximate equivariance due
to sampling, an additional source of equivariance error in
this framework stems from invalid representations due to
a non-zero loss. In contrast, our method does not require
optimization to achieve exact equivariance.

7. Experiments
Our study evaluates the effectiveness of MFA across a vari-
ety of tasks spanning diverse symmetry groups and multiple
backbone architectures. The evaluation begins with the com-
putation of the equivariance error for many groups in Sec-
tion 7.1. We go on to consider an E(3)-equivariant n-body
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Table 1. MSE and inference time on the n-body experiment. Base-
lines are SE(3)-TR. (Fuchs et al., 2020), TFN (Thomas et al.,
2018), EGNN (Satorras et al., 2021), SEGNN (Brandstetter et al.,
2021), CN-GNN (Kaba et al., 2023), and CGENN (Ruhe et al.,
2023). FA-GNN and MFA-GNN are GNN backbones trained with
FA (Puny et al., 2021) and MFA, respectively.

METHOD MSE INFERENCE TIME (S)

SE(3)-TR. 0.0244 0.1346
TFN 0.0244 0.0343
EGNN 0.0070 0.0062
SEGNN 0.0043 0.0030
CN-GNN 0.0043 0.0025
CGENN 0.0039 0.0045

FA-GNN 0.0054 0.0041
MFA-GNN 0.0036 0.0023

Table 2. Accuracy and AUC for the top tagging dataset. The
MINKGNN baseline is a non-invariant model built around the
message-passing Minkowski dot-product attention module pro-
posed by Gong et al. (2022). Extended results are presented in Ta-
ble 10.

MODEL ACCURACY AUC

MINKGNN 94.2136 98.68
MFA-MINKGNN 94.2178 98.69

problem in Section 7.2, an O(1, 3)-invariant top tagging
problem in Section 7.3, a SO(3)-invariant relaxed energy
prediction problem in Section 7.4, a Sn-invariant Weisfeiler-
Lehman test in Section 7.5, and a Sn ×O(5)-invariant con-
vex hull problem in Section 7.6. Training details and model
settings are presented in Appendix I.

7.1. Equivariance Test on Synthetic Data

We present G-equivariance errors on synthetic point cloud
data for a variety of groups in Appendix I.1. The error is
computed using randomly initialized models Φ as

Eg,x∥Φ(g · x)− g · Φ(x)∥1, (5)

where g is randomly sampled i.i.d. from G. The groups
we consider are O(d),SO(d),U(d),SU(d),O(1, d −
1),SO(1, d−1),E(d),SE(d),GL(d,R) and SL(d,R). The
analysis incorporates six different non-equivariant backbone
architectures, including two variants of MLPs and two vari-
ants of GNNs. Where possible, we compare MFA to the
method of Puny et al. (2021) (FA), as well as to stochastic
frame averaging (SFA) (Duval et al., 2023b). However, we
note that for both of these methods, the groups for which
frames have been derived are a strict subset of those we have
derived here, and thus, a complete comparison across all
groups, such as O(1, d − 1), is not possible. We addition-
ally demonstrate the robustness to degenerate eigenvalues
of our O(d)-equivariant frames. Lastly, we test the equiv-
ariance error for point groups with respect to Sn × O(d)

Table 3. Results for IS2RE Direct All on OC20 validation split.
We compare in-distribution MAE (eV), average MAE (eV) across
in-domain and out-of-domain tasks, invariance errors (eV), and
throughput (samples per second) with FAENET (Duval et al.,
2023b). Extended results are presented in Table 9.

MODEL FAENET MFAENET

ID-MAE 0.5446 0.5437
AVERAGE-MAE 0.5679 0.5691
INVARIANCE ERROR 6.199×10–2 8.809×10–6

THROUGHPUT 3863.3 3919.8

Table 4. Results for WL datasets. GRAPH8C and EXP are counts
of pairs of graphs that are not separated by randomly initialized
models, while EXP-CLASSIFY is the binary classification error
for trained models. Baselines are GCN (Kipf & Welling, 2016),
GIN (Xu et al., 2018), and an MLP/GIN trained with FA (Puny
et al., 2021) and MFA, respectively.

MODEL GRAPH8C EXP EXP-CLASSIFY (%)

GCN 4755 600 50
GIN 386 600 50
FA-MLP 0 0 100
FA-GIN 0 0 100
MFA-MLP 0 0 100
MFA-GIN 0 0 100

and Sn ×O(1, d− 1). We include MLPs applied along the
node dimension of the point cloud which, without frame av-
eraging, are not permutation equivariant. In all settings, the
equivariance error for MFA is 0 up to negligible numerical
errors, whereas sampling-based FA approaches consistently
introduce non-negligible equivariance errors.

7.2. E(3): n-Body Problem

In the E(3)-equivariant n-body problem from Kipf et al.
(2018); Satorras et al. (2021), the prediction target is the
positions of n = 5 charged particles after a predetermined
time interval. Each particle is defined by its initial position
and velocity in R3. Additionally, each pair of particles is
associated with a scalar encoded as an edge feature repre-
senting their charge difference which determines whether
the particles are attracted or repelled from one another. We
adopt the FA-GNN backbone from Puny et al. (2021) and
train the model using FA and MFA with identical training
configurations. As shown in Table 1, MFA-GNN achieves
the best performance both in terms of MSE and inference
time.

7.3. O(1, 3): Top Tagging

The task for the top tagging data (Kasieczka et al., 2019b)
is to classify hadronically decaying top quarks in particle
collision simulations (Kasieczka et al., 2019a). The top
quark is the heaviest-known elementary particle, however,
due to its short lifespan, it is only feasible to study its de-
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Table 5. Invariance error and inference time on GRAPH8C. FA-
MLP-k denotes an MLP averaged over k group elements randomly
sampled from the Sn-invariant frame of Puny et al. (2021).

MODEL
INVARIANCE

ERROR (×10−2)
INFERENCE
TIME (MS)

MLP 8.60 0.27

FA-MLP-1 1.28 2.20
FA-MLP-4 0.68 2.54
FA-MLP-16 0.34 3.70
FA-MLP-64 0.17 8.36
FA-MLP-256 0.09 28.09
MFA-MLP 0.00 1.10

Table 6. MSE and invariance error for the convex hull experiment.
Baselines are PointNet (Qi et al., 2017) and CGENN (Ruhe et al.,
2023).

MODEL MSE INVARIANCE ERROR

POINTNET 4.1475 8×10–3

CGENN 3.5831 5×10–2

MFA-MLP 1.5291 2×10–7

cay as it hadronizes into a jet of smaller particles (ATL,
2022). The resulting jets are difficult to distinguish from
those stemming from light quarks and gluons, thereby giv-
ing rise to a binary classification task conditioned on a 4-
vector of data for each of the n constituent particles in the
jet, where n is as large as 200. As this task is invariant to
transformations in space-time by elements of the Lorentz
group O(1, d − 1), it has led to the development of spe-
cialized O(1, d − 1)-invariant architectures (Gong et al.,
2022). We adopt a non-O(1, d− 1) invariant backbone re-
ferred to as MINKGNN. MINKGNN is built around the
powerful message-passing Minkowski dot-product attention
module proposed by Gong et al. (2022) in designing their
O(1, d − 1)-invariant architecture, however, MINKGNN
additionally includes non-linearities in Minkowski space,
thereby breaking the O(1, d − 1)-invariance. As shown
in Table 2, returning invariance with MFA-MINKGNN im-
proves accuracy, although due to the large training set of
over 1 million jets, the benefits of our symmetry prior are
limited, as MINKGNN is sufficiently expressive to extract
symmetries during training.

7.4. SE(3): Open Catalyst Project

To identify cost-effective electrocatalysts for energy storage,
deep models have emerged as an alternative to costly quan-
tum mechanical-based simulations. We consider the task
of predicting the relaxed energy of an adsorbate interact-
ing with catalyst conditioned on the initial atomic structure
from the Open Catalyst (OC20) dataset (Chanussot et al.,
2021). As the energy is invariant to SE(3) transformations
of the atomic structures, we evaluate the invariance error of
randomly initialized models, which is defined analogously

to the equivariance error from Section 7.1 as

Eg,x∥Φ(g · x)− Φ(x)∥1, (6)

with g again randomly sampled i.i.d. from G. As shown
in Table 3, the invariance error for MFA is substantially
lower than that of FAENET (Duval et al., 2023b). How-
ever, FAENET achieves a lower out-of-domain MAE. As
the OC20 data has nearly 500K training samples, the data
volume may be sufficient such that exact equivariance may
not be vital. Nevertheless, MFA remains competitive for out-
of-domain prediction and has a superior in-domain MAE.

7.5. Sn: Graph Separation

The Sn-invariant Weisfeiler-Lehman (WL) datasets consid-
ered by Puny et al. (2021) tasks models with separating
and classifying graphs. The GRAPH8c data consists of
non-isomorphic, connected 8-node graphs, while the graphs
in EXP are distinguishable by the 3-WL test but not by
the 2-WL test. As can be seen in Table 4, while the back-
bone models result in many failed tests, incorporating frame
averaging leads to perfect performance across the board.
We furthermore examine the invariance error and inference
time on GRAPH8C in Table 5. We find that the sampling-
based approach taken for the Sn group by Puny et al. (2021)
requires a time-consuming large sample to achieve a low
invariance error, whereas MFA achieves a perfect invariance
error while maintaining efficiency.

7.6. Sn ×O(5): Convex Hull

Given a set of points in d-dimensional space, the convex hull
generated by this set is the convex set of minimum volume
that contains all points. The convex hull dataset from Ruhe
et al. (2023) tasks models with computing the volume of the
convex hull generated by sets of 5 dimensional points. This
volume is invariant to both permutations and rotations of
the points, and thus, we use the methods described in Sec-
tion 5.3 to extend Sn-invariance to an O(5)-invariant MLP.
As shown in Table 6, MFA achieves the best MSE as well
as the best invariance error.

8. Conclusion
In this work, we have introduced the MFA framework for
achieving exact equivariance with frame averaging at a level
of efficiency previously only achieved by approximately-
equivariant approaches. The generality in our theoretical
foundations have enabled us to extend MFA beyond the
groups previously considered in the frame averaging litera-
ture. We have empirically demonstrated the utility of this
approach on a diverse set of tasks and symmetries. While
we have primarily focused on unstructured data, our general
results provide a starting point for extending efficient frame
averaging to architectures designed for regular grids.
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Bronstein, M. A hitchhiker’s guide to geometric gnns
for 3d atomic systems. arXiv preprint arXiv:2312.07511,
2023a.

Duval, A. A., Schmidt, V., Hernandez-Garcia, A., Miret,
S., Malliaros, F. D., Bengio, Y., and Rolnick, D. Faenet:
Frame averaging equivariant gnn for materials modeling.
In International Conference on Machine Learning, pp.
9013–9033. PMLR, 2023b.

Dym, N. and Gortler, S. J. Low-dimensional invariant em-
beddings for universal geometric learning. Foundations
of Computational Mathematics, pp. 1–41, 2024.

Dym, N., Lawrence, H., and Siegel, J. W. Equivariant
frames and the impossibility of continuous canonicaliza-
tion. arXiv preprint arXiv:2402.16077, 2024.

Esteves, C., Makadia, A., and Daniilidis, K. Spin-weighted
spherical cnns. Advances in Neural Information Process-
ing Systems, 33:8614–8625, 2020.

Fu, C., Yan, K., Wang, L., Au, W. Y., McThrow, M.,
Komikado, T., Maruhashi, K., Uchino, K., Qian, X., and
Ji, S. A latent diffusion model for protein structure gen-
eration. In The Second Learning on Graphs Conference,
2023.

10

https://cds.cern.ch/record/2825328
https://openreview.net/forum?id=qZUHvvtbzy
https://openreview.net/forum?id=qZUHvvtbzy


Equivariance via Minimal Frame Averaging for More Symmetries and Efficiency

Fuchs, F., Worrall, D., Fischer, V., and Welling, M. Se
(3)-transformers: 3d roto-translation equivariant attention
networks. Advances in neural information processing
systems, 33:1970–1981, 2020.

Gasteiger, J., Groß, J., and Günnemann, S. Directional
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S. Fast and uncertainty-aware directional message
passing for non-equilibrium molecules. arXiv preprint
arXiv:2011.14115, 2020.

Gasteiger, J., Becker, F., and Günnemann, S. Gemnet: Uni-
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J., and Battaglia, P. Simple GNN regularisation for
3d molecular property prediction and beyond. In In-
ternational Conference on Learning Representations,
2022. URL https://openreview.net/forum?
id=1wVvweK3oIb.

Gong, S., Meng, Q., Zhang, J., Qu, H., Li, C., Qian, S.,
Du, W., Ma, Z.-M., and Liu, T.-Y. An efficient lorentz
equivariant graph neural network for jet tagging. Journal
of High Energy Physics, 2022(7):1–22, 2022.

Gui, S., Li, X., Wang, L., and Ji, S. Good: A graph out-of-
distribution benchmark. Advances in Neural Information
Processing Systems, 35:2059–2073, 2022.

Gui, S., Liu, M., Li, X., Luo, Y., and Ji, S. Joint learning
of label and environment causal independence for graph
out-of-distribution generalization. Advances in Neural
Information Processing Systems, 36, 2024.

Han, J., Rong, Y., Xu, T., and Huang, W. Geometrically
equivariant graph neural networks: A survey. arXiv
preprint arXiv:2202.07230, 2022.

Helwig, J., Zhang, X., Fu, C., Kurtin, J., Wojtowytsch, S.,
and Ji, S. Group equivariant Fourier neural operators for
partial differential equations. In Proceedings of the 40th
International Conference on Machine Learning, 2023.

Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever,
I., and Salakhutdinov, R. R. Improving neural networks
by preventing co-adaptation of feature detectors. arXiv
preprint arXiv:1207.0580, 2012.

Hoogeboom, E., Satorras, V. G., Vignac, C., and Welling, M.
Equivariant diffusion for molecule generation in 3d. In
International conference on machine learning, pp. 8867–
8887. PMLR, 2022.

Horie, M., Morita, N., Hishinuma, T., Ihara, Y., and
Mitsume, N. Isometric transformation invariant and
equivariant graph convolutional networks. In In-
ternational Conference on Learning Representations,
2021. URL https://openreview.net/forum?
id=FX0vR39SJ5q.

Horn, R. A. and Johnson, C. R. Matrix analysis. Cambridge
university press, 2012.

Huang, W., Han, J., Rong, Y., Xu, T., Sun, F., and Huang, J.
Equivariant graph mechanics networks with constraints.
In International Conference on Learning Representations,
2022. URL https://openreview.net/forum?
id=SHbhHHfePhP.

Jing, B., Eismann, S., Suriana, P., Townshend, R. J. L.,
and Dror, R. Learning from protein structure with ge-
ometric vector perceptrons. In International Confer-
ence on Learning Representations, 2021. URL https:
//openreview.net/forum?id=1YLJDvSx6J4.

Kaba, S.-O., Mondal, A. K., Zhang, Y., Bengio, Y., and
Ravanbakhsh, S. Equivariance with learned canonicaliza-
tion functions. In International Conference on Machine
Learning, pp. 15546–15566. PMLR, 2023.

Kasieczka, G., Plehn, T., Butter, A., Cranmer, K., Debnath,
D., Dillon, B. M., Fairbairn, M., Faroughy, D. A., Fe-
dorko, W., Gay, C., et al. The machine learning landscape
of top taggers. SciPost Physics, 7(1):014, 2019a.

Kasieczka, G., Plehn, T., Thompson, J., and Rus-
sel, M. Top quark tagging reference dataset,
March 2019b. URL https://doi.org/10.5281/
zenodo.2603256.

Kiani, B. T., Le, T., Lawrence, H., Jegelka, S., and Weber,
M. On the hardness of learning under symmetries. arXiv
preprint arXiv:2401.01869, 2024.

Kim, J., Nguyen, D. T., Suleymanzade, A., An, H., and
Hong, S. Learning probabilistic symmetrization for
architecture agnostic equivariance. In Thirty-seventh
Conference on Neural Information Processing Systems,
2023. URL https://openreview.net/forum?
id=phnN1eu5AX.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Kipf, T., Fetaya, E., Wang, K.-C., Welling, M., and Zemel,
R. Neural relational inference for interacting systems. In
International conference on machine learning, pp. 2688–
2697. PMLR, 2018.

Kipf, T. N. and Welling, M. Semi-supervised classifica-
tion with graph convolutional networks. arXiv preprint
arXiv:1609.02907, 2016.

11

https://openreview.net/forum?id=1wVvweK3oIb
https://openreview.net/forum?id=1wVvweK3oIb
https://openreview.net/forum?id=FX0vR39SJ5q
https://openreview.net/forum?id=FX0vR39SJ5q
https://openreview.net/forum?id=SHbhHHfePhP
https://openreview.net/forum?id=SHbhHHfePhP
https://openreview.net/forum?id=1YLJDvSx6J4
https://openreview.net/forum?id=1YLJDvSx6J4
https://doi.org/10.5281/zenodo.2603256
https://doi.org/10.5281/zenodo.2603256
https://openreview.net/forum?id=phnN1eu5AX
https://openreview.net/forum?id=phnN1eu5AX


Equivariance via Minimal Frame Averaging for More Symmetries and Efficiency
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Table 7. Notations.
Notation Meaning

G A group.
B A Borel set.
StabG A stabilizer with respect to group G.
OrbG An orbit with respect to group G.
µG A G-invariant measure function.
S A G-set.
M A smooth manifold.
L∞(G) The space of all bounded functions f : G→ R.
L∞(G,W) The space of all bounded functions f : G→W whereW is a real vector space.
P(G) The powerset of G.
Rd d-dimensional Euclidean space.
Cd d-dimensional complex coordinate space.
Rd×n

∗ The set of all full-rank matrices in Rd×n.
Cd×n

∗ The set of all full-rank matrices in Cd×n.
Sn The permutation group acting on a n-dimensional real vector space.
O(d) The orthogonal group acting on a d-dimensional real vector space.
SO(d) The special orthogonal group acting on a d-dimensional real vector space.
O(1, d− 1) The Lorentz group acting on a d-dimensional real vector space.
SO(1, d− 1) The proper Lorentz group acting on a d-dimensional real vector space.
U(d) The unitary group acting on a d-dimensional complex vector space.
SU(d) The special unitary group acting on a d-dimensional complex vector space.
GL(d,R) The general linear group acting on a d-dimensional real vector space.
GL(d,C) The general linear group acting on a d-dimensional complex vector space.
SL(d,R) The special linear group acting on a d-dimensional real vector space.
SL(d,C) The special linear group acting on a d-dimensional complex vector space.
SPos(d,R) The set of all symmetric positive definite matrices in Rd×d.
SPos(d,C) The set of all symmetric positive definite matrices in Cd×d.
Sym(d,R) The set of all symmetric matrices in Rd×d.
Sym(d,C) The set of all symmetric matrices in Cd×d.

A. Notations
We list our notations in Table 7.

B. Mathematical Proofs
B.1. Theorem B.1

Theorem B.1. For g ∈ G and x ∈ S, StabG (g · x) = gStabG (x) g−1

Proof. Let h ∈ StabG (x), and observe that ghg−1 ∈ StabG (g · x); therefore, gStabG (x) g−1 ⊆ StabG (g · x).

Next, let h ∈ StabG (g · x), and observe that g−1hg ∈ StabG (x); therefore, g−1StabG (g · x) g ⊆ StabG (x), and thus,
StabG (g · x) ⊆ gStabG (x) g−1

B.2. Proof of Lemma 3.1

Lemma 3.1. Given a frame F : S → P(G) \ {∅}, for all x ∈ S , there exists x0 ∈ OrbG(x) such that StabG(x0) ⊆ F(x0).

14



Equivariance via Minimal Frame Averaging for More Symmetries and Efficiency

Proof. Let g ∈ StabG(x) and F be an arbitrary frame. From the definition of StabG(x) and the G-equivariance of F ,

F(g · x) = F(x) = gF(x) := {gh | h ∈ F(x)},

which implies that gh ∈ F(x) for all h ∈ F(x). Because this is true for all g ∈ StabG(x), StabG(x)h ⊆ F(x), and thus,
by the G-equivariance of F

h−1StabG(x)h ⊆ h−1F(x) = F(x0), (7)

where x0 := h−1x ∈ OrbG(x). By Theorem B.1, StabG(x0) = h−1StabG(x)h, and thus, from Equation (7), StabG(x0) ⊆
F(x0).

B.3. Proof of Theorem 3.2

Theorem 3.2. For all x ∈ S, let x0 = c(x) = h−1 · x for some h ∈ G. Define the frame F : S → P(G) \ {∅} such that
F(x) = hStabG(x0); then, F is a minimal frame.

Proof. Suppose there exists a frame F ′ and x ∈ S such that F ′(x) ⊂ F(x), i.e., F is not a minimal frame. As
F(x0) = F(h−1 · x) = h−1F(x) = StabG(x0), we obtain

F ′(x0) ⊂ StabG(x0). (8)

Next, by Lemma 3.1, there exists x1 ∈ OrbG(x) such that StabG(x1) ⊆ F ′(x1). Since x0 and x1 are in the same orbit
OrbG(x), there exists h′ ∈ G such that x1 = h′ · x0. Observe that

h′ /∈ StabG(x0), (9)

as otherwise, x1 = x0 and StabG(x0) ⊆ F ′(x0) ⊂ StabG(x0), which is impossible. From Equation (8),

StabG(x1) ⊆ F ′(x1) = h′F ′(x0) ⊂ h′StabG(x0). (10)

Furthermore, from Theorem B.1, StabG(x1) = StabG(h
′ · x0) = h′StabG(x0)h

′−1, and thus, Equation (10) implies that
StabG(x0) ⊂ StabG(x0)h

′. This implies that e ∈ StabG(x0)h
′, since trivially e ∈ StabG(x0). However, this may only

occur if there exists j ∈ StabG(x0) such that jh′ = e, which gives that h′−1 ∈ StabG(x0). Finally, this implies that
h′ ∈ StabG(x0), which contradicts Equation (9). As this contradiction was obtained through the assumption that F is not a
minimal frame, F is indeed a minimal frame.

B.4. Proof of Theorem 3.5

Theorem 3.5. Given a G-set S and a G-equivariant function ϕ : S → Sϕ, let Fϕ : Sϕ → P(G) \ {∅} be a frame with the
domain of Sϕ. Then, Fϕ ◦ ϕ is a frame with the domain of S.

Proof. For any g ∈ G and x ∈ S , by the G-equivariance of ϕ, Fϕ(ϕ(g · x)) = gFϕ(ϕ(x)). Thus, Fϕ ◦ ϕ forms a frame on
S.

B.5. Lemma B.1

Lemma B.1. For some canonical form c(x), the minimal frame F̂ is given by F̂(x) = {g ∈ G | g · c(x) = x}.

Proof. LetHx := {g ∈ G | g · c(x) = x}, and observe that since e ∈ StabG (c(x)),

Hx ⊆ HxStabG (c(x)) , (11)

whereHxStabG (c(x)) := {hg | (h, g) ∈ Hx × StabG (c(x))}. Next, for all (h, g) ∈ Hx × StabG (c(x)),

hg · c(x) = h · c(x) = x, (12)

which implies that hg ∈ Hx. Since this is true for an arbitrary (h, g) ∈ Hx × StabG (c(x)),

HxStabG (c(x)) ⊆ Hx. (13)

From Equations (11) and (13), Hx = HxStabG (c(x)). Finally, from Theorem 3.2, for all h ∈ Hx, the minimal frame is
given by F̂(x) = hStabG (c(x)). Therefore, F̂(x) = HxStabG (c(x)) = Hx.
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B.6. Proof of Theorem 4.1

Theorem 4.1. Let F̂ϕ be a minimal frame on the Gη(d)-set induced by ϕ(P ) = PM computed via the generalized QR
decomposition; if the columns of P are non-null, then F̂ϕ ◦ ϕ is a minimal frame on the original domain Rd×n.

Proof. Let d′ = rank(ϕ(P )). We discuss two cases.

Case I. d = d′. By the uniqueness of the generalized QR decomposition ϕ(P ) = Q̂R̂ = (QS)(STDηR) in Theo-
rem E.1, StabGη

(STDηR) = {Id}. Thus, the minimal frame F̂ϕ(ϕ(P )) = {Q̂} = {QS} has only a single element.
By Theorem 3.5, F̂ϕ ◦ ϕ is a frame on the original domain. Since the only proper subset of F̂ϕ(ϕ(P )) is the empty set,
by Definition 3.1, F̂ϕ ◦ ϕ is a minimal frame on the original domain.

Case II. d > d′. Please refer to Appendix H.2 for details on practical computation of the minimal frame. This case
corresponds to Case II in Appendix E.1, which says that Q̂ is not uniquely determined in the generalized QR decomposition.
That is, there exists a set QP such that for all Q̂ ∈ QP , ϕ(P ) = Q̂R̂. Let HP := {g ∈ Gη(d) | ρ(g) ∈ QP }.
From Lemma B.1, the minimal frame on the induced Gη(d)-set is then given by

F̂ϕ(ϕ(P )) = HP . (14)

Furthermore, from the definition of Gη(d), Q̂T ηQ̂ = η, and thus, we obtain

Q̂−1 = ηQ̂T η.

Additionally, by definition of the QR decomposition, d′ columns of Q̂ are uniquely determined and span the column space
of ϕ(P ). From the definition of ϕ(P ) = PM , the d′ columns also span the column space of P , as we have assumed that
all columns of P are non-null, and thus, ϕ(P ) serves only to remove linearly dependent columns. The remaining d− d′

columns are arbitrary d-vectors which are orthonormal to the column space of P . Therefore,

P ′ := Q̂−1P = ηQ̂T ηP

is a fixed value for all Q̂ ∈ QP , since Q̂T ηP calculates the inner product between the columns of Q̂ and P , and the inner
products involving the non-unique columns of Q̂ are all 0. Thus, for all g ∈ HP , P ′ = g−1 · P . Since P ′ and P are in the
same orbit, there exists an element g′ ∈ Gη(d) such that g′ · P ′ = P , which implies that

P ′ = g′−1g · P ′.

Thus, g′−1g ∈ StabGη(d) (P
′). Since this is true for an arbitrary g ∈ HP , from Equation (20),

g′−1HP = g′−1F̂ϕ(ϕ(P )) = F̂ϕ(ϕ(g
′−1 · P )) = F̂ϕ(ϕ(P

′)) ⊆ StabGη(d) (P
′) . (15)

Next, by Lemma 3.1, there exists P ′′ ∈ OrbGη(d)(P ) such that

StabGη(d)(P
′′) ⊆ F̂ϕ(ϕ(P

′′)). (16)

Since P ′ and P ′′ are in the same orbit, there exists g′′ such that P ′ = g′′ · P ′′. Thus, by Equation (15),

F̂ϕ(ϕ(P
′)) = F̂ϕ(ϕ(g

′′ · P ′′)) = g′′F̂ϕ(ϕ(P
′′)) ⊆ StabGη(d)(P

′). (17)

Putting together Equations (16) and (17) gives that

g′′StabGη(d)(P
′′) ⊆ g′′F̂ϕ(ϕ(P

′′)) ⊆ StabGη(d)(P
′) = StabGη(d)(g

′′ · P ′′) = g′′StabGη(d)(P
′′)g′′−1, (18)

where the last equality follows from Theorem B.1. Therefore, StabGη(d)(P
′′) ⊆ StabGη(d)(P

′′)g′′−1, so g′′ = e, im-
plying that P ′ = P ′′. Together with Equation (16), this implies that StabGη(d)(P

′) ⊆ F̂ϕ(ϕ(P
′)). Furthermore recall

from Equation (15) that F̂ϕ(ϕ(P
′)) ⊆ StabGη(d)(P

′), implying that

F̂ϕ(ϕ(P
′)) = F̂ϕ(ϕ(g

−1 · P )) = g−1F̂ϕ(ϕ(P )) = StabGη(d)(P
′).

And thus:
F̂ϕ(ϕ(P )) = gStabGη(d)(P

′). (19)

On the other hand, P ′ ∈ OrbGη(d) (P ); therefore, Equation (19) together with Theorem 3.2 imply that F̂ϕ ◦ ϕ is a minimal
frame on the original domain.
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B.7. Proof of Theorem 4.2

Theorem 4.2. Let Q̂, R̂ be computed via the generalized QR decomposition such that ϕ(P ) = Q̂R̂ ∈ Rd×d′
, and assume

that the columns of P are non-null. Then, there exists Q0 ∈ Rd×d such that the frame averaging operator applied to an
arbitrary function Φ : Rd×n → Rd×n over the minimal frame F̂ϕ ◦ ϕ is given by

⟨Φ⟩F̂ϕ◦ϕ(P ) = Q0Φ
(
Q̂−1P

)
,

where d′ columns of Q0 are obtained directly from Q̂, and the remaining d− d′ columns are all 0 ∈ Rd.

Proof. Let d′ = rank(ϕ(P )). We discuss two cases.

Case I. d = d′. By the uniqueness of Q̂ and R̂ in the generalized QR decomposition ϕ(P ) = Q̂R̂ given by Theorem E.1,
StabGη

(R̂) = {Id}. Thus, by Theorem 3.2, the minimal frame F̂ϕ(ϕ(P )) = {ρ−1(Q̂)} has only a single element.
Therefore, for Q0 := Q̂, the frame averaging operator is given by

⟨Φ⟩F̂ϕ◦ϕ(P ) =
1

|F̂ϕ(ϕ(P ))|

∑
g∈F̂ϕ(ϕ(P ))

ρ(g)Φ(ρ(g−1)P ) = Q0Φ(Q̂
−1P ).

Case II. d > d′. This case corresponds to Case II in Appendix E.1, which says that Q̂ is not uniquely determined in the
generalized QR decomposition. That is, there exists a set QP ⊂ Rd×d such that for all Q̂ ∈ QP , ϕ(P ) = Q̂R̂. Let
HP := {g ∈ Gη(d) | ρ(g) ∈ QP }. From Lemma B.1, the minimal frame is then given by

F̂ϕ(ϕ(P )) = HP . (20)

SinceHP may be infinite, we express the frame averaging operator introduced in discrete form in Equation (2) in integral
form as

⟨Φ⟩F̂ϕ◦ϕ(P ) =

∫
QP

QΦ(Q−1P )dµQP
(ρ−1(Q)), (21)

where µQP
is a uniform probability measure over QP . We next prove the tractability of this integral. From the definition of

Gη(d), Q̂T ηQ̂ = η, and thus, we obtain
Q̂−1 = ηQ̂T η.

Additionally, by definition of the QR decomposition, d′ columns of Q̂ are uniquely determined and span the column space
of ϕ(P ). From the definition of ϕ(P ) = PM , the d′ columns also span the column space of P , as we have assumed that
all columns of P are non-null, and thus, ϕ(P ) serves only to remove linearly dependent columns. The remaining d− d′

columns are arbitrary d-vectors which are orthonormal to the column space of P . Therefore,

Q̂−1P = ηQ̂T ηP

is a fixed value for all Q̂ ∈ QP , since Q̂T ηP calculates the inner product between the columns of Q̂ and P , and the inner
products involving the non-unique columns of Q̂ are all 0 due to orthonormality. This implies that Equation (21) can be
re-written as

⟨Φ⟩F̂ϕ◦ϕ(P ) =

∫
QP

QΦ(Q̂−1P )dµQP
(ρ−1(Q)) =

(∫
QP

QdµQP
(ρ−1(Q))

)
Φ(Q̂−1P ), (22)

where Q̂ can be any element from QP which we choose as the Q̂ produced by the generalized QR decomposition for
convenience. Thus, it only remains to be shown that

∫
QP

QdµQP
(ρ−1(Q)) is a tractable integral. Without loss of generality,

we partition Q ∈ QP into
Q = [Q0,Q1],

where Q0 ∈ Rd×d′
are the d′ uniquely determined columns shared by all elements of QP and Q1 ∈ Rd×(d−d′) are the

(d − d′) arbitrary non-unique columns which may be freely chosen. Thus, for all Q = [Q0,Q1] ∈ QP , there exists
Q′ ∈ QP such that Q′ = [Q0,−Q1], with

1

2
(Q+Q′) = Q0 :=[Q0,0d×(d−d′)].
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We may therefore partition QP as
QP = Q0

P ∪Q1
P ,

where Q0
P and Q1

P are constructed such that for all Q ∈ Q0
P , there exists Q′ ∈ Q1

P such that 1
2 (Q+Q′) = Q0 and for all

Q′ ∈ Q1
P , there exists Q ∈ Q0

P such that 1
2 (Q+Q′) = Q0. Thus, by the construction of Q0

P and Q1
P ,∫

QP

QdµQP
(ρ−1(Q)) =

∫
Q0

P

QdµQP
(ρ−1(Q)) +

∫
Q1

P

QdµQP
(ρ−1(Q))

=

∫
Q0

P

QdµQP
(ρ−1(Q)) +

∫
Q0

P

(2Q0 −Q)dµQP
(ρ−1(Q))

= 2Q0

∫
Q0

P

dµQP
(ρ−1(Q))

= Q0,

(23)

where the final equality follows because∫
Q0

P

dµQP
(ρ−1(Q)) = µQP

(Q0
P ) =

1

2
,

since µQP
(Q0

P ) = µQP
(Q1

P ) and µQP
(Q0

P ) + µQP
(Q1

P ) = µQP
(QP ) = 1. Equation (22) can now be re-written as

⟨Φ⟩F̂ϕ◦ϕ(P ) = Q0Φ(Q̂
−1P ).

C. Group Basics
Group definition. Let G be a set and ∗ be a binary operation on G. Then (G, ∗) is a group if it satisfies the following
properties:

1. Closure: ∀a, b ∈ G, the result of the operation a ∗ b ∈ G.

2. Associativity: ∀a, b, c ∈ G, the equation (a ∗ b) · c = a ∗ (b ∗ c) holds.

3. Identity: ∃e ∈ G such that ∀a ∈ G, the equation a ∗ e = e ∗ a = a holds.

4. Inverse: ∀a ∈ G, ∃b ∈ G such that the equation a ∗ b = b ∗ a = e holds.

For the purposes of this discussion, we will simplify the notation of the group and group operation. Let G be a group, and
for any elements a, b ∈ G, we will denote the group operation, typically expressed as a binary operation a ∗ b, simply as ab.

Group action. Let G be a group and S be a set. The left group action of G on S is a mapping · : G × S → S (often
denoted simply as g · x for g ∈ G, x ∈ S), satisfying that for e ∈ G and x ∈ S, the equation e · x = x holds, and ∀g, h ∈ G
and x ∈ S, the equation g · (h · x) = (gh) · x holds. The right group action can be defined similarly. If for a group G and a
set S , there exists such (left) group action ·, then S is called a (left) G-set. Furthermore, the action of G on S is transitive if
∀x, y ∈ S,∃g ∈ G, y = g · x. If a group G acts transitively on a G-set S , then S is called a homogeneous space of G. For
x ∈ S, the set of the group elements fixing x form a subgroup of G called the stabilizer of x denoted by

StabG(x) = {g | g · x = x} ⊆ G, (24)

and the set of all group elements acting on x is called the orbit of x denoted by

OrbG(x) = {g · x | g ∈ G} ⊆ S. (25)

Let Ŝ be another G-set. A mapping f : S → Ŝ is equivariant if ∀x ∈ S,∀g ∈ G,

f(g · x) = g · f(x), (26)

and f is invariant if ∀x ∈ S,∀g ∈ G,
f(g · x) = f(x). (27)

18
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Lie group. A Lie group is a group and also a smooth manifold, such that both group binary operation and the inversion
map are smooth. The general linear group GL(n,R) is a Lie group consisting of all invertible n× n matrices. A linear or
matrix Lie group refers to a Lie subgroup of GL(n,R).

D. Frame Averaging on General Domain
To describe a general domain, we employ a G-set S . Consider a σ-algebra Σ over G and define a measure µG : Σ→ [0,+∞]
that satisfies the following properties:

1. Non-negative: For any set X ∈ Σ, the measure µG(X) is non-negative, i.e., µG(X) ≥ 0.

2. Null Set: The measure of the null set is zero, i.e., µG(∅) = 0.

3. σ-additivity: For any countable collection {Xi} of pairwise disjoint sets in Σ, the measure is σ-additive, i.e.,
µG(

⋃∞
i=1 Xi) =

∑∞
i=1 µG(Xi).

4. G-invariance: The measure is G-invariant, meaning that for any g ∈ G and X ∈ Σ, it holds that µG(gX) =
µG(Xg) = µG(X), where gX = {g · x | x ∈ X} and similarly Xg = {x · g | x ∈ X}.

The combination of G, Σ, and µG forms a measure space (G,Σ, µG). For simplicity, we only consider the group G with
left actions on S, while the right actions can be defined similarly. In this context, consider the process of frame averaging
within this measure space.

Theorem D.1 (Frame Averaging on G-set). Consider a group G with the above measure space (G,Σ, µG) and left actions
on S and a K-dimensional vector space W . Given a continuous square-integrable function Φ ∈ L∞(S,W) and a
G-equivariant frame F : S → P(G) \ {∅}, the frame averaging

⟨Φ⟩F (x) =
∫
F(x)

g · Φ(g−1 · x) dµG(g) (28)

is G-equivariant, where F(x) is a compact Borel subset of G and µG (F(x)) < +∞ for all x ∈ S.

Proof. Given any h ∈ G,

⟨Φ⟩F (h · x) =
∫
F(h·x)

g · Φ(g−1h · x)dµG(g)

=

∫
hF(x)

g · Φ(g−1h · x)dµG(g)

=

∫
F(x)

hg · Φ(g−1h−1h · x)dµG(hg)

= h ·
∫
F(x)

g · Φ(g−1 · x)dµG(g)

= h · ⟨Φ⟩F (x).

(29)

In a similar manner, the group convolutional form of frame averaging can be proposed. Let Φ be a continuous square-
integrable function in L∞(S,R) and K a kernel in L∞(S,R). We obtain the G-equivariant group convolution

⟨Φ ∗K⟩F (g) =
∫
F(x)

Φ(g′)K(g−1g′) dµG(g
′). (30)

The implementation of the measure µG depends on specific properties of S , G, and F . Based on Theorem 3.2, the minimal
frame F constitutes a coset of the stabilizer. Therefore, if a measure on the stabilizer is defined, one may directly apply this
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measure to F rather than to the entire group. This approach effectively renders the size of the whole group irrelevant during
averaging for practical purposes. Consequently, the process of minimal frame averaging adopts a form

⟨Φ⟩F (x) =
∫
F(x)

g · Φ(g−1 · x) dµF(x)(g). (31)

The G-equivariance of the above form can be proved similar to Theorem D.1 such that given any h ∈ G,

⟨Φ⟩F (h · x) =
∫
F(h·x)

g · Φ(g−1h · x)dµF(h·x)(g)

=

∫
hF(x)

g · Φ(g−1h · x)dµF(x)(g)

=

∫
F(x)

hg · Φ(g−1h−1h · x)dµF(x)(hg)

= h ·
∫
F(x)

g · Φ(g−1 · x)dµF(x)(g)

= h · ⟨Φ⟩F (x).

(32)

We next consider frame averaging over a Lie group, as this ensures that the frame averaging operator maps to a well-defined
function. By definition of the manifold, all Lie groups are locally Euclidean and thus locally compact. Furthermore, for any
locally compact group G, there exists a unique (up to a multiplicative constant) left-invariant Radon measure µG, known
as the Haar measure. This measure is defined such that µG(gB) = µG(B) for all g ∈ G and any Borel set B ⊆ G. A
canonical example is G = (Rn,+), where µG is the Lebesgue measure giving the volume of a n-dimensional set X ⊂ Rn,
a translation-invariant quantity. Importantly, the Haar measure enables G-invariant group integration∫

G

f(g)dµG(g).

Commonly, the group integration is defined on a function f ∈ L∞(G,R) with scalar output. However, more generally, the
integration of a vector-valued function f in L∞(S,W), whereW is a K-dimensional vector space, can be expressed via
decomposition into K components, each corresponding to a dimension ofW:

(

∫
G

f1 dµG,

∫
G

f2 dµG, · · · ,
∫
G

fK dµG).

If G is a Lie group, the domain of the G-set is usually a manifold where the Lie group G acts smoothly. This consideration
is essential for ensuring the averaging process respects the group action and to be well-defined and finite.

Theorem D.2. Consider a Lie group G with a measure space (G,Σ, µG) where G acts uponM smoothly withM a smooth
manifold. Given the definition of frame averaging in Theorem D.1, ⟨Φ⟩F (x) is finite.

Proof. Given that Φ ∈ L∞(M,W), supx∈M ∥Φ(x)∥ is bounded. Since Φ is also continuous, for a compact Borel subset
F(x) of G, the image set {Φ(g−1 · x) | g ∈ F(x)} is compact, as the continuous image of a compact set is compact. Define
Fx(g) = g ·Φ(g−1 ·x). By Tychonoff’s theorem, the set {Fx(g) | g ∈ F(x)} is compact inW , since a product of any subsets
of compact topological spaces is compact. Decomposing Fx(g) into its components Fx(g) = (F 1

x (g), F
2
x (g), · · · , FK

x (g)),
observe that each component F i

x(g) is bounded. Hence,∣∣∣∣∣
∫
F(x)

F i
x(g) dµG(g)

∣∣∣∣∣ ≤
∫
F(x)

|F i
x(g)| dµG(g) ≤ sup

g∈F(x)

|F i
x(g)| · µG(F(x)). (33)

Since µG is a finite G-invariant measure and F(x) is compact, µG(F(x)) is finite. Therefore, each integral∫
F(x)

F i
x(g) dµG(g) is finite, ensuring that the frame averaging ⟨Φ⟩F (x) inW is finite.
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The finiteness of ⟨Φ⟩F (x) enables its computation. If F(x) is a finite set, a counting measure is appropriate, and the frame
averaging can still be computed as:

⟨Φ⟩F (x) =
1

|F(x)|
∑

g∈F(x)

g · Φ(g−1 · x). (34)

Conversely, if F(x) ⊆ G is a compact subset of G with a manifold structure, the Haar measure is more applicable. In this
case, the computation of frame averaging can be approximated by Monte Carlo integration:

∫
F(x)

g · Φ(g−1 · x) dµF(x)(g) ≈
1

N

N∑
i=1

g̃i · Φ(g̃−1
i · x), g̃i ∼ F(x), (35)

where g̃i ∼ F(x) means that g̃i is sampled uniformly from F(x). Overall, the computation of frame averaging depends on
the corresponding G-invariant measure over F(x), and the choice of measure depends on the measurability of F(x).

In studying G-equivariant frame averaging, arbitrary continuous functions f , typically neural networks, are considered.
These functions usually need computation multiple times relative to the cardinality or dimension of F(x). For efficient and
accurate computation of frame averaging, it is advantageous to minimize the cardinality or dimension of F(x). Importantly,
a G-set S can be decomposed into a union of disjoint orbits under the action of G, forming the quotient space S/G. To
describe the size of F(x), we investigate an important relationship among the group, the orbit, and the stabilizer.

Theorem D.3 (Orbit-Stabilizer Theorem). Let G be a finite group acting on a G-set S , and let x ∈ S . The orbit of x under
the action of G is denoted as OrbG(x) = {g ·x | g ∈ G}. The stabilizer of x in G, denoted StabG(x), satisfies the following
relation connecting the cardinalities of G, the stabilizer, and the orbit:

|G| = |StabG(x)| · |OrbG(x)|. (36)

Additionally, if the group is not finite, but instead a Lie group, the following characterization can be made:

Theorem D.4 (Orbit-Stabilizer Theorem for Lie Groups (Tauvel & Yu, 2005)). For a Lie group G acting on a smooth
manifoldM, let x ∈M. Then the dimensions of G, the stabilizer of x in G, and the orbit of x satisfy:

dim(G) = dim(StabG(x)) + dim(OrbG(x)). (37)

By these theorems, a group G can be decomposed into a stabilizer and its equal measure left cosets. In addition, according
to Lemma 3.1 that there exists an x0 ∈ OrbG(x) such that StabG(x0) ⊆ F(x0), for any x ∈ OrbG(x), it holds that either
|F(x)| ≥ |StabG(x)| in the case where G is finite or dim(F(x)) ≥ dim(StabG(x)) in the case where G is a Lie group.
Thus for efficiency, we can define a minimal frame and establish that there exists an x0 for which the quotient G/StabG(x0)
can be used to construct this minimal frame, which is exactly the result of Theorem 3.2. Furthermore, we desire that the
minimality of a frame does not change regardless of the groups and the finite measure we have chosen. We define the
minimal frame in Definition 3.1 and the below proof shows its universality with respect to any finite measure.

Theorem D.5. Let µ be a G-invariant, σ-finite measure on Σ, the Borel σ-algebra on G. For the framesF and F̂ on S , where
F is arbitrary and F̂ is minimal, let x ∈ S such that F(x) and F̂(x) are both µ-measurable. Then µ(F̂(x)) ≤ µ(F(x)).

Proof. By Lemma 3.1 and Theorem 3.2, there exists h0, h1 ∈ G such that StabG(h0 · x) ⊆ F(h0 · x) and StabG(h1 · x) =
F̂(h1 · x). Define ĥ := h1h

−1
0 , and observe that for all g ∈ StabG (h1 · x), ĥ−1gĥ ∈ StabG (h0 · x). Therefore,

ĥ−1StabG (h1 · x) ĥ ⊆ StabG (h0 · x), and thus, ĥ−1StabG (h1 · x) ĥ ⊆ F(h0 · x). From the G-invariance of µ and
G-equivariance of F̂ and F ,

µ(F̂(x)) = µ(F̂(h1 · x)) = µ(ĥ−1StabG (h1 · x) ĥ)
≤ µ(F(h0 · x)) = µ(F(x)).
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E. Matrix Decomposition
This section presents four matrix decompositions: QR decomposition, eigendecomposition, polar decomposition, and Jordan
decomposition. These decompositions are employed to obtain canonical forms of a matrix relative to distinct groups. Each
decomposition is analyzed for its unique properties and applications in transforming a given matrix into its canonical form.

E.1. Generalized QR Decomposition

Algorithm 1 Generalized Gram-Schmidt Orthogonalization

1: Input: matrix A, metric η
2: d,m← A.shape
3: Q← 0
4: D ← 0
5: R← 0
6: for j = 1 to n do
7: v ← A:,j

8: for i = 1 to j − 1 do
9: c← (AT

:,jηQ:,i)/(Q
T
:,iηQ:,i)

10: v ← v − cQ:,i

11: end for
12: norm← vT ηv
13: if norm = 0 then
14: raise Exception(“Cannot normalize a null vector.”)
15: end if
16: Q:,j ← v/

√
|norm|

17: Dj,j ← sign(QT
:,jηQ:,j)

18: for i = 1 to j do
19: Rij ← QT

:,iηA:,j

20: if i = j and Rij < 0 then
21: Q:,i ← −Q:,i

22: Rij ← −Rij

23: end if
24: end for
25: end for
26: return Q,D,R

QR decomposition is a decomposition of a matrix P ∈ Rd×n into a product P = QR of an orthonormal matrix Q ∈ O(d)
and an upper triangular matrix R. And the uniqueness and O(d) of R is guaranteed by full column rank of P . In this paper,
we propose a generalized QR decomposition of P = Q̂R̂ with full column rank, which is achieved by our generalized
Gram-Schmidt orthogonalization Algorithm 1. Here, Q̂ ∈ Gη(d) is a d by d orthonormal matrix belonging to the linear
algebraic group with equation OT ηO = η, where η is a diagonal matrix with entires ±1, and R̂ is a unique matrix serving
as canonical form. As in our frame averaging application, P is derived from the induced Gη(d)-set and has full column
rank, we have d ≥ n. We further divide it into d = n and d > n case. To introduce our method properly, we first recap the
traditional QR decomposition in d = n case.
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Case I. d = n. The traditional Gram-Schmidt process for full-rank matrix P ∈ Rd×d has a form of

u1 = v1, e1 =
u1

∥u1∥

u2 = v2 − proju1
(v2), e2 =

u2

∥u2∥

u3 = v3 − proju1
(v3)− proju2

(v3), e3 =
u3

∥u3∥
...

...

ud = vd −
d−1∑
j=1

projuj
(vd), ed =

ud

∥ud∥
.

(38)

where proju(v) =
⟨u,v⟩
⟨u,u⟩u denoting the projection from v to u and we obtain Q = [e1, · · · , ed]. Conversely, each vector vi

of P can be written as

vi =

i∑
j=1

⟨ej ,vi⟩ ej (39)

Therefore, the element of R in QR decomposition can be represented as Rij = ⟨ei,vj⟩. One of the ambiguities of QR
decomposition comes from the non-unique signs of vi, as by flipping the signs of vi, Q is still an orthogonal matrix. This
can be solved by enforcing the sign of each diagonal element Rii to be positive.

In our generalized QR decomposition, the inner product ⟨ui,ui⟩ is not always positive, and this leads to an undefined
result of ∥ui∥. To remedy this situation, we define ∥ui∥ =

√
|⟨ui,ui⟩| and when constructing R, we introduce Dη =

diag (⟨e1, e1⟩, ⟨e2, e2⟩, · · · , ⟨ed, ed⟩) so that QT ηQ = Dη , and each vector vi of P can be constructed by QDηR as

vi =

i∑
j=1

⟨ej , ej⟩ ⟨ej ,vi⟩ ej

=

i∑
j=1

⟨ej , ej⟩
〈

uj

∥uj∥
,vi

〉
uj

∥uj∥

=

i∑
j=1

⟨ej , ej⟩
| ⟨uj ,uj⟩ |

⟨uj ,vi⟩uj

=

i∑
j=1

⟨uj ,vi⟩
⟨uj ,uj⟩

uj ,

(40)

which is equivalent to Equation (38), suggesting the validity of decomposition P = QDηR. By enforcing the sign of
each diagonal element Rii to be positive, we can obtain a unique R. Although Q has d orthonormal vectors with respect
to metric η, QT ηQ is not necessarily equal to η. For instance, for Gram-Schmidt orthogonalization with respect to the
Minkowski metric η = diag(−1, 1, 1, 1), the first vector used for orthogonalization might be space-like (i.e., vectors with
positive self inner products), which leads to the first diagonal element of QT ηQ be 1 instead of −1. On the other hand,
since Q has d orthonormal vectors forming a complete basis for d-dimensional vector space with respect to metric η, there
must be the equal counts of ±1 between Dη and η. Consider a permutation S uniquely determined by Algorithm 2 that
permutes columns of Q such that self inner products of QS match signatures in η, and subsequently QS ∈ Gη(d), i.e.,
STQT ηQS = η, and the QR decomposition can be written as P = QSSTDηR. Let Q̂ = QS and R̂ = STDηR, we
obtain the generalized QR decomposition P = Q̂R̂.
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Case II. d > n. As d > n, there exist indeterminant d− n vectors in Gram-Schmidt orthogonalization. We define the
generalized QR decomposition as

P = Q̂R̂ = QSSTDηR = QDηR =
[
Q̃ Q̄

] [
D̃η

D̄η

] [
R̃
0

]
= Q̃D̃ηR̃, (41)

where Q̃ is a d× n matrix and Q̄ is a d× (d− n) matrix both with all column orthonormal with respect to η, D̃η and D̄η

are diagonal matrices with entries of the self inner product of Q̃ and Q̄, respectively, and R̃ is a n × n full-rank upper
triangular matrix. The creation of Q̃ and R̃ is the same as d = n case, and Q̄ is produced by randomly choosing d − n
vectors that are orthonormal to each other and to Q̃, and S is a permutation matrix that permutes columns of Q such that
QS ∈ Gη(d). Conceptually, S can be represented by two permutation matrices S̃ and S′ such that S = S̃S′ where S̃
is produced by Algorithm 2 permuting the determinate column vectors in Q and S′ is a non-unique permutation matrix
subsequently permuting those non-unique column vectors of Q.

To show that generalized QR decomposition can produce a canonical form of the linear algebraic group Gη(d), we first show
the uniqueness of Q and R when d = n and uniqueness of Q̃ and R̃ when d > n by the below theorem. As SST = In
and the below theorem is not relevant to S, we omit the S here and discuss it in the next theorem.

Theorem E.1 (Uniqueness of QR Decomposition). Let P ∈ Rd×n, d ≥ n equipped with a diagonal matrix η with entries
±1 and all P ’s columns non-null, and let the generalized QR decomposition P = QDηR where Q contains d orthonormal
vectors with respect to inner product metric η, Dη is a diagonal matrix containing self inner products of column vectors in
Q, and R is an upper triangular matrix and all diagonal values of R are non-negative. The R is unique if P is full-rank.
Additionally, if d = n and P is a full-rank, then both Q and R are unique.

Proof. We first establish the uniqueness of the generalized QR decomposition for a full-rank square matrix P that does not
contain any null vectors. And we aim to prove that both Q and R in the decomposition P = QDηR are unique. Given the
inner product property in η, if ⟨u,v⟩ = 0, then ⟨u,−v⟩ = 0. This indicates that the only freedom in the Gram-Schmidt
process is the sign of each produced orthonormal vector. Suppose there exist alternate matrices Q′,D′

η,R
′ such that

QDηR = Q′D′
ηR

′. (42)

Given QT ηQ = Dη and Q′T ηQ′ = D′
η , it follows that Q−1 = DηQ

T η and Q′−1 = D′
ηQ

′T η. Rearranging, we obtain

Q′T ηQ = R′R−1Dη (43)

and
QT ηQ′ = RR′−1D′

η, (44)

where both right-hand sides are upper triangular matrices. Taking transposes, we find

QT ηQ′ = (R′R−1Dη)
T (45)

and
Q′T ηQ = (RR′−1D′

η)
T , (46)

where both right-hand sides are lower triangular matrices. Thus, QT ηQ′ and Q′T ηQ are diagonal matrices. Letting
D = R′R−1, we derive

QDη = Q′D′
ηD (47)

and subsequently,
Q = Q′D′

ηDDη. (48)

Since diagonal matrices commute under multiplication, it follows that

QT ηQ = DηDD′
ηQ

′T ηQ′D′
ηDDη (49)

= DηDD′
ηD

′
ηD

′
ηDDη (50)

= D2D′
η (51)

= Dη, (52)
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implying D2 = DηD
′
η . Since D2 has positive diagonal values and Dη , D′

η have entries of ±1, we get

D2 = DηD
′
η = Id. (53)

Thus, Dη = D′
η and, as D = R′R−1, it follows that DR = R′. Requiring positive diagonals for R and R′ leads to

D = Id and R = R′. Equation (42) then implies Q′ = Q, establishing the uniqueness of Q and R in the decomposition
for a non-null full-rank square matrix.

For the case where P is not square but has non-null, linearly independent columns, let d > n and rank(P ) = n. The
generalized QR decomposition is

P = QDηR =
[
Q̃ Q̄

] [
D̃η

D̄η

] [
R̃
0

]
= Q̃D̃ηR̃, (54)

where Q̃ is a d× n orthonormal matrix with respect to η, D̃η is a n× n matrix representing self inner products in Q̃, and
R̃ is a n× n full-rank upper triangular matrix. Assume there exists Q̃′, D̃′

η, R̃
′ such that

P = Q̃D̃ηR̃ = Q̃′D̃′
ηR̃

′. (55)

Given Q̃T ηQ̃ = D̃η and Q̃′T ηQ̃′ = D̃′
η , analogous manipulations yield

Q̃′T ηQ̃ = R̃′R̃−1D̃η (56)

and
Q̃T ηQ̃′ = R̃R̃′−1D̃′

η. (57)

Setting D̃ = R̃′R̃−1 and following the steps for d = n, we deduce that D̃ = In, R̃′ = R̃, and D̃η = D̃′
η. Equation (55)

then implies Q̃ = Q̃′, confirming the uniqueness of R =

[
R̃
0

]
and the Q̃ part of Q =

[
Q̃ Q̄

]
.

In conclusion, the uniqueness of the generalized QR decomposition is established for both d = n and d > n cases,
completing the proof.

Then we focus on the Gη-invariance of the QR decomposition incorporating the permutation S. Given the generalized QR
decomposition P = QDηR = QSSTDηR, we decompose the permutation S = S̃S′ where the permutation S̃ permutes
those determinate orthonormal vectors in Q in a deterministic way by Algorithm 2 and S′ permutes those non-unique
orthonormal vectors in Q (and if there does not exist non-unique orthonormal vectors then S′ = In.)

Theorem E.2 (Gη-Invariance of QR Decomposition). Let P ∈ Rd×n equipped with a diagonal matrix η with entries
±1 and all P ’s columns non-null, and let generalized QR decomposition P = Q̂R̂ = QSSTDηR defined above, then
R̂ = STDηR is Gη-invariant if all columns in P are linearly independent.

Proof. We consider two cases based on the dimensions of P ∈ Rd×n, d ≥ n.

Case 1: d = n. In the generalized QR decomposition P = QSSTDηR = QDηR, for any Qη ∈ Gη , which preserves the
inner product with respect to η, the matrix QηQ comprises d orthonormal vectors. The decomposition (QηQ)DηR serves
as a generalized QR decomposition of QηP . Due to the uniqueness of this decomposition, QηP and P share the same R
matrix, indicating that R is invariant under Gη . Moreover, as P = QSSTDηR, it follows that QηP = QηQSSTDηR.
Given that S is determined by the self inner product of Q and Qη preserves this inner product, QηQ yields the same
Dη and, consequently, the same permutation matrix S. Thus, both Dη and S are invariant under Gη(d), leading to the
invariance of STDηR to Gη(d).

Case 2: d > n. For the generalized QR decomposition P = Q̃D̃ηR̃, a similar argument applies. With Qη ∈ Gη(d),
the decomposition (QηQ̃)D̃ηR̃ is the generalized QR decomposition of QηP , affirming the invariance of Q̃η and R̃

under Gη(d). As mentioned, the permutation matrix S can be decomposed into S̃S′. S̃ by Algorithm 2 depends on
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Algorithm 2 Generate Permutation S

S ← Id
if d = n then

a← diagonal of Dη

else
a← diagonal of D̃η

end if
b← diagonal of η
Right padding a with 0 to the same length as b
for i = 1 to d do

if ai ̸= 0 and ai ̸= bi then
for j = i+ 1 to d do

if aj ̸= bj and aj = bi then
S′ ← Id
S′
i,i ← 0

S′
j,j ← 0

S′
i,j ← 1

S′
j,i ← 1

a← aS′

S ← SS′

break
end if

end for
end if

end for
return ST

the self inner product of the determinate orthonormal vectors in Q, rendering S̃ invariant under Gη(d). The matrix S′

adjusts the non-unique orthonormal column vectors, with STDηR = S′T S̃DηR showing that permutations by S′ on
the non-unique diagonal elements of Dη, which is eventually applied on the zero rows of R do not alter the outcome of
STDηR, confirming STDηR is Gη(d)-invariance.

These considerations for both d = n and d > n complete the proof, establishing the Gη-invariance of R̂ = STDηR.

In addition, Q̂ = QS is an element of Gη(d) and so R̂ = STDηR is inside the orbit of P , thereby serving as the canonical
form. In conclusion, R̂ = STDηR is a canonical form of P with respect to Gη(d) by the generalized QR decomposition.

During implementation, the vectors in Q are sometimes not exactly orthogonal due to rounding errors. In the Gram–Schmidt
process described above, this loss of orthogonality is quite significant; hence, this procedure is considered numerically
unstable. The Gram–Schmidt process can be stabilized by a small modification; this version is referred to as the modi-
fied Gram-Schmidt. We optionally provide the modified Gram-Schmidt over our generalized Gram-Schmidt procedure
in Algorithm 1 by modifying line 9 into c← (vT ηQ:,i)/(Q

T
:,iηQ:,i).

E.2. Eigendecomposition

Eigendecomposition decomposes a matrix P ∈ Sym(d,C)—the set of d× d complex symmetric matrices—into a product
of its eigenvalues and eigenvectors, denoted as P = O∗ΛO. Here, O ∈ U(d) contains eigenvectors, and Λ is a diagonal
matrix of eigenvalues. The uniqueness of Λ is up to permutation, rooted in the property Pv = λv, where v and λ are
corresponding eigenvectors and eigenvalues. This leads to the characteristic polynomial p(λ) = det(P −λId) = 0, yielding
d roots. For any O′ in U(d) or SU(d), the eigendecomposition of O′∗PO′ is O′∗O∗ΛOO′, with Λ remaining unique and
invariant under U(d) and SU(d) transformations. Similarly, for P ∈ Sym(d,R), Λ is invariant under O(d) and SO(d).
Thus, Λ serves as a canonical form of P with respect to these groups through eigendecomposition.
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E.3. Polar Decomposition

For a full-rank square matrix P ∈ Cd×d, the polar decomposition is P = UH , where U is a unitary (or orthogonal for real
matrices) matrix and H is a positive semi-definite Hermitian (or symmetric for real matrices) matrix. This decomposition
splits P into a rotation/reflection component, U , and a scaling component, H . The polar decomposition always exists and
is unique when P is invertible. In such cases, P can also be expressed as P = UeX , where X is the unique self-adjoint
logarithm of P . Given U ′ ∈ U(d)/O(d), the polar decomposition of U ′P is U ′UH , with H remaining unique and
invariant. Hence, H represents the canonical form of P with respect to U(d)/O(d) under polar decomposition.

E.4. Jordan Decomposition

The Jordan canonical form is the canonical form for a square matrix P ∈ Cn×n under GL(n,C). It represents P as a

block diagonal matrix J =

J1

. . .
Jp

, where each Ji is a Jordan block associated with a general eigenvalue λi. An

invertible matrix U ∈ GL(n,C) exists such that P = UJU−1, with the uniqueness of J up to the order and size of Jordan
blocks (Horn & Johnson, 2012). In diagonalizable cases where P = UJU−1 with U unitary, J aligns with the complex
eigendecomposition, maintaining its canonical status under the unitary group U(n). Thus, the Jordan decomposition offers a
generalized approach for canonical forms of diagonalizable square matrices. As the Jordan canonical form can serve as the
canonical form of groups GL(n,C), it can also serve as the canonical form of its subgroup

F. Canonical Labeling and McKay’s Algorithm
An isomorphism between two graphs is defined as a bijection between their vertex sets that preserves the adjacency relation.
Specifically, two vertices u and v are adjacent in one graph if and only if their images under the bijection are adjacent in the
other graph. An automorphism of a graph is an isomorphism from the graph to itself, capturing the concept of symmetry
within the graph structure. The collection of all automorphisms of a graph constitutes a group under the operation of
composition, known as the automorphism group of the graph. In applications where vertices of a graph are distinguished by
certain attributes, such as color or weight, the definition of an automorphism accommodates these distinctions. Specifically,
an automorphism must map vertices to vertices of the same attribute value. This consideration ensures that the automorphism
respects the additional structure imposed on the graph by these attributes.

Formally, consider two real symmetric matrices A,B ∈ Sym(n,R) representing the adjacency matrices of two graphs. The
matrix A is said to be isomorphic to B if and only if there exists a permutation matrix S ∈ Sn satisfying

STAS = B. (58)

Furthermore, the automorphism group (or stabilizer) of a graph represented by A consists of all permutation matrix S ∈ Sn
for which

STAS = A. (59)

F.1. Individualization-Refinement Paradigm

McKay & Piperno (2014) gives a general overview of graph isomorphism as well as the refinement-individualization
paradigm to solve canonical labeling and graph automorphism. Canonical labeling is a canonicalization process in which
a graph is relabeled in such a way that isomorphic graphs are identical after relabeling. By denoting this process as
c : Sym(n,R)→ Sym(n,R), we obtain the canonical form c(A) via the canonical labeling and A and B is isomorphic if
and only if c(A) = c(B).

To be concrete, McKay & Piperno (2014) provides the canonical labeling algorithm serving to categorize a collection of
objects into isomorphism classes through a search tree. An important concept within this method is the equitable partition,
wherein vertices sharing the same color have an identical count of adjacent vertices for each distinct color. The process of
partition refinement iteratively subdivides its cells to achieve greater granularity. Given any initial partition, there exists a
uniquely determined equitable partition that refines it with the minimal possible color count.

On this basis, the construction of a search tree is based on partition refinement, and the nodes of the tree denote the partitions
themselves. Nodes that correspond to discrete partitions, wherein each vertex is uniquely colored, constitute the leaves of
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the tree. For nodes that are not leaves, a color that is replicated across vertices is selected; one vertex is then individualized
by applying it with a new color, and subsequent refinement to equitable partition yields a child node. Identical labeling at
different leaves shows the presence of an automorphism. By defining an ordering scheme for labeled graphs (for example,
lexicographical order), the greatest graph at a leaf is treated as the canonical form. However, the vast potential size of the
search tree requires the implementation of pruning strategies through the node invariants. Node invariants are attributes
invariant to graph labeling, for example, node degree, which can be used to further subdivide and refine the partition.

F.2. Employing Canonical Labeling

For (undirected) graph data, the canonical labeling can be directly applied to compute the canonical graph as well as the
automorphism group. For point cloud data, by our induced Sn-set, we first compute the inner product matrix of the point
cloud as an undirected weighted adjacency matrix. As the original nauty algorithm only works for node-colored graphs, we
convert the edge-weighted graph to the unweighted counterpart by replacing each weighted edge with a colored node, where
each color corresponds a certain magnitude of the inner product between two points. Then we employ the nauty algorithm
we present above to obtain the canonical form and the automorphism group of the unweighted graph. Subsequently, we
convert the newly generated nodes back to the weighted edges and remove the permutation of those newly generated nodes
in each element of the automorphism group, then we obtain the canonical form and automorphism group of the original
weighted adjacency matrix. As a result, we are able to create the frame of Sn for point clouds.

In our implementation, we replicate one of the most famous graph automorphism algorithms nauty (no automoprhism, yes)
by pure Python. The nauty algorithm is an implementation of the above individualization-refinement paradigm by depth-first
search. To speed up the algorithm, we use just-in-time (JIT) compiler Numba to compile and optimize the code.

G. Point Group and Minimal Frame of Sn ×Gη(d)

A point group is a set of symmetry operations g ∈ O(d) mapping a set of a point cloud onto itself. In this section, we extend
the definition to Gη(d) defined in Section 4. Mathematically, for a given d-rank point cloud P ∈ Rd×n without null and
repetitive columns, the point group G can be defined as:

G = {O ∈ Gη(d) |OP = PS, ∃S ∈ Sn}.

Consider the following theorem:

Theorem G.1. Given P ∈ Rd×n with rank(P ) = d and without null and repetitive columns, and given the stabilizer
StabSn

(P T ηP ) = {S | STP T ηPS = P T ηP ,S ∈ Sn}, there exists S ∈ StabSn
(P T ηP ) such that S ̸= In if and only

if there exists an orthogonal transformation O ∈ Gη(d) with O ̸= Id such that OP = PS.

Proof. Let P = [v1,v2, · · · ,vn] and PS = [w1,w2, · · · ,wn] and recall that for any index i = 1, 2, · · · , n, vi and wi

are both non-null, and collectively, both {vi}ni=1 and {wi}ni=1 span the entire d-dimensional indefinite inner product space.
Since STP T ηPS = (PS)T η(PS) = P T ηP , it follows that for all indices k and l, ⟨vk,vl⟩ = ⟨wk,wl⟩, i.e., the same
Gram matrix. Considering these as two different indefinite inner product spaces preserving the same inner product, there
must exist a linear isometry O ∈ Gη(d) that transforms between these two spaces such that Ovk = wk. Since S ̸= In,
O ̸= Id. Therefore, we have OP = PS with O ̸= Id.

Conversely, consider OP = PS and O ̸= Id. Since P is d-rank and O ̸= Id, it is impossible OP = P . Therefore,
S ̸= In and we have STP T ηPS = P TOT ηOP = P T ηP , showing that S ∈ StabSn(P

T ηP ).

Consequently, a non-trivial stabilizer StabSn
(c(P T ηP )) reveals a non-trivial point group with respect to the point cloud

structure P . Since our frame averaging ⟨Φ⟩Fϕ
in Section 5.3 is Sn × Gη(d)-invariant, for any O ∈ G, ⟨Φ⟩Fϕ

(OP ) =
⟨Φ⟩Fϕ

(PS) = ⟨Φ⟩Fϕ
(P ). Therefore, ⟨Φ⟩Fϕ

is G-invariant.

Now we derive the Sn ×Gη(d) frame averaging. By Theorem 5.1, given a Gη(d)-invariant and Sn-equivariant frame F and
a Gη(d)-equivariant function Φ : Rd×n → Rd×n, we can obtain the Sn ×Gη(d)-equivariant frame averaging

⟨Φ⟩F (P ) =
1

|F(P )|
∑

g∈F(P )

g · Φ(g−1 · P ) =
1

|F(P )|
∑

ρ−1(S)∈F(P )

Φ(PST )S. (60)
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In fact, Φ can be constructed by the frame averaging presented in Section 4 and the induced Gη(d)-set is built on each PST .
By Section 5.3, let the canonical form of the Gη(d)-invariant and Sn-equivariant induced set be c(P T ηP ) = ST

0 P
T ηPS0,

where S0 ∈ Sn transforms P T ηP into its canonical form. Then the Sn×Gη(d) frame can be defined as F(P ) = {(S,O) |
S ∈ ρ−1(ST

0 )StabSn
(ST

0 P
T ηPS0),O ∈ F̂ϕ(ϕ(PST ))}, where F̂ϕ is an induced Gη(d)-set in Section 4.3. Continuing

from Theorem G.1, we can prove this Sn ×Gη(d) frame is a minimal frame.

Theorem G.2. Given P ∈ Rd×n with rank(P ) = d and without null and repetitive columns. Let the Sn ×Gη(d) frame
defined by F(P ) = {(S,O) | S ∈ ρ−1(ST

0 )StabSn(S
T
0 P

T ηPS0),O ∈ F̂ϕ(ϕ(PST ))}, where F̂ϕ is a Gη minimal
frame on an induced Gη(d)-set induced by ϕ defined in Section 4.3. Then F is a Sn ×Gη minimal frame on Rd×n.

Proof. Let P0 = PS0 and we obtain F(P0) = {(S,O) | S ∈ StabSn
(P T

0 ηP0),O ∈ F̂ϕ(ϕ(P0S
T ))}. Given rank(P0) =

d and any (Si,Oi), (Sj ,Oj) ∈ F(P0), by Theorem G.1, there exists Ôi, Ôj ∈ Gη(d) such that P0S
T
i = ÔiP0 and

P0S
T
j = ÔjP0. Subsequently, both P0S

T
i ∈ OrbGη(d)(P0) and P0S

T
j ∈ OrbGη(d)(P0). In addition, since rank(P0) = d,

both ϕ(P0S
T
i ) and ϕ(P0S

T
j ) are square matrices. By the uniqueness of the QR decomposition shown in Appendix E.1,

ϕ(P0S
T
i ) = Q̂iR̂i and ϕ(P0S

T
j ) = Q̂jR̂j have unique Q̂i and Q̂j and the same canonical form R̂i = R̂j . By Lemma B.1,

we obtain Oi = Q̂i and Oj = Q̂j . Since P0S
T
i and P0S

T
j are in the same orbit, there exists O′ ∈ Gη(d) such that

O′O−1
i P0S

T
i = O−1

j P0S
T
j . Applying ϕ on both sides of the equation we obtain ϕ(O′O−1

i P0S
T
i ) = O′O−1

i ϕ(P0S
T
i ) =

O′R̂i = ϕ(O−1
j P0S

T
j ) = O−1

j ϕ(P0S
T
j ) = R̂j . Since R̂i = R̂j and R̂i, R̂j are full-rank square matrices, O′ = Id.

Therefore, we obtain O−1
i P0S

T
i = O−1

j P0S
T
j . Let P ′

0 = O−1
i P0S

T
i = O−1

j P0S
T
j . Then F(P ′

0) = F(O−1
j P0S

T
j ) =

(ST
j ,O

−1
j )F(P0). Now, for any (Si,Oi) ∈ F(P0), every element of F(P ′

0) has a form of (SiS
T
j ,O

−1
j Oi) such that

O−1
j OiP

′
0SiS

T
j = O−1

j P0S
T
i SiS

T
j = O−1

j P0S
T
j = P ′

0. (61)

Therefore, every element in F(P ′
0) stabilizes P ′

0 and F(P ′
0) ⊆ StabSn×Gη(d)(P

′
0). By Lemma 3.1, there exists P ′′

0 ∈
OrbSn×Gη(d)(P

′
0) such that StabSn×Gη(d)(P

′′
0 ) ⊆ F(P ′′

0 ). Let g ∈ Sn ×Gη(d) such that g · P ′′
0 = P ′

0. Then we obtain

gStabSn×Gη(d)(P
′′
0 ) ⊆ g′′F(P ′′

0 ) = F(P ′
0) ⊆ StabSn×Gη(d)(P

′
0) = gStabSn×Gη(d)(P

′′
0 )g

−1 (62)

where the last equality follows from Theorem B.1. Therefore, StabSn×Gη(d)(P
′′
0 ) ⊆ StabSn×Gη(d)(P

′′
0 )g

−1, so g = e and
P ′

0 = P ′′
0 . And we can obtain F(P ′

0) = StabSn×Gη(d)(P
′
0). Since P ′

0 ∈ OrbSn×Gη(d)(P ), by Theorem 3.2, this completes
the proof.

H. Frame Averaging for Common Groups
In this section, we detail the concrete equivariant frame averaging process for common groups, including translation
group (Rd,+), linear algebraic group with equation OT ηO = η, O(d)/SO(d) by Puny et al. (2021) and our improvement
over it, E(d)/SE(d) as well as GL(d,R)/SL(d,R). We mainly focus on the domain of Rd×n and the equivariant frame
averaging. For graph data and frame averaging on permutation group Sn, see Appendix F and Appendix G. And the invariant
frame-averaging counterpart can be easily derived as it is a special case of equivariant frame averaging.

H.1. Translation Group (Rd,+)

Consider the translation group (Rd,+) acting on a continuous function Φ : Rd×n → Rd×n by left addition via broadcasting.
Let P ∈ Rd×n, consider the induced Rd-set ϕ(P ) = 1

nP1 where 1 is a all one column vector. As 0 is in the orbit of
ϕ(P ) and is unique, we can select 0 as the canonical form and then the stabilizer is trivial. Thus, we obtain the frame
Fϕ(ϕ(P )) = 1

nP1 and the frame averaging ⟨Φ⟩Fϕ◦ϕ(P ) = f(P − 1
nP1) + 1

nP1.

H.2. Linear Algebraic Group by Induced G-set ϕ(P ) = PM

Consider the linear algebraic group Gη(d) by the equation OT ηO = η,O ∈ Gη(d) where η is a diagonal matrix with
elements ±1, and consider Gη(d) acting on a continuous function Φ : Rd×n → Rd×n by left multiplication. Consider the
induced Gη(d)-set ϕ(P ) = PM where M = M nullM rank is composed of two parts: M null filters all the null vectors of
P and M rank selects rank(PM null) linearly independent vectors. Let d′ = rank(ϕ(P )).
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Case I. d = d′. By the generalized QR decomposition presented in Appendix E.1, ϕ(P ) can be decomposed into Q̂R̂ and
both Q̂ ∈ Gη(d) and R̂ is unique. Therefore, R̂ serves as the canonical form in the induced Gη(d)-set and the minimal
frame Fϕ(ϕ(P )) = {Q̂} by Theorem 4.1. Therefore, we obtain the minimal frame averaging

⟨Φ⟩Fϕ◦ϕ(P ) = Q̂Φ(Q̂−1P ). (63)

Case II. d > d′. In this case, we only consider all column vectors in P to be non-null. By proof of Theorem 4.2, let Q0

be Q̂ with all non-unique column vectors zero and P0 = Q̂−1P be a fixed matrix, then by employing the counting measure
µGη(d) and ρ(g) := Q̂ we obtain the frame averaging

⟨Φ⟩Fϕ◦ϕ(P ) =

∫
Fϕ(ϕ(P ))

g · Φ(g−1 · P )dµFϕ(ϕ(P ))(g)

=

∫
Fϕ(ϕ(P ))

g · Φ(P0)dµFϕ(ϕ(P ))(g)

= Q0Φ(P0).

(64)

Determinant constraint. Consider the special orthogonal group and proper Lorentz group where the group element has a
determinant 1. The simplest way to enforce determinant constraint to QR decomposition ϕ(P ) = Q̂R̂ is to change the sign
of one column of Q̂. We discuss this for different cases of d′. If d = d′ and det(Q̂) = −1 then by flipping the sign of the
last column of Q̂ and the last row of R̂, we can enforce Q̂ after flipping to belong to the group. If d = d′ + 1, the sign
of the one indeterminant vector can be determined to ensure det(Q̂) = 1. It is determined by adding one random linearly
independent vector into ϕ(P ) and follows the generalized Gram-Schmidt orthogonalization procedure. It is then treated as
d = d′ case after orthogonalization. If d > d′ + 1, there exist at least two non-unique orthonormal vectors. By flipping
signs of two non-unique vectors of Q̂, we can obtain another orthonormal matrix belonging to the group, and by adding
it to Q̂ we can cancel out those non-unique vectors without determining their signs. Therefore, if d > d′ + 1, the frame
averaging is the same as the above d > d case without determinant constraint.

H.3. Orthogonal Group O(d) by Induced G-set ϕ(P ) = PP T

Consider the orthogonal group O(d) acting on a continuous function Φ : Rd×n → Rd×n by left multiplication. A induced
G-set can be defined as

ϕ(P ) = PP T .

with O(d) acting upon ϕ(P ) by conjugate multiplication. Employing eigendecomposition, we have PP T = OΛOT ,
where Λ = diag(λ1, · · · , λd) is a diagonal matrix with its diagonal values in descending order. The canonical form is given
by c(PP T ) = Λ. With algebraic multiplicities of Λ as k1, k2, · · · , km (where m ≤ d), the minimal frame at Λ can be
defined as F̂ϕ(Λ) = StabO(d)(Λ), where

StabO(d)(Λ) = O(k1)×O(k2)× · · · ×O(km). (65)

By the transitive property of group actions, there exists g0 ∈ O(d) such that PP T = g0 ·Λ = ρ(g0)Λρ(g−1
0 ), where ρ is

the group representation of O(d). All the eigenvector matrices O of PP T can be represented by such g0. Consequently,
Fϕ(g0 ·Λ) = g0 · Fϕ(Λ) = g0StabO(d)(Λ) so that all such O constitute this left coset of StabO(d)(Λ), which can be also
shown by Lemma B.1. Hence, all minimal frame values F̂ϕ(ϕ(P )) can be deduced from the set of eigenvector matrices O,
aligning with the results in Puny et al. (2021).

A potential issue arises when the eigenvalues of PP T repeat or if PP T is rank deficient, as this could lead to an infinite
cardinality of StabO(d)(PP T ). Merely selecting a matrix and forming a subset of O(d) by altering the signs of the
eigenvectors is insufficient, since frame averaging is effectively a group integral over (a coset of) the stabilizer. The following
sections delve into two specific scenarios that emerge from this problem.

Case I. Rank-deficient PP T without repeated nonzero eigenvalues. As previously mentioned, the rank deficiency of
PP T implies that the cardinality of StabO(d)(PP T ) is infinite, due to the infinite choices for eigenvectors corresponding
to zero eigenvalues. Specifically, these eigenvectors, associated with zero eigenvalues, are orthogonal to each column vector
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in P . Let rank(P ) = d′, and consider partitioning Fϕ(ϕ(P )) into {F i
ϕ(ϕ(P ))}2d

′

i=1, where each F i
ϕ(ϕ(P )) consists of

orthogonal matrices ρ(g) := O = [Od′

i , Ō], having a fixed Od′

i with d′ vectors and varying O∗ with d − d′ non-unique
orthonormal vectors. The differences among Od′

i in different F i
ϕ(P ) are the signs of each columns of Od′

i . For all
O ∈ F i

ϕ(ϕ(P )), Pi = O−1P are the same as column vectors of Ō are orthogonal to P .

Integrating over Ō effectively sums over orthogonal transformations in the residual subspace, but these terms cancel out due
to symmetry, i.e., by flipping the sign of the column in Ō, O is still an orthogonal matrix and summing up those Ō will lead
to zero. Define Oi = [Od′

i ,0] and the counting measure µO(d), and the frame averaging can be represented as

⟨Φ⟩Fϕ◦ϕ(ϕ(P )) =

∫
Fϕ(ϕ(P ))

g · Φ(g−1 · P ) dµFϕ(ϕ(P ))(g)

=

2d
′∑

i=1

∫
Fi

ϕ(ϕ(P ))

g · Φ(Pi) dµFϕ(ϕ(P ))(g)

=
1

2d′

2d
′∑

i=1

OiΦ(Pi).

(66)

Case II. PP T with repeated nonzero eigenvalues. One method to estimate frame averaging in the presence of repeated
nonzero eigenvalues is to use Monte Carlo integration, where each orthogonal matrix is sampled by drawing from each
O(ki). However, this approximation becomes inefficient when a certain algebraic multiplicity ki is large, especially in
high-dimensional spaces. To address this, we suggest a first-order perturbation-based method to reduce the algebraic
multiplicities of the eigenvalues. Consider a non-negative vector w ∈ Rn and apply weighted PCA (Atzmon et al., 2022):

ϕ(P ) = P diag(w)P T , (67)

where w is O(d)-invariant to P , making ϕ an O(d)-equivariant function, thus inducing a induced G-set. The design of
diag(w) can be such that it maps each P to a matrix with distinct nonzero eigenvalues, constructing the frame from the
eigenvectors of ϕ(P ). Note that if diag(w) = In, then ϕ(P ) reduces to the original case without perturbation.

Intuitively, w serves as scaling factors for each vector in P . Adjusting the length of each vector in P helps to break the
symmetry and reduce the corresponding cardinality of the stabilizer. Now, consider varying w starting from the all-one
vector 1. This alteration in w leads to perturbation in the eigenstructure of ϕ(P ).
Theorem H.1. There exist a non-negative vector z ∈ Rn such that all nonzero eigenvalues of ϕ(P ) = P diag(1+ z)P T

have algebraic multiplicity exactly one.

Proof. Given a matrix ϕ(P ) = PP T ∈ Rd×d, consider the following perturbation procedure to lift degeneracy in its
eigenvalues. The perturbation is performed on PP T using a series of vectors {zl}lmax

l=1 for each degenerate eigenvalue. The
aim is to adjust the eigenvalues to resolve degeneracies without introducing new ones. The perturbation process begins by
acknowledging that

P diag(1+ z)P T = PP T + P diag(z)P T . (68)

Thus, ϕ(P ) is effectively a perturbation by PzP T . Under perturbation theory, the eigenvalue λ′ and eigenvector v′ of the
perturbed matrix can be expressed as

λ′ = λ(0) + σλ(1) + σ2λ(2) + · · · , v′ = v(0) + σv(1) + σ2v(2) + · · · (69)

where λ(i) and v(i) are the i-th order terms in the expansion, with λ(0) and v(0) being the eigenvalue and eigenvector
of PP T , respectively. Given a degenerate eigenvalue λ and its degenerate eigenvectors v1,v2, · · · ,vm, the first-order
perturbation matrix M ∈ Rm×m is defined with entries

Mij = viP diag(z)P Tvj . (70)

Consider the iterative rank-one perturbation. The perturbation begins by iteratively modifying PP T with vectors {zl},
where zl is non-zero only at the kl-th entry during the l-th iteration for each degenerate eigenvalue. For example, the first
iteration involves a rank-one perturbation using z1, leading to

Mij = (z1)k1(P
Tvi)k1(P

Tvj)k1 , (71)
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which simplifies to M = (z1)k1
u1u

T
1 with u1 =

[
(P Tv1)k1

, · · · , (P Tvm)k1

]
. The choice of (z1)k1

is critical. It is
selected through an iterative approach, incrementing from a small value and ensuring that the resulting perturbed eigenvalue
does not introduce new degeneracies or match any other existing eigenvalue of PP T . This process continues, with the
perturbed eigenvalue being

λ+ (z1)k1

m∑
i=1

(u1)
2
i , (72)

and the algebraic multiplicity of λ is reduced by one after each perturbation. Subsequent iterations involve perturbing
P1P

T
1 = P diag(1+z1)P

T with z2, and so on. The process requires lmax = m−1 iterations to fully resolve the degeneracy
of λ. For a set of unique eigenvalues {λ1, λ2, · · · , λd′} of PP T , where η(λ) denotes the multiplicity of λ, the total time
complexity of these perturbations is O(

∑d′

i=1 η(λi)− d′). The final vector z is given by

z =

lmax∏
l=1

(1+ zl)− 1. (73)

This procedure ensures that the eigenvalues of PP T are perturbed in a controlled manner to lift degeneracies without
introducing new ones.

The algorithm is shown in Algorithm 3. For efficiency, the algorithm does not recompute P Tv but uses the one at the start
of the iteration. Also note that for each eigenspace, the eigenvectors are produced from the Gram-Schmidt process by the
projection of vectors of P , in each iteration, zl is O(d) invariant, and thus the perturbation z is O(d) invariant. As a result,
ϕ(P ) = P diag(1+ z)P T is an O(d)-equivariant frame without degenerate eigenvalues.

H.4. Euclidean Group E(d) and Special Euclidean Group SE(d)

Consider the Euclidean group E(d) = Rd⋊O(d) and special Euclidean group SE(d) = Rd⋊SO(d) acting on a continuous
function Φ : Rd×n → Rd×n. By Puny et al. (2021), this can be achieved such that first create a translation-equivariant
function by Appendix H.1, then apply a O(d)/SO(d)-equivariant frame to this translation-equivariant function, which can
be derived from our previous Appendix H.2.

H.5. General Linear Group GL(d,R) and Special Linear Group SL(d,R)

Consider the general linear group GL(d,R) and special linear group SL(d,R) acting on the left on a continuous function
Φ : Rd×n

∗ → Rd×n
∗ . Let P ∈ Rd×n

∗ , consider the induced GL(d,R)/SL(d,R)-set ϕ(P ) = PM , where the mask
M ∈ Rn×d is defined similar to Section 4.1 selecting the non-zero and linearly independent vectors from P .

For GL(n,R), we have ϕ(P ) ∈ GL(n,R) and thus ϕ(P )−1 ∈ GL(n,R). Let the canonical form c(ϕ(P )) =
ϕ(P )−1ϕ(P ) = Id which is in the orbit of ϕ(P ) and is unique. Then StabGL(d,R)(Id) = {Id} and the minimal frame
F̂ϕ(ϕ(P )) = {ϕ(P )}, and we obtain minimal frame averaging ⟨Φ⟩Fϕ◦ϕ(P ) = ϕ(P )Φ(ϕ(P )−1P ).

On the other hand, let D = sign(detϕ(P ))
d
√

|detϕ(P )|
Id and we have ϕ(P )D ∈ SL(d,R) and thus D−1ϕ(P )−1 ∈ SL(d,R). Let

the canonical form c(ϕ(P )) = D−1ϕ(P )−1ϕ(P ) = D−1 which is in the orbit of ϕ(P ) and SL(d,R)-invariant. Then,
StabSL(d,R)(D

−1) = {Id} and the minimal frame F̂ϕ(ϕ(P )) = {ϕ(P )D}, and we obtain minimal frame averaging
⟨Φ⟩Fϕ◦ϕ(P ) = ϕ(P )DΦ(D−1ϕ(P )−1P ).

Note that the induced set ϕ(P ) requires a determinant bound to ensure the stability of matrix inverse computation.

I. Experimental Details
I.1. Equivariance Errors on Random Synthetic Data

In this section, we first present the equivariance error defined in Equation (5) for several common groups, including
O(d),SO(d),U(d),SU(d),O(1, d−1),SO(1, d−1),E(d),SE(d),GL(d,R), and SL(d,R). We denote the model without
any frames as Plain, our minimal frame averaging as MFA, Puny et al. (2021)’s frame averaging method as FA and Duval
et al. (2023b)’s stochastic frame averaging as SFA. We adopt six models to test the equivariance error. Unless otherwise
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Algorithm 3 Eigenvalue Perturbation for Degeneracy Reduction

1: Input: matrix P , perturbation increment ϵ, perturbation start ϵstart, maximum times of sub-iteration lsubmax
2: z ← 1
3: kset ← set()
4: Compute eigenvalues and eigenvectors of PP T , denoted as λ and v
5: for each degenerate eigenvalue λ do
6: m← algebraic multiplicity of λ
7: Project P into the eigenspace of λ as P proj
8: Select m linearly independent vectors from P proj
9: Perform Gram-Schmidt orthogonalization to m linearly independent vectors to obtain eigenvectors v1,v2, · · · ,vm

10: V =
[
P Tv1,P

Tv2, · · · ,P Tvm

]
11: for l = 1 to m− 1 do
12: for k = 1 to d do
13: zl ← 0
14: if k in kset then
15: continue
16: end if
17: u← [V1k,V2k, · · · ,Vmk]
18: if

∑m
i=1(u)

2
i = 0 then

19: continue
20: else
21: Add k to kset
22: end if
23: ϵperturb = ϵstart
24: lsub = 0
25: while true do
26: lsub = lsub + 1
27: (zl)k = ϵperturb ∗ λ/

∑m
i=1(u)

2
i

28: Compute perturbed eigenvalue of P diag(1+ zl)P
T

29: if no new degeneracy is introduced then
30: break
31: end if
32: if lsub ≥ lsubmax then
33: break
34: end if
35: end while
36: P ← P

√
diag(1+ zl)

37: z ← z(1+ zl)
38: break
39: end for
40: end for
41: end for
42: z ← z − 1
43: return z
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Table 8. Canonical forms of common groups on the domain of S = Rd×n,Cd×n,Rd×n
∗ or Cd×n

∗ . While the permutation group Sn acts
on S by right multiplication, all the other groups act on S by left multiplication. Here, lexicographic sort refers to the sorting result of
the columns of P ∈ S by the row lexicographic order. The canonical graph is derived from the canonical labeling method (McKay
& Piperno, 2014). The canonical form R̂ is derived from our generalized QR decomposition, where ϕ(P ) = Q̂R̂ and Q̂ belongs to
the corresponding group. The canonical form H is derived from the polar decomposition ϕ(P ) = UH . For canonical form Λ and
J , Λii and Ji denote the eigenvalue and the Jordan block, respectively. ∼ denotes the equivalent relation, and Λ11 ∼ · · · ∼ Λdd and
J1 ∼ · · · ∼ Jm mean eigenvalues and Jordan blocks are unique up to permutation.

Group G Domain S ϕ(P ) Induced G-set Sϕ Canonical Form Matrix Decomposition

Sn Rd×n P Rd×n Lexicographical sort -
Sn Rd×n P TP Sym(n,R) Canonical graph -

(Rd,+) Rd×n 1
nP1 Rd 0 -

O(d) Rd×n PM Rd×m
∗ , d ≥ m R̂ QR decomposition

SO(d) Rd×n PM Rd×m
∗ , d ≥ m R̂ QR decomposition

O(1, d− 1) Rd×n PM Rd×m
∗ , d ≥ m R̂ QR decomposition

SO(1, d− 1) Rd×n PM Rd×m
∗ , d ≥ m R̂ QR decomposition

U(d) Cd×n
∗ PM Cd×d

∗ R̂ QR decomposition
SU(d) Cd×n

∗ PM Cd×d
∗ R̂ QR decomposition

SL(d,R) Rd×n
∗ PM Rd×d

∗ sign(detϕ(P )) d
√
|detϕ(P )|Id -

GL(d,R) Rd×n
∗ PM Rd×d

∗ Id -
O(d)/SO(d) Rd×n PP T Sym(d,R) Λ | Λ11 ∼ · · · ∼ Λdd Eigendecomposition
U(d)/SU(d) Cd×n PP T Sym(d,C) Λ | Λ11 ∼ · · · ∼ Λdd Eigendecomposition

O(d) Rd×n
∗ PP T SPos(d,R) H Polar decomposition

U(d) Cd×n
∗ PP T SPos(d,C) H Polar decomposition

GL(d,C)/SL(d,C) Cd×n PP T Sym(d,C) diag(J1, · · · ,Jm) | J1 ∼ · · · ∼ Jm Jordan decomposition

specified, they are GIN (Xu et al., 2018), GCN (Kipf & Welling, 2016), an MLP model, an MLP model with batch
normalization, a nonlinear function with ReLU given by

ΦReLU(x) = x+ ReLU(x) (74)

and a nonlinear function with the sin function given by

ΦSine(x) = sin(x)− x

∥x∥
. (75)

We provide further details regarding the synthetic data and the corresponding groups in the captions of the below figures.
Unless otherwise specified, each group experiment is conducted on 100 point cloud samples with coordinates independently
drawn from a Gaussian distribution with a mean of 0 and a standard deviation of 1 for each value. To better visualize the
figure, we apply log scaling. To prevent zero input, e.g., in the equivariance test of the permutation group, we add ϵ = 10−12

to each resulting value when encountering zero input.

I.2. n-Body Problem

Model. Similar to Puny et al. (2021); Kaba et al. (2023); Ruhe et al. (2023), our model follows the architecture proposed
by Satorras et al. (2021). Inspired by Ruhe et al. (2023), it integrates layer normalization (Ba et al., 2016) and dropout (Hinton
et al., 2012) in message passing layers. The architecture consists of 4 message passing layers, each with a hidden dimension
of 60, and employs a dropout rate of 0.1. Our generalized QR decomposition is used to compute the O(3)-equivariant frame,
which maintains a constant size of 1 across all data points, ensuring model equivariance with a single forward pass.

Training. The model is optimized using a Mean Absolute Error (MAE) loss criterion, employing the Adam opti-
mizer (Kingma & Ba, 2014). Training parameters include a batch size of 100, a learning rate of 1×10−3, and a weight decay
of 5 × 10−6 over 10,000 epochs. During training, to alleviate the discontinuity of canonicalization, input augmentation
through random rotations is applied, and FA-GNN is retrained under identical settings for fair comparison. Training and
evaluation are conducted on a single NVIDIA GeForce RTX 2080 Ti GPU.
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Table 9. Results on the IS2RE (initial structure to relaxed energy) task from OC20 (Chanussot et al., 2021). Models are trained
and evaluated on the IS2RE direct task, where the relaxed energy is predicted directly from the initial structure, as opposed to via
relaxation or Noisy Nodes data augmentation (Godwin et al., 2022; Liao & Smidt, 2022). Baselines are SCHNET (Schütt et al., 2018),
DIMENET++ (Gasteiger et al., 2020), GEMNET-T (Gasteiger et al., 2019), SPHERENET (Liu et al., 2022), COMENET (Wang et al.,
2022a), SEGNN (Brandstetter et al., 2021), EQUIFORMER (Liao & Smidt, 2022) and FAENET (Duval et al., 2023b).

ENERGY MAE [EV] EWT
MODEL ID OOD-CAT OOD-ADS OOD-BOTH AVERAGE ID OOD-CAT OOD-ADS OOD-BOTH AVERAGE

SCHNET 0.6372 0.6611 0.7342 0.7035 0.6840 2.96% 3.03% 2.22% 2.38% 2.65%
DIMENET++ 0.5716 0.5612 0.7224 0.6615 0.6283 4.26% 4.10% 2.06% 3.21% 3.40%
GEMNET-T 0.5561 0.5659 0.7342 0.6964 0.6382 4.51% 4.37% 2.24% 2.38% 3.38%
SPHERENET 0.5632 0.5590 0.6682 0.6190 0.6024 4.56 % 4.59 % 2.70 % 2.70 % 3.64%
COMENET 0.5558 0.5491 0.6602 0.5901 0.5888 4.17% 4.53% 2.71% 2.83% 3.56%
SEGNN 0.5310 0.5341 0.6432 0.5777 0.5715 5.32% 4.89 % 2.80 % 3.09 % 4.03 %
EQUIFORMER 0.5088 0.5051 0.6271 0.5545 0.5489 4.88 % 4.92 % 2.93 % 2.98 % 3.93 %

FAENET 0.5446 0.5707 0.6115 0.5449 0.5679 4.46% 4.67% 2.95 % 3.01 % 3.78%
MFAENET 0.5437 0.5415 0.6203 0.5708 0.5691 4.33% 4.54% 2.96 % 2.97 % 3.70%

I.3. Open Catalyst Dataset

Model. We perform a direct comparison to FAENET by training it using the MFA paradigm with generalized QR
decomposition in place of stochastic frame averaging as used by Duval et al. (2023b). Network configurations include a
radius cutoff of 6.0, 5 interaction layers, and a hidden dimension of 384. Frames are calculated based on an identical point
projection to 2D as employed by Duval et al. (2023b).

Training. The Adam optimizer is employed with a batch size of 256 and an initial learning rate of 2× 10−3, adjusted by a
cosine annealing scheduler over 12 epochs. Random reflection augmentation is used during training. The model is trained
and evaluated on an NVIDIA A100 GPU. Comprehensive results for the OC20 dataset are presented in Table 9.

I.4. Top Tagging Dataset

Model. LORENTZNET (Gong et al., 2022) is an very strong O(1, 3)-invariant baseline developed specifically for the
top tagging task. Each layer of LORENTZNET is designed to be O(1, 3)-equivariant and the final output is O(1, 3)-
invariant. We replace the invariant layer with the outer product between the invariant features and equivariant vectors,
following batch normalization and nonlinearities, thereby breaking the invariance of the final output. The model, termed
MINKGNN, incorporates 6 message passing layers with a hidden dimension of 72. Further refinement is achieved through
our generalized QR decomposition to establish an O(1, 3)-invariant frame, resulting in an O(1, 3)-invariant model referred
to as MFA-MINKGNN.

Training. Both MINKGNN and MFA-MINKGNN are optimized using the Adam optimizer, with a batch size of 64, a
learning rate of 5× 10−4, a weight decay of 1× 10−2, and a cosine annealing scheduler over 100 epochs. We then evaluate
them with the Exponential Moving Average (EMA) with a decay of 0.995. Training and evaluation are conducted on 1
NVIDIA A100 GPU. Comprehensive results for the top tagging dataset are presented in Table 10.

I.5. Graph Separation

Model. For both the GRAPH8C and EXP datasets, we adopt the MLP and GIN models as used by Puny et al. (2021) for
the graph separation task. Using our custom implementation of the nauty canonical labeling algorithm (McKay, 2007), we
generate canonical graphs for each sample and concatenate these to their respective inputs. Given the directed graph input
and the permutation invariance of the task, frame sampling is unnecessary, allowing direct computation as per Equation (4).

Training. Optimization is performed using the Adam optimizer, with settings including a learning rate of 0.001 and a
batch size of 100 across 200 epochs.
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Table 10. Accuracy and AUC for the top tagging experiment. Baselines are RESNEXT (Xie et al., 2017), PARTICLENET (Qu & Gouskos,
2020), EGNN (Satorras et al., 2021), LGN (Bogatskiy et al., 2020), LORENTZNET (Gong et al., 2022), and CGENN (Ruhe et al., 2023).

METHOD ACCURACY AUC

RESNEXT 0.936 0.9837
PARTICLENET 0.940 0.9858
EGNN 0.922 0.9760
LGN 0.929 0.9640
LORENTZNET 0.942 0.9868
CGENN 0.942 0.9869
MFA-MINKGNN 0.942 0.9869

I.6. Convex Hull

Model. We employ a MLP model with a hidden dimension of 32 for projections of both the feature and node dimensions,
rendering the model neither Sn-invariant nor O(5)-invariant. After being centered, vectors from the origin of points are used
as input. The frame is made Sn-equivariant and O(5)-invariant using the inner product matrix of vectors and is subsequently
applied to a O(5)-invariant frame to achieve an Sn ×O(5)-invariant frame averaging. The canonicalization of the inner
product matrix follows the methodology described in Appendix F.

Training. The convex hull dataset, comprising 16,384 samples for each of the training, validation, and test sets, is
generated following Ruhe et al. (2023). Training utilizes the Adam optimizer with a learning rate of 0.001, a batch size of
128, and a cosine annealing scheduler.

J. Limitations
As shown by Theorem 3.2 and Theorem 3 of Puny et al. (2021), the size of an equivariant frame is lower-bounded by
the size of the stabilizer, which can be large for highly symmetric objects such as fully-connected graphs. A remaining
challenge for frame averaging methods in general is therefore how to tractably compute the operator for large frames without
compromising exact equivariance. Furthermore, our proposed canonicalization algorithm for Gη(d)-equivariant frames
may suffer from discontinuities, as determining the null and linearly dependent vectors in P is a discontinuous procedure.
Recent work by Dym et al. (2024) highlights such discontinuities as a limiting factor for frame averaging methods. Dym
et al. (2024) prove that continuous canonicalizations for Sn,O(d), and SO(d) do not exist and therefore propose the use of
weighted frames with weak equivariance as a more robust alternative.
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Figure 1. Comparative illustrations of equivariance test on the groups O(3),O(5), SO(3), SO(5),E(3),E(5),SE(3), and SE(5). Figures
(a) and (b) depict the outcomes for O(3) and O(5), figures (c) and (d) display the results for SO(3) and SO(5), figures (e) and (f) show
the results for E(3) and E(5), figures (g) and (h) demonstrate the results for SE(3) and SE(5), respectively. Data for left column is
randomly sampled with a shape of 100× 3 and data for the right column is randomly sampled with a shape of 20× 5. All figures show
the effectiveness of both our frame averaging method and original frame averaging method (Puny et al., 2021).
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Figure 2. Illustrations of equivariance test on the groups O(5),SO(5),E(5),SE(5) with degenerate singular values. All data is randomly
sampled with a shape of 20× 5 with 3 repeated singular values. As shown above, the original frame averaging method (Puny et al., 2021)
fails the degenerate cases due to the repeated eigenvalues causing the frame size into infinity, while our method is not affected by the
repeated eigenvalues and our minimal frame averaging is still equivariant to these groups.
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Figure 3. Illustrations of equivariance test on the groups O(1, 3),SO(1, 3),GL(3,R),SL(3,R). As the original frame averaging
method (Puny et al., 2021) does not give the frame construction for these groups, we only compare with the model without our method.
The data for O(1, 3) and SO(1, 3) is randomly sampled with a shape of 100 × 4, and data for GL(3,R) and SL(3,R) is randomly
sampled with a shape of 100× 3. All the error scaling our method in the figures of is below 1e1e−3, showing that our method is indeed
equivariant with respect to these group.
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Figure 4. Illustrations of equivariance test on the groups U(3), SU(3), Sn, Sn ×O(3), Sn ×O(1, 3). In (d), the first two rows correspond
to the error test of Sn ×O(3) and the last two rows correspond to that of Sn ×O(1, 3). As the original frame averaging method (Puny
et al., 2021) does not give the frame construction for these groups, we only compare with the model without our method. The data for
U(3) and SU(3) is randomly sampled with a shape of 100× 3, data for Sn ×O(3) is randomly sampled with a shape of 32× 3, and
data for Sn ×O(1, 3) is randomly sampled with a shape of 32× 4. Note that the networks used for these groups are different from the
previous groups to accommodate the properties of these groups. The MLP models used for both U(3) and SU(3) are complex valued
networks, and the MLP models used for Sn×O(3) and Sn×O(1, 3) are transforming both the node dimension and the feature dimension,
and are neither Sn ×O(3) nor Sn ×O(1, 3)-equivariant. Specially, the Sn ×O(3)/O(1, 3)-equivariant frame is created by applying
Sn-equivariant and O(3)/O(1, 3)-invariant frame to the MLP with O(3)/O(1, 3)-equivariant frame, corresponding to Section 5.3.
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