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Abstract

Sepsis prediction models remain opaque to clinicians which hinder clinician adop-1

tion: without understanding why a patient is flagged as high-risk, accurate pre-2

dictions may be ignored, delaying critical intervention. Existing explainability3

methods focus on feature importance and often overlook timing, thus failing to4

capture the temporal influences inherent in time-series data. We propose Positional5

Explanation, which separates attributions into feature content and it’s position to6

highlight temporal effects, enabling clinicians to identify early warning indicators7

and monitor for specific physiological changes at critical time windows before sep-8

sis develops. Applied to GPT-2 and Mamba models finetuned for sepsis prediction9

on PhysioNet and MC-MED benchmarks, our method achieves higher faithfulness10

scores and reveals temporal patterns in sepsis progression that existing techniques11

miss, potentially enabling earlier detection and improved patient outcomes.12

1 Sepsis Prediction Demands Explanations of Both What and When13

Sepsis is a leading cause of hospital mortality, primarily because it is often detected after irreversible14

organ damage [Seymour et al., 2016]. While deep learning models can predict its onset with high15

accuracy, they typically only signal that the risk of sepsis is high, not why [Yuan et al., 2020, Bomrah16

et al., 2024]. This leaves a ‘lab-to-bedside’ gap: without understanding the subtle physiological17

patterns that precede overt signs, clinicians cannot act on predictions early enough to save lives.18

Explainable AI (XAI) methods have the potential to bridge this gap. Beyond fostering trust, these19

methods can turn predictive models into tools for clinical discovery [Wong et al., 2021, Shashiku-20

mar et al., 2021, Adams et al., 2022]. However, existing explanation methods are fundamentally21

misaligned with the temporal nature of diseases like sepsis.22

Sepsis is a disease of trajectory; a patient’s physiological trend over time—the when—is often more23

diagnostically significant than any single measurement—the what [Zhu et al., 2023]. An elevated24

heart rate, for instance, may signal danger when it appears early and persists, yet prove benign if25

transient. Despite this temporal criticality, existing explanation methods like LIME [Ribeiro et al.,26

2016] and Integrated Gradients [Sundararajan et al., 2017] only quantify feature importance, leaving27

temporal dynamics unexplained.28

This limitation reflects a broader ML challenge: deep models are highly sensitive to input order;29

even simple reordering can change predictions [Liu et al., 2024, Wang et al., 2024]. This positional30

sensitivity in sequence modeling parallels temporal sensitivity in time-series tasks like sepsis. Yet31

current explainers cannot answer the key diagnostic question: “Is a feature important because of its32

value, or because of its timing?"33

To address this, we introduce Positional Explanation, a framework that separates attributions into34

two components: (1) a feature content score reflecting its intrinsic clinical value, and (2) a position35

score that quantifies the importance of the temporal effect. We apply our framework to Mamba [Gu36

and Dao, 2024] and GPT-2 [Radford et al., 2019] models for sepsis prediction, using the PhysioNet37
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Figure 1: Feature content attribution score α(feature) and absolute position attribution score α(position)

for a representative example from the PhysioNet dataset. The visualization demonstrates that feature
importance and positional importance differ substantially: while TEMP measurements maintain
consistent feature content attribution across time steps, their positional importance increases over time,
indicating that there is a temporal effect of TEMP measurement importance for sepsis prediction.

[Reyna et al., 2020] and MC-MED [Kansal et al., 2025] datasets. To summarize, our contributions38

are:39

• We formalize a framework called Positional Explanation that decomposes attribution scores into40

feature and position effects for time-series data.41

• We demonstrate through quantitative experiments that our decomposition provides more faithful42

explanations than existing explanation methods.43

• We show that our framework identifies clinically relevant, time-dependent biomarkers missed by44

existing methods, offering more actionable insights for clinicians.45

2 Positional Explanation: Separating Feature Effects from Temporal Effects46

Feature attribution assigns an importance score to each input feature [Doshi-Velez and Kim, 2017],47

answering: “Which features contributed most to the model’s prediction?" Formally, for a model48

f : X → Y and input x ∈ X , an explainer g maps the model and input to an attribution vector:49

α = g(f, x) ∈ Rd, (1)

where d is the dimensionality of x. The entry αi measures the combined influence of the i-th feature50

content xi and its position on the model’s prediction f(x).51

Existing explainers consider only (f, x), with no positional information. Perturbation-, gradient-, and52

decomposition-based methods [Ribeiro et al., 2016, Lundberg and Lee, 2017, Sundararajan et al.,53

2017, Srinivas and Fleuret, 2019] assign importance to features based on their values alone.54

Positional Explanation Framework. We propose Positional Explanation, a framework to separate55

feature content and positional contributions. It is general and compatible with any attribution method.56

Given feature x ∈ X and position p ∈ P , the framework outputs57

α = (α(feature), α(position)) = g(f, x, p) ∈ R2d, α(feature), α(position) ∈ Rd (2)

As shown in Equation (2), our explainer g takes f, x, p as input. Figure 1 illustrates α(feature) and58

α(position) over time. α(feature)
i quantifies the effect of xi given its position (feature importance), while59

α
(position)
i measures the contribution of pi independent of the feature (positional importance).60

Positional-LIME as an Example. To illustrate, consider Local Interpretable Model-Agnostic61

Explanations(LIME) [Ribeiro et al., 2016]. Standard LIME generates perturbed samples62

z = m⊙ x ∈ Rd, mi ∼ Bernoulli(0.5), (3)
where mi = 0 zeros out xi and mi = 1 retains it. LIME then fits a weighted linear model63

α = g(f, x) = w ∈ Rd, (4)
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Table 1: Faithfulness comparison across datasets, models, and explanation methods. PE-Feature
consistently outperforms Feature-only, and PE-Position outperforms Position-only, demonstrating
more faithful identification of important features.

(a) Insertion AUC (higher is better)

Dataset Model Method Feature-only Position-only PE-Feature PE-Position Random

PhysioNet GPT-2 LIME 0.354 0.323 0.419 0.396 0.214
PhysioNet GPT-2 IntGrad 0.361 0.346 0.427 0.412 0.221
PhysioNet GPT-2 MFABA 0.351 0.325 0.417 0.402 0.208
PhysioNet Mamba LIME 0.347 0.331 0.392 0.401 0.213
MC-MED GPT-2 LIME 0.313 0.301 0.381 0.392 0.192
MC-MED Mamba LIME 0.319 0.311 0.393 0.403 0.201

(b) Deletion AUC (lower is better)

Dataset Model Method Feature-only Position-only PE-Feature PE-Position Random

PhysioNet GPT-2 LIME 0.020 0.016 0.008 0.007 0.110
PhysioNet GPT-2 IntGrad 0.019 0.021 0.009 0.011 0.112
PhysioNet GPT-2 MFABA 0.018 0.015 0.007 0.006 0.109
PhysioNet Mamba LIME 0.021 0.019 0.011 0.007 0.102
MC-MED GPT-2 LIME 0.007 0.032 0.006 0.011 0.226
MC-MED Mamba LIME 0.072 0.113 0.066 0.053 0.199

so that each αi reflects the local effect of xi on f(x).64

In Positional-LIME, positions are treated as additional features. To avoid out-of-distribution issues65

from zeroing positional embeddings, we instead replace them with randomized positional embeddings:66

z = m⊙ (x, p) ∈ R2d, mi ∼ Bernoulli(0.5), (5)

therefore mi = 0 indicates that the feature xi is masked and the position pi is replaced with random67

positional embedding. The resulting attributions can be expressed as68

g(f, x, p) = α = (α(feature), α(position)) ∈ R2d, α(feature), α(position) ∈ Rd, (6)

separating feature importance and positional importance (the temporal effect in time-series data) in69

one step.70

3 Positional Explanation Yields More Faithful Explanations71

We evaluated GPT-2 (124M) [Radford et al., 2019] and Mamba-130M [Gu and Dao, 2024] on the72

PhysioNet [Reyna et al., 2020] and MC-MED [Kansal et al., 2025] datasets for sepsis prediction73

using CareBench checkpoints [Choi et al., 2025]. Both models achieved over 86% accuracy (Table 2),74

making them suitable for subsequent explanation analyses.75

We examine whether decomposing attributions into feature and positional components using our76

Positional Explanation (PE) framework improves explanation faithfulness. This decomposition77

enables differentiation between patients whose high risk stems from chronically abnormal lab values78

and those whose risk arises from sudden, recent changes, supporting more targeted clinical review.79

To evaluate faithfulness, we conduct insertion and deletion tests and report average AUC scores. We80

compare six conditions: feature-only baseline, position-only baseline, PE-Feature (feature component81

from Positional Explanation), PE-Position (positional component from Positional Explanation),82

PE-Combined (both components from Positional Explanation), and a random baseline. Detailed83

descriptions of each approach are provided in Appendix C.1.84

As shown in Table 1, across all settings, PE-Feature consistently improves insertion and deletion85

scores over Feature-only, while PE-Position outperforms Position-only. These results demonstrate86

that separating feature and temporal contributions yields more faithful explanations, independent of87

the underlying attribution method. Complete results are provided in Appendix C.3.88

3



(a) Histogram of correlations for measurements ap-
pearing more than five times using Position-LIME.
Some measurements are inherently time-correlated,
while others are not.

(b) LLM (GPT 5) verification accuracy for detecting tem-
poral correlations. Using PE outperforms the baseline,
indicating that decomposing attribution signals more ac-
curately identifies true temporal dependencies.

Figure 2: Temporal correlation analysis per measurements. (a) shows correlation distributions for
frequently occurring measurements, while (b) evaluates the effectiveness of PE in detecting true
temporal dependencies compared to baseline methods.

4 Positional Explanation Reveals Temporal Dependencies89

We assessed whether feature (α(feature)) and positional (α(position)) attributions are linearly related per90

measurement using the Pearson correlation coefficient. High correlation indicates strong temporal91

dependence, while low correlation suggests independence. Statistical significance was evaluated via92

p-values (see Appendix D.1.1 for computation details).93

Figure 2a shows the distribution of absolute correlation values, revealing variability in temporal94

dependence: some measurements are time-dependent, while others are largely independent.95

Examples from MC-MED using GPT-2 with Position-LIME:96

High temporal correlation: LABPTT, GLOBULIN, WAM DIFTYP, TEMP97

Low temporal correlation: AGE, RACE, AST (SGOT), PLATELET COUNT (PLT)98

These findings suggest that static variables (e.g., demographics, baseline labs) are generally position-99

independent, whereas dynamic variables (e.g., coagulation tests, temperature) exhibit strong temporal100

dependence. Full correlation values and p-values are reported in Appendix D.1.2.101

To validate our hypothesis that separating attribution into feature and positional components is helps102

identifying true temporal dependencies, we conduct an evaluation using a Large Language Model103

(LLM) as a proxy for ground-truth verification. We compare two methods for measuring temporal104

correlations, with results presented in Figure 2b.105

The baseline uses correlation between feature-only and position-only attribution. We compare it106

to correlation between PE-Feature and PE-Position using our Positional Explanation framework.107

For evaluation, we group feature-position pairs into three bins based on their computed correlation108

scores: high correlation (correlation > 0.7), moderate correlation (0.3 < correlation ≤ 0.7), and low109

correlation (correlation ≤ 0.3). Within each bin, we measure the LLM verification accuracy to assess110

how well our correlation scores align with LLM-verified temporal dependencies. The results show111

that our PE-based attribution consistently achieves higher verification rates across all correlation bins,112

demonstrating that separating the score improves the identification of features with genuine temporal113

effects and confirming the effectiveness of our method in detecting temporal correlations. We also114

show qualitative result of what the LLM output for such correlation in Appendix D.115

Future Work. While these results are promising, broader clinical validation is necessary. Current116

evaluation relies primarily on LLM-based models. We will engage multiple clinicians specialized in117

sepsis to evaluate real-world interpretability, trust, and utility. To demonstrate generality, we plan to118

extend the framework to new models, develop scalable metrics for temporal effects, and integrate it119

into clinical decision support systems for timely, actionable alerts.120
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A Related Work217

The drive to deploy predictive models in high-stakes clinical settings has led to a surge in research on218

explainable AI (XAI) for medical time series data [Tonekaboni et al., 2019, Topol, 2019]. The primary219

goal is to move beyond black-box predictions and provide clinicians with transparent, trustworthy,220

and actionable insights, thereby fostering adoption and facilitating model auditing. This need is221

particularly acute in sepsis prediction, where timely and interpretable predictions can directly impact222

patient outcomes.223

The dominant paradigm for explaining time-series models relies on post-hoc feature attribution224

methods that generate saliency maps. Foundational techniques like LIME [Ribeiro et al., 2016],225

SHAP [Lundberg and Lee, 2017], and Integrated Gradients [Sundararajan et al., 2017] are commonly226

adapted to clinical time series including sepsis prediction, assigning an importance score to each227

feature at each timestep [Shickel et al., 2017, Lauritsen et al., 2020]. More recent work has sought228

to create methods tailored specifically for time series, such as TimeSHAP [Bento et al., 2021] or229

Dynamask [Crabbé and van der Schaar, 2020], which aim to produce more faithful explanations230

by considering the temporal nature of the data. Other approaches generate explanations through231

counterfactuals—identifying what minimal changes to an input sequence would alter the model’s232

prediction [Goyal et al., 2021, Ismail and Günnemann, 2021].233

However, a critical and unaddressed limitation unites these methods: they treat each feature-timepoint234

observation as an atomic unit. Consequently, the resulting attribution score—whether from a saliency235

map or a counterfactual—fundamentally conflates the importance of a feature’s content (the ‘what’)236

with the importance of its temporal position (the ‘when’). For instance, in sepsis prediction, a standard237

explanation cannot distinguish whether an elevated lactate reading is flagged because lactate is a238

clinically significant marker of sepsis or because the model has learned a spurious recency bias where239

any observation in the final timestep is overweighted [Jain and Wallace, 2019, Ismail and Günnemann,240

2021]. This entanglement prevents a deeper audit of the model’s temporal reasoning, which is crucial241

for sepsis where the timing of physiological changes carries diagnostic significance.242

This limitation is particularly striking given that modern sequence models, like the Transformer and243

Mamba, explicitly separate content and position through distinct token and positional embeddings244

[Vaswani et al., 2017, Gu and Dao, 2024]. While the model’s architecture maintains this separa-245

tion—enabling it to learn both what features matter and when they matter—the explanation methods246

used to interpret them do not. This is especially problematic for sepsis onset prediction, which is247

fundamentally a temporal problem where understanding both the clinical markers and their temporal248

evolution is essential for meaningful interpretation.249

B Experimental Setup250

B.1 Dataset Description251

B.1.1 Datasets252

We utilize sepsis prediction datasets curated by CAREBench [Choi et al., 2025], which processes two253

publicly available datasets: PhysioNet 2019 [Reyna et al., 2020] and MC-MED [Kansal et al., 2025].254

PhysioNet 2019 comprises over 40,000 ICU patients with up to 40 clinical variables recorded hourly,255

totaling 2.5 million hourly time windows. The dataset includes vital signs, laboratory values, and256

demographics in tabular format without physiological waveforms.257

MC-MED contains 118,385 emergency department visits from 70,545 unique patients (2020–2022).258

This dataset uniquely combines minute-level vital signs and continuous physiological waveforms259

(ECG, photoplethysmogram, respiration) with comprehensive clinical data including demographics,260

medical histories, medications, and laboratory results.261

B.1.2 Sepsis Prediction Task Curation262

CAREBench adapted the curation methodology to each dataset’s clinical setting and available data.263

PhysioNet 2019: Sepsis labels were pre-defined using Sepsis-3 criteria, requiring both clinical264

suspicion of infection (blood culture or IV antibiotic orders) and a two-point SOFA score change.265

7



MC-MED: CAREBench implemented a two-stage process:266

1. At-Risk Cohort Selection – Patients meeting all criteria:267

• Admission source of ED268

• Temperature < 36◦C or > 38.5◦C within 24 hours of admission (Temp_time)269

• At least one of the following within 24 hours of admission:270

◦ WBC Count > 12K or < 4K/µL (WBC_time)271

◦ HR > 90 bpm (HR_time)272

◦ RR > 20 (RR_time)273

• At least 1 of the WBC_time, HR_time, RR_time within 12 hours of Temp_time274

• No intravenous antibiotic at or before the time of the first criteria met275

2. Sepsis Labeling – Adapted Sepsis-3 definition for ED settings with h = 1.5 hour prediction276

horizon. Positive labels assigned when emergency SOFA (eSOFA) criteria met:277

• Presumed serious infection:278

◦ Blood culture obtained (regardless of the results)279

◦ ≥ 4 QADs starting within ± 2 days of blood_culture_day280

• Any 1 of below within ± 2 days of blood_culture_day (acute organ dysfunction):281

◦ Vasopressor initiation282

◦ Initiation of mechanical ventilation283

◦ Doubling in serum creatinine level or decrease by ≥ 50% of eGFR (excluding patients284

with end-stage kidney disease [585.6])285

◦ Total bilirubin level ≥ 2.0mg/dL and doubling286

◦ Platelet count < 100 cells/µL and ≥ 50% decline from baseline (excluding baseline <287

100 cells/µL)288

◦ Serum lactate ≥ 2.0 mmol/L289

B.2 Model Description290

We employed GPT-2 (124M parameters) [Radford et al., 2019] and Mamba-130M [Gu and Dao,291

2024], pre-trained language models fine-tuned for sepsis prediction using the CAREBench-curated292

datasets.293

B.2.1 Model Architectures294

GPT-2 Small: A 124M parameter decoder-only transformer with 12 layers, 768 hidden dimensions,295

and 12 attention heads. Its autoregressive architecture with causal self-attention naturally captures296

temporal dependencies in patient trajectories, leveraging pre-trained sequential representations for297

modeling physiological progression patterns.298

Mamba-130M: A 130M parameter state-space model addressing transformer limitations in long-299

sequence processing. Its selective state-space mechanism achieves linear complexity with sequence300

length, enabling efficient processing of extended patient histories. The architecture’s continuous-time301

formulation aligns naturally with physiological processes, offering advantageous inductive biases for302

modeling sepsis dynamics.303

B.2.2 Training Configuration304

Following CAREBench methodology:305

• Custom Tokenization: Dataset-specific tokenizers handle hospital-specific medical codes and306

limited vocabulary307

• Training Duration: 100 epochs ensuring convergence on limited medical data308

• Hyperparameter Selection: Learning rate ∈ {1× 10−5, 5× 10−5, 1× 10−4} via validation309

performance310

This configuration enables effective adaptation from general language understanding to domain-311

specific temporal patterns and medical terminology in sepsis prediction.312
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Table 2: Performance of GPT2 and Mamba on the MC-MED and Physionet datasets. The models
achieve sufficiently high predictive performance on sepsis prediction tasks, making them suitable for
subsequent analysis and explanation.

Dataset Finetuned Model Accuracy F1 AUC AUPRC

PhysioNet [Reyna et al., 2020] GPT-2 [Radford et al., 2019] 0.8680 0.2048 0.7069 0.1802
Mamba [Gu and Dao, 2024] 0.8930 0.0531 0.3509 0.0403

MC-MED [Kansal et al., 2025] GPT-2 [Radford et al., 2019] 0.9490 0.1053 0.3536 0.0900
Mamba [Gu and Dao, 2024] 0.8940 0.0536 0.3743 0.0443

B.3 Explanation Methods313

This section briefly describes the explanation methods employed in conjunction with our Positional314

Explanation approach.315

• LIME (Local Interpretable Model-agnostic Explanations) [Ribeiro et al., 2016] generates316

local explanations for individual predictions by fitting an interpretable surrogate model (typically317

linear) within the neighborhood of the target instance. The method creates perturbations around318

the input sample and trains the surrogate model on these variations, with samples weighted by319

their proximity to the original instance.320

• SHAP (SHapley Additive exPlanations) [Lundberg and Lee, 2017] computes feature impor-321

tance scores based on cooperative game theory principles. Each feature receives an attribution322

value representing its marginal contribution to the prediction relative to a baseline, with the323

property that all attribution values sum to the difference between the model’s output and the324

baseline prediction.325

• Integrated Gradients (IntGrad) [Sundararajan et al., 2017] computes feature attributions by326

integrating gradients along a linear path from a baseline input to the target input. This path327

integral approach ensures satisfaction of fundamental attribution axioms, including sensitivity328

and implementation invariance.329

• FullGrad [Srinivas and Fleuret, 2019] extends standard gradient-based attribution by incorpo-330

rating gradient information from all network layers. The method aggregates input gradients with331

bias gradients across all intermediate representations, providing more comprehensive attribution332

maps that capture multi-layer feature interactions.333

• MFABA (More Faithful and Accelerated Boundary-based Attribution) [Zhu et al., 2024]334

computes attributions by constructing paths from input samples to adversarial examples that335

cross the model’s decision boundary. The method employs second-order Taylor approximations336

to better model loss function changes during gradient ascent optimization.337

Generalization to Other Explainers. More generally, our Positional Explanation framework338

extends to any attribution method (e.g., SHAP [Lundberg and Lee, 2017], Integrated Gradients [Sun-339

dararajan et al., 2017], FullGrad [Srinivas and Fleuret, 2019], MFABA [Zhu et al., 2024]). By340

computing α(feature) and α(position) separately, we separate feature content and positional contributions,341

providing a more fine-grained understanding of model predictions.342

C Additional Faithfulness Test Results343

This section presents comprehensive results from our insertion and deletion experiments across all344

experimental configurations. We systematically evaluate faithfulness across two datasets (PhysioNet345

and MC-MED), two transformer architectures (GPT-2 and Mamba), and five explanation methods346

(LIME, SHAP, Integrated Gradients, FullGrad, MFABA).347

C.1 Faithfulness Test Experimental Setup348

For each explanation method, we compare five attribution approaches:349

• Feature-only: Traditional perturbation-based explanations350

• Position-only: Positional explanation perturbing only position351

• PE-Feature: Feature component of our Positional Explanation framework352
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• PE-Position: Position component of our Positional Explanation framework353

• PE-Full: Both feature and position components of our Positional Explanation framework354

• Random: Baseline for comparison355

We employ two complementary faithfulness metrics: insertion tests (where higher AUC indicates356

better faithfulness) and deletion tests (where lower AUC indicates better faithfulness).357

C.2 Key Findings358

The results demonstrate consistent improvements in explanation faithfulness when separating posi-359

tional and feature components:360

Insertion Test Performance. Our positional explanation components (PE-Feature and PE-Position)361

consistently outperform their traditional counterparts (Feature-only and Position-only) across all362

experimental configurations. PE-Feature achieves higher AUC scores than Feature-only, while363

PE-Position surpasses Position-only, indicating more faithful identification of important features.364

Deletion Test Performance. The superiority of our approach is further confirmed in deletion365

tests, where PE-Feature consistently achieves lower AUC scores than Feature-only, and PE-Position366

outperforms Position-only. Lower scores in deletion tests indicate that removing highly-attributed367

features causes greater performance degradation, confirming these features are indeed more important368

for model predictions.369

Cross-Architecture and Cross-Method Consistency. The improvements hold across both GPT-370

2 and Mamba architectures, as well as different explanation methods including gradient-based371

attribution, attention-based explanations, and perturbation-based approaches, demonstrating the broad372

generalizability of our positional explanation approach.373

C.3 Detailed Results374

Tables 3a and 3b present the complete faithfulness evaluation results across all experimental configu-375

rations. The insertion test results demonstrate the ability of each method to identify truly important376

features, while the deletion test results show how effectively each method identifies features whose377

removal significantly impacts model performance. These comprehensive results validate our theoreti-378

cal framework and demonstrate the practical benefits of separating positional and feature attributions379

in transformer explanations.380

D Additional Independence Test Results381

D.1 Independence Test Analysis382

This section presents the complete results from our independence test analysis, expanding on the383

verification scores reported in Section 4.384

D.1.1 Measurements385

The correlation was measured using the Pearson correlation coefficient:386

r =

∑n
i=1(α

(feature)
i − α(feature))(α

(position)
i − α(position))√∑n

i=1(α
(feature)
i − α(feature))2

√∑n
i=1(α

(position)
i − α(position))2

, (7)

where r ∈ [−1, 1], α(feature) is the mean feature attribution, and α(position) is the mean positional387

attribution. Values of r close to 1 or −1 indicate strong positive or negative correlation, while values388

near 0 suggest little to no linear relationship.389

To assess statistical significance, we tested the null hypothesis:390

H0 : r = 0 (feature and positional attributions are uncorrelated).

The corresponding p-value quantifies the probability of observing a correlation at least as extreme as391

the measured r under H0. At the α = 0.05 significance level,392
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Table 3: Our Positional Explanation (PE) framework consistently outperforms traditional attribution
methods. PE-Feature and PE-Position achieve higher insertion AUC and lower deletion AUC
than their Feature-only and Position-only counterparts, confirming more faithful identification of
important features. The improvements hold across both GPT-2 and Mamba architectures and multiple
explanation methods. PE = Positional Explanation, Feat = Feature, Pos = Position.

(a) Insertion test results (AUC). Higher values indicate more faithful performance.

Dataset Model Explanation Feat-only Pos-only PE-Feat PE-Pos PE-Full Random

PhysioNet

GPT-2

LIME 0.354 0.323 0.419 0.396 0.465 0.214
SHAP 0.342 0.337 0.403 0.401 0.452 0.209

IntGrad 0.361 0.346 0.427 0.412 0.478 0.221
FullGrad 0.336 0.314 0.384 0.393 0.443 0.215
MFABA 0.351 0.325 0.417 0.402 0.461 0.208

Mamba

LIME 0.347 0.331 0.392 0.401 0.454 0.213
SHAP 0.352 0.323 0.415 0.395 0.463 0.207

IntGrad 0.364 0.348 0.431 0.416 0.472 0.226
FullGrad 0.338 0.312 0.393 0.382 0.445 0.218
MFABA 0.353 0.334 0.422 0.404 0.460 0.202

MC-MED

GPT-2

LIME 0.313 0.301 0.381 0.392 0.434 0.192
SHAP 0.321 0.314 0.392 0.403 0.446 0.207

IntGrad 0.332 0.322 0.413 0.421 0.461 0.215
FullGrad 0.303 0.296 0.375 0.384 0.421 0.194
MFABA 0.324 0.312 0.401 0.395 0.452 0.203

Mamba

LIME 0.319 0.311 0.393 0.403 0.442 0.201
SHAP 0.331 0.322 0.414 0.411 0.451 0.214

IntGrad 0.339 0.336 0.421 0.432 0.463 0.223
FullGrad 0.312 0.303 0.382 0.391 0.433 0.208
MFABA 0.330 0.321 0.412 0.410 0.450 0.212

(b) Deletion test results (AUC). Lower values indicate more faithful performance.

Dataset Model Explanation Feat-only Pos-only PE-Feat PE-Pos PE-Full Random

PhysioNet

GPT-2

LIME 0.020 0.016 0.008 0.007 0.002 0.110
SHAP 0.019 0.018 0.007 0.008 0.003 0.102

IntGrad 0.019 0.021 0.009 0.011 0.005 0.112
FullGrad 0.017 0.019 0.010 0.010 0.004 0.111
MFABA 0.018 0.015 0.007 0.006 0.002 0.109

Mamba

LIME 0.021 0.019 0.011 0.007 0.001 0.102
SHAP 0.021 0.018 0.012 0.007 0.002 0.103

IntGrad 0.011 0.011 0.008 0.009 0.003 0.111
FullGrad 0.010 0.012 0.007 0.008 0.001 0.113
MFABA 0.020 0.017 0.010 0.006 0.001 0.100

MC-MED

GPT-2

LIME 0.007 0.032 0.006 0.011 0.005 0.226
SHAP 0.011 0.024 0.010 0.013 0.006 0.228

IntGrad 0.053 0.103 0.037 0.077 0.035 0.218
FullGrad 0.049 0.098 0.036 0.064 0.032 0.220
MFABA 0.022 0.030 0.014 0.012 0.015 0.225

Mamba

LIME 0.072 0.113 0.066 0.053 0.045 0.199
SHAP 0.085 0.116 0.058 0.056 0.046 0.201

IntGrad 0.089 0.102 0.047 0.057 0.033 0.204
FullGrad 0.086 0.098 0.046 0.055 0.031 0.206
MFABA 0.071 0.111 0.065 0.052 0.044 0.200

• If p < 0.05: we reject H0, concluding significant correlation.393

• If p ≥ 0.05: we fail to reject H0, finding no clear evidence of correlation.394
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D.1.2 Temporal Correlation Patterns395

Our analysis identified distinct patterns in temporal correlation across different medical measurements:396

Examples of independent features (low correlation, high p-value) using Positional-LIME on the397

MC-MED dataset with GPT-2 included:398

• AGE: correlation = 0.0244, p = 0.9020399

• RACE: correlation = -0.0330, p = 0.8675400

• AST (SGOT): correlation = -0.0082, p = 0.9668401

• PLATELET COUNT (PLT): correlation = 0.0301, p = 0.8888402

Examples of independent features (low correlation, high p-value) using Positional-LIME on the403

MC-MED dataset with GPT-2 included:404

• LABPTT: correlation = 0.9080, p = 1.11e-04405

• GLOBULIN: correlation = 0.9061, p = 3.90e-05406

• WAM DIFTYP: correlation = 0.8447, p = 2.15e-03407

• TEMP: correlation = 0.6659, p = 3.55e-02408

These findings suggest that certain static variables (e.g., demographics, baseline labs) remain position-409

independent, while dynamic variables (e.g., coagulation tests, temperature) exhibit strong temporal410

dependence.411

D.2 LLM Verification Results412

To validate our independence test findings, we employed large language models for additional413

verification. The detailed outputs from both Gemini and GPT models are presented below.414

LLM Analysis. Figures 3 and 4 show the comprehensive LLM evaluation results for feature415

independence assessment.416

E Additional Relevance Test Results417

We analyzed which clinical measurements contribute most to model predictions, independent of418

temporal context. For each measurement, we computed the average feature importance across the419

entire dataset and identified the top 10 most influential features:420

INFLUENZA B, NUR1373, ALBUMIN, POC16, KETONE: URINE (UA), SARS-COV-2 RNA,421

MYCOPLASMA PNEUMONIAE, POC:POTASSIUM, POC:GLUCOSE BY METER, MAGNESIUM.422

LLM Analysis. We show the llm outputs for feature relevance test in Figure 5 and 6.423

F Prompt424

We provide the prompts used to verify our model analyses using large language models (LLMs),425

specifically Gemini 2.5 Pro and GPT-5 Mini.426

Independence Test Prompt. This prompt is designed to verify the results of the independence test,427

assessing whether features are statistically independent. The full prompt is shown in fig. 7.428

Relevance Test Prompt. This prompt is used to verify the results regarding the influence of each429

feature, evaluating their impact on the model’s predictions. The full prompt is shown in fig. 8.430
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Gemini 2.5 pro

Measurements with High Temporal Correlation
• LABPTT: This is a measure of blood clotting time, often monitored frequently for patients on anti-

coagulant therapy (like heparin). The value at time t is highly predictive of the value at t+∆t because
therapeutic adjustments are made based on current levels, creating a continuous, closely tracked time-
series.

• GLOBULIN: Globulin levels in the blood change in response to underlying physiological processes
(e.g., inflammation, liver function) that evolve over hours to days. This creates a relatively smooth,
slow-moving signal where consecutive measurements are strongly related.

• WAM DIFTYP: This probably refers to a component of the white blood cell count. These counts rise
and fall in response to events like infection. The biological process is not instantaneous, leading to strong
temporal dependence in measurements taken hours or days apart.

• TEMP: Body temperature is a classic example of a high-frequency physiological signal. It has inherent
patterns (circadian rhythm) and responds dynamically to illness (fever). A measurement at one moment
is a very strong predictor of the temperature a few minutes or even an hour later.

Measurements with Low Temporal Correlation
• AGE: Age is a static or near-static feature within the context of most data collection periods (e.g., a

hospital stay). Since it doesn’t change, it has no dynamic temporal pattern for a model to learn from.
From a signal processing standpoint, a constant signal has perfect autocorrelation, but from a feature
importance perspective, its lack of change means it offers no evolving temporal information. Thus,
classifying it as "low" makes sense in this context.

• RACE: This is a static demographic feature. It is constant for an individual and has no temporal
variability.

• AST (SGOT): AST is a liver enzyme that changes in response to liver injury or stress. These changes
typically occur over hours to days, creating a clinically meaningful trend. While it doesn’t fluctuate as
rapidly as temperature, a measurement today is certainly informative for predicting the measurement
tomorrow. It’s not a static value and its trend is often a critical diagnostic signal.

• PLATELET COUNT (PLT): Platelet levels are dynamic and change over days in response to bleeding,
infection, or bone marrow conditions. The trajectory of platelet counts is a crucial clinical indicator. The
value is not static and exhibits significant temporal dependence, even if it’s less “high-frequency" than
vital signs.

Figure 3: Feature temporal correlation analysis for sepsis prediction using Gemini 2.5 pro. Features
are categorized into High, Moderate, and Low time-correlated groups, reflecting progression markers,
intermediate trends, and condition markers, respectively, as verified using the prompt shown in fig. 7.

GPT-5

Measurements with High Temporal Correlation
• LABPTT: Typically shows continuous adjustment (e.g., heparin titration), so strong serial dependence.
• GLOBULIN: Usually slow drift, limited short-term serial structure.
• WAM DIFTYP: Infections/inflammation often produce evolving patterns (neutrophil/lymphocyte shifts)

rather than single jumps.
• TEMP: Shows smooth-ish rises/falls and circadian/fever cycles.

Measurements with Low Temporal Correlation
• AGE: Static.
• RACE: Static.
• AST (SGOT): Often flat until an insult, then spikes—step-like, so low smooth serial correlation.
• PLATELET COUNT (PLT): Frequently stable then precipitous drop; jumpy/change-point behavior.

Low smooth correlation.

Figure 4: Feature temporal correlation analysis for sepsis prediction using GPT 5. Features are
categorized into High, Moderate, and Low time-correlated groups, reflecting progression markers,
intermediate trends, and condition markers, respectively, as verified using the prompt shown in fig. 7.
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Gemini 2.5 pro

Pathogens and Infectious Triggers Sepsis is fundamentally a dysregulated host response to an infection.
Therefore, identifying the causative pathogen is a powerful predictor.
• SARS-COV-2 RNA, INFLUENZA B, and MYCOPLASMA PNEUMONIAE: These directly identify

the infectious agent. Severe viral infections (like COVID-19 and Influenza) can lead to viral sepsis or
predispose a patient to a secondary bacterial infection. Atypical bacteria like Mycoplasma pneumoniae
are common causes of pneumonia, which is a leading trigger for sepsis.

Core Biomarkers of Systemic Illness These lab values reflect the widespread physiological chaos caused
by the septic response, such as inflammation, metabolic derangement, and organ dysfunction.
• ALBUMIN: Low albumin (hypoalbuminemia) is a classic and very strong predictor of poor outcomes

in sepsis. It reflects the severity of the systemic inflammatory response and a state of negative protein
balance.

• POC:GLUCOSE BY METER: High glucose (stress hyperglycemia) is extremely common in critically
ill patients. It’s a result of the body’s stress response and is associated with worse outcomes in sepsis.

• POC:POTASSIUM and MAGNESIUM: Electrolyte abnormalities are hallmarks of organ dysfunction
in sepsis, particularly Acute Kidney Injury (AKI).

• KETONE: URINE (UA): The presence of ketones can indicate metabolic acidosis, a sign of severe
metabolic stress and shock.

Figure 5: Feature influence analysis on sepsis prediction using Gemini 2.5 Pro. Features are
categorized into High, Moderate, and Low influence based on their impact on model predictions, as
verified using the prompt shown in fig. 8.

GPT-5 mini

Features with Established Importance
• Influenza B: While specific studies on Influenza B’s role in sepsis prediction are limited, respiratory

viral infections, including influenza, have been associated with sepsis. Differentiating between influenza
and Mycoplasma pneumoniae infections using peripheral blood routine parameters has shown diagnostic
value, with an AUC of 0.845.

• Albumin: Hypoalbuminemia is a recognized marker of systemic inflammation and poor nutritional
status, both relevant in sepsis. Low albumin levels have been linked to increased mortality in sepsis
patients.

• SARS-CoV-2 RNA: COVID-19 has been associated with sepsis in some patients. Laboratory abnormal-
ities in COVID-19 patients, particularly in coagulation function, have been related to the occurrence of
sepsis.

• Mycoplasma pneumoniae: This pathogen can cause respiratory infections that may progress to sepsis.
Studies differentiating influenza and Mycoplasma pneumoniae infections show its diagnostic relevance.

• POC: Potassium: Electrolyte imbalances, including abnormal potassium levels, are common in sepsis
and can impact cardiac and muscular function.

• POC: Glucose by Meter: Hyperglycemia is frequently observed in sepsis and is associated with worse
outcomes. Elevated blood glucose levels are primary risk factors for poor outcomes in various conditions.

• Magnesium: Hypomagnesemia has been linked to increased mortality in sepsis patients, suggesting its
potential role as a prognostic marker.

Features with Limited or Unclear Importance
• Ketone: Urine (UA): While ketonuria can indicate metabolic disturbances such as diabetic ketoacidosis,

its role in sepsis prediction is not well-established in the literature.

Figure 6: Feature influence analysis on sepsis prediction using ChatGPT-5 Mini. Features are
categorized into High, Moderate, and Low influence based on their impact on model predictions, as
verified using the prompt shown in fig. 8.
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Prompt

You will be provided with results from our explainability method, which categorizes features based on
their temporal correlation into three groups: High Time-Correlated Features, Moderate Time-Correlated
Features, and Low Time-Correlated Features.
For each feature:
• Indicate whether you agree that the feature belongs in its assigned temporal correlation group.
• Briefly justify your agreement or disagreement based on reasoning about temporal patterns.
Here are the feature groups:

Figure 7: Prompt template for verifying feature temporal correlation group assignment.

Prompt

You are an expert in sepsis prediction. We have categorized features based on their impact on sepsis
prediction into High, Moderate, and Low influence.
For each feature:
• Indicate whether you agree with the feature’s assigned impact group.
• Briefly justify your agreement or disagreement based on reasoning about its role in sepsis prediction.
Here are the features:

Figure 8: Prompt template for verifying feature influence on sepsis prediction.
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