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Abstract

Sepsis prediction models remain opaque to clinicians which hinder clinician adop-
tion: without understanding why a patient is flagged as high-risk, accurate pre-
dictions may be ignored, delaying critical intervention. Existing explainability
methods focus on feature importance and often overlook timing, thus failing to
capture the temporal influences inherent in time-series data. We propose Positional
Explanation, which separates attributions into feature content and it’s position to
highlight temporal effects, enabling clinicians to identify early warning indicators
and monitor for specific physiological changes at critical time windows before sep-
sis develops. Applied to GPT-2 and Mamba models finetuned for sepsis prediction
on PhysioNet and MC-MED benchmarks, our method achieves higher faithfulness
scores and reveals temporal patterns in sepsis progression that existing techniques
miss, potentially enabling earlier detection and improved patient outcomes.

1 Sepsis Prediction Demands Explanations of Both What and When

Sepsis is a leading cause of hospital mortality, primarily because it is often detected after irreversible
organ damage [Seymour et al.,[2016]]. While deep learning models can predict its onset with high
accuracy, they typically only signal that the risk of sepsis is high, not why [Yuan et al.| 2020, Bomrah
et al.| [2024]]. This leaves a ‘lab-to-bedside’ gap: without understanding the subtle physiological
patterns that precede overt signs, clinicians cannot act on predictions early enough to save lives.

Explainable Al (XAI) methods have the potential to bridge this gap. Beyond fostering trust, these
methods can turn predictive models into tools for clinical discovery [Wong et al.| 2021}, |[Shashiku-
mar et al} [2021] |Adams et al., |2022]]. However, existing explanation methods are fundamentally
misaligned with the temporal nature of diseases like sepsis.

Sepsis is a disease of trajectory; a patient’s physiological trend over time—the when—is often more
diagnostically significant than any single measurement—the what [Zhu et al.| 2023]]. An elevated
heart rate, for instance, may signal danger when it appears early and persists, yet prove benign if
transient. Despite this temporal criticality, existing explanation methods like LIME [Ribeiro et al.,
2016]] and Integrated Gradients [[Sundararajan et al.,|2017]] only quantify feature importance, leaving
temporal dynamics unexplained.

This limitation reflects a broader ML challenge: deep models are highly sensitive to input order;
even simple reordering can change predictions [Liu et al.} 2024} [Wang et al.,|2024]. This positional
sensitivity in sequence modeling parallels temporal sensitivity in time-series tasks like sepsis. Yet
current explainers cannot answer the key diagnostic question: “Is a feature important because of its
value, or because of its timing?"

To address this, we introduce Positional Explanation, a framework that separates attributions into
two components: (1) a feature content score reflecting its intrinsic clinical value, and (2) a position
score that quantifies the importance of the temporal effect. We apply our framework to Mamba [Gu
and Daol 2024]] and GPT-2 [Radford et al.||2019]] models for sepsis prediction, using the PhysioNet
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Figure 1: Feature content attribution score o{2%) and absolute position attribution score c(Position)
for a representative example from the PhysioNet dataset. The visualization demonstrates that feature
importance and positional importance differ substantially: while TEMP measurements maintain
consistent feature content attribution across time steps, their positional importance increases over time,
indicating that there is a temporal effect of TEMP measurement importance for sepsis prediction.

[Reyna et al.,[2020] and MC-MED [Kansal et al., [2025]] datasets. To summarize, our contributions
are:

* We formalize a framework called Positional Explanation that decomposes attribution scores into
feature and position effects for time-series data.

* We demonstrate through quantitative experiments that our decomposition provides more faithful
explanations than existing explanation methods.

* We show that our framework identifies clinically relevant, time-dependent biomarkers missed by
existing methods, offering more actionable insights for clinicians.

2 Positional Explanation: Separating Feature Effects from Temporal Effects

Feature attribution assigns an importance score to each input feature [Doshi-Velez and Kim| 2017]],
answering: “Which features contributed most to the model’s prediction?" Formally, for a model
f: X — Yandinput x € X, an explainer g maps the model and input to an attribution vector:

a=g(f,z) eRY (1

where d is the dimensionality of x. The entry «; measures the combined influence of the i-th feature
content x; and its position on the model’s prediction f(z).

Existing explainers consider only ( f, z), with no positional information. Perturbation-, gradient-, and
decomposition-based methods [Ribeiro et al., 2016, |Lundberg and Lee, 2017, Sundararajan et al.,
2017, |Srinivas and Fleuret, [2019] assign importance to features based on their values alone.

Positional Explanation Framework. We propose Positional Explanation, a framework to separate
feature content and positional contributions. It is general and compatible with any attribution method.

Given feature z € X" and position p € P, the framework outputs
o= (a(feature)7 a(position)) _ g(f, x7p) c RQd, a(fealure)7 a(position) c Rd (2)

As shown in Equation (2), our explainer g takes f,, p as input. Figure |l|illustrates a(f2“®) and
a(position) over time. Oél(‘feature)

P measures the contribution of p; independent of the feature (positional importance).

quantifies the effect of x; given its position (feature importance), while

Positional-LIME as an Example. To illustrate, consider Local Interpretable Model-Agnostic
Explanations(LIME) [Ribeiro et al.,[2016]. Standard LIME generates perturbed samples

z=mozeRY  m; ~ Bernoulli(0.5), (3)
where m; = 0 zeros out x; and m; = 1 retains it. LIME then fits a weighted linear model
a=g(fx)=weR?, )
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Table 1: Faithfulness comparison across datasets, models, and explanation methods. PE-Feature
consistently outperforms Feature-only, and PE-Position outperforms Position-only, demonstrating
more faithful identification of important features.

(a) Insertion AUC (higher is better)

Dataset Model = Method  Feature-only  Position-only PE-Feature PE-Position Random
PhysioNet GPT-2  LIME 0.354 0.323 0.419 0.396 0.214
PhysioNet GPT-2  IntGrad 0.361 0.346 0.427 0.412 0.221
PhysioNet GPT-2  MFABA 0.351 0.325 0.417 0.402 0.208
PhysioNet Mamba LIME 0.347 0.331 0.392 0.401 0.213
MC-MED GPT-2 LIME 0.313 0.301 0.381 0.392 0.192
MC-MED Mamba LIME 0.319 0.311 0.393 0.403 0.201

(b) Deletion AUC (lower is better)

Dataset Model = Method  Feature-only Position-only PE-Feature PE-Position Random
PhysioNet GPT-2 LIME 0.020 0.016 0.008 0.007 0.110
PhysioNet GPT-2  IntGrad 0.019 0.021 0.009 0.011 0.112
PhysioNet GPT-2  MFABA 0.018 0.015 0.007 0.006 0.109
PhysioNet Mamba LIME 0.021 0.019 0.011 0.007 0.102
MC-MED GPT-2 LIME 0.007 0.032 0.006 0.011 0.226
MC-MED Mamba LIME 0.072 0.113 0.066 0.053 0.199

so that each «; reflects the local effect of x; on f(z).

In Positional-LIME, positions are treated as additional features. To avoid out-of-distribution issues
from zeroing positional embeddings, we instead replace them with randomized positional embeddings:

z=m® (x,p) € R*, m; ~ Bernoulli(0.5), 5)

therefore m; = 0 indicates that the feature x; is masked and the position p; is replaced with random
positional embedding. The resulting attributions can be expressed as

g(f, x,p) —a= (a(feature)7 a(position)) e RQd, a(feature)7 a(posilion) c Rd, (6)

separating feature importance and positional importance (the temporal effect in time-series data) in
one step.

3 Positional Explanation Yields More Faithful Explanations

We evaluated GPT-2 (124M) [Radford et al., [2019]] and Mamba-130M [Gu and Dao| [2024] on the
PhysioNet [Reyna et al.,[2020] and MC-MED [Kansal et al., [2025]] datasets for sepsis prediction
using CareBench checkpoints [Choi et al.,|2025]]. Both models achieved over 86% accuracy (Table ,
making them suitable for subsequent explanation analyses.

We examine whether decomposing attributions into feature and positional components using our
Positional Explanation (PE) framework improves explanation faithfulness. This decomposition
enables differentiation between patients whose high risk stems from chronically abnormal lab values
and those whose risk arises from sudden, recent changes, supporting more targeted clinical review.

To evaluate faithfulness, we conduct insertion and deletion tests and report average AUC scores. We
compare six conditions: feature-only baseline, position-only baseline, PE-Feature (feature component
from Positional Explanation), PE-Position (positional component from Positional Explanation),
PE-Combined (both components from Positional Explanation), and a random baseline. Detailed
descriptions of each approach are provided in Appendix [C.1}

As shown in Table [I] across all settings, PE-Feature consistently improves insertion and deletion
scores over Feature-only, while PE-Position outperforms Position-only. These results demonstrate
that separating feature and temporal contributions yields more faithful explanations, independent of
the underlying attribution method. Complete results are provided in Appendix
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pearing more than five times using Position-LIME. poral correlations. Using PE outperforms the baseline,
Some measurements are inherently time-correlated, indicating that decomposing attribution signals more ac-
while others are not. curately identifies true temporal dependencies.

Figure 2: Temporal correlation analysis per measurements. (a) shows correlation distributions for
frequently occurring measurements, while (b) evaluates the effectiveness of PE in detecting true
temporal dependencies compared to baseline methods.

4 Positional Explanation Reveals Temporal Dependencies

We assessed whether feature (o(featre)) and positional (a(Position)y attributions are linearly related per
measurement using the Pearson correlation coefficient. High correlation indicates strong temporal
dependence, while low correlation suggests independence. Statistical significance was evaluated via
p-values (see Appendix [D.I.T|for computation details).

Figure 2a shows the distribution of absolute correlation values, revealing variability in temporal
dependence: some measurements are time-dependent, while others are largely independent.

Examples from MC-MED using GPT-2 with Position-LIME:
High temporal correlation: LABPTT, GLOBULIN, WAM DIFTYP, TEMP
Low temporal correlation: AGE, RACE, AST (SGOT), PLATELET COUNT (PLT)

These findings suggest that static variables (e.g., demographics, baseline labs) are generally position-
independent, whereas dynamic variables (e.g., coagulation tests, temperature) exhibit strong temporal
dependence. Full correlation values and p-values are reported in Appendix [D.1.2]

To validate our hypothesis that separating attribution into feature and positional components is helps
identifying true temporal dependencies, we conduct an evaluation using a Large Language Model
(LLM) as a proxy for ground-truth verification. We compare two methods for measuring temporal
correlations, with results presented in Figurep'_Bl

The baseline uses correlation between feature-only and position-only attribution. We compare it
to correlation between PE-Feature and PE-Position using our Positional Explanation framework.
For evaluation, we group feature-position pairs into three bins based on their computed correlation
scores: high correlation (correlation > (.7), moderate correlation (0.3 < correlation < 0.7), and low
correlation (correlation < 0.3). Within each bin, we measure the LLM verification accuracy to assess
how well our correlation scores align with LLM-verified temporal dependencies. The results show
that our PE-based attribution consistently achieves higher verification rates across all correlation bins,
demonstrating that separating the score improves the identification of features with genuine temporal
effects and confirming the effectiveness of our method in detecting temporal correlations. We also
show qualitative result of what the LLM output for such correlation in Appendix [D}

Future Work. While these results are promising, broader clinical validation is necessary. Current
evaluation relies primarily on LLM-based models. We will engage multiple clinicians specialized in
sepsis to evaluate real-world interpretability, trust, and utility. To demonstrate generality, we plan to
extend the framework to new models, develop scalable metrics for temporal effects, and integrate it
into clinical decision support systems for timely, actionable alerts.



121

122
123
124
125

126
127
128

129
130
131
132

133
134

135
136
137
138
139

140
141

142
143
144
145
146

147
148

149
150

151
152

153
154

155
156
157

158
159
160

161
162
163

164
165

166
167
168
169

(o2}

References

Roy Adams, Kevin E. Henry, Anoop Sridharan, Heather Soleimani, Karandeep A. Zell, Chuan
S. L. Tan, Jenna N. Wiens, Craig E. V. Barton, and Karandeep A. Singh. Prospective, multi-site
study of a deep learning model for early detection of sepsis. Nature Medicine, 28(8):1649-1654,
2022. doi: 10.1038/s41591-022-01894-0.

Jodo Bento, Pedro Saleiro, Pedro Bizarro, and Mario A T Oliveira. Timeshap: Explaining recurrent
models through time. In 2021 International Conference on Data Mining Workshops (ICDMW),
pages 336-345. IEEE, 2021.

Sherali Bomrah, Mohy Uddin, Umashankar Upadhyay, Jyoti Priya, Eshita Dhar, Shih-Chang Hsu,
and Shabir Syed-Abdul. A scoping review of machine learning for sepsis prediction- feature
engineering strategies and model performance: a step towards explainability. Critical Care, 28:
180, 2024.

Seewon Choi, Mayank Keoliya, Rajeev Alur, Mayur Naik, and Eric Wong. Carebench: Stable
prediction of adverse events in medical time-series data, 2025.

Jonathan Crabbé and Mihaela van der Schaar. Explaining time series predictions with dy-
namic masks. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, edi-
tors, Advances in Neural Information Processing Systems, volume 33, pages 1236—1247. Cur-
ran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/file/
084a0c2053618953a0a65261394338d3-Paper . pdf.

Finale Doshi-Velez and Been Kim. Towards a rigorous science of interpretable machine learning,
2017.

Yash Goyal, Been Kim Wu, and Joachim Ernst. Counterfactual explanations for time-series mod-
els. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan, edi-
tors, Advances in Neural Information Processing Systems, volume 34, pages 1496—1508. Cur-
ran Associates, Inc., 2021. URL https://proceedings.neurips.cc/paper/2021/file/
0e64a7b12e34720385965191838b08cd-Paper . pdf.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces, 2024.
URL https://arxiv.org/abs/2312.00752,

Aaqib Ismail and Stephan Giinnemann. Benchmarking deep learning interpretability in time series
predictions. Advances in Neural Information Processing Systems, 34:23605-23618, 2021.

Sarthak Jain and Byron C. Wallace. Attention is not explanation, 2019. URL https://arxiv.org/
abs/1902.10186.

Anshul Kansal, Eric Chen, Billy T. Jin, et al. MC-MED, multimodal clinical monitoring in the
emergency department. Scientific Data, 12:1094, 2025. doi: 10.1038/s41597-025-05419-5.

Simon Meyer Lauritsen, Martin Kristensen, Mads Vincent Olsen, and Michael Stig Larsen. Explain-
able artificial intelligence model to predict acute critical illness from electronic health records.
Nature Communications, 11(1):3852, 2020.

Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni, and
Percy Liang. Lost in the middle: How language models use long contexts. Transactions of the
Association for Computational Linguistics, 12:157-173, 2024. doi: 10.1162/tacl_a_00638.

Scott M. Lundberg and Su-In Lee. A unified approach to interpreting model predictions. In
Proceedings of the 31st International Conference on Neural Information Processing Systems
(NIPS), pages 4768-4777, 2017.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. 2019.

Matthew A. Reyna, Christopher S. Josef, Russell Jeter, Supreeth P. Shashikumar, M. Brandon
Westover, Shamim Nemati, Gari D. Clifford, and Ashish Sharma. Early prediction of sepsis from
clinical data: the physionet/computing in cardiology challenge 2019. Critical Care Medicine, 48
(2):210-217, 2020.


https://proceedings.neurips.cc/paper/2020/file/084a0c2053618953a0a65261394338d3-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/084a0c2053618953a0a65261394338d3-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/084a0c2053618953a0a65261394338d3-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/0e64a7b12e34720385965191838b08cd-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/0e64a7b12e34720385965191838b08cd-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/0e64a7b12e34720385965191838b08cd-Paper.pdf
https://arxiv.org/abs/2312.00752
https://arxiv.org/abs/1902.10186
https://arxiv.org/abs/1902.10186
https://arxiv.org/abs/1902.10186

170
171
172

173
174
175
176
177

178
179
180

181
182
183

184
185

186
187
188

189
190
191

192
193

194
195

197
198
199
200
201

202
203
204
205
206

207
208
209

210
211
212

213
214
215
216

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. "Why Should I Trust You?": Explaining the
Predictions of Any Classifier. In Proceedings of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages 1135-1144, 2016.

Christopher W Seymour, Vincent X Liu, Theodore J Iwashyna, Frank M Brunkhorst, Thomas D
Rea, André Scherag, Gordon Rubenfeld, Jeremy M Kahn, Manu Shankar-Hari, Mervyn Singer,
Clifford S Deutschman, Gabriel J Escobar, and Derek C Angus. Assessment of clinical criteria
for sepsis: For the third international consensus definitions for sepsis and septic shock (sepsis-3).
JAMA, 315(8):762-774, 2016. doi: 10.1001/jama.2016.0288.

Supreeth P. Shashikumar, Gabriel Wardi, Atul Malhotra, and Shamim Nemati. Artificial intelligence
sepsis prediction algorithm learns to say “i don’t know”. npj Digital Medicine, 4(1):134, 2021.
doi: 10.1038/541746-021-00504-6.

Benjamin Shickel, Patrick J Tighe, Azra Bihorac, and Parisa Rashidi. Deep ehr: A survey of recent
advances in deep learning for electronic health records. In IEEE journal of biomedical and health
informatics, volume 22, pages 1589-1604. IEEE, 2017.

Suraj Srinivas and Francois Fleuret. Full-gradient representation for neural network visualization. In
Advances in Neural Information Processing Systems 32, 2019.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks. In
Proceedings of the 34th International Conference on Machine Learning (ICML), pages 3319-3328,
2017.

Sana Tonekaboni, Shalmali Joshi, Michael D McCradden, and Anna Goldenberg. What clinicians
want: a survey of explainable ai needs for clinical decision support. In Proceedings of the 2019
CHI Conference on Human Factors in Computing Systems, pages 1-13, 2019.

Eric J Topol. High-performance medicine: the convergence of human and artificial intelligence.
Nature medicine, 25(1):44-56, 2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pages 5998-6008, 2017.

Peiyi Wang, Lei Li, Liang Chen, Zefan Cai, Dawei Zhu, Binghuai Lin, Yunbo Cao, Lingpeng Kong,
Qi Liu, Tianyu Liu, and Zhifang Sui. Large language models are not fair evaluators. In Lun-
Wei Ku, Andre Martins, and Vivek Srikumar, editors, Proceedings of the 62nd Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), pages 9440-9450.
Association for Computational Linguistics, 2024. doi: 10.18653/v1/2024.acl-long.511.

Andrew Wong, Erkin Otles, John P. Donnelly, Andrew Krumm, J. Michael McCullough, Olivia
DeTroyer-Cooley, Jennifer Pestrue, M. Elizabeth Phillips, Justin Konye, Patrick J. Schulte, Mihir
A. Kora, Dmitriy A. Dligach, and Majid Afshar. External validation of a widely implemented
commercial sepsis prediction model in hospitalized patients. JAMA Internal Medicine, 181(8):
1065-1070, 2021. doi: 10.1001/jamainternmed.2021.2626.

Kuo-Ching Yuan, Lung-Wen Tsai, Ko-Han Lee, Yi-Wei Cheng, Shou-Chieh Hsu, Yu-Sheng Lo, and
Ray-Jade Chen. The development an artificial intelligence algorithm for early sepsis diagnosis in
the intensive care unit. International Journal of Medical Informatics, 141:104176, 2020.

Jia-Liang Zhu, Shi-Qi Yuan, Tao Huang, Lu-Ming Zhang, Xiao-Mei Xu, Hai-Yan Yin, Jian-Rui Wei,
and Jun Lyu. Influence of systolic blood pressure trajectory on in-hospital mortality in patients
with sepsis. BMC Infectious Diseases, 23(1):90, 2023.

Zhiyu Zhu, Huaming Chen, Jiayu Zhang, Xinyi Wang, Zhibo Jin, Minhui Xue, Dongxiao Zhu, and
Kim-Kwang Raymond Choo. Mfaba: A more faithful and accelerated boundary-based attribution
method for deep neural networks. Proceedings of the AAAI Conference on Artificial Intelligence,
38(15):17228-17236, 2024. doi: 10.1609/aaai.v38i15.29669.



217

218
219
220
221
222
223

224
225
226
227
228
229
230
231
232
233

234
235
236
237

239
240
241
242

243
244
245
246
247
248
249

250

251

252

253
254

255
256
257

258
259

261

262

263

264
265

A Related Work

The drive to deploy predictive models in high-stakes clinical settings has led to a surge in research on
explainable AI (XAI) for medical time series data [[Tonekaboni et al.l 2019, [Topol||2019]]. The primary
goal is to move beyond black-box predictions and provide clinicians with transparent, trustworthy,
and actionable insights, thereby fostering adoption and facilitating model auditing. This need is
particularly acute in sepsis prediction, where timely and interpretable predictions can directly impact
patient outcomes.

The dominant paradigm for explaining time-series models relies on post-hoc feature attribution
methods that generate saliency maps. Foundational techniques like LIME [Ribeiro et al.| [2016]],
SHAP [Lundberg and Lee} 2017], and Integrated Gradients [[Sundararajan et al., 2017|] are commonly
adapted to clinical time series including sepsis prediction, assigning an importance score to each
feature at each timestep [Shickel et al.l 2017, |Lauritsen et al., 2020]. More recent work has sought
to create methods tailored specifically for time series, such as TimeSHAP [Bento et al.| [2021]] or
Dynamask [[Crabbé and van der Schaar, 2020], which aim to produce more faithful explanations
by considering the temporal nature of the data. Other approaches generate explanations through
counterfactuals—identifying what minimal changes to an input sequence would alter the model’s
prediction [Goyal et al.,|2021} [Ismail and Giinnemann, 2021].

However, a critical and unaddressed limitation unites these methods: they treat each feature-timepoint
observation as an atomic unit. Consequently, the resulting attribution score—whether from a saliency
map or a counterfactual—fundamentally conflates the importance of a feature’s content (the ‘what’)
with the importance of its temporal position (the ‘when’). For instance, in sepsis prediction, a standard
explanation cannot distinguish whether an elevated lactate reading is flagged because lactate is a
clinically significant marker of sepsis or because the model has learned a spurious recency bias where
any observation in the final timestep is overweighted [Jain and Wallace, 2019} [smail and Giinnemann,
2021]]. This entanglement prevents a deeper audit of the model’s temporal reasoning, which is crucial
for sepsis where the timing of physiological changes carries diagnostic significance.

This limitation is particularly striking given that modern sequence models, like the Transformer and
Mamba, explicitly separate content and position through distinct token and positional embeddings
[Vaswani et al., 2017, /Gu and Dao} 2024]]. While the model’s architecture maintains this separa-
tion—enabling it to learn both what features matter and when they matter—the explanation methods
used to interpret them do not. This is especially problematic for sepsis onset prediction, which is
fundamentally a temporal problem where understanding both the clinical markers and their temporal
evolution is essential for meaningful interpretation.

B Experimental Setup

B.1 Dataset Description
B.1.1 Datasets

We utilize sepsis prediction datasets curated by CAREBench [Choi et al., [2025]], which processes two
publicly available datasets: PhysioNet 2019 [Reyna et al.|[2020] and MC-MED |[Kansal et al., 2025]].

PhysioNet 2019 comprises over 40,000 ICU patients with up to 40 clinical variables recorded hourly,
totaling 2.5 million hourly time windows. The dataset includes vital signs, laboratory values, and
demographics in tabular format without physiological waveforms.

MC-MED contains 118,385 emergency department visits from 70,545 unique patients (2020-2022).
This dataset uniquely combines minute-level vital signs and continuous physiological waveforms
(ECG, photoplethysmogram, respiration) with comprehensive clinical data including demographics,
medical histories, medications, and laboratory results.

B.1.2 Sepsis Prediction Task Curation

CAREBench adapted the curation methodology to each dataset’s clinical setting and available data.

PhysioNet 2019: Sepsis labels were pre-defined using Sepsis-3 criteria, requiring both clinical
suspicion of infection (blood culture or IV antibiotic orders) and a two-point SOFA score change.
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MC-MED: CAREBench implemented a two-stage process:

1. At-Risk Cohort Selection — Patients meeting all criteria:
¢ Admission source of ED
* Temperature < 36°C or > 38.5°C within 24 hours of admission (Temp_time)
* At least one of the following within 24 hours of admission:
o WBC Count > 12K or < 4K /uL (WBC_time)
o HR > 90 bpm (HR_time)
o RR > 20 (RR_time)
e Atleast 1 of the WBC_time, HR_time, RR_time within 12 hours of Temp_time
* No intravenous antibiotic at or before the time of the first criteria met
2. Sepsis Labeling — Adapted Sepsis-3 definition for ED settings with A = 1.5 hour prediction
horizon. Positive labels assigned when emergency SOFA (eSOFA) criteria met:
* Presumed serious infection:
o Blood culture obtained (regardless of the results)
o > 4 QADs starting within & 2 days of blood_culture_day
* Any 1 of below within & 2 days of blood_culture_day (acute organ dysfunction):
o Vasopressor initiation
o Initiation of mechanical ventilation

o Doubling in serum creatinine level or decrease by > 50% of eGFR (excluding patients
with end-stage kidney disease [585.6])

o Total bilirubin level > 2.0mg/dL and doubling

o Platelet count < 100 cells/uL and > 50% decline from baseline (excluding baseline <
100 cells/uL)

o Serum lactate > 2.0 mmol/L

B.2 Model Description

We employed GPT-2 (124M parameters) [Radford et al.| [2019] and Mamba-130M [Gu and Dao),
2024], pre-trained language models fine-tuned for sepsis prediction using the CAREBench-curated
datasets.

B.2.1 Model Architectures

GPT-2 Small: A 124M parameter decoder-only transformer with 12 layers, 768 hidden dimensions,
and 12 attention heads. Its autoregressive architecture with causal self-attention naturally captures
temporal dependencies in patient trajectories, leveraging pre-trained sequential representations for
modeling physiological progression patterns.

Mamba-130M: A 130M parameter state-space model addressing transformer limitations in long-
sequence processing. Its selective state-space mechanism achieves linear complexity with sequence
length, enabling efficient processing of extended patient histories. The architecture’s continuous-time
formulation aligns naturally with physiological processes, offering advantageous inductive biases for
modeling sepsis dynamics.

B.2.2 Training Configuration

Following CAREBench methodology:
* Custom Tokenization: Dataset-specific tokenizers handle hospital-specific medical codes and
limited vocabulary
* Training Duration: 100 epochs ensuring convergence on limited medical data
 Hyperparameter Selection: Learning rate € {1 x 107°,5 x 107°,1 x 10~} via validation
performance

This configuration enables effective adaptation from general language understanding to domain-
specific temporal patterns and medical terminology in sepsis prediction.
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Table 2: Performance of GPT2 and Mamba on the MC-MED and Physionet datasets. The models
achieve sufficiently high predictive performance on sepsis prediction tasks, making them suitable for
subsequent analysis and explanation.

Dataset Finetuned Model Accuracy F1 AUC  AUPRC

: GPT-2 [Radford et al|2019]  0.8680 _ 0.2048 0.7069 _ 0.1802
PhysioNet [Reyna et al, R020] vy o [Gu and Dao, 2024]  0.8930 00531 03509  0.0403

GPT-2 [Radford et al.;[2019] 0.9490 0.1053  0.3536  0.0900

MC-MED [Ransal etal, 2025]  \r. o [Guand Daol 0024]  0.8940  0.0536 03743 0.0443

B.3 Explanation Methods

This section briefly describes the explanation methods employed in conjunction with our Positional
Explanation approach.

e LIME (Local Interpretable Model-agnostic Explanations) [Ribeiro et al.,[2016] generates
local explanations for individual predictions by fitting an interpretable surrogate model (typically
linear) within the neighborhood of the target instance. The method creates perturbations around
the input sample and trains the surrogate model on these variations, with samples weighted by
their proximity to the original instance.

¢ SHAP (SHapley Additive exPlanations) [Lundberg and Lee,[2017]] computes feature impor-
tance scores based on cooperative game theory principles. Each feature receives an attribution
value representing its marginal contribution to the prediction relative to a baseline, with the
property that all attribution values sum to the difference between the model’s output and the
baseline prediction.

 Integrated Gradients (IntGrad) [Sundararajan et al.l 2017|] computes feature attributions by
integrating gradients along a linear path from a baseline input to the target input. This path
integral approach ensures satisfaction of fundamental attribution axioms, including sensitivity
and implementation invariance.

¢ FullGrad [Srinivas and Fleuret, 2019]] extends standard gradient-based attribution by incorpo-
rating gradient information from all network layers. The method aggregates input gradients with
bias gradients across all intermediate representations, providing more comprehensive attribution
maps that capture multi-layer feature interactions.

* MFABA (More Faithful and Accelerated Boundary-based Attribution) [Zhu et al., 2024]
computes attributions by constructing paths from input samples to adversarial examples that
cross the model’s decision boundary. The method employs second-order Taylor approximations
to better model loss function changes during gradient ascent optimization.

Generalization to Other Explainers. More generally, our Positional Explanation framework
extends to any attribution method (e.g., SHAP [Lundberg and Lee, [2017]], Integrated Gradients [Sun-
dararajan et al.| 2017]], FullGrad [Srinivas and Fleuret, [2019], MFABA [Zhu et al.l 2024]). By

computing o(€2r) and o (Position) geparately, we separate feature content and positional contributions,
providing a more fine-grained understanding of model predictions.

C Additional Faithfulness Test Results

This section presents comprehensive results from our insertion and deletion experiments across all
experimental configurations. We systematically evaluate faithfulness across two datasets (PhysioNet
and MC-MED), two transformer architectures (GPT-2 and Mamba), and five explanation methods
(LIME, SHAP, Integrated Gradients, FullGrad, MFABA).

C.1 Faithfulness Test Experimental Setup

For each explanation method, we compare five attribution approaches:

* Feature-only: Traditional perturbation-based explanations
¢ Position-only: Positional explanation perturbing only position
* PE-Feature: Feature component of our Positional Explanation framework
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* PE-Position: Position component of our Positional Explanation framework
e PE-Full: Both feature and position components of our Positional Explanation framework
* Random: Baseline for comparison

We employ two complementary faithfulness metrics: insertion tests (where higher AUC indicates
better faithfulness) and deletion tests (where lower AUC indicates better faithfulness).

C.2 Key Findings

The results demonstrate consistent improvements in explanation faithfulness when separating posi-
tional and feature components:

Insertion Test Performance. Our positional explanation components (PE-Feature and PE-Position)
consistently outperform their traditional counterparts (Feature-only and Position-only) across all
experimental configurations. PE-Feature achieves higher AUC scores than Feature-only, while
PE-Position surpasses Position-only, indicating more faithful identification of important features.

Deletion Test Performance. The superiority of our approach is further confirmed in deletion
tests, where PE-Feature consistently achieves lower AUC scores than Feature-only, and PE-Position
outperforms Position-only. Lower scores in deletion tests indicate that removing highly-attributed
features causes greater performance degradation, confirming these features are indeed more important
for model predictions.

Cross-Architecture and Cross-Method Consistency. The improvements hold across both GPT-
2 and Mamba architectures, as well as different explanation methods including gradient-based
attribution, attention-based explanations, and perturbation-based approaches, demonstrating the broad
generalizability of our positional explanation approach.

C.3 Detailed Results

Tables [3a) and [3b] present the complete faithfulness evaluation results across all experimental configu-
rations. The insertion test results demonstrate the ability of each method to identify truly important
features, while the deletion test results show how effectively each method identifies features whose
removal significantly impacts model performance. These comprehensive results validate our theoreti-
cal framework and demonstrate the practical benefits of separating positional and feature attributions
in transformer explanations.

D Additional Independence Test Results

D.1 Independence Test Analysis

This section presents the complete results from our independence test analysis, expanding on the
verification scores reported in Section [

D.1.1 Measurements
The correlation was measured using the Pearson correlation coefficient:

feat Ty siti R
Z?Zl (Oég ea ure) _ a(feature) ) (al(_posl 10n) _ a(pOSlllOn))

T =
\/22;1 (az(feature) — (feature) )2 \/22;1 (agposition) _ ¢y (position) )2

where r € [—1,1], a(feawre) jg the mean feature attribution, and a/(Position) s the mean positional
attribution. Values of r close to 1 or —1 indicate strong positive or negative correlation, while values
near 0 suggest little to no linear relationship.

; )

To assess statistical significance, we tested the null hypothesis:
Hy:r =0 (feature and positional attributions are uncorrelated).

The corresponding p-value quantifies the probability of observing a correlation at least as extreme as
the measured r under Hy. At the o = 0.05 significance level,
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Table 3: Our Positional Explanation (PE) framework consistently outperforms traditional attribution
methods. PE-Feature and PE-Position achieve higher insertion AUC and lower deletion AUC
than their Feature-only and Position-only counterparts, confirming more faithful identification of
important features. The improvements hold across both GPT-2 and Mamba architectures and multiple
explanation methods. PE = Positional Explanation, Feat = Feature, Pos = Position.

(a) Insertion test results (AUC). Higher values indicate more faithful performance.

Dataset Model  Explanation Feat-only Pos-only PE-Feat PE-Pos PE-Full Random

LIME 0.354 0.323 0.419 0.396 0.465 0.214

SHAP 0.342 0.337 0.403 0.401 0.452 0.209

GPT-2 IntGrad 0.361 0.346 0.427 0.412 0.478 0.221

FullGrad 0.336 0.314 0.384 0.393 0.443 0.215

. MFABA 0.351 0.325 0.417 0.402 0.461 0.208
PhysioNet

LIME 0.347 0.331 0.392 0.401 0.454 0.213

SHAP 0.352 0.323 0.415 0.395 0.463 0.207

Mamba IntGrad 0.364 0.348 0.431 0.416 0.472 0.226

FullGrad 0.338 0.312 0.393 0.382 0.445 0.218

MFABA 0.353 0.334 0.422 0.404 0.460 0.202

LIME 0.313 0.301 0.381 0.392 0.434 0.192

SHAP 0.321 0.314 0.392 0.403 0.446 0.207

GPT-2 IntGrad 0.332 0.322 0.413 0.421 0.461 0.215

FullGrad 0.303 0.296 0.375 0.384 0.421 0.194

MC-MED MFABA 0.324 0.312 0.401 0.395 0.452 0.203

LIME 0.319 0.311 0.393 0.403 0.442 0.201

SHAP 0.331 0.322 0.414 0.411 0.451 0.214

Mamba IntGrad 0.339 0.336 0.421 0.432 0.463 0.223

FullGrad 0.312 0.303 0.382 0.391 0.433 0.208

MFABA 0.330 0.321 0.412 0.410 0.450 0.212

(b) Deletion test results (AUC). Lower values indicate more faithful performance.

Dataset Model  Explanation Feat-only Pos-only PE-Feat PE-Pos PE-Full Random

LIME 0.020 0.016 0.008 0.007 0.002 0.110

SHAP 0.019 0.018 0.007 0.008 0.003 0.102

GPT-2 IntGrad 0.019 0.021 0.009 0.011 0.005 0.112

FullGrad 0.017 0.019 0.010 0.010 0.004 0.111

. MFABA 0.018 0.015 0.007 0.006 0.002 0.109
PhysioNet

LIME 0.021 0.019 0.011 0.007 0.001 0.102

SHAP 0.021 0.018 0.012 0.007 0.002 0.103

Mamba IntGrad 0.011 0.011 0.008 0.009 0.003 0.111

FullGrad 0.010 0.012 0.007 0.008 0.001 0.113

MFABA 0.020 0.017 0.010 0.006 0.001 0.100

LIME 0.007 0.032 0.006 0.011 0.005 0.226

SHAP 0.011 0.024 0.010 0.013 0.006 0.228

GPT-2 IntGrad 0.053 0.103 0.037 0.077 0.035 0.218

FullGrad 0.049 0.098 0.036 0.064 0.032 0.220

MC-MED MFABA 0.022 0.030 0.014 0.012 0.015 0.225

LIME 0.072 0.113 0.066 0.053 0.045 0.199

SHAP 0.085 0.116 0.058 0.056 0.046 0.201

Mamba IntGrad 0.089 0.102 0.047 0.057 0.033 0.204

FullGrad 0.086 0.098 0.046 0.055 0.031 0.206

MFABA 0.071 0.111 0.065 0.052 0.044 0.200

s93 ¢ If p < 0.05: we reject Hy, concluding significant correlation.
394 If p > 0.05: we fail to reject Hy, finding no clear evidence of correlation.
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D.1.2 Temporal Correlation Patterns

Our analysis identified distinct patterns in temporal correlation across different medical measurements:

Examples of independent features (low correlation, high p-value) using Positional-LIME on the
MC-MED dataset with GPT-2 included:

¢ AGE: correlation = 0.0244, p = 0.9020

¢ RACE: correlation = -0.0330, p = 0.8675

¢ AST (SGOT): correlation = -0.0082, p = 0.9668

¢« PLATELET COUNT (PLT): correlation = 0.0301, p = 0.8888

Examples of independent features (low correlation, high p-value) using Positional-LIME on the
MC-MED dataset with GPT-2 included:

e LABPTT: correlation = 0.9080, p = 1.11e-04

¢ GLOBULIN: correlation = 0.9061, p = 3.90e-05

¢ WAM DIFTYP: correlation = 0.8447, p = 2.15e-03
¢ TEMP: correlation = 0.6659, p = 3.55e-02

These findings suggest that certain static variables (e.g., demographics, baseline labs) remain position-
independent, while dynamic variables (e.g., coagulation tests, temperature) exhibit strong temporal
dependence.

D.2 LLM Verification Results
To validate our independence test findings, we employed large language models for additional
verification. The detailed outputs from both Gemini and GPT models are presented below.

LLM Analysis. Figures [3] and 4] show the comprehensive LLM evaluation results for feature
independence assessment.

E Additional Relevance Test Results

We analyzed which clinical measurements contribute most to model predictions, independent of
temporal context. For each measurement, we computed the average feature importance across the
entire dataset and identified the top 10 most influential features:

INFLUENZA B, NUR1373, ALBUMIN, P0OC16, KETONE: URINE (UA), SARS-COV-2 RNA,
MYCOPLASMA PNEUMONIAE, POC:POTASSIUM, POC:GLUCOSE BY METER, MAGNESIUM.

LLM Analysis. We show the 1lm outputs for feature relevance test in Figure[5|and [6]

F Prompt

We provide the prompts used to verify our model analyses using large language models (LLMs),
specifically Gemini 2.5 Pro and GPT-5 Mini.

Independence Test Prompt. This prompt is designed to verify the results of the independence test,
assessing whether features are statistically independent. The full prompt is shown in fig.

Relevance Test Prompt. This prompt is used to verify the results regarding the influence of each
feature, evaluating their impact on the model’s predictions. The full prompt is shown in fig. [§]

12



Gemini 2.5 pro

Measurements with High Temporal Correlation

e LABPTT: This is a measure of blood clotting time, often monitored frequently for patients on anti-
coagulant therapy (like heparin). The value at time t is highly predictive of the value at t+At because
therapeutic adjustments are made based on current levels, creating a continuous, closely tracked time-
series.

* GLOBULIN: Globulin levels in the blood change in response to underlying physiological processes
(e.g., inflammation, liver function) that evolve over hours to days. This creates a relatively smooth,
slow-moving signal where consecutive measurements are strongly related.

* WAM DIFTYP: This probably refers to a component of the white blood cell count. These counts rise
and fall in response to events like infection. The biological process is not instantaneous, leading to strong
temporal dependence in measurements taken hours or days apart.

* TEMP: Body temperature is a classic example of a high-frequency physiological signal. It has inherent
patterns (circadian rhythm) and responds dynamically to illness (fever). A measurement at one moment
is a very strong predictor of the temperature a few minutes or even an hour later.

Measurements with Low Temporal Correlation

* AGE: Age is a static or near-static feature within the context of most data collection periods (e.g., a
hospital stay). Since it doesn’t change, it has no dynamic temporal pattern for a model to learn from.
From a signal processing standpoint, a constant signal has perfect autocorrelation, but from a feature
importance perspective, its lack of change means it offers no evolving temporal information. Thus,
classifying it as "low" makes sense in this context.

* RACE: This is a static demographic feature. It is constant for an individual and has no temporal
variability.

e AST (SGOT): AST is a liver enzyme that changes in response to liver injury or stress. These changes
typically occur over hours to days, creating a clinically meaningful trend. While it doesn’t fluctuate as
rapidly as temperature, a measurement today is certainly informative for predicting the measurement
tomorrow. It’s not a static value and its trend is often a critical diagnostic signal.

* PLATELET COUNT (PLT): Platelet levels are dynamic and change over days in response to bleeding,
infection, or bone marrow conditions. The trajectory of platelet counts is a crucial clinical indicator. The
value is not static and exhibits significant temporal dependence, even if it’s less “high-frequency" than
vital signs.

Figure 3: Feature temporal correlation analysis for sepsis prediction using Gemini 2.5 pro. Features
are categorized into High, Moderate, and Low time-correlated groups, reflecting progression markers,
intermediate trends, and condition markers, respectively, as verified using the prompt shown in fig. m

GPT-5

Measurements with High Temporal Correlation
* LABPTT: Typically shows continuous adjustment (e.g., heparin titration), so strong serial dependence.
e GLOBULIN: Usually slow drift, limited short-term serial structure.

* WAM DIFTYP: Infections/inflammation often produce evolving patterns (neutrophil/lymphocyte shifts)
rather than single jumps.

* TEMP: Shows smooth-ish rises/falls and circadian/fever cycles.

Measurements with Low Temporal Correlation

* AGE: Static.

¢ RACE: Static.

* AST (SGOT): Often flat until an insult, then spikes—step-like, so low smooth serial correlation.

* PLATELET COUNT (PLT): Frequently stable then precipitous drop; jumpy/change-point behavior.
Low smooth correlation.

Figure 4: Feature temporal correlation analysis for sepsis prediction using GPT 5. Features are
categorized into High, Moderate, and Low time-correlated groups, reflecting progression markers,
intermediate trends, and condition markers, respectively, as verified using the prompt shown in fig. m
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Gemini 2.5 pro

Pathogens and Infectious Triggers Sepsis is fundamentally a dysregulated host response to an infection.
Therefore, identifying the causative pathogen is a powerful predictor.

* SARS-COV-2 RNA, INFLUENZA B, and MYCOPLASMA PNEUMONIAE: These directly identify
the infectious agent. Severe viral infections (like COVID-19 and Influenza) can lead to viral sepsis or
predispose a patient to a secondary bacterial infection. Atypical bacteria like Mycoplasma pneumoniae
are common causes of pneumonia, which is a leading trigger for sepsis.

Core Biomarkers of Systemic Illness These lab values reflect the widespread physiological chaos caused
by the septic response, such as inflammation, metabolic derangement, and organ dysfunction.

¢ ALBUMIN: Low albumin (hypoalbuminemia) is a classic and very strong predictor of poor outcomes
in sepsis. It reflects the severity of the systemic inflammatory response and a state of negative protein
balance.

* POC:GLUCOSE BY METER: High glucose (stress hyperglycemia) is extremely common in critically
ill patients. It’s a result of the body’s stress response and is associated with worse outcomes in sepsis.

¢ POC:POTASSIUM and MAGNESIUM: Electrolyte abnormalities are hallmarks of organ dysfunction
in sepsis, particularly Acute Kidney Injury (AKI).

* KETONE: URINE (UA): The presence of ketones can indicate metabolic acidosis, a sign of severe
metabolic stress and shock.

Figure 5: Feature influence analysis on sepsis prediction using Gemini 2.5 Pro. Features are
categorized into High, Moderate, and Low influence based on their impact on model predictions, as
verified using the prompt shown in fig. [8]

GPT-5 mini

Features with Established Importance

* Influenza B: While specific studies on Influenza B’s role in sepsis prediction are limited, respiratory
viral infections, including influenza, have been associated with sepsis. Differentiating between influenza
and Mycoplasma pneumoniae infections using peripheral blood routine parameters has shown diagnostic
value, with an AUC of 0.845.

Albumin: Hypoalbuminemia is a recognized marker of systemic inflammation and poor nutritional

status, both relevant in sepsis. Low albumin levels have been linked to increased mortality in sepsis

patients.

* SARS-CoV-2 RNA: COVID-19 has been associated with sepsis in some patients. Laboratory abnormal-
ities in COVID-19 patients, particularly in coagulation function, have been related to the occurrence of
sepsis.

* Mycoplasma pneumoniae: This pathogen can cause respiratory infections that may progress to sepsis.
Studies differentiating influenza and Mycoplasma pneumoniae infections show its diagnostic relevance.

* POC: Potassium: Electrolyte imbalances, including abnormal potassium levels, are common in sepsis
and can impact cardiac and muscular function.

* POC: Glucose by Meter: Hyperglycemia is frequently observed in sepsis and is associated with worse
outcomes. Elevated blood glucose levels are primary risk factors for poor outcomes in various conditions.

* Magnesium: Hypomagnesemia has been linked to increased mortality in sepsis patients, suggesting its
potential role as a prognostic marker.

Features with Limited or Unclear Importance

¢ Ketone: Urine (UA): While ketonuria can indicate metabolic disturbances such as diabetic ketoacidosis,
its role in sepsis prediction is not well-established in the literature.

Figure 6: Feature influence analysis on sepsis prediction using ChatGPT-5 Mini. Features are
categorized into High, Moderate, and Low influence based on their impact on model predictions, as
verified using the prompt shown in fig. El
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You will be provided with results from our explainability method, which categorizes features based on

their temporal correlation into three groups: High Time-Correlated Features, Moderate Time-Correlated
Features, and Low Time-Correlated Features.

For each feature:

* Indicate whether you agree that the feature belongs in its assigned temporal correlation group.

* Briefly justify your agreement or disagreement based on reasoning about temporal patterns.
Here are the feature groups:

Figure 7: Prompt template for verifying feature temporal correlation group assignment.

You are an expert in sepsis prediction. We have categorized features based on their impact on sepsis
prediction into High, Moderate, and Low influence.
For each feature:

* Indicate whether you agree with the feature’s assigned impact group.

* Briefly justify your agreement or disagreement based on reasoning about its role in sepsis prediction.
Here are the features:

Figure 8: Prompt template for verifying feature influence on sepsis prediction.
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