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Abstract

When an NLP model is trained on text data001
from one time period and tested or deployed002
on data from another, the resulting tempo-003
ral misalignment can degrade end-task perfor-004
mance. In this work, we establish a suite of005
eight diverse tasks across different domains006
(social media, science papers, news, and re-007
views) and periods of time (spanning five years008
or more) to quantify the effects of temporal009
misalignment. Our study is focused on the010
ubiquitous setting where a pretrained model is011
optionally adapted through continued domain-012
specific pretraining, followed by task-specific013
finetuning. We establish a suite of tasks014
across multiple domains to study temporal mis-015
alignment in modern NLP systems. We find016
stronger effects of temporal misalignment on017
task performance than have been previously re-018
ported. We also find that, while temporal adap-019
tation through continued pretraining can help,020
these gains are small compared to task-specific021
finetuning on data from the target time period.022
Our findings motivate continued research to023
improve temporal robustness of NLP models.1024

1 Introduction025

Changes in the ways a language is used over time026

are widely attested (Labov, 1994; Altmann et al.,027

2009; Eisenstein et al., 2014); how these changes028

will affect NLP systems built from text corpora,029

and in particular their long-term performance, is030

not as well understood.031

This paper focuses on temporal misalignment,032

i.e., where training and evaluation datasets are033

drawn from different periods of time. In today’s034

pretraining-finetuning paradigm, this misalignment035

can affect a pretrained language model—a situa-036

tion that has received recent attention (Jaidka et al.,037

2018; Lazaridou et al., 2021; Peters et al., 2018;038

Raffel et al., 2020; Röttger and Pierrehumbert,039

2021)—or the finetuned task model, or both. We040
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suspect that the effects of temporal misalignment 041

will vary depending on the genre or domain of the 042

task’s text, the nature of that task or application, 043

and the specific time periods. 044

We focus primarily on measuring the extent of 045

temporal misalignment on task performance. We 046

consider eight tasks, each with datasets that span at 047

least five years (§2.4), ranging from summarization 048

to entity typing, a subproblem of entity recognition 049

(Grishman and Borthwick, 1999). Notably, these 050

task datasets span four different domains: social 051

media, scientific articles, news, and reviews. We 052

introduce an easily interpretable metric that summa- 053

rizes the rate at which task performance degrades 054

as function of time. 055

Our research questions are: 056

(Q1) how does temporal misalignment affect 057

downstream tasks over time? 058

(Q2) how does sensitivity to temporal misalign- 059

ment vary with text domain and task? 060

(Q3) how does temporal misalignment affect lan- 061

guage models across domains and spans of 062

time? 063

(Q4) how effective is temporal adaptation, or ad- 064

ditional pretraining on a target year, in miti- 065

gating temporal misalignment? 066

We find that temporal misalignment affects both 067

language model generalization and task perfor- 068

mance. We find considerable variation in degra- 069

dation across text domains (§3.2) and tasks (§3.1). 070

Over 5 years, classifiers’ F1 score can deteriorate 071

as much as 40 points (political affiliation in Twitter) 072

or as little as 1 point (Yelp review ratings). Two 073

distinct tasks defined on the same domain can show 074

different levels of degradation over time. 075

We explore domain adaptation of a language 076

model, using temporally selected (unannotated) 077

data, as a way to curtail temporal misalignment 078

(Röttger and Pierrehumbert, 2021). We find that 079

this does not offer much benefit, especially relative 080
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to performance that can be achieved by finetuning081

on temporally suitable data (i.e., from the same082

time period as the test data). We conclude that tem-083

poral adaptation should not be seen as a substitute084

for finding temporally aligned labeled data.085

The evidence and benchmarks we offer motivate086

careful attention to temporal misalignment in many087

applications of NLP models, and further research088

on solutions to this problem.089

Contributions. To facilitate the study of tempo-090

ral misalignment phenomenon on downstream ap-091

plications, we compile a suite of eight diverse tasks092

across four important language domains. We de-093

fine an interpretable metric that summarizes tempo-094

ral misalignment of a model on a task with times-095

tamped data. Our experiments reveal key factors096

in how temporal misalignment affects NLP model097

performance.098

2 Methodology Overview099

We begin by defining the scope of our study.100

2.1 Learning Pipeline101

We consider a process for building an NLP model102

that is in widespread use by the research commu-103

nity, illustrated in Fig. 1. First, a (neural network)104

language model (LM) is pretrained on a large text105

collection that is not necessarily selected for topical106

or temporal proximity to the text of the target appli-107

cation (our focus is on GPT-2; Brown et al., 2020).108

Second, the LM is optionally adapted by continued109

training on a collection strategically curated for110

closer proximity to the target (Beltagy et al., 2019);111

this stage is often referred to as domain-adaptive112

pretraining (DAPT; Gururangan et al., 2020). Fi-113

nally, the model is finetuned to minimize a task-114

specific loss, using labeled data representative of115

what the model is expected to be exposed to in116

testing or deployment.117

pretraining (PT) 
from scratch

domain/temporal 
adaptation (DAPT) 

finetuning on 
task-specific 

dataset

Figure 1: A typical modeling pipeline in NLP.

We study two ways in which temporal misalign-118

ment might affect the pipeline’s performance as119

well as straightforward ways to mitigate them.120

Task Shift and Temporal Finetuning The rela-121

tionship between text inputs and target outputs may122

change over time. To the extent that this occurs, 123

annotated datasets used to train NLP systems in 124

the finetuning stage will become stale over time. 125

Due to this temporal misalignment, performance 126

will degrade after deployment, or any in evalua- 127

tions that use test data temporally distant from the 128

training data. We seek to quantify this degradation 129

across a range of text domains and tasks. 130

Language Shift and Temporal Domain Adapta- 131

tion Changes in language use can cause a pre- 132

trained LM, which commonly serves as the back- 133

bone for most modern NLP models, to become 134

stale over time (Lazaridou et al., 2021), regardless 135

of the end task. Lazaridou et al. (2021) explored 136

temporal adaptation, continuing LM training on 137

new text data. This is essentially the same proce- 138

dure as DAPT, where the data is selected by time 139

period. Their work focused on the LM alone, not 140

downstream tasks; we consider both here. 141

Röttger and Pierrehumbert (2021), the closest 142

to our work, studied temporal adaptation in con- 143

junction to finetuning for a classification task over 144

Reddit data. They conclude that temporal adapta- 145

tion does not help any more than normal DAPT. 146

We corroborate this work and extend it by studying 147

a wider variety of tasks over a longer span of time 148

periods and thus are better able to draw generaliza- 149

tions from our results. 150

We believe that the two kinds of shift—task shift 151

and language shift—are difficult to disentangle, and 152

we do not attempt to do so in this work. Instead, we 153

aim to quantify the effect of temporal misalignment 154

on a range of NLP tasks, as well as the benefits of 155

these two strategies. 156

2.2 Evaluation Methodology 157

Our experiments are designed to measure the effect 158

of temporal misalignment on task performance. To 159

do so, for each task, we fix a test set within a given 160

time period, Ttest . We vary the time period of the 161

training data, allowing us to interpret differences 162

in performance as a kind of “regret” relative to 163

the performance of a model trained on data tem- 164

porally aligned with Ttest .2 We consider multiple 165

different test periods for each task. We also seek 166

to control the effect of training dataset size. We 167

partition training data into time periods of roughly 168

2This setup avoids a confound of varying test set difficulty
that we would encounter if we fixed the model and compared
its performance across test datasets from different time peri-
ods.
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the same size and always train on a single partition,169

keeping the training set size of each time period170

constant within each task. We expect that perfor-171

mance could be improved by accumulating training172

data across multiple time periods, but that would173

make it more difficult to achieve our research goal174

of quantifying the effect of temporal misalignment175

on performance.176

2.3 Quantifying Temporal Degradation177

Understanding temporal misalignment requires178

evaluating a model’s performance across data with179

a range of different timestamps, which makes it dif-180

ficult to compare various models in terms of their181

misalignment. We define a metric for temporal182

degradation (TD) which summarizes the overall183

amount of temporal misalignment on a task as a184

single value. In high-level terms, the TD score185

measures the average rate of performance deterio-186

ration (of perplexity, F1, or Rouge-L) for each time187

period of misalignment between the train and eval-188

uation sets. Higher TD scores imply greater levels189

of performance deterioration due to misalignment.190

Let St′�t indicate the performance a model
trained on timestep t′ data and evaluated on
timestep t. We define D(t′ � t) as:

D(t′ � t) = − (St′�t − St�t)× sign(t′ − t).

D(t′ � t) is a modified difference in performance191

between two models.3 Fig. 2 illustrates D as a192

function of consecutive training time periods.193

We find a line of best fit for D(t′ � t) for all t′194

using least-squares regression. The slope of this195

line is TD(t), the TD score for evaluation time196

period t. The final TD score is the average of the197

TD(t) across all evaluation time periods t. Further198

details can be found in Appendix A.199

2.4 Domains, Tasks, and Datasets200

We describe the eight tasks and four domains used201

for this study. Three (out of eight) of the tasks are202

newly defined in this work, and all tasks required203

nontrivial postprocessing; we will release the cor-204

responding datasets or postprocessing scripts pub-205

licly at publication 4. We provide examples and206

detailed statistics in Table 5 of Appendix C.207

3Without the modification, a task with degradation would
have have positive performance gaps both t′ > t and t′ > t;
the function would not be monotone and the rate of change
would be harder to approximate. The modification yields a
simpler visual understanding of the deviations over time.
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Figure 2: An example calculation of the TD score for
a particular timestep t (discussed in Section 2.3). The
plotted markers represent D(t′ → t) (y-axis) as a func-
tion of train time period t′ (x-axis). The annotated
numbers on each blue dot are the raw evaluation scores
St′→t, not to be confused with the y values. The red
line is the line of best fit and its slope is the TD score
for evaluation timestep t. In this example, we would
expect to see, on average, 9.09 points of deterioration
for each year of misalignment. The final TD score is
averaged between all evaluation timesteps.

Domain 1: Twitter Social media platforms like 208

Twitter have been mined to study aspects of lan- 209

guage change over time, such as the introduction 210

or diffusion of new words (Eisenstein et al., 2014; 211

Tamburrini et al., 2015; Wang and Goutte, 2017). 212

We collect unlabeled data for domain adaptation 213

by extracting a random selection of 12M tweets, 214

spread semi-uniformly from 2015 till 2020.5 We 215

experiment with two tasks on Twitter data: 216

Political affiliation classification (POLIAFF) We 217

collect English tweets dated between 2015 and 218

2020 from U.S. politicians with a political affil- 219

iation (Republican or Democrat). We omit any 220

politician who changed parties over this time pe- 221

riod or identified as independent. We consider the 222

downstream task of detecting political affiliations, 223

i.e., given a text of a single tweet we predict the 224

political alignment of its author at the time of the 225

tweet. This task can be useful for studies that in- 226

volve an understanding of ideologies conveyed in 227

text (Lin et al., 2008; Iyyer et al., 2014). 228

Named entity type classification (TWIERC) We 229

use the Twitter NER dataset from Rijhwani and 230

Preoţiuc-Pietro (2020). The dataset contains tweets 231

dated from 2014 to 2019, each annotated with the 232

mentions of named entities and their types (Person, 233

Organization, or Location). We consider the task 234

of typing a given mention, which is a subproblem 235

of named entity recognition. 236

5Collected via the Twitter API.
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Domain 2: Scientific Articles Scientific re-237

search produces vast amounts of text with great238

potential for language technologies (Wadden et al.,239

2020; Lo et al., 2020); it is expected to show a great240

deal of variation over time as ideas and terminology241

evolve. For adaptation to this domain, we collect242

unlabeled data from science documents available243

in Semantic Scholar’s corpus,6 which yields 650k244

documents, spread over a 30-year period (Ammar245

et al., 2018). For this domain, we study two tasks:246

Mention type classification (SCIERC) We use the247

SciERC dataset from Luan et al. (2018) which con-248

tains entity-relation annotations for computer sci-249

ence paper abstracts for a relatively wide range of250

years (1980s to 2019). We subdivide the annotated251

data into time periods with roughly equal-sized252

numbers of papers (1980–1999, 2000–2004, 2005–253

2009, 2010–2016). The task is to map a mention of254

a scientific concept to a type (Task, Method, Metric,255

Material, Other-Scientific-Term, or Generic).256

AI venue classification (AIC) We also examine257

temporal misalignment on the task of identifying258

whether a paper was published in AAAI or ICML.259

We group the data into roughly equal-sized time260

periods (2009–2011, 2012–2014, 2015–2017, and261

2018–2020). This task is, loosely, a proxy for topic262

classification and author disambiguation applica-263

tions (Subramanian et al., 2021).264

Domain 3: News Articles News articles make265

up a significant part of the data commonly used266

to train LMs (Dodge et al., 2021). News articles267

convey current events, suggesting strong temporal268

effects on topic. For adaptation, we use 9M articles269

from the Newsroom dataset (Grusky et al., 2018),270

ranging from 2009–2016.7 We experiment with271

three tasks on news articles:272

Newsroom summarization (NEWSUM) The273

Newsroom dataset provides a large quantity of274

high-quality summaries of news articles (Grusky275

et al., 2018). We group articles by years for276

this task (2009–2010, 2011–2012, 2013–2014,277

2015–2016). Note that this task, unlike the278

other tasks considered here, is not a document279

classification task.280

Publisher classification (PUBCLS) The News-281

room dataset also provides metadata, such as publi-282

cation source. We take the documents published by283

6https://api.semanticscholar.org/
corpus/

7https://lil.nlp.cornell.edu/newsroom

the 3 most prolific publishers (Fox News, New York 284

Times, and Washington Post) and train models to 285

classify documents among them. We bin the years 286

(2009–2010, 2011–2012, 2013–2014, 2015–2016). 287

This task is a proxy for applications that seek to 288

infer fact provenance (Zhang et al., 2020). We note 289

that, unlike in our other tasks, we downsample to 290

ensure that the labels are equally balanced. 291

Media frames classification (MFC) “Framing” of- 292

ten refers to the emphasis or deemphasis of dif- 293

ferent social or cultural issues in the media’s pre- 294

sentation of the news (Entman, 1983). Card et al. 295

(2015) provide a dataset of news articles annotated 296

with framing dimensions. We predict the primary 297

frame of a document, treating the problem as a 298

15-way classification task. We bin by timestamp 299

(2009–2010, 2011–2012, 2013–2014, 2015–2016). 300

Domain 4: Food Reviews Food and restaurant 301

reviews have been widely studied in NLP research. 302

We considered this domain as a possible contrast to 303

those above, expecting less temporal change. Using 304

data from the Yelp Open Dataset,8 we consider one 305

task: 306

Review rating classification (YELPCLS) This is a 307

conventional sentiment analysis task, mapping the 308

text of a review to the numerical rating given by its 309

author (Pang et al., 2002; Dave et al., 2003). We 310

partition the data by year (2013 to 2019) and ensure 311

that each timestep has a roughly equal amount of 312

reviews. 313

3 Empirical Results and Analysis 314

In this section, we summarize our experimental 315

analysis, resulting from more than 500 experiments. 316

In our experiments, we primarily explore the effect 317

of temporal misalignment on GPT2 (Brown et al., 318

2020), a PLM often used for generation.9 We re- 319

port the macro F1 score for classification tasks and 320

Rouge-L (Lin, 2004) for NEWSUM. 321

We first focus on quantifying temporal misalign- 322

ment in end tasks. As a preliminary analysis, we in- 323

vestigate how the marginal distribution over labels 324

changes over time. We then study how temporal 325

misalignment affects performance of GPT2 mod- 326

els in downstream tasks with temporal finetuning 327

(Q1,Q2). We find that the amount of performance 328

degradation can vary by task; in some cases the 329

8https://www.yelp.com/dataset
9In our preliminary results, we found that BERT,

RoBERTa, and GPT2 models showed similar patterns.
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degradation can be severe.330

We then study how temporal misalignment af-331

fects PLMs. As a first step, we analyze how vo-332

cabularies change over time in our datasets. We333

then experiment with (Q3) how temporal misalign-334

ment affects upstream language modeling and (Q4)335

how effective temporal adaptation, or additional336

pretraining on a target year, is in mitigating mis-337

alignment. We find that while PLMs are affected338

by misalignment, temporal domain adaptation is339

not enough to mitigate temporal misalignment.340

Details on temporal domain adaptation and fine-341

tuning, and an extended version of our results, can342

be found in Appendices B and D, respectively.343

3.1 Temporal Misalignment in Tasks344

How much does misalignment affect task perfor-345

mance? We find that it depends on the task.346

Label Distribution Drift We first investigate347

how task datasets undergo changes in the marginal348

distribution over labels due to time. For each task349

and each test period, we calculate the KL diver-350

gence between the label distributions in that period351

and the first test period. Full results are reported352

in Fig. 7 of Appendix D. In three cases, we de-353

tected notable label distribution drift: POLIAFF,354

AIC, and MFC.10 In POLIAFF, Republican tweets355

outnumbered Democratic ones by over a 2:1 ratio356

in 2015, but the reverse held by 2020. This ob-357

servation shows that, regardless of the properties358

of NLP models, the nature of many tasks changes359

over time, if only because the output distribution360

changes.361

Finetuning As described in §2.4, for each task,362

we create training and evaluation sets associated363

with different time periods. We finetune GPT2 on364

each of the task’s training sets and evaluate each on365

two evaluation sets. Note that there is no domain366

adaptation here.367

Fig. 3 shows our results on downstream tasks368

(with no domain adaptation). To get more reliable369

estimates, each number in this heatmap is an aver-370

age of five independent experiments with different371

random seeds. A summary of the fine-tuning re-372

sults, in terms of TD scores (§2.3) is in Table 1373

which indicates the speed of temporal degradation,374

for every year that the training and evaluation data375

diverges. Recall that this score (applied to task376

10For other tasks, it is possible that the data collection/an-
notation procedures suppressed label distribution changes that
would be visible in data “from the wild.”

Domain Task (metric) TD

Twitter POLIAFF (F1) 7.72
TWIERC (F1) 0.96

Science SCIERC (F1) 1.08
AIC (F1) 1.79

News
PUBCLS (F1) 5.46
NEWSUM (Rouge-L) 1.38
MFC (F1) 0.98

Reviews YELPCLS (F1) 0.26

Table 1: Finetuned models’ temporal degradation sum-
mary scores (TD; §2.3; details in Figure 3). These
scores estimate how fast a model degrades as the time
period of training and evaluation data diverge (higher
scores imply faster degradation). We note that since
we normalize by the overall time range of a task, the
temporal partitions we used do have an effect on the
TD scores. For example, AIC spans ten years, even
though there are only four partitions.

performance measures) summarizes the strength of 377

the effect of temporal misalignment on the score, 378

using evidence from across experiments. 379

(Q1) Temporal misalignment degrades task per- 380

formance substantially. Fig. 3, similar to earlier 381

work (Röttger and Pierrehumbert, 2021), shows 382

that models trained on data from the same time 383

period as the test data perform far better than those 384

from the past. The performance drop is most severe 385

for POLIAFF (TD=7.72) and PUBCLS (TD=5.45). 386

(Q1) Temporal misalignment has a measurable 387

effect on most tasks. With the exception of 388

MFC and TWIERC tasks, all tasks see an aver- 389

age loss of at least 1 point for each time period that 390

the training data diverges from the test data. For 391

datasets like SCIERC that make use of data from 392

three decades or more, this effect could add up. 393

Moreover, 1 point of difference can be meaning- 394

ful, especially for the summarization task where we 395

measure Rouge-L. According to the leaderboard,11 396

the best three performing models are within a point 397

of each other in Rouge-L (Shi et al., 2019, 2021; 398

Mendes et al., 2019). The task has a TD score of 399

1.38. On average, a time period of temporal mis- 400

alignment results has a larger effect on performance 401

than changing between the three best models. 402

(Q1) Performance loss from temporal misalign- 403

ment occurs in both directions. Another obser- 404

vation in Table 3 is that degradation happens in both 405

11https://lil.nlp.cornell.edu/newsroom/
index.html
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Figure 3: Temporal misalignment in finetuning affects task performance (§3.1). In all cases, higher scores are
better. The heatmap is shaded per column, i.e., the darkest shade of orange in a cell means the cell has the
highest score in that column. Mismatch between the the training and evaluation data result in massive performance
drop. While all suffer from temporal degradation, its degree is a strong function of task definition. For example,
YELPCLS shows minimal degradation. In contrast, POLIAFF shows major deterioration over time. Additional
tables of our remaining tasks can be found in Appendix D.

directions (past and future). While most of the em-406

phasis on temporal misalignment is on how to adapt407

our stale models/data to the present time (Dhin-408

gra et al., 2021; Lazaridou et al., 2021; Röttger409

and Pierrehumbert, 2021), our experiments also410

show that models trained on newer data can be411

misaligned from the past, as well. This can be im-412

portant in social science applications (Abercrombie413

and Batista-Navarro, 2019; Soni et al., 2021), for414

example, where evaluation sets may come from ear-415

lier time periods than the training data. Moreover,416

the deterioration rates are similar in both directions.417

(Q2) Tasks, even in the same domain, are af-418

fected differently. Consider the two tasks of PO-419

LIAFF and TWIERC (both in the Twitter domain),420

with TD scores of 7.72 and 0.96, respectively. Of421

our 8 tasks, TWIERC, MFC, and YELPCLS are the422

most robust to temporal misalignment (TD scores423

of 0.96, 0.98 and 0.26, respectively). The high lev-424

els of variation show that temporal misalignment425

affects performance through labeled datasets, not426

just unlabeled pretraining data.427

3.2 Temporal Misalignment in LMs428

As LMs are widely used in modern NLP systems,429

it is important to inspect how robust they are to430

temporal misalignment. We seek to understand431

how temporal misalignment affects the language432

modeling task in our four domains and if temporal433

domain adaptation helps in downstream tasks.434

Vocabulary Shift We first consider an extremely435

simple measurement of language shift: how do vo-436

cabularies change across time periods?12 We use437

12This can be understood as a model-free way to measure
covariate shift for NLP tasks that take text as input.

a similar procedure to the one Gururangan et al. 438

(2020) used for analyzing domain similarity. Fix- 439

ing a domain, we compare the (unigram) vocabular- 440

ies of each pair of training sets. The vocabularies 441

are built using the 10K most frequent terms from 442

each time period. We note that vocabulary over- 443

lap is higher between two time periods the closer 444

they are. Most domains see a sizeable amount of 445

shift; however, Yelp is relatively stagnant. Fig. 4 446

visualizes the overlap measurement. 447

Temporal Domain Adaptation We next apply 448

DAPT to GPT2: for each domain, we continue pre- 449

training and then evaluate perplexity. We consider 450

how the perplexity varies with the (mis)alignment 451

between the DAPT training data and the evaluation 452

data. We measure the TD score, which summarizes 453

how much performance is affected by temporal mis- 454

alignment (now applied to perplexity). The results 455

of temporal domain adaptation are in Fig. 5. 456

(Q3) Domains are a major driver of temporal 457

misalignment in LMs. Consistent with Lazari- 458

dou et al. (2021), Fig. 5 shows degradation of LM 459

due to temporal misalignment; it further shows 460

considerable variation by text domain. Twitter 461

changes most rapidly, and food reviews are much 462

slower. This observation is consistent with past 463

work on language change in social media (Stew- 464

art and Eisenstein, 2018; Eisenstein et al., 2014). 465

To the extent that a LM’s practical usefulness is 466

associated with its fit to new data, researchers and 467

practitioners should understand the temporal dy- 468

namics of their target text domains and plan LM 469

updates accordingly. 470

Joint Effects of Temporal Adaptation and Fine- 471

tuning As discussed in §2, continued pretraining 472
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Figure 4: Vocabulary overlap between time periods, over a subset of our tasks’ datasets. Each cell shows the %
overlap between the vocabularies of two time periods.

Figure 5: Perplexity of GPT2 after adaptive pretrain-
ing on temporally-selected data in different domains
(lower is better). The TD score (in parentheses) es-
timates the expected perplexity rise (i.e., degradation)
for every time period of misalignment between evalu-
ation and training times. Degradation follows the ex-
pected pattern, but the magnitude varies by domain.

of an LM on in-domain text has been shown to473

improve task performance. Our prior results show474

that both downstream tasks and language modeling475

are affected by temporal misalignment. Can tem-476

poral domain adaptation help mitigate the effects477

of misalignment in downstream tasks?478

Here we consider how the time period of the479

data selected for continued pretraining affects task480

performance. For each task’s evaluation set, we481

apply DAPT twice: once with the earliest available482

time period’s unannotated data and once with the483

latest’s. We then finetune and evaluate on data from484

the same time periods as in the earlier experiment.485

(Q4) Temporal adaptation does not overcome486

degradation from temporally misaligned la-487

beled data. In Table 2, we see small performance 488

gains from temporal domain adaptation on LMs, 489

and in some cases it is harmful. These observations 490

underscore the importance of the labeled data; ad- 491

justments to the LM alone do not yet appear suffi- 492

cient to mitigate the effects of temporal misalign- 493

ment. In contrast to temporal domain adaptation, 494

which does not mitigate temporal misalignment’s 495

effects, finetuning on temporally-updated labeled 496

data is more effective. 497

This can be observed in each task-specific sub- 498

table of in Table 2: the top-left and bottom-right 499

quadrants (fine-tuning on time-stamp that is used 500

for evaluation) generally lead to higher scores. 501

4 Limitations and Future Work 502

We provided a well-controlled suite of experiments 503

to study the effects of temporal misalignment on 504

model performance. However, the setup has some 505

drawbacks. For example, we expect that models 506

trained on data accumulated across multiple time 507

periods would perform well (Lazaridou et al., 2021; 508

Röttger and Pierrehumbert, 2021; Jin et al., 2021). 509

We chose the time periods in our study so that 510

they would each have sufficient and consistent train- 511

ing data sizes. However, amounts of data in a partic- 512

ular domain or task will fluctuate over time. More- 513

over, the rate of language use change may not be 514

uniform. Future work may want to define their time 515

periods with these two considerations in mind. 516

Our findings indicate that temporal misalign- 517

ment’s effects depend heavily on the task. Though 518

not studied here, the same issues may arise in 519

annotation efforts; consider, for example, recent 520

work on controversy (Zhang et al., 2018) and so- 521

cial norms (Xu et al., 2021; Zhou et al., 2021) likely 522

hinges on constructs that may be time sensitive. An- 523

notations that are temporally misaligned with the 524

7



Domain 
  (Task) ↓

Finetune 
Year ↓

Evaluation → 
Pretrain ↓  2015 2020 Domain 

  (Task) ↓
Finetune 

Year ↓
Evaluation →

Pretrain ↓ 1980-1999 2010-2016

Twitter
 (PoliAff)

F1

2015
Default 91.4 48.4

Scientific 
(SciERC)

F1

1980-1999
Default 67.9 57.2

Default → 2015 92.2 47.5 Default → 1980-1999 73.2 66.4
Default → 2020 90.9 50.8 Default → 2010-2016 73.7 66.8

2020
Default 45.8 78.0

2010-2016
Default 60.3 72.5

Default → 2015 47.2 76.9 Default → 1980-1999 63.4 75.0
Default → 2020 44.2 78.3 Default → 2010-2016 64.8 76.0

Domain 
  (Task) ↓

Finetune 
Year ↓

Evaluation → 
Pretrain ↓  2009-2010 2015-2016 Domain 

  (Task) ↓
Finetune 

Year ↓
Evaluation →

Pretrain ↓ 2014 2019

News
(NewsSum)
Rouge-L

2009-2010
Default 36.4 29.0

Food
Reviews
(Yelp)
F1

2009-2010
Default 58.6 58.3

Default →  2009-2010 36.4 29.1 Default →  2014 63.3 60.1
Default → 2015-2016 36.1 28.9 Default → 2019 60.2 62.3

2015-2016
Default 27.8 31.8

2015-2016
Default 58.3 58.3

Default →  2009-2010 28.2 31.8 Default →  2014 60.2 62.3
Default → 2015-2016 27.8 31.6 Default → 2019 60.8 62.3

Table 2: Combination of temporal adaptation and finetuning (§3.2) on our tasks. The row labeled “Default” cor-
responds to a model that has not been adapted (uses the default pretraining). The models with temporal domain
adaptation are shown in rows labeled “Default→ y” and each is comparable to the “Default” row above it. The
color coding is proportional to the magnitude of the performances of each task (darker shade of orange indicate
higher scores). It can be observed that temporal finetuning has a greater impact than temporal pretraining. Each
quadrant of 3 for each task, indicating the same finetune and evaluation years, but different pretraining conditions,
are mostly uniform. In contrast, we notice a sharper difference in performance when varying the finetuning year
(comparing the quadrants vertically).

original data being annotated may be anachronistic.525

An opportunity for future exploration is in the526

context of real-world events with sudden changes527

such as COVID-19 pandemic (Cao et al., 2021) or528

political changes, which influence tasks such as529

question answering (Dhingra et al., 2021; Zhang530

and Choi, 2021).531

Continual learning, which allows models to learn532

from a continuous stream of data, could also be533

one way to mitigate temporal misalignment. Most534

prior work in this space has focused on continual535

learning in PLMs (Gururangan et al., 2021; Jin536

et al., 2021) or learning disparate tasks (de Mas-537

son d'Autume et al., 2019; Huang et al.). Future538

work may investigate continual learning algorithms539

for tasks that change over time.540

While we found that task-specific finetuning is541

more effective than temporal adaptation, new la-542

beled data can be expensive. Ways to characterize543

or detect changes in a task could be helpful in ef-544

ficiently updating datasets (Lu et al., 2019; Webb545

et al., 2018). Future work can also treat dataset546

maintenance as an optimization problem between547

the cost and gains of annotating new data (Bai et al.,548

2021).549

5 Conclusion550

Changes in language use over time, and how lan-551

guage relates to other quantities of interest in NLP552

applications, has clear effects on the performance 553

of those applications. We have explored how tem- 554

poral misalignment between training data—both 555

data used to train LMs and annotated data used to 556

finetune them—affects performance across a range 557

of NLP tasks and domains, taking advantage of 558

datasets where timestamps are available. We com- 559

pile these datasets as a benchmark for future re- 560

search as well. We also introduced a summary 561

metric, TD score, that makes it easier to compare 562

models in terms of their temporal misalignment. 563

Our experiments revealed considerable variation 564

in temporal degradation accross tasks, more so than 565

found in previous studies (Röttger and Pierrehum- 566

bert, 2021). These findings motivate continued 567

study of temporal misalignment across applica- 568

tions of NLP, its consideration in benchmark evalu- 569

ations,13 and vigilance on the part of practitioners 570

able to monitor live system performance over time. 571

Notably, we observed that continued training 572

of LMs on temporally aligned data does not have 573

much effect, motivating further research to find 574

effective temporal adaptation methods that are less 575

costly than ongoing collection of annotated/labeled 576

datasets over time. 577

13Indeed, for benchmarks where training and testing data
are aligned, our findings suggest that measures of performance
may be in some cases inflated.
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Supplementary Material768

A A Metric for Temporal Degradation769

Let t be the time period of the training data and770

t′ the time period of the evaluation data.14 We771

aim to summarize the general effect of temporal772

misalignment (the difference between t and t′) on773

task performance, in an interpretable way that is774

comparable across tasks.775

Let St′�t indicate the performance a model
trained on timestamp t′ data and evaluated on the
timestamp t. Let

D(t′ � t) = − (St′�t − St�t)× sign(t′ − t),

In other words, D(t′ � t) is a modified differ-776

ence in performance between a aligned and mis-777

aligned models. The modification ensures that, as778

performance deteriorates, D increases, regardless779

of the direction of time between t and t′.780

Our temporal degradation (TD) score for a fixed
evaluation timestamp t for models trained on a set
of timestamps T is defined as:

TD(T � t′) =

∣∣∣∣∣
∑

t∈T
(
D(t′ � t)− D̄

)
(t− t̄)∑

t∈T (t− t̄)2

∣∣∣∣∣ ,
where t̄ = avgt∈T t

′ and D̄ = avgt∈T D(t′ � t).781

This metric is the slope of a line fitting the the per-782

formance change of models trained on a variety783

of timestamps, when evaluated on a fixed times-784

tamp. It can be interpreted as the average rate of785

performance deterioration per time period.786

Fig. 6 shows three examples of TD scores from787

POLIAFF(the first) and YELPCLS(the latter two).788

These illustrate cases with and without temporal789

sensitivity. In practice, most examples with dete-790

rioration showed a linear trend and thus the rate791

of degradation was suitible to be approximated by792

a line. The final TD score is averaged over all793

evaluation years T ′.794

TD =

∑
t∈T ′ TD(T � t)

n

B Details of Model Development795

Training Details for Temporal Adaptation We796

train GPT2 over each domain and timestamp for797

k steps using Huggingface’s implementation of798

GPT2. Hyperparameter details can be seen in Ta-799

ble 3.800

14See examples in Fig. 3.

Hyperparameter DAPT Assignment

Number of steps 10k

Batch size 32

Maximum learning rate 5e-05

Adam Epsilon 1e-08

Adam Beta 0.9. 0.999

Block size 1024

Table 3: Hyperparameters for temporal adaptation ac-
cross the four domains.

Hyperparameter Cls. Assign Summ. Assign

Number of Epochs 50 10

Batch size 32 8

Max learning rate 2e-05 2e-05

Adam Epsilon 1e-08 1e-08

Adam Beta 0.9. 0.999 0.9. 0.999

top p (sampling) - 0.05

top k - 20

temperature - 1

max length - 512

Table 4: Hyperparameters for temporal finetuning ac-
cross the eight tasks.

Training Details for Temporal Finetuning We 801

use Huggingface’s implementation of GPT2 for 802

finetuning for both the classification and summa- 803

rization tasks. We train on Quadro RTX 800 GPUs. 804

See Table 4 for details. 805

C Data Collection 806

We describe the postprocessing and data collection 807

in greater detail. Table 5 depicts examples and 808

detailed statistics for our task. All data released is 809

intended for non-commercial use. 810

POLIAFF We acquire a list of U.S. politician 811

names and Twitter handles15. One of the authors 812

manually annotated if the politician was a Republi- 813

can or Democrat. In addition, one volunteer double 814

checked to ensure correctness. We throw away any 815

politician who changed parties between 2015 and 816

2020, any independents, and anyone suspended by 817

Twitter (e.g., RealDonaldTrump). 818

15https://files.pushshift.io/twitter/
US_PoliticalTweets.tar.gz
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Figure 6: Three example calculations of the TD score (left from POLIAFF and the center and right from YELP-
CLS). The annotated numbers are the raw evaluation scores St′→t and the plotted markers represent the modified
differences D(t′ → t) discussed in Section 2.3. For a particular plot, the red line is the line of best fit and its slope
is the TD(t) score for evaluation timestep t. The final TD score is averaged between all evaluation timesteps for
the particular task.

Domain Task Time Range Size Example

Twitter

political
affiliation

classification
2015-2019 120k

Input: History will note that Trump didn’t merely fiddle while the planet burned
but tried to throw the Arctic National W... Output: Democrat (vs Republican)

entity type
classification 2014-2019 8k

Input: entity: Finola, tweet: Two 64-year olds enjoying their first birthday
together in 40+ years. My twin sister, Finola, and I. Output: Person

Science

mention
type

classification
1980-2016 8k

Input: mention: deep Long Short-Term Memory (LSTM) subnetwork, abstract:
In this paper, we study the problem of online action detection from the streaming
skeleton data .... by leveraging the merits of the deep Long Short-Term Memory
(LSTM) subnetwork, the proposed model ... Output: Method

venue
classification 2009-2020 16k

Input: Rank K Binary Matrix Factorization (BMF) approximates a binary matrix
by the product of two binary matrices of lower rank, K... Output: AAAI (vs
ICML)

News

media
frame

classification
2009-2016 20k

Input: You think you have heard the worst horror a gun in the wrong hands can
do, and then this.You think there could not have been anywhere more tragic for
it to happen... Output: Gun Control (15 possible frames)

publisher
classification 2009-2016 67k

Input: A Muslim woman said Sunday that her viral article explaining why she
voted for Donald Trump has angered her liberal pals as well as other Muslims.
Output: FoxNews (vs NYTimes or WaPost)

summarization 2009-2016 330k
Input: The Consumer Financial Protection Bureau is demanding PayPal return
$15 million to consumers and pay a $10 million fine for ... Output: The CFPB
alleges many customers unwittingly signed up for PayPal Credit

Food Reviews review rating
classification 2013-2019 126k

Input: What a beautiful store and amazing experience! Not only the atmosphere,
but the people... Output: 4 (out of 5)

Table 5: The tasks from four domains studied in this paper, with examples. See Section 2.4 for more details.

12



AIC We randomly sample science documents in819

Semantic Scholar’s corpus.16 Of those, we only820

keep documents that (1) are published in ICML821

or AAAI, (2) are classified as ‘computer science’822

documents, and (3) have an abstract of at least 50823

tokens.824

Newsroom The following applies to the postpro-825

cessing and data selection for both supervised tem-826

poral finetuning and unsupervised temporal adapta-827

tion of PUBCLS and NEWSUM. We use the News-828

room dataset.17. We only keep articles where (1)829

the year in the metadata also appears in the main830

text and (2) no future year is mentioned in the main831

text.832

PUBCLS We carry out additional postprocess-833

ing and ensure that each of the three labels (Fox834

News, New York Times, and Washington Post)835

have an equal distribution across years. We do so836

by uniform-random downsampling.837

D Extended Results838

We provide further results from our experiments839

described in Section 3.840

Label Distribution Drift We measure how label841

distributions in task datasets change over time, as842

described in Section 3.1. For each task and each843

test period, we calculate the KL divergence be-844

tween the label distribution of that period andthe845

first test period. Fig. 7 depicts our results.846

Finetuning Results We provide the full results847

from our fientuning experiments in Section 3.1 in848

Fig. 8. These results are for downstream tasks with849

no domain adaptation.850

Finetuning with Temporal Domain Adaptation851

We provide the full results from our finetuning with852

temporal domain adaptation in Section 3.2 in Fig. 6.853

854

16https://api.semanticscholar.org/
corpus/; licensed under an ODC-BY

17https://lil.nlp.cornell.edu/newsroom/

Figure 7: KL divergence between label distributions
over time for all tasks. For each cell, we compare the
distribution of labels to that of the first time period; e.g.,
the 2017 POLIAFF cell contains the KL-divergence be-
tween the label distributions of POLIAFF in 2017 and
2015. We note that while most distributions see little
change over time, POLIAFF, AIC and MFC see a large
shift. However, we note that POLIAFF was sensitive to
temporal misalignment while MFC was not.
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Figure 8: emporal misalignment in finetuning affects task performance (§3.1). In all cases, higher scores are better.
The heatmap is shaded per column, i.e., the darkest shade of orange in a cell means the cell has the highest score in
that column. Mismatch between the the training and evaluation data result in massive performance drop. While all
suffer from temporal degradation, its degree is a strong function of task definition. For example, YELPCLS, MFC,
and TWIERC show minimal degradation. In contrast, POLIAFF and NEWSUM major deterioration over time.

Domain 
(Task) Finetune Year Evaluation → 

Pretrain ↓  2015 2020 Domain 
(Task) Finetune Year Evaluation → 

Pretrain ↓  2014 2019

Twitter
 (PoliAff)

F1

2015
Default 91.4 48.4

Twitter
 (TwiERC)

F1

2014
Default 74.3 68.9

Default → 2015 92.2 47.5 Default → 2014 76.1 69.6
Default → 2020 90.9 50.8 Default → 2019 74.1 68.9

2020
Default 45.8 78.0

2019
Default 71.0 74.6

Default → 2015 47.2 76.9 Default → 2014 73.1 75.2
Default → 2020 44.2 78.3 Default → 2019 73.7 75.8

Domain 
(Task) Finetune Year Evaluation → 

Pretrain ↓  2009-11 2018-20 Domain 
(Task) Finetune Year Evaluation → 

Pretrain ↓  1980-1999 2010-2016

Scienctific
(AIC)
F1

2009-2011
Default 79.0 72.0

Scientific 
(SciERC)

F1

1980-1999
Default 67.9 57.2

Default → 2009-2011 94.5 68.8 Default → 1980-1999 73.2 66.4
Default → 2018-2020 88.4 86.0 Default → 2010-2016 73.7 66.8

2018-2020
Default 72.0 85.0

2010-2016
Default 60.3 72.5

Default → 2009-2011 87.2 65.2 Default → 1980-1999 63.4 75.0
Default → 2018-2020 86.8 79.4 Default → 2010-2016 64.8 76.0

Domain 
(Task) Finetune Year Evaluation → 

Pretrain ↓  2009-2010 2015-2016 Domain 
(Task) Finetune Year Evaluation → 

Pretrain ↓  2009-2010 2015-2016

News
(MFC)
F1

2009-2010
Default 27.0 26.0

News
(PubCls)
F1

2009-2010
Default 94.1 52.4

Default →  2009-2010 30.6 31.8 Default →  2009-2010 95.4 54.0
Default → 2015-2016 29.8 30.0 Default → 2015-2016 95.4 53.5

2015-2016
Default 23.8 33.4

2015-2016
Default 71.3 88.2

Default →  2009-2010 29.7 41.6 Default →  2009-2010 80.4 90.7
Default → 2015-2016 32.7 41.9 Default → 2015-2016 78.7 91.1

Domain 
(Task) Finetune Year Evaluation → 

Pretrain ↓  2009-2010 2015-2016 Domain 
  (Task) ↓

Finetune 
Year ↓

Evaluation →
Pretrain ↓ 2014 2019

News
(NewsSum)
Rouge-L

2009-2010
Default 36.4 29.0

Food
Reviews
(Yelp)
F1

2013
Default 58.6 58.3

Default →  2009-2010 36.4 29.1 Default →  2013 63.3 60.1
Default → 2015-2016 36.1 28.9 Default → 2019 60.2 62.3

2015-2016
Default 27.8 31.8

2019
Default 58.3 58.3

Default →  2009-2010 28.2 31.8 Default →  2013 60.2 62.3
Default → 2015-2016 27.8 31.6 Default → 2019 60.8 62.3

Table 6: Combination of temporal adaptation and finetuning (§3.2) on our tasks. The row labeled “Default” corre-
sponds to a model that has not been adapted (uses the default pretraining). The color coding is proportional to the
magnitude of the performances of each task (darker shade of orange indicates higher scores). We see that models
that were finetuned on similar time periods performed similarly, no matter how their DAPT conditions differed.
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