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Abstract
As deep learning methods increasingly utilize
sensitive data on a widespread scale, differential
privacy (DP) offers formal guarantees to protect
against information leakage during model train-
ing. A significant challenge remains in imple-
menting DP optimizers that retain strong perfor-
mance while preserving privacy. Recent advances
introduced ever more efficient optimizers, with
AdamW being a popular choice for training deep
learning models because of strong empirical per-
formance. We study DP-AdamW and introduce
DP-AdamW-BC, a differentially private variant of
the AdamW optimizer with DP bias correction for
the second moment estimator. We start by show-
ing theoretical results for privacy and convergence
guarantees of DP-AdamW and DP-AdamW-BC.
Then, we empirically analyze the behavior of
both optimizers across multiple privacy budgets
(ϵ = 1, 3, 7). We find that DP-AdamW outper-
forms existing state-of-the-art differentially pri-
vate optimizers like DP-SGD, DP-Adam, and DP-
AdamBC, scoring over 15% higher on text classi-
fication, up to 5% higher on image classification,
and consistently 1% higher on graph node clas-
sification. Moreover, we empirically show that
incorporating bias correction in DP-AdamW (DP-
AdamW-BC) consistently decreases accuracy, in
contrast to the improvement of DP-AdamBC im-
provement over DP-Adam.

1. Introduction
In recent years, deep learning has achieved widespread adop-
tion, with applications ranging from natural language pro-
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cessing to image generation (Brown et al., 2020; Ho et al.,
2020). However, models trained on large and sensitive
datasets have been shown to be vulnerable to privacy attacks
on their training data, raising significant privacy conerns
(Carlini et al., 2021; 2022; Balle et al., 2022). Differential
Privacy (DP) provides a rigorous mathematical framework
to address these concerns, enabling the development of algo-
rithms with provable guarantees against leaking individual-
specific information (Dwork et al., 2006). In stochastic
optimization, this has been most commonly realized by the
DP-SGD algorithm introduced by Abadi et al. (2016). The
first application of DP in the deep learning model training
pipeline, this approach adds Gaussian noise of variance
σ2C2 after clipping per-sample gradients to a radius C.
While DP-SGD offers strong theoretical guarantees, its em-
pirical performance, as with vanilla SGD, often lags behind
the adaptive Adam family of optimizers that dominate non-
private deep learning. Subsequent work therefore lifted
Adam into the private setting; specific differentially private
optimizers that were developed to potentially improve the
privacy-utility tradeoff include DP-GD, DP-RMSprop, and
DP-Adam (Zhou et al., 2020; Li et al., 2022a).

Motivated by this line of work, we study differentially pri-
vate variants of the AdamW optimizer which has been em-
pirically shown to achieve improved generalization perfor-
mance over Adam, particularly enabling competitive perfor-
mance with SGD on image classification tasks (Loshchilov
& Hutter, 2017). To provide a differentially private imple-
mentation of AdamW, we introduce the DP-AdamW algo-
rithm by decoupling the weight decay from the gradient
update in the DP-Adam algorithm (Tang et al., 2023). Ad-
ditionally, we introduce DP-AdamW-BC, a variant of DP-
AdamW that corrects for the DP bias in the second moment
estimator, which Tang et al. (2023) characterized and cor-
rected for DP-Adam, resulting in DP-AdamBC.

We provide theoretical results on the privacy and conver-
gence guarantees of the new optimizers and in particular
show that DP-AdamW maintains similar privacy bounds and
convergence guarantees to DP-AdamBC. We then compare
the performance of our DP-AdamW and DP-AdamW-BC
to previous optimizers, empirically finding that they consis-
tently improve on the privacy-accuracy tradeoff compared
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to their DP-Adam counterparts. In contrast to the findings
of Tang et al. (2023), we show that incorporating bias cor-
rection in DP-AdamW-BC consistently decreases accuracy
across diverse tasks. We demonstrate that DP-AdamW out-
performs DP-SGD even in image classification, for which
Adam is known to not generalize as well (Loshchilov &
Hutter, 2017).

The remainder of our paper proceeds as follows. In Section
3, we present the DP-AdamW and DP-AdamW-BC algo-
rithms and their theoretical guarantees. In Section 4, we
detail our experiments and present the results of using the
DP-AdamW and DP-AdamW-BC optimizers in compari-
son to DP-Adam and DP-AdamW. In Section 5, we discuss
these results, and in Sections F and 6, we conclude and offer
further avenues of work.

2. Motivation and Related Work
Differentially private optimization was first studied by
(Abadi et al., 2016), who introduced Differentially Private
Stochastic Gradient Descent (DP-SGD). DP-SGD achieved
provable privacy guarantees via adding noise to the gradi-
ents during gradient descent. However, the additional noise
led to significantly worse performance in comparison to non-
private models. This led to the work of (Li et al., 2022b),
who showed that finetuning pretrained models under DP-
Adam achieved strong performance on par with non-private
models. Moreover, they demonstrated a scaling law of
DP-models by parameters and empirically invalidated the
hypothesis that DP-ML suffers from dimension-dependent
performance degradation. This set the stage for practical
applications of DP on deep learning. More recently, (Tang
et al., 2023) proposed an improvement to DP-Adam, namely
DP-AdamBC, adding a correction term in DP-Adam to re-
move the bias in the second moment estimate arising from
the added gaussian noise. DP-AdamBC achieved an im-
provement over DP-Adam across several different target
privacy budgets on image, text and graph node classification
tasks.

Motivated by these developments, our present work aims to
improve the performance of DP-Adam and DP-AdamBC
via adding weight decay, thereby yielding DP-AdamW and
DP-AdamW-BC. We finally evaluate the performance of
these optimizers using the same suite of tasks in their paper.

3. DP-AdamW: Algorithm and Theoretical
Guarantees

In this section, we introduce the DP-AdamW algorithm and
its variant, DP-AdamW-BC, and present theoretical results
on their privacy and convergence guarantees

3.1. DP-AdamW: The Algorithm

We now introduce the DP-AdamW algorithm. The main
point is to add Gaussian noise to the gradients in the AdamW
algorithm. Given a batch of gradients gi, we compute the
average gradient g. Define the noised gradient

g̃ =
1

B

∑
i

gi

max(1, ∥gi∥2

C )
+

1

B
N (0, σ2C2I).

We then use the noised gradient g̃ as the input gradient into
the AdamW algorithm of (Loshchilov & Hutter, 2017).1

The resulting DP-AdamW algorithm is given in Algorithm
1.

Algorithm 1 DP-AdamW
Require: total steps T , learning-rate schedule {ηt}Tt=1, clip

norm C, weight-decay λ, hyper-parameters α, β1, β2,
noise multiplier σ, initial parameters θ0, numerical sta-
bility constant ϵ0

1: m0 ← 0, v0 ← 0
2: for t← 1 to T do
3: gt ← ∇f

(
θt−1

)
4: g̃t ←

1

B

∑
i

gi

max
(
1, ∥gi∥2

C

) +
1

B
N
(
0, σ2C2I

)
5: mt ← β1mt−1 + (1− β1) g̃t
6: vt ← β2vt−1 + (1− β2) g̃

2
t

7: m̂t ← mt

1−β t
1

8: v̂t ← vt
1−β t

2

9: θt ← θt−1 − ηt

(
m̂t√
v̂t + ϵ0

+ λ θt−1

)
10: end for

Moreover, (Tang et al., 2023) observe that within the Adam
update, the estimate of the second moment is biased due
to the use of a noised gradient. They offer a method of
bias-correction, in particular by replacing the update term
m̂t√
v̂t

with

m̂t√
v̂t −

(
σC
B

)2 =
m̂t√
v̂t − Φ

.

We also consider this modification, which is given in Algo-
rithm 2.

3.2. Privacy Guarantees

Both algorithms carry the same privacy guarantees as DP-
SGD and DP-AdamBC. Formally, we have the following
result, analogous to the privacy guarantees in Abadi et al.
(2016) and (Tang et al., 2023).

1Alternatively, one can view this as adding decoupled weight
decay into the DP-Adam algorithm of (Tang et al., 2023)
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Algorithm 2 DP-AdamW-BC
Require: total steps T , learning-rate schedule {ηt}Tt=1, clip

norm C, weight-decay λ, hyper-parameters α, β1, β2,
noise multiplier σ, initial parameters θ0, numerical sta-
bility constant γ

1: m0 ← 0, v0 ← 0
2: for t← 1 to T do
3: gt ← ∇f

(
θt−1

)
4: g̃t ←

1

B

∑
i

gi

max
(
1, ∥gi∥2

C

) +
1

B
N
(
0, σ2C2I

)
5: mt ← β1mt−1 + (1− β1) g̃t
6: vt ← β2vt−1 + (1− β2) g̃

2
t

7: m̂t ← mt

1−β t
1

8: v̂t ← vt
1−β t

2

9: θt ← θt−1 − ηt(
m̂t√

max(v̂t − (σCB )2, γ)
+ λ θt−1)

10: end for

Theorem 3.1 (cf. Proposition 1 of (Tang
et al., 2023)). Suppose that the DP-SGD op-
timizer DP − SGD(θ,X, y, C, σ,B) satisfies
(ϵ, δ)-DP with privacy analysis ϕ(T, θi). Then
both DP − AdamW (θ,X, y, C, σ,B) and
DP − AdamW − BC(θ,X, y, C, σ,B) satisfy (ϵ, δ)-DP
with the same privacy analysis ϕ(T, θi).

The proof of this theorem is given in Appendix A; it follows
the outline of Proposition 1 of (Tang et al., 2023).

3.3. Convergence Guarantees

We now show that the DP-AdamW and DP-AdamW-BC
optimizers converge2 under reasonable assumptions. Our
results are based on and take similar form to those of (Dé-
fossez et al., 2022), who proved convergence guarantees for
vanilla Adam, and (Tang et al., 2023), who proved analo-
gous guarantees for DP-AdamBC. Our main contribution is
to address the weight decay term; for this, the main idea is
roughly to show that the parameters ∥θt∥ are bounded and
apply standard inequalities.

Throughout this subsection, we will work under the follow-
ing natural assumptions, found in (Tang et al., 2023). Let
F : Rd → R denote the objective function and f : Rd → R
denote a stochastic function with E(∇f(θ)) = ∇F (θ).3

Let ∥ · ∥ denote the L2-norm. We then have the following.

2Here, convergence is in the sense of ‘average gradient of the
true objective function is small’. See Theorems 3.5 and 3.6 for
details.

3That is, F is the true objective function, while f is the estimate
of the objective function. For instance, if one is using a squared-
error loss, then f is the empirical MSE, while F is the expected
squared-error loss.

Assumption 3.2. F is bounded below: F (θ) ≥ F∗ for all
θ.
Assumption 3.3. The gradients ∥∇ft(θ)∥ ≤ C1 ≤ C are
uniformly almost surely bounded.
Assumption 3.4. The gradient of F is L-Lipschitz continu-
ous: ∥∇F (θ)−∇F (θ′)∥ ≤ L∥θ − θ′∥.
Remark. These are the same assumptions as found in (Dé-
fossez et al., 2022) and (Tang et al., 2023), but we will
provide some further intuition. Assumption 3.2 says that
F can be optimized; this is clearly necessary and more-
over holds in practice (for instance, F∗ = 0 holds for any
squared-error loss). Assumption 3.3 assumes that the gra-
dients do not blow up. This assumption is necessary for
theoretical results, but does not always hold in practice;
exploding gradients often occur in empirical studies. Note
that we additionally assume C1 ≤ C for simplicity, since
bounded gradients implies that gradient clipping is not nec-
essary. Lastly, Assumption 3.4 is again necessary to attain
effective theoretical bounds. It is generally true if F is a
reasonably ‘smooth‘ function.

We divide our results into two settings. We first have the
following guarantees on DP-AdamW and DP-AdamW-BC
without momentum, i.e. the regime of β1 = 0.
Theorem 3.5. Under Assumptions 3.2, 3.3, and 3.4, sup-
pose that β1 = 0, 0 < β2 < 1, α ∈ (0, 1), and the

learning rate follows ηt = η
√

1−βt
2

1−β2
. Let Φ =

(
σC
B

)2
de-

note the bias correction term and let µ∗ =
β2(1−βT

2 )
1−β2

[(Φ−
2Φ
π ) +

(
C +

√
2Φ
π

)2
], ν∗ = 2β2

2Φ
√

1−β2T
2

1−β2
2

, and b∗ =

4β2Φ be constants. Then there exists a constant c(λ) =
c(β1, β2, λ, η, C1, L, θ0, ϵ0,Φ) such that whenever

δ0 ≥

{
µ∗ +

√
ln(1/ α

2T )(2(ν
∗)2) 0 ≤ δ0 ≤ (ν∗)2

b∗

µ∗ + ln(1/ α
2T )2b

∗ δ0 ≥ (ν∗)2

b∗ ,

we have with probability at least 1− α that for DP-AdamW,

1
T

∑T−1
0 E∥∇F (θt−1)∥2 ≤

2(δ0 + C1)(F (θ0)− F∗)

ηT

+

(
4d(C2 +Φ)√

1− β2

+
ηdL
√
C2 +Φ(1 + λ)

1− β2

)
· R
T

+
1

2T

(
C2

1 + ∥θ0∥2 + c(λ)maxt(ηt + η2t )R
)(

λ
∑T

t=1 ηt +
L

2
(λ+ λ2)

∑T
t=1 η

2
t

)
,

where R = d
(
ln
(
1 + C2+Φ

(1−β2)ϵ0

)
− T lnβ2

)
,

and for DP-AdamW-BC, we have
1

T

∑T−1
i=0 E[∥∇F (θi)∥2]

≤
2
√
(δ0 + C1)2 − Φ(F (θ0)− F∗)

ηT
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+

(
4dC2

√
1− β2

+
ηdL(1 + λ)C

1− β2

)
· RBC

T

+
1

2T

(
C2

1 + ∥θ0∥2 + c(λ)maxt(ηt + η2t )RBC

)(
λ
∑T

t=1 ηt +
L

2
(λ+ λ2)

∑T
t=1 η

2
t

)
,

where RBC = d
(
ln
∣∣∣1− C2+Φ

(1−β2)Φ

∣∣∣− T lnβ2

)
.

Remark. We first make a few notes about the statement of
Theorem 3.5 below.

First, the definition of δ0 arises from an application of con-
centration bounds used in the proof; in particular, it arises in
Corollary 1 of (Tang et al., 2023). Essentially, the constraint
on δ0 is that either δ0 ≥ max(µ∗ + ln(1/ α

2T )2b
∗, (ν∗)2

b∗ ) or

δ0 ∈ [µ∗ +
√
ln(1/ α

2T )(2(ν
∗)2), (ν∗)2

b∗ ].

Second, the right hand side is a fairly ugly expression,
but we will derive an asymptotic bound when T → ∞.
Supposing that η = T−a and β2 = 1 − T−b, note that
R = O(lnT + T 1−b) = O(T 1−b lnT ). Moreover, since
b∗ = O(1), ν∗ = O(1) if b < 1 and ν∗ = O(

√
T ) other-

wise, and µ∗ = O(1) if b < 1 and µ∗ = O(T ) otherwise,
we find that δ0 = O(lnT ) if b < 1 and δ0 = O(T ) oth-
erwise. Taking b < 1, the first inequality in the theorem
becomes

1
T

∑T−1
i=0 E[∥∇F (θi)∥2] ≤ lnT · O(T a−1

+(T
b
2 + T b−a)T−b + T b/2−a(T

3
2−a + T 2−2a)T−b).

The right hand side is optimized for the choice b → 1−,
a = 2

3 , under which we obtain

1

T

T−1∑
i=0

E[∥∇F (θi)∥2] = O(T− 1
3+ζ lnT )

T→∞−→ 0,

where ζ is arbitrarily small. An analogous result4 can be
attained for DP-AdamW-BC. Hence, one can interpret these
results as saying that under an ‘optimal‘ learning rate regime,
the average gradient of the objective function throughout the
course of DP-AdamW and DP-AdamW-BC converges to 0
at an inverse-polynomial rate as the time horizon increases.
By choosing α ≈ 0, this thus implies that DP-AdamW and
DP-AdamW-BC converges with high probability to a local
minimum under the given conditions and assumptions.

Lastly, we now make a few notes about the proof of Theorem
3.5. For a broad sketch, we follow the rough outline of
(Tang et al., 2023); this suffices to account for all terms
other than the weight decay term. To address this term, we
bound the expected magnitude of the parameters, E∥θi∥2,
using intermediary inequalities from (Tang et al., 2023).
This method can be imitated to show convergence in certain

4In fact, with exactly the same bound.

cases of non-private AdamW as well, which may be of
independent interest.5

We now turn to the general case where β1 is not necessarily
equal to 0. In this case, we have the following result, attained
via techniques similar to those used to prove Theorem 3.5.

Theorem 3.6. Under Assumptions 3.2, 3.3, and 3.4, sup-
pose that 0 < β1 < 1, 0 < β2 < 1, α ∈ (0, 1), and

the learning rate follows ηt = η(1 − β1)
√

1−βt
2

1−β2
. Let

Φ =
(
σC
B

)2
denote the bias correction term and let µ∗ =

β2(1−βT
2 )

1−β2
[(Φ− 2Φ

π )+
(
C+

√
2Φ
π

)2
], ν∗ = 2β2

2Φ
√

1−β2T
2

1−β2
2

,
and b∗ = 4β2Φ be constants. Then there exists a constant
c(λ) = c(β1, β2, λ, η, C1, L, θ0, ϵ0,Φ) such that whenever
T̃ = T − β1

1−β1
> 0 and

δ0 ≥

{
µ∗ +

√
ln(1/ α

2T )(2(ν
∗)2) 0 ≤ δ0 ≤ (ν∗)2

b∗

µ∗ + ln(1/ α
2T )2b

∗ δ0 ≥ (ν∗)2

b∗ ,

we have with probability at least 1− α that for DP-AdamW,

E[∥∇F (θτ )∥2] ≤
2(δ0 + C1)(F (θ0)− F∗)

ηT̃
+ E ·R

+
1

2T

(
C2

1 + ∥θ0∥2 + c(λ)maxt(ηt + η2t )R
)(

λ
∑T

t=1 ηt +
L

2
(λ+ λ2)

∑T
t=1 η

2
t

)
,

where

E = ηdL(1−β1)δ0
(1−β1/β2)(1−β2)

+ 2η2dL2β1

(1−β1/β2)(1−β2)3/2

+
12dδ20

√
1−β1

(1−β1/β2)3/2
√
1−β2

and R = d
(
ln
(
1 +

δ20
ϵ0(1−β2)

)
− T log β2

)
,

and for DP-AdamW-BC,

E[∥∇F (θτ )∥2] ≤
2
√
(δ0 + C1)2 − Φ(F (θ0)− F∗)

ηT̃
+ EBC ·RBC

+
1

2T

(
C2

1 + ∥θ0∥2 + c(λ)maxt(ηt + η2t )RBC

)(
λ
∑T

t=1 ηt +
L

2
(λ+ λ2)

∑T
t=1 η

2
t

)
,

where

EBC =
ηdL(1−β1)

√
δ20−Φ

(1−β1/β2)(1−β2)
+ 2η2dL2β1

(1−β1/β2)(1−β2)3/2

+
12d(δ20−Φ)

√
1−β1

(1−β1/β2)3/2
√
1−β2

and RBC = d
(
ln
∣∣∣1− δ20

Φ(1−β2)

∣∣∣− T log β2

)
.

5To our knowledge, there is no stated such result, but one can
attain such a result via the same proof method.
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In both above inequalities, the left-hand-side expectations
are with respect to sampling τ from the distribution P(τ =
t) ∝ 1− βT−t

1 .

Remark. This result is not an exact generalization of Theo-
rem 3.5, but is fairly similar while holding in a more general
setting. Moreover, the main steps of the proof are analogous.
Lastly, we note that one can attain similar asymptotics for
the bounds in this result as in Theorem 3.5.

Proofs of Theorem 3.5 and 3.6 are given in Appendix B.

4. Experiments
We evaluate the performance of using the DP-AdamW and
DP-AdamW-BC optimizers on image, text, and graph node
classification tasks. We then compare our results to those
of (Tang et al., 2023). Experimental details are included in
Appendix C.

4.1. Image Classification

We first replicated the experimental setup of Tang et al.
(2023) for DP-Adam and DP-AdamBC on the same CNN
architecture and CIFAR-10 task. Our DP-Adam and DP-
Adam implementations achieve comparable test accuracies
to those reported, validating our baseline implementations.
This allows for a direct comparison between the perfor-
mance of the original DP-Adam variants and our proposed
DP-AdamW approaches under corresponding conditions.

We evaluate DP-AdamW and DP-AdamW-BC across the
tuned hyperparameters for each ϵ ∈ {1, 3, 7}. Test accura-
cies on CIFAR-10 are reported in Table 1, along with bench-
mark results reported in Tang et al. (2023). DP-AdamW
outperforms DP-Adam in all privacy budgets. DP-AdamW-
BC outperforms DP-AdamBC across privacy budgets except
for the large ϵ = 7. The most significant performance in-
crease is in the ϵ = 3 setting, where both DP-AdamW and
DP-AdamW-BC outperform DP-Adam and DP-AdamBC
by up to 5%.

DP-AdamW achieves state-of-the-art accuracy among the
evaluated DP-SGD and DP-Adam variants for CIFAR-10
image classification for tight to moderate privacy constraints
(ϵ=1,3). This result is unexpected, as image classification is
a known setting where Adam optimizers’ performance fall
short in comparison to SGD (Loshchilov & Hutter, 2017).
Our results confirm the effectiveness of decoupling weight
decay, even in the differential privacy setting.

We observe that DP-AdamW consistently outperformed DP-
AdamW-BC across all tested privacy budgets, achieving
statistically significantly higher final test accuracy. In con-
trast to findings for DP-AdamBC from Tang et al. (2023),
DP-AdamW-BC accuracies show that applying DP bias
correction for the second moment estimator degrades test

accuracy compared to the uncorrected DP-AdamW. While
DP-AdamW-BC offers a theoretically appealing bias correc-
tion, in our CIFAR-10 experiments, the DP-AdamW results
remain stronger across all privacy budgets. This suggests
the decoupling weight decay in the AdamW optimizer in-
duces a greater performance boost, and potentially conflicts
with, the effect from the bias correction.

Table 1. Image Classification: performance comparison of DP op-
timizers on CIFAR-10 dataset

ϵ ≈ 1 ϵ ≈ 3 ϵ ≈ 7
DP-SGD 52.37 (0.50) 57.30 (0.76) 65.30 (0.33)
DP-Adam 51.89 (0.69) 54.08 (0.41) 62.24 (0.10)

DP-AdamBC 49.75 (0.56) 54.27 (0.23) 63.43 (0.43)
DP-AdamW 52.59 (0.44) 59.26 (0.30) 63.25 (0.53)

DP-AdamW-BC 51.43 (0.52) 58.16 (0.72) 62.01 (0.29)

4.2. Text Classification

Table 2 reports the mean test accuracy and standard devia-
tion over five random seeds for each optimizer across pri-
vacy budgets. Two trends emerge. First, decoupled weight
decay yields a large performance improvement. Switching
from DP-Adam to DP-AdamW raises accuracy by over 15
percentage points at every ϵ which aligns with prior findings
in the literature that weight-decay coupling persists and is
amplified in the private setting. The accuracies achieved by
DP-AdamW without bias correction outperform all previ-
ously published DP optimizer fine tuning results on QNLI
to our knowledge. Second, adding bias correction hurts on
textual tasks. Inspecting all experiments, we observe that
DP-AdamW-BC trails DP-AdamW by 2-3 percentage points
and hypothesize that the added variance floor γ interacts
poorly with the small effective batch size and the already
low intrinsic gradient noise of the BERT fine-tuning task.
For all optimizers tested, test set performance improves as
ϵ increases, which makes sense based on our knowledge
of differential privacy because less noise must be added
to satisfy looser privacy budgets, resulting in the gradient
update possessing more signal comparatively.

Table 2. Text Classification: Performance comparison of DP opti-
mizers on QNLI dataset

ϵ ≈ 1 ϵ ≈ 3 ϵ ≈ 7
DP-SGD 57.10 (1.59) 58.85 (1.20) 58.29 (0.92)
DP-Adam 58.00 (2.05) 60.72 (1.12) 61.23 (1.30)
DP-AdamBC 58.32 (1.90) 61.42 (0.99) 62.83 (1.60)
DP-AdamW 77.78 (0.13) 79.26 (0.18) 80.01 (0.19)
DP-AdamW-BC 75.56 (0.17) 76.65 (0.22) 77.29 (0.08)

4.3. Graph Node Classification

We found that DP-AdamW and DP-AdamW-BC outperform
DP-SGD and DP-Adam across all ϵ. Furthermore, both DP-
AdamW and DP-AdamW-BC outperform DP-AdamBC for
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ϵ ≈ 12, while DP-AdamW outperforms DP-AdamBC for
ϵ ≈ 6. This shows that DP-AdamW and DP-AdamW-BC,
like their non-private counterparts, perform better than DP-
SGD and DP-Adam, while exceeding the performance of
DP-AdamBC under looser privacy budgets.

Table 3. Graph Node Classification: Performance comparison of
DP optimizers on obgn-arxiv node classification

ϵ ≈ 3 ϵ ≈ 6 ϵ ≈ 12
DP-SGD 45.35 (1.38) 49.12 (1.90) 54.20 (0.62)
DP-Adam 46.55 (0.54) 51.98 (0.48) 54.02 (0.18)
DP-AdamBC 50.51 (0.56) 53.40 (0.28) 53.81 (0.34)
DP-AdamW 50.20 (0.75) 53.41 (0.37) 54.78(0.24)
DP-AdamW-BC 48.99 (0.67) 52.89 (0.40) 54.53 (0.43)

5. Discussion
Our findings reveal three key insights into differentially
private optimization.

First, DP-AdamW consistently outperforms DP-Adam
across all tested privacy budgets and tasks, particularly
in the moderate privacy setting (ϵ = 3). This suggests
that AdamW’s core benefit—decoupling weight decay from
adaptive gradient updates—translates effectively to the dif-
ferentially private (DP) setting. By applying weight decay
directly to parameters, DP-AdamW likely achieves more
stable and effective regularization compared to DP-Adam,
mitigating potential negative interactions between DP noise,
the adaptive moment estimates, and the regularization term.
Decoupled weight decay offers a twofold advantage: regu-
larization strength becomes independent of instantaneous
noise levels, and a mild pre-conditioning effect reduces the
likelihood of gradients hitting the clipping threshold, thus
preserving more signal.

Second, DP-AdamW demonstrates superior performance
over DP-SGD on CIFAR-10 image classification under
tighter privacy constraints (ϵ = 1, 3), a noteworthy result
given that non-private Adam variants often underperform
SGD on such tasks (Loshchilov & Hutter, 2017). This
strong performance indicates that the combination of adap-
tive learning rates and decoupled weight decay is particu-
larly advantageous when dealing with the noise inherent
in DP training. DP training introduces gradient clipping
and additive noise; AdamW’s coordinate-wise adaptive up-
dates help counteract these distortions by allowing weights
in low-variance directions to move appropriately without
letting those in high-variance directions explode. This cor-
rective effect is more pronounced with higher noise levels,
explaining the significant gains at tighter privacy budgets.

Third, and most surprisingly, bias correction in DP-AdamW-
BC consistently degrades test accuracy compared to DP-
AdamW across all tasks and privacy budgets. This contrasts

sharply with findings for Tang et al. (2023), where DP-
AdamBC typically improves upon DP-Adam. While bias
correction aims to counteract DP noise effects in the second
moment estimate, our results suggest a negative interaction
with AdamW’s decoupled weight decay. The theoretical
benefit of bias correction might be less relevant or even
detrimental when decoupled weight decay is the primary
regularization force. Specifically, the bias correction term
can cause the denominator in the update rule (e.g., v̂t − Φ)
to become very small (clamping to γ), effectively freezing
the adaptive schedule. With decoupled decay, this leads
to large parameter steps that are not offset within Adam’s
update, potentially adding optimization noise and reducing
accuracy.

Overall, our findings underscore DP-AdamW’s promise as
a robust optimizer for differentially private deep learning,
highlighting the benefits of decoupled weight decay un-
der privacy constraints. The unexpected underperformance
of DP-AdamW-BC warrants further investigation into the
complex interplay between DP noise, adaptive moment esti-
mation, bias correction, and regularization strategies.

6. Conclusion
This paper analyzes DP-AdamW and DP-AdamW-BC, dif-
ferentially private versions of the AdamW optimizer, estab-
lishing their theoretical privacy and convergence guarantees
which align with existing DP-SGD and DP-Adam literature.
Empirical evaluations on image, text, and graph node classi-
fication tasks reveal that DP-AdamW generally outperforms
standard baselines like DP-SGD and DP-Adam, especially
under tighter privacy constraints, indicating the benefits of
decoupled weight decay persist in the DP setting. Coun-
terintuitively, the bias-corrected variant, DP-AdamW-BC,
consistently led to worse performance than DP-AdamW
across experiments, challenging the assumption that such
bias correction is universally beneficial when combined with
decoupled weight decay. Overall, the work positions DP-
AdamW as a promising and effective optimizer for privacy-
preserving deep learning, offering improved utility over
existing methods on diverse classification tasks.

Acknowledgements
The authors thank Salil Vadhan for his teachings on dif-
ferential privacy, which inspired this paper. In addition,
the authors thank Salil Vadhan and Zachary Ratliff for
their thoughtful discussions and helpful suggestions for this
manuscript.

6



DP-AdamW: Investigating Decoupled Weight Decay and Bias Correction in Private Deep Learning

Impact Statement
This research investigates DP-AdamW and DP-AdamW-
BC, more effective optimizers for differentially private deep
learning, significantly advancing the protection of sensitive
data. The key positive impact is enhanced data privacy,
enabling AI in critical sectors like healthcare and finance
with stronger safeguards. DP-AdamW’s improved perfor-
mance over existing private optimizers can lead to more
useful and accurate AI models that respect user privacy,
encouraging broader adoption of privacy-preserving prac-
tices and unlocking AI applications on sensitive datasets.
However, challenges include the persistent privacy-utility
trade-off and the risk of misinterpreting privacy guarantees.
Ultimately, this work provides better tools for private AI,
contributing to more trustworthy and responsible systems,
though continued research and clear communication are
vital for realizing its full positive potential.
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A. Privacy Guarantees: Proofs
We provide the proof of Theorem 3.1 below.

Proof of Theorem 3.1. We exactly follow the proof of the Proposition 5 in (Tang et al., 2023). Let
PrivitizeGradient(θ,X, y, C, σ,B) denote the function whose output is the noised gradient g̃ =
1
B

(∑
i clip(g(xi) +N (0, σ2C2)

)
. Critically, this is the same function as used in DP-SGD and DP-AdamBC.

Suppose that these algorithms are differentially private with privacy analysis given by ϕ(T, θi) = (ϵ, δ). Then note that the
update of both DP-AdamW and DP-AdamW-BC do not involve any private information beyond the noised gradients. By the
adaptive postprocessing property of DP, it follows that DP-AdamW and DP-AdamW-BC are also (ϵ, δ)-DP. Thus the privacy
analysis of DP-AdamW and DP-AdamW-BC are also given by ϕ(T, θi), completing the proof.

Remark. Recall from Theorem 2 of (Tang et al., 2023) that DP-SGD has privacy guarantee (ϵ, δ) whenever the noise satisfies

σ ≥ c2q
√

T log 1
δ

ϵ . This thus provides a concrete privacy guarantee for DP-AdamW and DP-AdamW-BC as well.
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B. Convergence Guarantees: Proofs
We now provide proofs for the convergence results presented in the main body of the paper.

B.1. Proof of Theorem 3.5

We prove the convergence result given in Theorem 3.5 below.

Proof of Theorem 3.5. We will only prove the result for DP-AdamW; the exact same proof technique will suffice for
DP-AdamW-BC. As in (Tang et al., 2023), define the notation ut =

∇if
p
t (θt−1)√
vp
t +ϵ0

denote the main ‘update term‘ in DP-Adam;

that is, ∇if
p
t (θt−1) = m̃t and vpt = ṽt. We first prove a bound on the expected magnitude of the parameters, then proceed

as in (Tang et al., 2023).

We first note that Lemma 3 and Corollary 1 in Appendix F of (Tang et al., 2023) hold, with the proof remaining identical.
Moreover, identical arguments as in the proof of Proposition 6 of (Tang et al., 2023) yield the inequalities6

T−1∑
t=0

E[∥ut∥2] ≤ d

(
ln

(
1 +

C2 +Φ

(1− β2)ϵ0

)
− T lnβ2

)
(1)

and moreover
T∑

t=1

ηtE

[
∇F (θt−1)

⊤∇f
p
t (θt−1)√
vpt + ϵ0

]
≥ − η

2(δ0 + C1)

T∑
t=1

E[∥∇F (θt−1)∥2] (2)

+
2η
√
C2 +Φ√
1− β2

T−1∑
t=0

E[∥ut∥]2. (3)

In particular, the first statement follows from Lemma 5.2 in (Défossez et al., 2022), and the second by using Lemmas 5.1
and 5.2 of the aforementioned work.

We now proceed as follows. First, we bound the magnitude of the parameters θt in expectation. Let

R = d

(
ln

(
1 +

C2 +Φ

(1− β2)ϵ0

)
− T lnβ2

)
.

Claim: E∥θt∥2 ≤ ∥θ0∥2 + c(λ)R, where c(λ) is a constant depending on λ and all other constant parameters. 7

Proof: The main idea is to combine the recursive definition of θt with the AM-GM inequality and 2, Let xt = E∥θt∥2 and
write

xt = E∥θt∥2 = (1− ηtλ)
2E∥θt−1∥2 + η2tE∥ut∥2 + 2ηt(1− ηtλ)E[⟨θt−1, ut⟩]

≤ (1− ηtλ)
2xt−1 + η2tE∥ut∥2 + 2ηt(1− ηtλ)

(
λ

2
E∥θt−1∥2 +

1

2λ
E∥ut∥2

)
=

[
η2t +

ηt(1− ηtλ)

λ

]
E∥ut∥2 + (1− ηtλ)E∥θt−1∥2

≤
(
η2t +

ηt
λ

)
E∥ut∥2 + xt−1,

where we have used the fact that ⟨x, y⟩ =
∑

xiyi ≤ λ
∑

x2
i +

1
λ

∑
y2i . It follows by summing the above inequality for all

t, telescoping, and applying inequality 1 that

xt ≤ ∥θ0∥2 + (1 +
1

λ
)

(
max

t
(ηt + η2t )d

(
ln

(
1 +

C2 +Φ

(1− β2)ϵ0

)
− T lnβ2

))
= ∥θ0∥2 + c(λ)max

t
(ηt + η2t )R.

6These results are directly shown and/or implicit in the referenced proof; the proof is immediately adaptable.
7Here c(λ) notation encapsulates all constant parameters, as well as θ0.
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This completes the proof of the claim.

Now we return to the proof of the main theorem. We follow the rough outline used by (Tang et al., 2023). The main idea is
to use the Lipschitzness of the gradient to bound the difference F (θt)− F (θt−1). One can then telescope this difference
and combine the claim with inequalities 1 and 2 and some algebraic manipulations.

Let us write θt = θt−1 − ηt(ut + λtθt−1). Using the Lipschitzness assumption of the gradient, we have

F (θt) ≤ F (θt−1)− ηt⟨∇F (θt−1), ut⟩ − ηtλ⟨∇F (θt−1), θt−1⟩+
η2tL

2
∥ut∥2 (4)

+
η2tL

2
λ2∥θt−1∥2 + η2tLλ⟨ut, θt−1⟩. (5)

Taking expectations, we find by the above claim that E∥θt−1∥2 = ∥θ0∥2 + c(λ)maxt(ηt + η2t )R and hence

E|⟨∇F (θt−1), θt−1⟩| ≤
1

2
(E∥∇F (θt−1)∥2 + E∥θt−1∥2) ≤

1

2
(C2

1 + ∥θ0∥2 + c(λ)max
t

(ηt + η2t )R).

Moreover, recall that

E|⟨ut, θt−1⟩| ≤
1

2
(E∥ut∥2 + E∥θt−1∥2) ≤

1

2
E∥ut∥2 +

1

2
(∥θ0∥2 + c(λ)max

t
(ηt + η2t )R).

Therefore, taking expectations of 4, summing over all t, combining inequality 2 with the above, and lastly using Corollary 1
of (Tang et al., 2023), we find that

EF (θT ) ≤ F (θ0)−
η

2(δ0 + C1)

T∑
t=1

E∥∇F (θt−1)∥2

+

[
2η
√
C2 +Φ√
1− β2

+
η2L(1 + λ)

2(1− β2)

]
T−1∑
0

E∥ut∥2

+
1

2
(C2

1 + ∥θ0∥2 + c(λ)max
t

(ηt + η2t )R)

(
λ

T∑
t=1

ηt + L(λ+ λ2)

T∑
t=1

η2t

)
.

Rearranging, noting that EF (θT ) ≥ F∗, and applying inequality 1, we find that

1

T

T−1∑
0

E∥∇F (θt−1)∥2 ≤
2(δ0 + C1)

η

(
F (θ0)− F∗

T

)

+

(
4d(C2 +Φ)√

1− β2

+
ηdL
√
C2 +Φ(1 + λ)

1− β2

)
· R
T

+
1

2T

(
C2

1 + ∥θ0∥2 + c(λ)max
t

(ηt + η2t )R
)(

λ

T∑
t=1

ηt +
L

2
(λ+ λ2)

T∑
t=1

η2t

)
.

This is exactly the desired inequality and completes the proof of the theorem.

Remark. We owe a quick explanation of the starting line of the proof; for DP-AdamW-BC, one only needs to replace
the inequalities given by 2 and 1 with the corresponding bounds in the proof of Proposition 6 of (Tang et al., 2023); the
remainder of the proof is the exact same.

For an interpretation of the asymptotic growth of this result, see the remark following the initial theorem statement.

B.2. Proof of Theorem 3.6

We prove the convergence result given in Theorem 3.6 below.
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Proof of Theorem 3.6. We will only prove the result for DP-AdamW; the exact same proof technique will suffice for
DP-AdamW-BC. As in (Tang et al., 2023), define the notation ut =

∇if
p
t (θt−1)√
vp
t +ϵ0

denote the main ‘update term‘ in DP-Adam;

that is, ∇if
p
t (θt−1) = m̃t and vpt = ṽt. We first prove a bound on the expected magnitude of the parameters, then proceed

as in (Tang et al., 2023).

We first note that Lemma 3 and Corollary 1 in Appendix F of (Tang et al., 2023) hold, with the proof remaining identical.
Moreover, identical arguments as in the proof of Proposition 7 of (Tang et al., 2023) yield the inequalities8

T−1∑
t=0

E[∥ut∥2] ≤ d

(
ln

(
1 +

δ20
ϵ0(1− β2)

)
− T log β2

)
(6)

and moreover

E
[
∇F (θt−1)

⊤ut

]
≥ 1

2

∑
i∈[d]

t−1∑
k=0

βk
1E

[
∇iF (θt−k−1)√
ṽt,k+1,i − Φ

]
(7)

−
√
1− β1η

2
tL

2

4δ0

t−1∑
l=1

∥ut−l∥2
l−1∑
k=1

βk
1

√
k (8)

− 3δ0√
1− β1

t−1∑
k=0

(
β1

β2

)2

∥ut−k∥2. (9)

In particular, the first statement follows from Lemma 5.2 in (Défossez et al., 2022), and the second by using Lemmas 5.1
and 5.2 of the aforementioned work.

We now proceed as follows. First, we bound the magnitude of the parameters θt in expectation. Let

R = d

(
ln

(
1 +

δ20
ϵ0(1− β2)

)
− T log β2

)
.

Claim: E∥θt∥2 ≤ ∥θ0∥2 + c(λ)R, where c(λ) is a constant depending on λ and all other constant parameters. 9

Proof: The main idea is to combine the recursive definition of θt with the AM-GM inequality and 2, Let xt = E∥θt∥2 and
write

xt = E∥θt∥2 = (1− ηtλ)
2E∥θt−1∥2 + η2tE∥ut∥2 + 2ηt(1− ηtλ)E[⟨θt−1, ut⟩]

≤ (1− ηtλ)
2xt−1 + η2tE∥ut∥2 + 2ηt(1− ηtλ)

(
λ

2
E∥θt−1∥2 +

1

2λ
E∥ut∥2

)
=

[
η2t +

ηt(1− ηtλ)

λ

]
E∥ut∥2 + (1− ηtλ)E∥θt−1∥2

≤
(
η2t +

ηt
λ

)
E∥ut∥2 + xt−1,

where we have used the fact that ⟨x, y⟩ =
∑

xiyi ≤ λ
∑

x2
i +

1
λ

∑
y2i . It follows by summing across all t, telescoping,

and applying inequality 1 that

xt ≤ ∥θ0∥2 + (1 +
1

λ
)

(
max

t
(ηt + η2t )d

(
ln

(
1 +

δ20
ϵ0(1− β2)

)
− T log β2

))
= ∥θ0∥2 + c(λ)max

t
(ηt + η2t )R.

8These results are directly shown and/or implicit in the referenced proof; the proof is immediately adaptable.
9Here c(λ) notation encapsulates all constant parameters, as well as θ0.
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This completes the proof of the claim.

Now we return to the proof of the main theorem. We follow the rough outline used by (Tang et al., 2023). The main idea is
to use the Lipschitzness of the gradient to bound the difference F (θt)− F (θt−1). One can then telescope this difference
and combine the claim with inequalities 1 and 2 and some algebraic manipulations.

Let us write θt = θt−1 − ηt(ut + λtθt−1). Using the Lipschitzness assumption of the gradient, we have

F (θt) ≤ F (θt−1)− ηt⟨∇F (θt−1), ut⟩ − ηtλ⟨∇F (θt−1), θt−1⟩+
η2tL

2
∥ut∥2 (10)

+
η2tL

2
λ2∥θt−1∥2 + η2tLλ⟨ut, θt−1⟩. (11)

Taking expectations, we find by the above claim that E∥θt−1∥2 = ∥θ0∥2 + c(λ)maxt(ηt + η2t )R and hence

E|⟨∇F (θt−1), θt−1⟩| ≤
1

2
(E∥∇F (θt−1)∥2 + E∥θt−1∥2) ≤

1

2
(C2

1 + ∥θ0∥2 + c(λ)max
t

(ηt + η2t )R).

Moreover, recall that

E|⟨ut, θt−1⟩| ≤
1

2
(E∥ut∥2 + E∥θt−1∥2) ≤

1

2
E∥ut∥2 +

1

2
(∥θ0∥2 + c(λ)max

t
(ηt + η2t )R).

Therefore, taking expectations of 10, summing over all t, combining inequality 7 with the above, and lastly using Corollary
1 of (Tang et al., 2023) and the simple inequality ηt ≤ ηT , we find that∑T

t=1
ηt

Ωt

∑t−1
k=0 β

k
1E
[
∥∇F (θt−k−1)∥2

]
2(δ0 + C1)

≤ F (θ0)− F∗

+
η2TL

2

T∑
t=1

E
[
∥ut∥2

]
+

η3TL
2
√
1− β1

4(δ + C1)

T∑
t=1

t−1∑
l=1

βl
1

√
l

+
3ηT (δ + C1)√

1− β1

T∑
t=1

t−1∑
k=0

(
β1

β2

)k

E
[
∥ut−k∥2

]
.

where Ωt =
√∑t−1

j=0 β
j
2 . Rearranging, noting that EF (θT ) ≥ F∗, and applying inequality 6, we find that

E[∥∇F (θτ )∥2] ≤
2(δ0 + C1)(F (θ0)− F∗)

ηT̃
+ ER,

where the left hand side expectation is taken with respect to the sample P(τ = t) ∝ 1− βT−t
1 , T̃ = T − β1

1−β1
, and

E =
ηdL(1− β1)(δ0 + C1)

(1− β1/β2)(1− β2)
+

2η2dL2β1

(1− β1/β2)(1− β2)3/2
+

12d(δ0 + C1)
2
√
1− β1

(1− β1/β2)3/2
√
1− β2

,

as in the statement of the theorem. This is exactly the desired inequality and completes the proof of the theorem.

Remark. Similar to the proof of Theorem 3.5, we note that for DP-AdamW-BC, one only needs to replace the inequalities
given by 7 and 6 with the corresponding bounds in the proof of Proposition 7 of (Tang et al., 2023); the remainder of the
proof is the exact same.
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C. Experimental Details
C.1. Image Classification

We train a 5-layer CNN model to perform image classification on the CIFAR-10 dataset (Krizhevsky et al., 2009). The
CIFAR-10 dataset includes 60,000 32x32 images, with 6,000 images for each of 10 classes: airplane, automobile, bird, cat,
deer, dog, frog, horse, ship, truck. We first train on the training set containing 50,000 images, then we test on the test set of
the 10,000 remaining images. We train the model from scratch with randomized initial model parameters.

To ensure a fair comparison and optimal performance for each optimizer, we conduct extensive hyperparameter sweeps.
Following preliminary exploration and to maintain consistency with Tang et al. (2023), we fix the L2-norm clipping bound
at C = 1.0 and utilized Adam stability parameters of 5× 10−8. Our primary hyperparameter sweep focuses on optimizing
learning rate (α) and weight decay (λ) for each target privacy level (ϵ ∈ {1, 3, 7}) and for both DP-AdamW variants (with
and without bias correction). We explore a range of learning rates and weight decay values suitable for each privacy setting
based on values commonly used in related DP deep learning literature. All experiments are run for 70 epochs using a batch
size of 1024, and results are averaged over 5 trials with different random seeds. We select weight decay λ = 1× 10−5 after
sampling over λ ∈ {0.01, 0.001, 1× 10−4, 1× 10−5} and optimizing training loss.

Figures 1 and 2 in Appendix D show the training loss and test accuracy over learning rates for ϵ = 1. We select learning
rates by examining the values that minimized training loss. We outline learning rates over ϵ values in Table 4.

C.2. Text Classification

We study natural-language understanding under differential privacy on the standard question-natural language inference
(QNLI) task from the GLUE natural language benchmark (Wang et al., 2019). QNLI contains 115,669 (question, sentence)
pairs split into 105K/5.5K/5.5K (train/validation/test) examples and asks whether the sentence answers the corresponding
question. Performance is reported as classification accuracy on the held-out test set. We use the DP-Adam and DP-Adam-BC
results from Tang et al. (2023) as a baseline comparison, although we independently fine-tune hyperparameters for our
implementations of DP-AdamW and DP-AdamW-BC.

Following common practice for private fine-tuning (e.g. Li et al., 2022b; Tang et al., 2023) we start from the
bert-base-cased checkpoint with 110M parameters and freeze all layers except the last Transformer block, the
pooler, and the task-specific classifier head, which yields approximately 7M trainable parameters. The model is trained for
10 epochs with a batch size of B = 32. Gaussian noise calculated to match the target privacy budget ϵ∈{1, 3, 7} is added
through OPACUS’ PrivacyEngine and per-sample gradients are clipped using an ℓ2-norm threshold before aggregation
and noise addition. To ensure compatibility, the same noise parameters are used across all optimizers.

For every combination of (ϵ, optimizer) under consideration and following the approach of (Tang et al., 2023), we perform a
grid search over hyperparameters: learning rate α ∈ [1×10−6, 5×10−3], weight decay λ ∈ {0, 10−5, 10−4}, and gradient
clipping bound C ∈ {0.05, 0.1, 0.2}. Additionally, after preliminary exploration, we fix γ = 10−8 for the minimum
variance term in DP-AdamW-BC. For each privacy setting, the learning rates and weight decay values were chosen based on
those commonly used in the DP deep learning literature. Moreover, the candidate values for the gradient clipping bound
were those examined by (Tang et al., 2023) therefore we consider the same values for experimental consistency purposes.
We optimize for standard cross-entropy loss during training. Note that this choice of loss function is correct because the
specific problem is a classification task, where cross-entropy is the canonical choice, and it is differentiable meaning that it
works nicely with the per-sample gradient computation that OPACUS requires for differential privacy.

C.3. Graph Node Classification

We evaluated different optimizers on the graph node classification task using the ogbn-arxiv task from the Open Graph
Benchmark ((Hu et al., 2021)) and trained a 2-layer differentially private graph convolutional network model ((Daigavane
et al., 2022)) without per-layer clipping from scratch. We tested for ϵ ∈ {3, 6, 12} across the optimizers. The total number
of parameters is 173,695 and the specific architecture details can be found in the Appendix at Section E.

For each new optimizer-ϵ pair, we did a hyperparameter sweep of 10 runs over a validation set using a Bayes-informed
sampling over a log-uniform distribution to maximize validation accuracy. The results of this preliminary sweep are reported
in Table 6 in the appendix. With this preliminary finding, we then adjusted the range to be swept to encompass our best
guess of the best hyperparameters to run another sweep of 30 runs. The final range is [10−1, 10−6] for the learning rate and
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[10−1, 10−7] for the weight decay. The best learning rate and weight decay chosen from the 30-run sweep are reported in
Table 7 in the Appendix. We noticed that as ϵ increases, the best learning rate decreases while the weight decay generally,
though not always, increases. We found that validation accuracy increases as ϵ increases, which is expected since models
perform better with looser privacy budgets. We attach the plots of the losses in Appendix E for the case of DP-AdamW
under ϵ = 3.
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D. Image Classification Experimental Details

Table 4. Learning rates for ϵ values on CIFAR-10

ϵ = 1 ϵ = 3 ϵ = 7
DP-AdamW 0.0015 0.0015 0.002

DP-AdamW-BC 1× 10−4 2× 10−4 4× 10−4

Figure 1. Training CIFAR-10 for ϵ = 1 across learning rates for DP-AdamW (left) and DP-AdamW-BC (right), with step on x-axis and
training loss on y-axis
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Figure 2. Evaluating on CIFAR-10 for ϵ = 1 across learning rates for DP-AdamW (left) and DP-AdamW-BC (right), with step on x-axis
and test accuracy (proportion) on y-axis

E. Graph Node Classification Experimental Details
Below we provide more details on the training process of the graph node classification task on which the optimizers were
evaluated. Table 5 shows the architecture of the DP-GCN used in Section 4.3, with a total of 173,695 parameters (694,780
bytes).

Table 5. Model parameter names, shapes, and data types

Parameter Shape Dtype

Core Layer 0: Dense Bias (255,) float32
Core Layer 0: Dense Kernel (255, 255) float32
Decoder Layer 0: Dense Bias (255,) float32
Decoder Layer 0: Dense Kernel (255, 255) float32
Decoder Layer 1: Dense Bias (40,) float32
Decoder Layer 1: Dense Kernel (255, 40) float32
Encoder Layer 0: Dense Bias (255,) float32
Encoder Layer 0: Dense Kernel (128, 255) float32

Table 6 shows the best hyperparameters for the GNN task identified after the initial 10 runs of the hyperparameter sweep.

Table 6. Hyperparameters and validation performance for DP-AdamW and DP-AdamW-BC on obgn-arxiv node classification (best
validation score of 10)

Optimizer Epsilon Learning Rate Weight Decay Val. Acc. (%)

AdamW
3 0.01494606 0.00047264 51.32
6 0.00752970 0.00095908 54.44
12 0.00434687 0.00051222 56.16

AdamW-BC
3 0.00018378 0.0000026934 50.30
6 0.00009699 0.0000024191 54.28
12 0.00004261 0.00013755 55.86

Table 7 shows the best hyperparameters for the GNN task identified after the follow-up 30 runs of the hyperparameter sweep.
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Table 7. Hyperparameters and validation performance for DP-AdamW and DP-AdamW-BC on obgn-arxiv node classification (best
validation score of 30)

Optimizer Epsilon Learning Rate Weight Decay Val. Acc. (%)

DP-AdamW
ϵ ≈ 3 0.01246956 0.0000004780 52.41
ϵ ≈ 6 0.00806904 0.0000091133 55.18
ϵ ≈ 12 0.00427425 0.0000709134 56.27

DP-AdamW-BC
ϵ ≈ 3 0.00021068 0.0000324537 50.78
ϵ ≈ 6 0.00007306 0.0000012885 54.66
ϵ ≈ 12 0.00004086 0.03112375 56.15

Figure 3 shows DP-AdamW training, validation and test losses across [10−1, 10−6] for learning rate and [10−1, 10−7] for
weight decay using a privacy budget under ϵ = 3.

Figure 3. Losses when using DP-AdamW under ϵ = 3
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F. Future Work
F.1. Broader empirical generalization within text classification

Our text classification results in Table 2 show that DP-AdamW both with and without bias correction significantly
outperforms other optimizers on the QNLI natural language task. This performance improvement is substantially higher
than the corresponding improvements for the image and graph node classification tasks so we would like to investigate
further. Potential patterns to examine include persistence across different text subtasks and scaling with dataset size and
class balance. One potential research direction is to run our existing QNLI fine-tuning protocol on the SNLI single-sentence
entailment, MultiNLI multi-genre entailment, and QQP paraphrase detection tasks described in (Bowman et al., 2015; Wang
et al., 2019), containing diverse training dataset sizes (QNLI ≈ 105K, SNLI ≈ 550K, MultiNLI ≈ 393K, QQP ≈ 364K) and
subtask types.

F.2. Scaling laws for DP-AdamW and DP-AdamW-BC

In addition to increasing the robustness of our text classification analysis, we would also like to investigate the scaling laws of
the proposed optimizers on both image and graph node classification. We hypothesize that the difference in performance on
text classification compared to the other two tasks may stem from the fact that text classification operates in the large-model,
large-dataset regime, while the other two tasks are in the small model regime. Note that the text classification task uses a
model with over 110M parameters (bert-base-uncased), while the image classification task uses a 5-layer CNN model while
the node classification task uses a 2-layer GNN model, which are several orders of magnitude smaller than that used for text.
Evaluating the performance of DP-AdamW and DP-AdamW-BC on other tasks that use large models and large datasets
could uncover a larger performance differential relative to other optimizers as found in the text classification results but
unobserved in our image classification and node classification results.

F.3. Examination of bias correction underperformance

Recall that across our experiments (Table 1, Table 2, Table 3), adding bias correction consistently reduces accuracy on all
three classification tasks for DP-AdamW, although the opposite phenomenon seems true for DP-Adam. We suspect that the
Φ = (σC/B)2 interaction term that is subtracted inside the square root in the denominator could become large and force the
algorithm to clamp to γ; under decoupled weight decay, the subsequent large adaptive step is uniquely not offset inside
the gradient so the next decay must account for it. We propose to train a lightweight classifier on a small dataset and plot
histograms every epoch of measurements such as the clamping rate, which would help determine if the bias term becomes
dominated by estimation noise.
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