
Associative Memories with Heavy-Tailed Data

Vivien Cabannes
FAIR, Meta

Elvis Dohmatob
FAIR, Meta

Alberto Bietti
Flatiron Institute

Abstract

Learning arguably involves the discovery and memorization of abstract rules. But
how associative memories appear in transformer architectures optimized with gra-
dient descent algorithms? We derive precise scaling laws for a simple input-output
associative memory model with respect to parameter size, and discuss the statis-
tical efficiency of different estimators, including optimization-based algorithms.
We provide extensive numerical experiments to validate and interpret theoretical
results, including fine-grained visualizations of the stored memory associations.

1 Introduction

Transformer language models have reached a new scale and social impact since the introduction of
ChatGPT. On the modeling side, some transformer layers have been found to behave as key-value
memories [10, 20]. More generally outer-product associative memory matrices arise naturally from
training dynamics on intermediate weights [4]. Beyond simple associative recall, the combination
of multiple associative rules at different layers may lead to certain circuits with rich “reasoning”
behaviors based on context [7, 4, 21]. For example, an intermediate layer input token may encode for
the topic “linux”, leading to an output token that will trigger a specific behavior in the transformer’s
following layers when processing the token “terminal”. This motivates our study, which focuses on a
simple model that aims to be representative of LLMs in two ways. First, we focus on heavy-tailed
data distributions over discrete tokens, a natural assumption for text data [23]. Second, we consider
associative memory models that store input-output pairs through outer-products of finite-dimensional
embeddings, and can be seen as a proxy of the intermediate layers of transformers.

To summarize our contributions: (i) we provide precise statistical rates for outer-product memo-
ries with random embeddings, and compare different memory storage schemes in the context of
Zipf-distributed data; (ii) we compare theoretical schemes to the weights learned by various optimiza-
tion algorithms used in practice, and illustrate the role of different design choices with numerical
experiments.

2 Settings and Statistical Study

Data. Let p ∈ ∆[N]×[M] be a joint distribution on inputs x ∈ [N] and outputs y ∈ [M], where
p(x) ∝ x−α follows a Zipf law with α > 1, and p(y|x) = δf∗(x)(y) is a deterministic function
captured by y = f∗(x). Let DT = (xt, yt)t∈[T] ∼ p⊗T be T known independent samples generated
by p. Here, x and y models intermediate transformer layer input and output tokens. We assume no
noise in the input/output relationship for simplicity, and long-tails on the input tokens.

Model. We focus on input/output mapping f : [N] → [M] parameterized by a matrix W ∈ Rd×d,

fW (x) = argmax
y∈[M]

u⊤y Wex, e : [N] → Rd; u : [M] → Rd, (1)

where ex = e(x) and uy = u(y) are token embeddings, which were obtained as the realization of
random variables E ∼ N(0, Id) and U ∼ Uniform(Sd−1). In our deterministic setting, we shall

Associative Memory & Hopfield Networks in 2023. NeurIPS 2023 workshop.

101 102 103

d

10−2

10−1

E
rr

or

T = 101

T = 102

T = 103

T = 104

101 102 103 104

T

10−2

10−1

E
rr

or

d = 50

d = 100

d = 200

d = 1000

Figure 1: Scaling laws with respect embedding dimension d (left), respectively the number of data seen T
(right), for various numbers of dataset size T , respectively embedding dimension d. This plots validates
empirically the theory developed in the paper that proves scaling laws in E(fq) ≍ d−α+1 + T−1+1/α

(dashed lines) under our setting with α = 2, (1), (3), and the association scheme (5) with ρ = 0 and
P = d/8. The experiments averaged over 100 runs, standard deviations are shown with solid color.

consider the simpler model where only the pairs (x, f∗(x)) are stored in W , i.e.,

Wq =
∑

x∈[N]

q(x)uf∗(x)e
⊤
x , q ∈ ∆[N]. (2)

The quality of a mapping f is quantified through the generalization error
E(f) = E(X,Y)∼p[1f(X)̸=Y], f : [N] → [M]. (3)

Arguably, the model (1) lays out a simple model to study memorization, which could easily be
extended to model more intricate memorization and training behaviors inside a transformer language
model. Indeed, memories of the form (2) were found to accurately model the behavior of weight
matrices in multi-layer transformers trained by gradient methods on certain tasks [4]. Hence, we
expect our study to shed light on more complex mechanisms in transformers, which may involve ad-
ditional aspects such as attention layers, feed-forward layers, and noisy superpositions of embeddings
representing multiple tokens from an input sequence.

e1

e2
e3

u1

u2
u3

Figure 2: Error due to finite memory capacity: the stacking of associative memories in a matrix W may
exhibit a pattern W =

∑
x uf∗(x)e

⊤
x where three inputs mapped to three different outputs interact in such

a way that u⊤
2 We1 = e⊤2 e1 + u⊤

2 u3e
⊤
3 e1 ≥ 1 + u⊤

1 u3e
⊤
3 e1 = u⊤

1 We1, so that fW (x = 1) = 2 ̸=
1 = f∗(x = 1). In other terms, memory interference may lead to wrong prediction, illustrating the finite
capacity of the model fW (1) to store all data associations.

Association scheme. Because the embeddings are random, they can interfere in ways that limit the
memory capacity of the associative memory model (1), see Figure 2. In order to privilege the storage
of frequent associations, one may weight memories according to their empirical frequencies, leading
to the scheme, for ρ ≥ 0 and

q̂ρ(x) = p̂(x)ρ, p̂(x) =
1

T

∑
t∈[T]

1Xt=x, q̂ρ
(in law when T→∞)−→ qρ = pρ. (4)

A better option consists in explicitly limiting the storage of our model with a simple thresholding
algorithm

q̂ρ,[P](x) = p̂(x)ρ1x∈topP ((xt)t∈[T]), q̂ρ,[P] → qρ,[P](x) = p(x)ρ1x∈[P], (5)

where topP ((xt)) denotes the set made of the P most frequent inputs in the data (xt). The following
theorems, proven in Appendix, give a crisp picture of the scaling laws to expect with both the number
of data T and the model capacity d.

2

0 500 1000

Epochs

10−1

100

E
rr

or

real

approx

0 500 1000

Epochs

10−1

E
rr

or

real

approx

0 500 1000

Epochs

10−1E
rr

or

real

approx

Figure 3: Comparison between the error found by optimizing W (1) with SGD on the cross-entropy loss,
and its approximation with q(x) (2) and the approximate update rule (11). We consider N = 100, M = 5,
f∗(x) = xmod.M , α = 2, and batch size equals one. Left: One run with d = N = 100 with γ = 10.
Middle: Average over 100 runs with d = N = 100 with γ = 1. Right: Average when d = N/10 = 10
with γ = 1, which implies that our approximation is not valid anymore. The same results can be obtained
for bigger batch sizes as shown in Figure 13.

Theorem 1 (Without thresholding). The performance of fρ := fWq̂ρ
(4) is, up to poly-logarithm

factors and constants that depends on both ρ, α and M ,

Ee,uE(fρ) ≤
(

d

φ(N)

)−(α−1)/2ρα

+ T−1+1/α, where φ(N) =

 1 if 2ρα > 1
log(N) if 2ρα = 1
N1−2ρα if 2ρα < 1

. (6)

In particular, when ρ = 1, Ee,uE(f0) scales in d−(α−1)/2α. In the limit where ρ = 0, Ee,uE(f0) can
be understood as (d/N)−∞ which will go to zero if and only if d is bigger than N .

Theorem 2 (With thresholding). With N = +∞, the optimal performance of fρ := fWq̂ρ,[P]
(4) is

found for P ≃ d1/(2αρ+1). It is, up to poly-logarithm factors and constants,

Ee,uE(fρ) ≤ d−(α−1)/(2ρα+1) + T−1+1/α. (7)

Theorem 3 (Minimax performance). When N = +∞, tor any weighting scheme q, there exists a
conditional distribution p(y|x) such that the error made for the distribution p is lower bounded by,
up to multiplicative constants,

Ee,uE(fq) ≥ d−α+1 + T−1+1/α. (8)

Moreover, this performance is reached (up to logarithms factor) by the thresholding algorithm (5)
with P ≃ d/ log(d) and ρ = 0.

We make two insightful observations on the previous theorems. First, the optimal scaling (8) recovers
the law of Hutter [13] with respect to T , and the one of Michaud et al. [21] with respect to d. This is
intuitive, since Hutter [13] assumes memorizing exactly all previously seen data, while each memory
could be seen as specifying a “quantum of knowledge” as modeled in Michaud et al. [21], with d−α+1

corresponding to the risk (3) of only storing the most frequent d tokens. We illustrate those optimal
scalings on Figure 1. Second, the scheme qρ with ρ = 0 (5) follows two regimes, an overflow
regime where d ≲ φ(N) = N and in essence the memory Wq0 is too full to recover any signal
in it, and a infinite memory regime where d ≳ N and all associations can be stored without much
interference, allowing to reach a tiny generalization error. The phase transition between the two
regimes is illustrated on Figure 8.

3 Optimization-based memorization

This section studies memory schemes privileged by optimization based algorithms, digging into the
training dynamics behind memorization. In terms of relevance, we argue that our model (1) is a proxy
for the inner layers of a transformer that memorize patterns before matching them against new data
at inference time. As such, we want to understand how different key elements in the training of a
transformer influence storage in our memory model.

Theoretical approximation of gradient updates. We consider the cross entropy loss as a surrogate
objective to minimize, and study the form of gradient updates on batches of data. Formally, the matrix

3

0 50 100

n

0.00

0.05

0.10

0.15

f
n
(0

)/
‖f
‖ 2

10−3

10−1

10

0 50 100

x

10−3

10−2

10−1

100

q(
x

)/
‖q
‖

10−3

10−1

10

Figure 4: Theoretical approximation of the association scheme found with stochastic gradient descent
with batch one and fixed learning rates. Left: Plot of fn(0) as a function of n where f is the effect of
one gradient update on q(x) (11). Right: Plot of the resulting qγ(x) when nx ∝ p(x) ∝ (x+ 3)−α with
α = 2 and nN = 1. In dashed, we represent qρ (4) for ρ = 0.05, ρ = 0.35 and ρ = 1. Those curves map
well qγ for γ = 10, γ = 10−1 and γ = 10−3 respectively.

W ∈ Rd×d in (1) is optimized to minimize the loss

L(W) = E(X,Y)∼p[ℓ(x, y;W)], ℓ(x, y;W) = −u⊤y Wex + log(
∑

z∈[M]

exp(u⊤z Wex)). (9)

As detailed in Appendix B.5, when pW (z|x) does not change much for all z ̸= f∗(x), since uz were
sampled at random in Sd, we expect the following approximation to hold

∇W ℓ(x, f∗(x);W) ≈ −(1− pW (f∗(x)|x))uye⊤x . (10)

This is notably the case for W = 0, random W , or if W only stores pairs (x, f∗(x)) with d ≫ N .
As a consequence, T steps of SGD with batch size one lead to an association scheme of the form (2)
with

qγ(x) ≈ fTp(x)(0) = f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸
Tp(x) times

(0), where f : x 7→ x+
γ

1 +M−1 exp(x)
. (11)

This equation tells us what form to expect for q for optimization schemes with different hyperparam-
eters. This approximation is shown in Figure 4, and is validated empirically in Figure 3. Figure 5
visualizes the effect of gradient updates on W through relevant projections.

Effect of key hyperparameters. When d > N , the updates approximation (11) and the resulting
qγ show how a large learning rate γ is beneficial for our problem. Interestingly, as shown on Figure 5
(left), the same behavior holds in the presence of limited capacity, i.e., d < N , although interferences
between embeddings break our approximation (10). Moreover, Figure 7 illustrates the usefulness of
scheduling: using a large learning rate enables us to store associations while there is still memory
space, while reducing it later in training avoids overwriting previous storage unless an association is
highly frequent. Finally, processing an input x in a batch will reweight it by its frequency p(x), while
processing it by itself will update W similarly to setting qγ(x) = 1 if x has not been already seen,
as shown on Figure 4, predicting the better performance of small batches. In support of this line of
reasoning, Figure 5 (middle) illustrates the benefits of splitting the descent with many steps, small
batch size and large step size, even when d < N .

Practical considerations. In order to optimize our simple model the fastest, we have seen the
usefulness of large step size and small batch size. However, for large transformers such design
choices are impractical. First, large step sizes may lead to instability in realistic models [11]. Second,
in order to reduce training time and improve hardware efficiency, one should process large batches
[26]. Interestingly, we found that Adam, by renormalizing the variance of gradient updates (see
Figures 15 and 16), helps to optimize our model without large learning rates. Finally, it should be
noted that minimizing the cross-entropy loss implies setting pW (y|x) = 1, which will lead to W
diverging to infinity and unstable loss gradients. In order to ensure numerical stability, it is natural to
rescale the vector Wex ∈ Rd, especially since what matters for the final prediction fW is only its
direction. This is precisely what layer-norm is doing, which, in practice, shows even better results
than Adam alone Figure 5 (right).

Learning the embeddings. Taking a step back, Lemma 3 implies that our model with d2 parameters,
the matrix W ∈ Rd×d (2), only memorize about d/ log(d) associations (ex, uy) ∈ (Rd)2 of size 2d.

4

101 102 103

d

10−2

10−1

E
rr

or

SGD, |B|=64, T=10240

γ=0.1

γ=1.0

γ=10.0

γ=100.0

101 102 103

d

10−1

E
rr

or

SGD, T=1024

|B| = 16, γ = 1

|B| = 1024, γ = 10

101 102 103

d

10−1

E
rr

or

γ=1.0, |B|=1024, T=10240

SGD

Adam

SGD+LN

Adam+LN

Figure 5: Effect of step size, batch size, layer-norm and Adam (with β1 = β2 = 0, which corresponds
to SignGD). All the experiments are conducted with N = 100, M = 5, α = 2, f∗(x) = xmodM ,
averaged over ten runs. We initialized parameters and rescale learning rates to ensure maximal feature
updates, as explained in Appendix C.1. To avoid confounders, we scale γ on the middle plot for the
variance of the gradient updates to be independent of the batch size.

Figure 6: Gradient descent dynamics from perspective of the matrix (u⊤
y Wtex)y,x ∈ RM×N with

N = 10, M = 5, α = 1.5, f∗(x) = xmod. 5, and d = 5 < N . A lighter color in the square (y, x)
means a higher value of u⊤

y Wex. The optimal W corresponds to two diagonal strips of yellow boxes (see
Figure 15). The matrix Wt is updated with stochastic gradient descent with batch size equal to one. From
time to time, stochastic gradient descent will hit an association that is not properly stored in memory yet
(the red boxes). It will consequently update the weight matrix Wt → Wt+1 (side by side pairs) to store it
(44). Left pair: update with a big learning rate γ = 10, whose risk is to erase previous memories (the light
colored boxes), similarly to q0 (4). Right pair: update with a small learning rate γ = 10−1, which will not
store rare memory, similarly to qρ (4) with large ρ.

Intriguingly, it is known that an exponential number of quasi-orthogonal elements can be put in Rd,
an event that actually holds with high probability when embeddings are random, showcasing intrinsic
limitations of our “linear” model (1). Eventually, one could consider higher moments of e⊤x′ex which
has been the basis for modern Hopfield networks [15, 24]. However, it is unclear if this augments the
number of memories stored for a given number of parameters (since it requires keeping track of each
of the P vectors ex ∈ Rd). Interestingly, we note that when embeddings are learned, it is actually
possible to store as many memories as desired, which can be seen from the fact that

W = I, ∀ y ∈ [M]uy ∈ Sd, ex = uf∗(x) ⇒ f∗(x) = argmax
y

u⊤y Wex. (12)

Optimizing token embeddings is probably an important elements to increase memorization capacity
in transformers, although enforcing ex = uf∗(x) is unrealistic when embeddings are shared over
different heads, and the input/output relation to learning differs among heads.

Additional experiments and visualization of the memory matrices W are provided in Appendix C.

4 Conclusion

In this work, we quantify the effect of different memorization schemes when the data follows a
Zipf’s law. We leverage these theoretical results to study how different optimization algorithms
commonly used for transformers may lead to more efficient memorization. In particular, we showcase
the efficacy of small batches and large learning rates, and, under the design constraints resulting from
efficient hardware utilization and training stability, the usefulness of Adam and layer normalization.

References
[1] Shun-Ichi Amari. Learning patterns and pattern sequences by self-organizing nets of threshold

elements. IEEE Transactions on Computers, 1972.
[2] Yasaman Bahri, Ethan Dyer, Jared Kaplan, Jaehoon Lee, and Utkarsh Sharma. Explaining

neural scaling laws. arXiv preprint arXiv:2102.06701, 2021.

5

101 103

T

10−1

100

E
rr

or

γ = 10

γ = .1

StepLR

101 103

T

.2

.4

.6

E
rr

or

γ = 10

γ = .1

StepLR

Figure 7: Learning curve of the generalization error E (3) with respect to the number of data processed
by stochastic gradient descent in the setting of Figure 6. Left: comparison on a single run. A big step
size allows to store more memory at the risk of overwriting past association, which explains the higher
variance of the blue curve but its overall better performance. A small step size will avoid loss spikes due to
memory overwriting, but will take more time to store rare associations, leading to worse performance. By
decreasing the learning rates along training, e.g., with the “StepLR” scheduler [22], one can get the best of
both world, i.e., store memories fast at the beginning of training when storage capacity is underused, while
being more cautious at the end of training when there is no more “free” memory space. Right: Similar plot
with N = 30 averaged over one hundred runs.

[3] Lukas Balles and Philipp Hennig. Dissecting adam: The sign, magnitude and variance of
stochastic gradients. In ICML, 2018.

[4] Alberto Bietti, Vivien Cabannes, Diane Bouchacourt, Herve Jegou, and Leon Bottou. Birth of a
transformer: A memory viewpoint. In NeurIPS, 2023.

[5] Thomas Cover and Joy Thomas. Elements of Information Theory. Wiley, 1991.

[6] Lukasz Debowski. A simplistic model of neural scaling laws: Multiperiodic santa fe processes.
arXiv preprint arXiv:2302.09049, 2023.

[7] Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann,
Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Nova DasSarma, Dawn Drain, Deep
Ganguli, Zac Hatfield-Dodds, Danny Hernandez, Andy Jones, Jackson Kernion, Liane Lovitt,
Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish, and
Chris Olah. A mathematical framework for transformer circuits. Technical report, Anthropic,
2021.

[8] Vitaly Feldman. Does learning require memorization? a short tale about a long tail. In STOC,
2020.

[9] Vitaly Feldman and Chiyuan Zhang. What neural networks memorize and why: Discovering
the long tail via influence estimation. In NeurIPS, 2020.

[10] Mor Geva, Roei Schuster, Jonathan Berant, and Omer Levy. Transformer feed-forward layers
are key-value memories. In EMNLP, 2021.

[11] Justin Gilmer, Behrooz Ghorbani, Ankush Garg, Sneha Kudugunta, Behnam Neyshabur, David
Cardoze, George Edward Dahl, Zachary Nado, and Orhan Firat. A loss curvature perspective
on training instabilities of deep learning models. In International Conference on Learning
Representations, 2021.

[12] John Hopfield. Neural networks and physical systems with emergent collective computational
abilities. Proceedings of the National Academy of Sciences of the United States of America,
1982.

[13] Marcus Hutter. Learning curve theory. arXiv preprint arXiv:2102.04074, 2021.

[14] Teuvo Kohonen. Correlation matrix memories. IEEE Transactions on Computers, 1972.

[15] Dmitry Krotov and John Hopfield. Dense associative memory for pattern recognition. In
NeurIPS, 2016.

[16] Frederik Kunstner, Jacques Chen, Jonathan Wilder Lavington, and Mark Schmidt. Noise is not
the main factor behind the gap between sgd and adam on transformers, but sign descent might
be. In ICLR, 2023.

6

[17] William Little. The existence of persistent states in the brain. Mathematical Biosciences, 1974.
[18] Christopher Longuet-Higgins, David. Willshaw, and Peter Buneman. Theories of associative

recall. Quarterly Reviews of Biophysics, 1970.
[19] Alexander Maloney, Daniel Roberts, and James Sully. A solvable model of neural scaling laws.

arXiv preprint arXiv:2210.16859, 2022.
[20] Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual

associations in GPT. In NeurIPS, 2022.
[21] Eric Michaud, Ziming Liu, Uzay Girit, and Max Tegmark. The quantization model of neural

scaling. arXiv preprint arXiv:2303.13506, 2023.
[22] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,

Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Köpf, Edward Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style,
high-performance deep learning library. In NeurIPS, 2019.

[23] Steven Piantadosi. Zipf’s word frequency law in natural language: A critical review and future
directions. Psychonomic Bulletin and Review, 2014.

[24] Hubert Ramsauer, Bernhard Schäfl, Johannes Lehner, Philipp Seidl, Michael Widrich, Thomas
Adler, Lukas Gruber, Markus Holzleitner, Milena Pavlović, Geir Kjetil Sandve, Victor Greiff,
David Kreil, Michael Kopp, Günter Klambauer, Johannes Brandstetter, and Sepp Hochreiter.
Hopfield networks is all you need. In ICLR, 2021.

[25] Imanol Schlag, Kazuki Irie, and Jürgen Schmidhuber. Linear transformers are secretly fast
weight programmers. In ICML, 2021.

[26] Samuel Smith, Pieter-Jan Kindermans, Chris Ying, and Quoc V. Le. Don’t decay the learning
rate, increase the batch size. In ICLR, 2018.

[27] Paul Smolensky. Tensor product variable binding and the representation of symbolic structures
in connectionist systems. Artifical Intelligence, 1990.

[28] Ben Sorscher, Robert Geirhos, Shashank Shekhar, Surya Ganguli, and Ari Morcos. Beyond
neural scaling laws: beating power law scaling via data pruning. In NeurIPS, 2022.

[29] Karl Steinbuch. Die Lernmatrix. Kybernetik, 1961.
[30] Sainbayar Sukhbaatar, Edouard Grave, Guillaume Lample, Herve Jegou, and Armand Joulin.

Augmenting self-attention with persistent memory. arXiv preprint arXiv:1907.01470, 2019.
[31] Juan Valle-Lisboa, Andrés Pomi, and Eduardo Mizraji. Multiplicative processing in the modeling

of cognitive activities in large neural networks. Biophysical Reviews, 2023.
[32] David Willshaw, Peter Buneman, and Christopher Longuet-Higgins. Non-holographic associa-

tive memory. Nature, 1969.
[33] Yuhuai Wu, Markus Rabe, DeLesley Hutchins, and Christian Szegedy. Memorizing transformers.

In ICLR, 2022.
[34] Greg Yang and Etai Littwin. Tensor programs ivb: Adaptive optimization in the infinite-width

limit. arXiv preprint arXiv:2308.01814, 2023.
[35] Greg Yang, Edward Hu, Igor Babuschkin, Szymon Sidor, Xiaodong Liu, David Farhi, Nick

Ryder, Jakub Pachocki, Weizhu Chen, and Jianfeng Gao. Tensor programs v: Tuning large
neural networks via zero-shot hyperparameter transfer. In NeurIPS, 2021.

[36] Jingzhao Zhang, Sairaneeth Karimireddy, Andreas Veit, Seungyeon Kim, Sashank Reddi, Sanjiv
Kumar, and Suvrit Sra. Why are adaptive methods good for attention models? In NeurIPS,
2020.

7

Table 1: Some insightful provable scaling laws with respect to the memory capacity d, and the number of
data T , for two schemes that store associations as (2) and random embeddings.

Model Error scaling Comment
q(x) = p(x) d−(α−1)/2α + T−1+1/α Found with large batches in one step
q(x) = 1x≤d d−α+1 + T−1+1/α Optimal scaling with random embeddings

A Additional discussion

Related work. Associative memory models have a long history in the literature on neural computa-
tion [29, 32, 18, 14, 1, 17, 12, 27, 25, 31], though the statistical insights we provide based on specific
data distributions are new, to the best of our knowledge. Memorization behaviors have drawn a lot of
attention recently, and are believed to be an important notion to understand the learning happening in
deep neural network [e.g., 30, 8, 9, 10, 33]. Building on memorization and heavy-tailed discrete data,
our model bears similarities to the ones of Hutter [13], Michaud et al. [21] or Debowski [6], although
we focus on practical models with finite capacity. The discrete nature of tokens contrasts with other
recent works on scaling laws that have focused on continuous Gaussian inputs [e.g., 2, 19, 28].

Why do we make errors? With a simple deterministic model, one may wonder how can we not
learn perfectly the mapping f∗. There are two sources of error. One is due to not having enough data
to see all the potential association (x, f∗(x)), and has already been studied by Hutter [13]. The other
one is due to the limited memory capacity of our model, which we illustrate in Figure 2.

Model with exponential storage capacity. As a consequence of Lemma 2, the following model

f1(x) = argmax
y

u⊤y
∑

x′∈[P]

uf∗(x′)σ(e
⊤
x′ex − η), (13)

where σ(x) = x+ is the ReLU function, can fit P = exp(η2d/4) elements in memory, leading to
a scaling in E(f1) ≍ exp(−(α − 1)η2d/4) when p(x) follows a α-Zipf law. This result follows
directly from two facts. When input embeddings are chosen at random, the probability that they
are not η-quasi orthogonal is bounded by P 2 exp(−dη2/2). When input embeddings are η-quasi
orthogonal, f1(x) = f∗(x) for any x ∈ [P].

B Proofs

B.1 Useful Lemmas

Lemma 1 (Finite data, infinite memory). Consider a infinite memory model f̂ , which at time T
predicts correctly all x that where seen in the past training, i.e., x ∈ {Xt}t∈[T], where the (Xt, Yt)
where drawn independently at random from a distribution p ∈ ∆[N]×[M]. Under the data model the
generalization error reads, with respect to the random dataset DT = (Xt, Yt)t∈[T],

EDT
[E(f̂)] ≍ T−1+1/α. (14)

Here, the notation a ≍ b means that there exists two constants c1 and c2 such that c1b ≤ a ≤ c2b.

Proof. Let us consider the infinite memory model, where an LLM can store in memory all previously
seen associations (x, y). At each time t, a random positive integer x is drawn from some fixed
probability distribution. At time T , the LLM would have seen x1, . . . , xT and the associated f∗(xt),
where each xt is a random positive integer drawn independently from p. As such, the LLM would
have learned a map f̂ , that only miscorrects the inputs x which are different from all the xt for
t ∈ [T]. The generalization error reads, with respect to the random dataset DT = (Xt, Yt)t∈[T],

EDT
[f̂] = PX,DT

(X /∈ {Xt}t∈[T]) =
∑

x∈[N]

p(x)PDt
(x /∈ {Xt}t∈[T]) =

∑
x∈[N]

p(x)(1− p(x))T .

8

Using that (1− a)T = exp(T log(1− a)) and 2 log(2)a ≤ log(1 + a) ≤ a for any a ≥ −1/2, we
get

∑
x∈[N]

1p(x)≤1/2 · p(x) exp(−2 log(2)p(x)T) ≤
N∑

x=2

p(x) exp(−2 log(2)p(x)T)

≤ EDT
[f̂] ≤

∑
x∈[N]

p(x) exp(−p(x)T).

Relating this series to the corresponding integral, we have∫
x∈[1,N]

p(x) exp(−2 log(2)p(x)T) dx− 1/T

≤
∫
x∈[2,p−1(1/T)]

p(x− 1) exp(−2 log(2)p(x− 1)T) dx

+

∫
x∈[p−1(1/T),N]

p(x) exp(−2 log(2)p(x)T) dx

≤
N∑

x=2

p(x) exp(−2 log(2)p(x)T) ≤ EDT
[f̂] ≤

∑
x∈[N]

p(x) exp(−p(x)T)

≤
∫
x∈[1,N]

p(x) exp(−2 log(2)p(x)T) dx+ 1/T

Letting N goes to infinity, we get the scaling

EDT
[f̂] ≍

∫ ∞

1

p(x)e−Tp(x) dx± 1/T. (15)

Assuming that p(x) = Cf(x) for some constant C, and a smooth strongly decreasing function
f : R+ → R+ such that limx→0 f(x) = +∞, one may consider the change of variable u = f(x),
i.e., x = f−1(u). If so,

dx = d(f−1)′(u) =
du

f ′ ◦ f−1(u)
.

Hence it holds that

EDT
[f̂] ≍

∫ ∞

1

−u
f ′ ◦ f−1(u)

e−uT du. (16)

This relates to the Laplace transform of the function inside the integrand. In particular, one can work
out that when p(x) ∝ Cαx

−α, f−1(u) = u−1/β from which one can deduce that∫ ∞

1

x−α exp(−Tx−α) dx =
α

Γ(α−1
α)

T−α−1
α ,

which recovers a result of Hutter [13].

Definition 1 (Quasi-orthogonality). The family (uz)z∈[P] with uz ∈ Rd is η-quasi orthogonal if

∀ {z, z′} ⊂ [P], |⟨uz, uz′⟩| ≤ η, and ∥uz∥ = 1. (17)

Lemma 2. For any d ∈ N and P ≥ 3, there exists an embedding u : [P] → Rd such that the family
(uz)z∈[P] is η = 2

√
d−1 log(P)-quasi orthogonal.

Proof. The proof of Lemma 2 concerning quasi orthogonal embeddings can be done through a
reasoning on random embeddings. Let (Xi) be P independent identically distributed random
variables. We are interested in the event where the normalized (Xi) are η-quasi orthogonal.

P(∩{i,j}⊂[P]{|⟨Xi, Xj⟩| ≤ η∥Xi∥∥Xj∥}) = 1− P(∪{i,j}⊂[P]{|⟨Xi, Xj⟩| ≥ η∥Xi∥∥Xj∥})

≥ 1− P (P − 1)

2
P(|⟨X1, X2⟩| ≥ η∥X1∥∥X2∥).

9

If this event can happen, it means that there exists such η-quasi orthogonal samples. As a consequence,
we are looking to maximize η such that

P(|⟨X1, X2⟩| ≥ η∥X1∥∥X2∥) <
2

P (P − 1)
. (18)

Let us consider (Xi) to be distributed accordingly to a rotation-invariant probability. By symmetry,
we have, with f1 denoting the first vector of the canonical basis in Rd,

P(|⟨X1, X2⟩| ≥ η∥X1∥∥X2∥) = P(|⟨X, f1⟩| ≥ η∥X∥) = P(|⟨ X

∥X∥ , f1⟩| ≥ η) (19)

By symmetry, the vector X/∥X∥ is uniform on the sphere. Using that P(|⟨X, f1⟩| > η) =
2P(⟨X, f1⟩ > η) and

P(|⟨X, f1⟩| ≥ η) =
2

Vol(Sd−1)

∫
x∈Sd−1

1x1≥η dx =
2

Vol(Sd−1)

∫ 2

x1=η

Vol(
√
1− x21 · Sd−2) dx1

=
2Vol(Sd−2)

Vol(Sd−1)

∫ 1

t=η

(1− t2)
d−1
2 dt =

2Γ(d2 + 1)
√
πΓ(d2 + 1

2)

∫ 1

t=η

(1− t2)
d−1
2 dt.

To upper bound this probability, we proceed with

P(|⟨X, f1⟩| ≥ η) =
2Γ(d2 + 1

2)√
πΓ(d2 + 1

2)

∫ 1

t=η

(1− t2)
d−1
2 dt ≤ 2(d2 + 1)1/2√

π

∫ 1

t=η

t

η
(1− t2)

d−1
2 dt

=
2(d2 + 1)1/2√

π

1

η(d+ 1)
(1− η2)

d+1
2 ≤

√
2

√
π
√
η2d

exp(−η
2d

2
).

The last inequality follows from the fact that

(d+ 2)

(d+ 1)2
=
d+ 1 + 1

d+ 1

1

d+ 1
=

1 + 1
d+1

1 + 1
d

1

d
≤ d−1,

and that for any x ∈ (−1, 1), the concavity of the logarithm mean that log(1 + x) ≤ x hence that
(1 + x)n = exp(n log(1 + x)) ≤ exp(nx).

This leads to the following series of implications

∃ (Xi) η-quasi orthogonal ⇐ 1√
π

(η2d
2

)−1/2
exp(−η

2d

2
) ≥ 2

P 2

⇔
(η2d

2

)1/2
exp(

η2d

2
) ≥ P 2

2
√
π

⇐ η2d

2
≥ 1 and exp(

η2d

2
) >

P 2

2
√
π

⇐ η2d

2
≥ 2 log(P)− log(2

√
π) ≥ 1

⇐ η2d

4
≥ log(P) ≥ 1 + log(2

√
π)

2
.

Finally, we have proven the existence of a η-quasi orthogonal family for

η ≥
√
4 log(P)d−1, as long as P ≥ 3. (20)

Lemma 3 (Infinite data, finite memory). Let M ≥ 4 and d > 8 log(M). For any memory weight
scheme q : [N] → R, when the embeddings ex are independent random variables ex ∼ N (0, I), and
the unembeddings are taken uniformly at random on the sphere,

Ee,u[E(fq)] ≤ inf
γ

2d−γ + p

({
x ∈ [N] | dq(x)2 ≤ 16cγ

(
Q∞ +

8cγ∥q∥22
d

)})
, (21)

where Q∞ := maxy
∑

x;f∗(x)=y q(x)
2, cγ = log(M) + γ log(d), and p(X) =

∑
x∈X p(x) denotes

the probability of x to belong to X ⊂ [N]. In terms of lower bound,

Ee,u[E(fq)] ≥
1

20
p({x ∈ [N] | 3(d+ 1)q(x)2 ≤ Q∞}). (22)

10

Proof. The error made by fW relates to the ordering between the signals uf∗(x)We⊤x and the noises
maxy ̸=f∗(x) uyW

⊤ex.

Let fq = fWq
. We have the following sequence of equivalence, assuming uniqueness of the argument

of the maximum for simplicity,

fq(x0) ̸= f∗(x0) ⇔ argmax
y∈[M]

∑
x∈[N]

q(x)e⊤x ex0
u⊤f∗(x)uy ̸= f∗(x0)

⇔ max
y∈[M]

∑
x∈[N]

q(x)e⊤x ex0
u⊤f∗(x)uy >

∑
x∈[N]

q(x)e⊤x ex0
u⊤f∗(x)uf∗(x0)

⇔ max
y∈[M]

∑
x∈[N]

q(x)e⊤x ex0
u⊤f∗(x)(uy − uf∗(x0)) > 0.

As a consequence,

E(fq) =
∑

x0∈[N]

p(x0)1fq(x0) ̸=f∗(x0)

=
∑

xo∈[N]

p(x0)1maxy
∑

x∈[N] q(x)e
⊤
x ex0

u⊤
f∗(x)

(uy−uf∗(x0))>0. (23)

In other terms, we have proven the following characterization, which holds for any q, even if derived
from a finite number of data,

E(fq) = p({x ∈ [N] | max
y

∑
x′∈[N]

q(x′)e⊤x′ex⟨uf∗(x′), uy − uf∗(x)⟩ > 0}). (23)

Let us introduce randomness in the model. If each ex ∼ N (0, I) is actually an independent random
Gaussian vector in Rd, we continue our derivation with

Ee[E(fq)] =
∑

xo∈[N]

p(x0)Eex0
[P(ex)x ̸=x0

(fq(x0) ̸= f∗(x0) | ex0
)]

=
∑

xo∈[N]

p(x0)Eex0
[P(ex)x ̸=x0

(max
y

∑
x∈[N]

q(x)e⊤x ex0
u⊤f∗(x)(uy − uf∗(x0)) > 0 | ex0

)]

=
∑

xo∈[N]

p(x0)Eex0
[P(ex)x ̸=x0

(max
y

Zy > 0 | ex0
)].

Here, we have introduced the random variables Zy for y ̸= f∗(x0), inheriting their randomness from
(e|ex0

), and defined by

Zy =
∑

x∈[N]

q(x)e⊤x ex0
u⊤f∗(x)(uy − uf∗(x0)). (24)

Those are projections of Gaussian variables, hence are Gaussian. Using the fact that E[ex] = 0, their
mean is

µy := E[Zy] = q(x0)∥ex0
∥2u⊤f∗(x0)

(uy − uf∗(x0)). (25)

Those variables are correlated. Using the characterization of the mean, we deduce that their covariance
reads

Σy1,y2
:= E[(Zy1

− E[Zy1
])(Zy2

− E[Zy2
])]

=
∑

x,x′ ̸=x0

q(x)q(x′)E[e⊤x ex0e
⊤
x′ex0]u

⊤
f∗(x)(uy1 − uf∗(x0))u

⊤
f∗(x′)(uy2

− uf∗(x0))

= (uy1
− uf∗(x0))(

∑
x ̸=x0

q(x)2e⊤x0
E[exe⊤x]ex0

uf∗(x)u
⊤
f∗(x))(uy2

− uf∗(x0)).

= (uy1
− uf∗(x0))(

∑
x ̸=x0

q(x)2∥ex0
∥2uf∗(x)u⊤f∗(x))(uy2

− uf∗(x0)).

11

Finally, we obtain the following covariance

Σy,y′ = ∥ex0
∥2(uy − uf∗(x0))

⊤(
∑
x ̸=x0

q(x)2uf∗(x)u
⊤
f∗(x))(uy′ − uf∗(x0)). (26)

We are left with the computation of the probability that the maximum of the n correlated, non-centered,
exchangeable, Gaussian variables (Zy) is bigger than zero.

Generic upper bound. Since we do not care about the scaling with respect to M , we proceed with

max
y∈[M]

P(Zy ≤ 0) ≤ P(maxZy ≤ 0) ≤
∑

y∈[M]

P(Zy ≤ 0) ≤M max
y∈[M]

P(Zy ≤ 0), (27)

which leads to

P(ex)x̸=x0
(max

y

∑
x∈[N]

q(x)e⊤x ex0
u⊤f∗(x)(uy − uf∗(x0)) > 0|e(x0))

≤
∑

y ̸=f∗(x0)

exp(−1µy<0

µ2
y

2Σy,y
)

=
∑

y ̸=f∗(x0)

exp(−1⟨uf∗(x0),uy−uf∗(x0)⟩<0
∥ex0∥2

2
· q(x0)

2⟨uf∗(x0), uy − uf∗(x0)⟩2∑
x ̸=x0

q(x)2⟨uf∗(x), uy − uf∗(x0)⟩2
).

Finally, recognizing a χ2-variable with d degrees of freedom, for any a > 0,

E[exp(−a∥ex0
∥2)] = (1 + 2a)−d/2 = exp(−d

2
log(1 + 2a)).

This leads to the final bound, with χu,x = miny∈[M] 1⟨uf∗(x),uy−uf∗(x)⟩≤0.

Ee[E(fq)] ≤
∑

x∈[N]

p(x)min{1,
∑

y ̸=f∗(x)

(
1+

q(x)2⟨uf∗(x), uy − uf∗(x)⟩2∑
x′ ̸=x q(x

′)2⟨uf∗(x′), uy − uf∗(x)⟩2
)− d

2 ·χu,x}. (28)

This holds for any unembedding u and associative weight scheme q. In the following, we will assume
that the unembedding u are such that χu,x = 1, which is notably the case when the uy are normalized
(i.e., uy ∈ Sd−1).

Matching lower bound. Going back to (27), one can get a matching lower bound.

Ee[E(fq)] ≥
∑

x∈[N]

p(x)Eex [max
y ̸=f∗(x)

P(Zy ≤ 0|ex)]

≥
∑

x∈[N]

p(x) max
y ̸=f∗(x)

Eex [P(Zy ≤ 0|ex)]

=
1

2

∑
x∈[N]

p(x)(1− max
y ̸=f∗(x)

Eex [erf(
µy√
2Σy,y

)]).

To conclude, we need an inequality of anti-concentration for Gaussian variables. In essence, we
should distinguish two type of inputs x ∈ [N]:

• the ones where µy/Σy,y will be large enough to store the association uf∗(x)e
⊤
x , which will

lead to an error decreasing exponentially fast;
• the ones where the same ratio is too small and that we should count in the lower bound.

12

Following this split, one can go for the simple “survival” lower bound

Ee[E(fq)] ≥ sup
t>0

1− erf(t)

2

∑
x0∈[N]

p(x0) max
y ̸=f∗(x0)

Eex0
[1µ2

y≤2Σy,yt2]

= sup
t>0

1− erf(t)

2

∑
x0∈[N]

p(x0) max
y ̸=f∗(x0)

· · ·

Pex0
(∥ex0

∥2q(x0)2⟨uf∗(x0), uy − uf∗(x0)⟩2 ≤ 2t2
∑
x ̸=x0

q(x)2⟨uf∗(x), uy − uf∗(x0)⟩2).

≥ sup
t,s>0

1− erf(t)

2

∑
x0∈[N]

p(x0)Pex0
(∥ex0

∥2 ≤ s) max
y ̸=f∗(x0)

· · ·

1sq(x0)2⟨uf∗(x0),uy−uf∗(x0)⟩2≤2t2
∑

x ̸=x0
q(x)2⟨uf∗(x),uy−uf∗(x0)⟩2 .

Without optimizing for constants, taking t = 1/
√
2 and s = d, we get the simple “survival bound”

that there exists a constant c such that

Ee[E(fq)] ≥ c
∑

x∈[N]

p(x)1dq(x)2⟨uf∗(x),uy−uf∗(x)⟩2≤
∑

x′ ̸=x q(x′)2⟨uf∗(x′),uy−uf∗(x)⟩2 . (29)

The constant can be computed explicitly as

c =
1− erf(1/

√
2)

2
· P(∥ex0

∥2 ≤ d) > 0.158 · 1/2 = 0.079,

where we have used that ∥ex0∥2 is a χ2-variable with mean d hence smaller median, which implies
that P(∥ex0∥2 < d) > 1/2.

Quasi-orthogonal output embeddings. Let us consider u : [M] → Rd such that (uy)y∈[M] is
η-quasi orthogonal.

Upper bound. Going back to (28), we can work out a lower bound with

q(x0)
2⟨uf∗(x0), uy − uf∗(x0)⟩2∑

x̸=x0
q(x)2⟨uf∗(x), uy − uf∗(x0)⟩2

≥ q(x0)
2(1− η)2∑

x ̸=x0
q(x)2(1f∗(x)=y(1 + η)2 + 1f∗(x)=f∗(x0)(1− η)2 + 1f∗(x)/∈{y,f∗(x0)}4η

2)

≥ q(x0)
2(1− η)2

4
∑

x ̸=x0
q(x)2(1f∗(x)=y + 1f∗(x)=f∗(x0) + 1f∗(x)/∈{y,f∗(x0)}η

2)

=
1

4

q(x0)
2(1− η)2∑

x q(x)
2((1− η2)1f∗(x)∈{y,f∗(x0)} + η2)− q(x0)2

=
1

4

q(x0)
2(1− η)2

η2∥q∥2 + (1− η2)
∑

x;f∗(x)∈{y,f∗(x0)} q(x)
2 − q(x0)2

=
1

4

q(x0)
2(1− η)2

η2∥q∥2 + (1− η2)(Qy +Qf∗(x))− q(x0)2
.

Here, we have used that for the numerator

⟨uf∗(x0), uy − uf∗(x0)⟩2 = (⟨uf∗(x0), uy⟩ − 1)2 ≥ (1− η)2,

and the same for the term in the denominator (since their ratio cancels out), as well as

⟨uy, uy − uf∗(x0)⟩2 ≤ (1 + η)2, ⟨uf∗(x), uy − uf∗(x0)⟩2 ≤ (2η)2.

Moreover, we have introduced
Qy =

∑
x′;f(x′)=y

q(x′)2. (30)

13

Using the fact that (1 + x)d = exp(d log(1 + x)) ≤ exp(dx), an upper bound directly follows from
those derivations,

Ee[E(fq)] ≤
∑

x0∈[N]

p(x0)min{1,M exp
(
−d(1− η)2

2

q(x0)
2

4η2∥q∥22 + 2Q∞

)
}, (31)

where
Q∞ = max

y∈[M]
Qy = max

y∈[M]

∑
x;f∗(x)=y

q(x)2. (32)

Matching lower bound. Similarly, one can work out a lower bound with
q(x0)

2⟨uf∗(x0), uy − uf∗(x0)⟩2∑
x ̸=x0

q(x)2⟨uf∗(x), uy − uf∗(x0)⟩2
≤ q(x0)

2(1 + η)2∑
x ̸=x0

q(x)2(1f∗(x)=y(1− η)2 + 1f∗(x)=f∗(x0)(1 + η)2

≤ q(x0)
2

1−η
1+ηQy +Qf∗(x) − q(x0)2

.

Combining this with (29), we get the lower bound, with c = .079,

Ee[E(fq)] ≥ c
∑

x∈[N]

p(x)1(d+1)q(x)2≤ 1−η
1+η Q∞

. (33)

Remark that in the previous lower bound, we have dropped the previous factor η2∥q∥2 that appears
in the upper bound. We expect this term to actually be present in a tighter error characterization.
In essence, we expect the embeddings to fill the full space Sd−1 so that most of the difference
⟨uf∗(x), uy − uf∗(x0)⟩2 behave as η2 most of the time. However, quantifying this precisely is beyond
the scope of this paper.

Random output embeddings. In the case where the output embeddings are random, we can
distinguish two cases. The cases where the embedding is η-quasi orthogonal, where one can retake
the previous derivations, and the case where they are not, which will have a small probability if η is
large enough.

Consider u to be random embedding taking uniformly on the unit sphere. Let us introduce the event
Eη = {u is η-quasi orthogonal}.

We have seen in the proof of Lemma 2 that

1− P(Eη) ≤
M2

2
√
π

√
2

η2d
exp(−η

2d

2
). (34)

For any random variable Z that is bounded by one, we have the bounds
P(E)E[Z|E] ≤ E[Z] = (1− P(E))E[Z|¬E] + P(E)E[Z|E] ≤ (1− P(E)) + E[Z|E]. (35)

The upper bound of Lemma 3 directly follows from plugging (31) and (34) into this last equation

Ee,u[E(fq)] ≤
M2

2
√
π

√
2

η2d
exp(−η

2d

2
) +

∑
x∈[N]

p(x0)
∑

y ̸=f∗(x0)

(
1 +

(1− η)2

4

q(x0)
2

∥q∥22
)− d

2 . (36)

Since this is true for any η one can consider the supremum in the upper bound.

In term of lower bound, retaking (33),

Ee,u[E(fq)] ≥ sup
η≥0

c(1− M2

2
√
π

√
2

η2d
exp(−η

2d

2
))

∑
x∈[N]

p(x)1(d+1)q(x)2≤2 1−η
1+η Q∞

. (37)

In particular, when d > 8 log(M) one can consider η < 1/2 such that η2d > 4 log(M), which leads
to (η − 1)/(η + 1) > 1/3, and, if M ≥ 4

1− M2

2
√
π

√
2

η2d
exp(−η

2d

2
) ≥ 1− 1

2
√
π

1√
2 log(M)

> 2/3.

All together we have proven that, as long as M ≥ 4 and d ≥ 8 log(M) with c1 > .079 · 2/3 > .052
and c2 > 1/3,

Ee,u[E(fq)] ≥ c1
∑

x∈[N]

p(x)1(d+1)q(x)2≤c2Q∞ . (38)

14

Writing upper bounds as survival bounds. Until now, we have written the upper bounds as
the sum of exponential (31) and the lower bounds as a sum of missed associations (38), which we
called “survival” bound. In order to best read how tight our characterization is, one can rewrite the
upper bounds as survival bounds. In particular, as we did in the lower bound, we will dissociate x
corresponding to a small exponential and the other ones. Using the fact that the p(x) sum to one, we
get, when the output embeddings are η-quasi orthogonal,

Ee[E(fq)] ≤
∑

x0∈[N]

p(x0)min{1,M exp
(
−d(1− η)2

2

q(x0)
2

4η2∥q∥22 + 2Q∞

)
}

≤
∑

x0∈[N]

p(x0) inf
t>0

M exp
(
− t(1− η)2

4

)
+ 1dq(x0)2≤t(2η2∥q∥2

2+Q∞)

≤ inf
t>0

exp
(
− t(1− η)2

4
+ log(M)

)
+

∑
x∈[N]

p(x)1dq(x)2≤t(2η2∥q∥2
2+Q∞).

To simplify the bound, consider the constraints

η2 ≤ Q∞/∥q∥22, and η < 1/2, (39)

we get, using t = 16(log(M) + γ log(d)) for γ > 0, we get

Ee[E(fq)] ≤ inf
t>0

exp
(
− t(1− η)2

4
+ log(M)

)
+

∑
x∈[N]

p(x)1dq(x)2≤t(2η2∥q∥2
2+Q∞)

≤ inf
t>0

exp
(−t+ 16 log(M)

16

)
+

∑
x∈[N]

p(x)1dq(x)2≤3tQ∞

≤ exp(−γ log(d)) +
∑

x∈[N]

p(x)1dq(x)2≤48(log(M)+γ log(d))Q∞ .

Finally, when the output embedding are η-quasi orthogonal with η satisfying (39), we get

Ee[E(fq)] ≤ inf
γ>0

d−γ +
∑

x∈[N]

p(x)1dq(x)2≤48(log(M)+γ log(d))Q∞ . (40)

When the unembedding are chosen at random, when d > 8 log(M), one can choose η < 1/2, and
(36) is cast as, chosen dη2 = 4 log(M) + 2γ log(d),

Ee,u[E(fq)] ≤ inf
η,γ

M2

2
√
π

√
2

η2d
exp(−η

2d

2
)

+ d−γ +
∑

x∈[N]

p(x)1dq(x)2≤16(log(M)+γ log(d))(2η2∥q∥2
2+Q∞)

≤ inf
γ

d−γ

2
√
π
√
2 log(M) + γ log(d)

+ d−γ +
∑

x∈[N]

p(x)1
dq(x)2≤16(log(M)+γ log(d))(

8 log(M)+4γ log(d)
d ∥q∥2

2+Q∞)

≤ inf
γ

2d−γ +
∑

x∈[N]

p(x)1
dq(x)2≤16(log(M)+γ log(d))(

8 log(M)+4γ log(d)
d ∥q∥2

2+Q∞)
.

Finally, we have shown that when the embeddings are taken at random

Ee,u[E(fq)] ≤ inf
γ

2d−γ +
∑

x∈[N]

p(x)1
dq(x)2≥16(log(M)+γ log(d))(

8 log(M)+4γ log(d)
d ∥q∥2

2+Q∞)
. (41)

15

B.2 Proof of Theorem 1

Lemma 3 illustrates how the error made by a scheme q at the input x relates to the ratio between the
signal dq(x), provided by the associative memory uf∗(x)e

⊤
x , and the noise Q∞, which corresponds

to the signal provided by the most competitive class for y ∈ [M]. This is true up to a higher term
in ∥q∥2/d, which corresponds to a class y = f∗(x) competing against itself when the random
embeddings ex′ for x′ such that f∗(x′) = y point in the opposite direction of ex.

When d is large and p is regular, cγ∥q∥22/d will be dominated by Q∞ and the cut-off of q(x)2/Q∞
at 32cγ/d will behave similarly to a cut-off at 1/d up to logarithmic terms. Moreover, when q is
chosen independently of p(y|x),1 one can expect Q∞ ≈ p∗∥q∥2 where p∗ = maxy∈[M] p(y). As a
consequence, up to constants and logarithmic term, we get

E(fq)
(log)≍ p({x ∈ [N] | dq(x)2 ≤ p∗∥q∥2}). (42)

Infinite data. When p(x) ≃ x−α, q(x) = p(x)ρ ≃ x−ρα, hence,

p({x ∈ [N] | dq(x)2 ≤ p∗∥q∥2}) ≃ p({x ∈ [N] |x ≤ (d∥q∥−2)1/2ρα}) ≃ (d∥q∥−2)−(α−1)/2ρα).

We are left with the computation of φ(N) := ∥q∥2 ≃
∫ N

1
q(x)2 dx ≃

∫ N

1
x−2ρα dx. When 2ρα > 1,

this integral reads 1−N−2αρ+1 which is bounded by one.

Finite data. Denoting by DT the random dataset of T data, for any sequence of set (Ex)x∈[N],

Eu,e,DT
[E(fq̂)] =

∑
p(x)Pu,e,DT

(f(x) ̸= f∗(x))

=
∑

p(x)Pu,e,T (q̂ /∈ Ex) +
∑

p(x)Pu,e,T (f(x) ̸= f∗(x) | q̂ ∈ Ex).

The second term has been worked out before, using that Q∞ ≤ ∥q∥22

Pu,e,T (f(x) ̸= f∗(x) | q̂ ∈ Ex) ≤ inf
γ

2d−γ + PT (dq̂(x)
2 ≤ 16cγ(Q̂∞ +

8cγ∥q̂∥22
d

) | q̂ ∈ Ex).

≤ inf
γ

2d−γ + PT (dq̂(x)
2 ≤ c′γ∥q̂∥22 | q̂ ∈ Ex),

where c′γ = 16cγ(1 +
8cγ
d).

Let us now consider the specific scheme (4), with ρ > 0

q̂(x) = (
1

T

∑
t∈[T]

1x=Xt
)ρ, q(x) = p(x)ρ.

Using the multiplicative Chernoff bound, we get the probability bound (the randomness being due to
the data),

PT (q̂(x) <
q(x)

21/ρ
) = PT (p̂(x) <

p(x)

2
) ≤ exp(−Tp(x)/8).

As a consequence, reusing the proof of Lemma 1, when p follows a Zipf law,

E[E(fq̂)] =
∑

p(x)P(f(x) ̸= f∗(x))

=
∑

p(x) exp(−Tp(x)/8) +
∑

p(x)P(f(x) ̸= f∗(x) | q̂(x) > q(x)/21/ρ)

≍ T−1+1/α +
∑

p(x)P(f(x) ̸= f∗(x) | q̂(x) > q(x)/21/ρ).

We are left with the computation of the second term, denote cρ = 2−1/ρ, we have

Eu,ePT (f(x) ̸= f∗(x) | q̂(x) > cρq(x)) ≤ inf
γ

2d−γ + PT (dq̂(x)
2 ≤ c′γ∥q̂∥22 | q̂ ≥ q(x)/2).

1To be more precise, one should actually choose q(x) to be class dependent so to cram in memory as many x
as possible for each different class y = f∗(x), ensuring that y 7→ ∑

x;f∗(x)=y q(x)
2 is constant with respect to

y. For simplicity, we will not discuss this behavior that does not change the big picture beyond our exposition.

16

By definition of q̂, together with Jensen’s inequality when ρ ≤ 1/2

1

N
=

1

N

∑
x∈[N]

(q(x)2)1/2ρ ≥ (
1

N
∥q∥22)1/2ρ,

hence ∥q∥2 ≤ N1−2ρ. When ρ > 1/2, the worst value of ∥q∥ is when all the mass is concentrated
on one q(x′), in which case ∥q∥2 ≤ 1. With the corresponding ψ(N), we get

Eu,ePT (f(x) ̸= f∗(x) | q̂(x) > cρq(x)) ≤ inf
γ

2d−γ + 1dc2ρq(x)
2≤c′γφ(N).

Finally, reusing the proof of Theorem 1, and hiding logarithmic factors,

E[E(fq̂)] =
∑

p(x)P(f(x) ̸= f∗(x))

≤ T−1+1/α + inf
γ

2d−γ + p({x | dc2ρq(x)2 ≤ c′γψ(N)}).

≲ T−1+1/α + (
d

ψ(N)
)−(α−1)/2ρα.

The case ρ = 0, can be easily treated by considering an error if and only if the number of seen
elements |{xt | t ∈ [T]}| is smaller than d.

B.3 Proof of Theorem 2

The proof follows the structure of the proof of Theorem 1 above.

Infinite data. When p(x) ≃ x−α, q(x) = 1x∈[P]p(x)
ρ ≃ 1x∈[P]x

−ρα, we get

p({x ∈ [N] | dq(x)2 ≤ p∗∥q∥2}) = p({x ∈ [P] | dq(x)2 ≤ p∗∥q∥2}) + p({x > P})

≃
(d

φ(P)

)−(α−1)/2ρα
+ P−α+1.

The optimal threshold P is set by equalizing the two terms, which we compute as(d

φ(P)

)−(α−1)/2ρα
= P−α+1

⇔ −α+ 1

2ρα
log(d)− −α+ 1

2ρα
log(P) = (−α+ 1) log(P)

⇔ log(d)− log(P) = 2ρα log(P)

⇔ P = d1/(2ρα+1).

This choice of P leads to a scaling in, with fρ,[P] = fqρ,[P]
,

Ee,u[E(fρ,[P])
(log)≍ p({x ∈ [N] | dq(x)2 ≤ p∗∥q∥2}) ≃ P−(α−1) = d−(α−1)/(2ρα+1).

Finite data. Let us now consider the empirical scheme (5), with P ∈ N and ρ ≥ 0

q̂(x) = p̂(x)ρ1x∈topP ((xt)t∈[T]), q(x) = p(x)ρ1x∈[P].

We basically proceed with the same technique but with the event Ex the probability that x belongs to
the top P of the empirical frequencies. When dealing with a binomial distribution, one can enumerate
all possible outcomes for the empirical frequencies. For a template a ∈ ∆[N], we said that a sequence
(xt) is of type a if its empirical frequency is equal to a,

T (a) = {(xt) ∈ [N]T | ∀x ∈ [N],
∑
t∈[T]

1xt=x = Ta(x)}.

Some enumeration arguments that can be found in Cover and Thomas [5, Chapter 11] leads to

PDT
((xt) ∈ T (a)) = |T (a)| exp(−T (H(a) +DKL(a∥p))) ≤ exp(−T ·DKL(a∥p))).

17

Hence, the probability that x does not belong to the top P of the empirical frequencies of (xt) is
bounded by

PDT
(x /∈ topP (xt) ∈ T (a)) ≤

∑
a∈A

exp(−T ·DKL(a∥p))),

where A is the set of all templates a where x is not in the top P of (a(x′))x′∈[N]. With T samples
over N elements there is at most (N + 1)T different type templates, hence∑

a∈A
exp(ca · T) ≤ (T + 1)N sup

a∈A
exp(ca · T) = sup

a∈A
exp(ca · T +N log(T + 1)).

As a consequence,

PDT
(x /∈ topP (xt) ∈ T (a)) ≤ sup

a∈A
exp(−T ·DKL(a∥p)) +N log(T + 1))

We are left with the computation of the “information projection distance” between p and the set of
distribution where x does not belong to the top P . In order to get x out of the top P of p one should
switch p(x) with p(P), which leads to

DKL(p
′∥p) = p(x) log(p(x)/p(P)) + p(P) log(p(P)/p(x)) = (p(x)− p(P)) log(p(x)/p(P))

When considering x < P/2 and p following a Zipf law we get

DKL(p
′∥p) ≥ (p(x)− p(2x)) log(p(P/2)/p(P)) ≥ cαx

−α(1− 2−α)α log(2) = c′αp(x)

where c′α = cα(1− 2−α)α log(2). As a consequence, for any P ∈ N,

EDT
[E(fq̂)] ≤ c0P

−α+1 +
∑

x∈[P/2]

p(x)P(f(x) ̸= f∗(x)).

≤ c0P
−α+1 + (T + 1)N

∑
x∈[P/2]

p(x)(exp(−Tc′αp(x)) + P(f(x) ̸= f∗(x) |x ∈ topP ((xt)))

≤ c0P
−α+1 + (T + 1)N exp(−2αTc′αP

−α) +
∑

x∈[P/2]

p(x)P(f(x) ̸= f∗(x) |x ∈ topP ((xt)).

When ρ = 0, setting P = min(c1d, T
−1/α/ log(T)) with c1 chosen so that all x stored in memory

leads to f∗(x) = f(x) gives to the right scaling with both T and d: up to logarithmic factors,

E[E(fq̂)] ≲ d−α+1 + T−1+1/α + exp(−c3 log(T)α +N log(T + 1)).

Because α > 1, the last term decreases faster than any polynomial power of T , hence ends up being
negligible in front of T−1+1/α.

For the case ρ ∈ (0, 1] one can dissociate two events: the event where x belongs to the top P/2
empirical frequencies; the event where p̂(x) > p(x)/2; and conclude with similar derivations as
precedently

E[E(fq̂)] ≤ c0P
−α+1 + (T + 1)N exp(−2αTc′αP

−α) + c4T
−1+1/α

+
∑

x∈[P/2]

p(x)P(f(x) ̸= f∗(x) |x ∈ topP ((xt)), p̂(x) > p(x)/2).

Retaking previous arguments leads to the same scalings as the ones of Theorem 2 with respect to d
and a scaling in T−1+1/α with respect to T . This ends the proof of the mixed scaling with both finite
data and finite memory capacity.

B.4 Proof of Theorem 3

The lower bound directly follows from (22) together with Q∞ = p∗∥q∥2 and the fact that q is
invariant to rescaling, so the best we can do is fit as much memories P as we can until reaching
3(d+ 1) = p∗P leading to a scaling in

∫∞
P
p(x) dx = CαP

−α+1/(α+ 1).

18

B.5 Theoretical Approximation of Gradient Updates

Lemma 4. The gradient of this loss with respect to W takes the following form,

∇W ℓ(x, y;W) = −(1− pW (y|x))(uy − ε)e⊤x , with ε =
∑

z∈[M]

pW (z|x, z ̸= y)uz. (43)

where pW (y|x) ∝ exp(u⊤y Wex) are model predictions for the current W .

Proof. The cross-entropy loss is written as

ℓ((x, y,W) = − log(
exp(u⊤y Wex)∑

z∈[M] exp(u
⊤
z Wex)

) = −u⊤y Wex + log(
∑

z∈[M]

exp(u⊤z Wex)).

Hence stochastic gradient descent will update the matrix W by adding terms of the form

∂W ℓ((x, y),W) = −uye⊤x +

∑
z∈[M] exp(u

⊤
z Wex)uze

⊤
x∑

y∈[M] exp(u
⊤
y Wex)

= −uye⊤x +
∑

z∈[M]

pW (z|x)uze⊤x

= −(1− pW (y|x))uye⊤x +
∑
z ̸=y

pW (z|x)uze⊤x

= −(1− pW (y|x))(uye⊤x −
∑
z ̸=y

pW (z|x)
1− pW (y|x)uze

⊤
x).

Note that pW (z|x)/(1− pW (y|x) corresponds the the probability of the z conditioned with respect
to x under the event that z is not y, formally

pW (z|x)
1− pW (y|x) = p(z|x, z ̸= y).

Finally,

∂W ℓ((x, y),W) = −(1− pW (y|x))(uye⊤x −
∑
z ̸=y

pW (z|x, z ̸= y)uze
⊤
x)

= −(1− pW (y|x))(uye⊤x − Ez∼pW
[uz|x, z ̸= y]e⊤x).

While, it is clear that the model (2) does not describe the solution found by cross entropy, one might
hope that the term E[uz]e⊤x will somewhat cancel themselves out and be an order of magnitude
smaller than the leading term uye

⊤
x .

When pW (z|x) does not change much for all z ̸= f∗(x), since uz were sampled at random in Sd, we
expect ε (43) to concentrate around zero with ∥ε∥2 ≈ 1/M , hence to be negligible in front of uf∗(x).
As a consequence,

∇W ℓ(x, f∗(x);W) ≈ −(1− pW (f∗(x)|x))uye⊤x .
This is notably the case for W = 0, random W , or if W only stores pairs (x, f∗(x)) with d≫ N .

For a batch of n data B = [x1, · · · , xn], a gradient update with step size γt updates Wt as

Wt+1 =Wt − γt
∑
x∈B

∇W ℓ(x, f∗(x);Wt). (44)

With the approximate updates (10), one steps of SGD with batch size one lead to an update, assuming
exp(uzWex) ≈ 1 for any z ̸= f∗(x),

qt+1(x)− qt(x) = 1xt=xγ · (1− pWqt
(f∗(x)|x)) ≈

1xt=xγ

1 + (M − 1)−1 exp(qt(x))
,

After T steps, each x will be seen Tp(x) times on average, which explains (11).

19

Similarly, very large batch size b = |B| and T/b update steps, each x will appear in each batch about
bp(x) times, which leads to the rough approximation

qγ,b(x) = fT/b(0) = f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸
T/b times

(0), where f : x 7→ x+
γbp(x)

1 +M−1 exp(x)
. (45)

In practice, we can approximate the effect of a batch by counting how many times x was in this batch
and setting bp(x) to be the exact count, which will lead to tighter approximation.

C Experimental details

C.1 Maximal Parameters Updates

In order to carefully choose step-sizes that scale well with width d in optimization algorithms, we
follow [35] and consider learning rates consistent with maximal feature learning updates. Here we
consider the following initializations:

• W is initialized as a Gaussian random matrix with N (0, 1d) entries.
• Input embeddings ex and output embeddings uy are initialized as either random on the unit-

sphere in d dimensions, or with Gaussian N (0, 1d) entries. In both cases, every embedding
has norm ≈ 1.

Updates to W . The updates to the matrix W look as follows:

• SGD with step-size ηW :

W ′ =W + ηW δW, δW =
∑
j

αjuyje
⊤
xj
,

with αj = Θd(1), and a dimension-independent number of elements in the sum. Choos-
ing ηW = Θ(1) then ensures that for any input embedding ex, we have ∥W ′ex∥ = Θ(1) as
desired.

• Adam (idealized here as signSGD) with step-size η:

W ′ =W + ηW sign(δW), sign(δW)ij =
δWij

|δWij |
.

The coordinates of sign(δW) are now Θ(1) instead of Θ(1/d), thus the step-size needs
to be taken as ηW = Θ(1/d) in order to satisfy ∥W ′ex∥ = Θ(1) (see [35, 34] for more
details)

Updates to embeddings. The updates to embeddings look as follows:

• SGD updates:

u′y = uy + ηuδuy, δuy =
∑
j

αjWexj
,

e′x = ex + ηeδex, δex =
∑
j

α′
jW

⊤uyj ,

with αj = Θ(1) and a dimension-independent number of js. Since the algorithm en-
sures ∥Wexj

∥ = Θ(1) and ∥W⊤uyj
∥ = Θ(1) throughout training, choosing ηu, ηe = Θ(1)

ensures that these conditions continue to hold after each update.
• Adam/signSGD updates:

u′y = uy + ηu sign(δuy), (sign(δuy))i =
(δuy)i
|(δuy)i|

,

e′x = ex + ηe sign(δex), (sign(δex))i =
(δex)i
|(δex)i|

.

Since the updates have coordinates of order Θ(1), in order to ensure that embeddings remain
of norm Θ(1) after each update, we thus need ηu, ηe = Θ(1/

√
d).

20

10 102 103

d

10

102

103

104

T
0

0.3

0.6

10 102 103

d

10

102

103

104

T

0

0.3

0.6

10 102 103

d

10−1

10−3

10−5

E
rr

o
r

q = 1

q = p

q = 1x≤d/8

Figure 8: Generalization error (3) as a function of d and T for the model (2) averaged over 100 runs. The
data follows a Zipf law with α = 0.5, N = 100, M = 5 and f∗(x) = xmod.M . Left: error for q0 (4),
either d is too small and there will be memory overflow leading to large error, either it is big enough and
with enough data, the error will be null. Middle: error for q1 (4), for small d and big T , it avoid memory
overflow allowing a smaller error then q0; however for big d it does not allocated enough memory to
rare association, leading to a bigger error. Those results can be interpreted mechanistically by looking
at the corresponding memory matrices (see Figure 10). Right: Generalization error when T = +∞,
N = 100 and α = 2: the scheme q0 leads to a zero-one type of plot where if d < N the error is high,
and if d > N the error decreases fast to zero (in blue); the scheme q1 leads to an error decreasing in
d−(α−1)/2α = d−1/4 as predicted by theory (in orange); the scheme q0,P (5) with P = d/8, decreases in
d−(α−1) = d−1 until reaching the tipping point when d/8 > N (in green).

10 102 103

d

10−2

10−1

100

E
rr

o
r

q = 1

q = p

q = 1x≤d/8

Figure 9: Same figure as the right one of Figure 8 yet with a bigger N , here N = 1000. The dashed
curves represent E = .35 · d−1/4 (orange) and E = 3.5 · d−1 (green). They validate the scaling predicted
by theory where we used N = +∞ to get tight polynomial scalings of E (3) with respect to d.

C.2 Additional figures

Our theory predicted optimal scaling laws in d−1+α. However, there are some catches behind the
proof:

• The lower bound is true when N = 100, otherwise the error can actually reach zero when
d becomes larger than a tipping number dt which compares to N . This fact is illustrated
on Figure 8. Increasing N augments the tipping point dt, rectifying the learning curve as
illustrated on Figure 9.

• This was proven for models where q(x, y) = q(x), and where q(x) is not optimized with
respect to f∗(x). As such, it is not clear if those lower bounds hold for optimization-based
algorithms, although we argue that we do not expect different mechanisms to take place in
the proofs. We illustrate this empirically in the left of Figure 11.

Similarly, the unreasonable effect of learning the embeddings would be highly disappointing if those
were hard to optimize in practice. The right of Figure 11 illustrates how with a few steps, one can
achieve a zero generalization error when learning the embeddings. And Figure 12 shows visually the
learned embeddings when d = 2.

In order to better understand gradient updates, Figure 14 shows the dynamic of the association
memory W updated with SGD and a large step size. To validate the approximation (11), Figure 3
plots the generalization error associated with SGD and its theoretical approximation, while Figure 4
illustrates the idealized association scheme qγ associated with a step size γ, batch size one and a Zipf
law on x ∈ [N]. We equally resort to numerical simulation to study how optimization manages to

21

Figure 10: Representation of the weight matrix (u⊤
y Wex)y,x ∈ RM×N for N = 10, M = 5, f∗(x) =

xmod.M . The data x follows a Zipf-law with α = 1 and T = 103. The matrix W is obtained according
to (2) together with the scheme (4). Left: ρ = 0 (4), d = 10, there is not enough memory capacity, and the
model does not succeed to store memories, leading to a large generalization error. Middle left: ρ = 0 (4),
d = 50, there is enough memory capacity, we learn the right association y = xmod.M . Middle right:
ρ = 1 (4), d = 10, the weighting q allows to store the most important memories beside having a small
memory capacity. Right: ρ = 1 (4), d = 50, the weighting q is too strong which does not allow to store
memory associated with rare association (bottom of the matrix).

101 102 103

d

10−4

10−2

E
rr

o
r

SGD γ : 103

SGD γ : 10

Adam γ : .1

q = 1x,d/8

101 102

d

10−2

10−4

E
rr

o
r

W

e, u

ReLU

101 102 103

d

10−3

10−2

E
rr

o
r

γ=1.0, |B|=16, T=10240

Learning W

Learning e and u

Figure 11: Scalings with respect to d for optimization-based algorithms, in the setting of Figure 8. Left:
optimization-based algorithms beat the best algorithm designed by hands with q(x, y) = q(x). Note how
the curve seems to have the same optimal exponent E ≍ d−α+1 (the left part of the figure show similar
slopes for all curves) yet with smaller constant in front, leading to earlier typing point before reaching
zero generalization error due to full storage of all the associations. Middle: Comparison of learning the
sole matrix W (blue), or learning the embeddings e and u (orange), together with the possibility to use
non-linear model uy ReLU(ex) with e and u learned (green). All curves are obtained after 103 updates
with batch size 103. Right: Comparison with the same setting as Figure 5. Learning the embeddings or
going non-linear allows to impressively optimize memory storage, leading to better exponent with respect
to d and earlier tipping point for a size number of updates.

rearrange memories when d < N . Figure 6 showcases two types of behaviors depending on the size
of γ. (i) When the learning rate γ is large, associations will be stored easily in memory, but will tend
to overwrite previous storage. (ii) When the learning rate γ is small, associations need to be seen
often to build up in the matrix W (2) which will take more time, but will not erase memory. This
provides another intuition explanation for why a bigger step size leads to better results on the left of
Figure 5.

Adam. We have seen before how the update of SGD with large batch can be approximated with

γ−1
t (Wt+1−Wt−1) =

∑
x∈B

(1−pW (f∗(x)|x))uf∗(x)e⊤x ≈
∑
x∈N

|B|(1−pW (f∗(x)|x))p(x)uf∗(x)e⊤x .

Those naive updates would lead to a model that resembles (2) with q = pρ for ρ ≈ 1 (4). In
concordance with previous research on the matter [36, 16], we found Adam to be helpful in our setup
as well, see Figure 5 (right). In first order approximation, Adam is approximated as signSGD [3].
Arguably, this introduces a normalization effect to the gradient, helping to reach the saturation phase
of n 7→ fn (11) shown on Figure 4, homogenizing the resulting matrix W to behave similarly to
q1 = 1, therefore optimizing memory capacity. To underpin this intuition, we compare Adam with
plain SGD and SGD with rescaled variance on population data. That is, we consider gradient descent
with ∇WL(W) (9). The rescale variance SGD, consists in dividing the gradient by the variance of
∇W ℓ(X, f∗(X);W) (43) when X ∼ p. For simplicity, we consider Adam with β1 = β2 = 0, in
which case, it equates sign SGD, i.e., SGD when considering the sign of each entries of ∇WL(W) in
the updates Wt →Wt+1. Figures 15 and 16 reinforce our intuition that the usefulness of Adam lies

22

Figure 12: Experiments with learned embeddings when α = 2, N = 100 and M = 5 with y = f∗(x) =
xmod.M and d = 2. Left: level lines of the function R2 → [5];u 7→ argmaxy∈[5] u

⊤
y u with uy the

learned unembedding. Middle: scatter plot of the learned input embeddings ex ∈ R2 for x ∈ [N] colored
accordingly to f∗(x) for ex. It illustrates how the input embeddings match with the output ones, similarly
to (12). Right: learned input embeddings obtained with M = 10, and allowing again a zero generalization
error. Reaching a zero error with d = 2 greatly contrasts with the condition d ≥ N needed to get to a zero
generalization error when the embeddings are random.

0 50 100

Epochs

10−1

2× 10−2

3× 10−2
4× 10−2

6× 10−2

E
rr

o
r

real

approx

0 50 100

Epochs

10−1

4× 10−2

6× 10−2
E

rr
o
r

real

approx

0 50 100

Epochs

10−1

4× 10−2

6× 10−2

2× 10−1

E
rr

o
r

real

approx

Figure 13: Same as Figure 3 yet with batch size equals one thousands |B| = 103.

in its ability to rescale gradient update, an effect that could equally be obtained by tuning the learning
rate.

23

Figure 14: Gradient descent dynamics similar to Figure 6 with d = 10 and a fixed step size γ = 10. From
time to time, we represent here t ∈ {0, 4, 5, 6, 8, 9, 11, 30, 32, 37, 49, 62, 75, 90}, stochastic gradient
descent will hit an association that is not properly stored in memory yet (the red boxes). It will consequently
update the weight matrix Wt → Wt+1 (side by side pairs) to store it. When d is big enough, here d = 10,
W will end by storing correctly all associations, leading to perfect generalization for future examples.

24

Figure 15: Comparison between SGD, signSGD and SGD with normalized variance on population
gradient seen from the association matrix Wt at different times in the setting of Figure 14. The different
rows correspond to the matrices Wt at time t ∈ {1, 2, 3, 7, 100}. Left: Plain SGD. Middle: Adam with
β1 = β2 = 0, i.e., SignSGD. Right: SGD with normalized variance.

0 50 100

Epoch

10−3

10−1

E
rr

o
r

SGD

sign SGD

norm SGD

0 50 100

Epoch

10−2

G
ra

d
ie

n
t

v
a
ri

a
n

ce

Figure 16: Left: Generalization error in the setting of Figure 15. Observe how SGD with rescaled variance
(in green), an effect that can be done with SGD after adapting the learning rate, actually performs better
than sign SGD (i.e., Adam with β1 = β2 = 0). Right: Variance of SGD along the training. As the training
goes, SGD is losing momentum due to smaller gradient variances, hence smaller updates.

25

	Introduction
	Settings and Statistical Study
	Optimization-based memorization
	Conclusion
	Additional discussion
	Proofs
	Useful Lemmas
	Proof of
	Proof of
	Proof of
	Theoretical Approximation of Gradient Updates

	Experimental details
	Maximal Parameters Updates
	Additional figures

