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Abstract

Extracting relationships and ranking the tem-
poral order of document-level events is a chal-
lenging task in information extraction. Previ-
ous methods primarily considered the event
pair as the basic unit for processing, ignor-
ing holistic connection among all events and
background information remaining in the rest
text. To address these issues, we redefine the
multi-event temporal ordering as Event Or-
der Ranking(EORank) task, and introduce the
Multi-Event Temporal Ranking(MEtR) model.
EORank simultaneously focuses on all events
within a document from a holistic perspective.
We design order loss functions for MEtR, and
our experimental results demonstrate their su-
perior performance compared to other state-of-
the-art models across EORank tasks of different
settings. !

1 Introduction

Understanding the semantics and temporal relation-
ships of events has been a long-standing funda-
mental task in natural language processing(Minsky,
1974;Schank and Abelson, 1975;Chen et al., 2021).
Notably, many domains can benefit from the ad-
vancements in determining temporal relations of
multiple events, such as the construction and rea-
soning of the knowledge graph(Li et al., 2020, Du
et al., 2022), event prediction(Li et al., 2018), and
making decisions(Sun et al., 2018).

Events in natural language, often represented
by trigger words or the sentences containing them,
construct a document as a story, wherein the un-
derlying temporal relationships among them be-
come notably intricate. The extraction of relations
from these events scattered across the document
is conventionally modeled as the Document-level
Event-Event Relation Extraction(DERE) task(Yuan
et al., 2023a;Tran Phu and Nguyen, 2021;Cohen
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and Bar, 2023) and subdivided into the Event Or-
dering task(McDowell et al., 2017; Chambers et al.,
2014; Naik et al., 2019) to further focus on tem-
poral relations. Moreover, events are intertwined
for their temporal relations, which can be further
ordered as chains(Zhang et al., 2021;Chambers and
Jurafsky, 2008) by sequential ranking(Toro Isaza
et al., 2023a).

Mostly, previous methods explore DERE and
Event Ordering by identifying the relation in
each event pair(Chambers and Jurafsky, 2008;Jans
et al., 2012;Granroth-Wilding and Clark, 2016)
with temporal information(Pichotta and Mooney,
2016b;Pichotta and Mooney, 2016a), decompos-
ing the challenge of multiple events ordering into
pairwise events temporal relation extraction sub-
tasks (Ning et al., 2019;Zhang et al., 2022), which
is considered a process of multi-class classifica-
tion(Xiang and Wang, 2019) for each event pair.
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Figure 1: Example from EventStoryLine. Events are
annotated by trigger words, and the order sequence is
extracted from their relations. Some events and relations
are omitted for clarity.

However, pairwise and multi-class classifica-
tion methods also face defects(Examples in Ap-
pendix D). (1) Pairwise methods may predict a
cyclical relationship among events without han-
dling all events simultaneously, leading to a loop



that makes it impossible to determine the begin-
ning and end of a story. (2) Classification methods
may give the same classification result for different
events that cause repetitive orders. Pairwise meth-
ods also need further processing to obtain the order
sequence for events, such as constructing a rela-
tion adjacency matrix of each event pair separately
and additional ranking algorithms to create sequen-
tial event chains(Toro Isaza et al., 2023a) from the
matrix, which is computationally expensive and
requires additional processes, reducing accuracy
among multiple events.

While previous works focus on event pairs, real-
world language often entails more than two events
intertwined within a document, as shown in Fig-
ure 1. There is also information about events
tangled with other events, narrated by the rest
of the text, like an explanation of a specific con-
cept, which can be considered background infor-
mation(Hashimoto et al., 2014;Kruengkrai et al.,
2017;Kadowaki et al., 2019). This fact of contain-
ing multiple events with other background infor-
mation within a document is critical for DERE and
Event Ordering. Thus, having a holistic perspective
and obtaining the global event order sequence for
multiple events is significant, rather than focusing
on one local pair of events each time.

To handle events with background information
from a holistic perspective and address defects of
previous methods, we introduce the Events Order
Ranking(EORank) task and propose the Multi-
Event Temporal Ranking(MEtR) model. EO-
Rank approaches extracting temporal relationships
among multiple events by holistically considering
them as one cohesive story and requires the event
order sequence for output. Diverging from prior
tasks, we redefine the fundamental unit for event
ordering as all events in the same text rather than
event pairs. We aiming to simultaneously handle all
information and circumvent the defects mentioned
above by ranking the order of events at once.

The contributions of our paper are as follows:

* We introduce the Events Order
Ranking(EORank) task to achieve the
multi-event temporal ordering ranking
procedure with arranged data from datasets
Event Storyline(Caselli and Vossen, 2017),
ROCStory(Mostafazadeh et al., 2016) and
StoryCommonsense(Rashkin et al., 2018).
EORank requires ranking for event order
sequence, enabling a holistic comprehension

of multi-event relations.

* We propose Multi-Event  temporal
Ranking(MEtR) model with two differ-
ent loss functions, SOL and OCE, to address
the EORank task, which handles all events
simultaneously with a holistic perspective.

* Experimental results in EORank show that
MEC(R outperforms the baseline methods and
demonstrates a remarkable effect in handling
EORank tasks with more events.

2 Event Order Ranking

Task Description The task requiring ranking
temporal order for events is referred to as Event
Order Ranking (EORank). The primary objective
of EORank is to predict the order y; for each event
e;, thereby forming the temporal order sequence
Y ={yili =1,2,...,n}, e.g. considering events
e1, €2, €3, the predicted event order sequence Y
might be {y; = 0,y2 = 2,y3 = 1} indicating the
temporal orders as e; — e3 — eo.

In contrast with DERE, EORank does not
constrained to rank an event chain from event
pairs(Toro Isaza et al., 2023a), which allows for
operating on multiple events simultaneously and
ranking the event order sequence directly from the
whole story. We enable cohesive comprehension of
multi-event tasks for the first time through a holistic
perspective in EORank, which does not necessarily
require the basic process units to be event pairs.

Dataset Arrangement We modify the Sto-
ryCloze datasets and utilize the Event Storyline
dataset to arrange data for EORank.

The original StoryCloze task entails selecting
the correct ending from two candidate sentences
for a background story consisting four sentences,
each sentence represents an event and their tempo-
ral order aligns with their appearance. There are
five events in a complete story from StoryCloze
with the correct ending. We modify StoryCloze
datasets(ROCStories and StoryCommonsense) for
the EORank tasks by selecting and shuffling part of
events in a story, and the objective is to rank them
in order.

Furthermore, for more intricate situations, we
utilize the dataset Event Storyline(ESL, Caselli and
Vossen, 2017). ESL is a dataset that annotates
events with trigger words, designed for temporal
and causal relation detection among events. Un-
like StoryCloze, where events are ordered coher-
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Figure 2: Overview of MEtR. Input data comprising information of the entire story are integrated in Holistic Input,
incorporating both background(unselected events in StoryCloze and text other than trigger words in ESL) and
events(annotated by special tokens,"<s>" and "</s>" for sentences or "<trigger>" and "</trigger>" for trigger

words).

ently by their appearance in the story, events in
ESL are not all directly narrated. Documents in
ESL involve flashbacks and events intertwined with
background information, offering more complex
scenarios closer to real-world language. EORank
task on ESL requires ranking temporal relation or-
ders for selected events in each document.

3 MEtR

To handle all events simultaneously from a holistic
perspective, we propose MEtR(Figure 2). MEtR
inputs all events with background information si-
multaneously in Holistic Input(HI) structure and
encodes them by RoBERTa(Liu et al., 2019) with
a full connection layer. MEtR calculates order
scores by Order Sequencer as output and ranks
these scores into order sequences. Order scores of
events reveal their temporal salience in the story.
Order sequencer also reduces computation expense
by predicting and ranking the probability order
scores instead of treating all possible event orders
as classification targets and sorting from a rela-
tion adjacency matrix of event pairs. To handle
multi-event ordering with a holistic perspective, we
devise the order sequencer with two different loss

functions for MEtR.

3.1 Order Scores

MEC(R considers a document a story S consisting of
interrelated events e; and background information
ep. Order sequencer takes S with this interrelated
information as the condition, defining the condi-
tional probability p; of each event as order score:

pi = Softmax(P(e;|9)).

Like the coherence score from Granroth-Wilding
and Clark, 2016 in event chains, order scores rep-
resent the confidence from MEtR for each event
in a story. A higher order score signifies e; has a
stronger correlation with e; and more salience in
temporal relation within S than other events with
lower scores, indicating that e; should occur ear-
lier(Figure 3). Order sequencer can determine the
event order sequence for all events by ranking order
scores from high to low.

3.2 Loss Functions

The objective of EORank is ranking events to ob-
tain an ordered sequence Y = y1, y2, ..., Y, Where
vy; represents the predicted order of event e; while
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Figure 3: p, represents the correlation between event
e; and background and its salience compared to other
events in the story.

sequence O = 01,09, ...,0, represents the true
orders where n is the number of events. MEtR
outputs this sequence by ranking order scores
P1, P2, - - -, Pn Of each event from highest to lowest.

In order to obtain reasonable order scores, we
devise two order loss functions: Sequence Order
Loss(SOL) and Order Cross Entropy(OCE). We
devise them from relative and absolute perspectives,
respectively.

Sequence Order Loss For events, their ranked
order sequence signifies the before-and-after rela-
tionship among them. Thus, SOL evaluates the
order sequence by the relative direction and dis-
tance characteristics in sequence between adjacent
events. The signed value of difference between
orders of two events o; — o; reflects the before-and-
after direction and relative distance between them,
e.g. if o; — 0; < 0 then e; precedes e;, and the
absolute difference |o; — o;| indicates the distance
between e; and e;. Remarkably, the order of initial
and final events should give the greatest difference
and direct from the initial to the final event.

These numerical and directional characteristics
are consistent with the properties of vectors. Thus,
we extract these relative characteristics of an order
sequence as a vector Y by the adjacent signed value
of order differences 0,41 — 0;. Based on these, we
define SOL as:

—

Lsor, = cosine similarity (Y, O)
?:{yﬂy;:yiﬂ—yi, i=1,2---,n—1}
O = {00} = 0i41 — 05, i = 1,2, -+ ,n— 1},

to depict the holistic characteristics of predicted or-
der sequences and compare them with true orders.

Order Cross Entropy On the other hand, we in-
troduce OCE to add absolute position information
of each event into cross-entropy.

The order of an event tells its absolute position in
the whole story, and explicitly associated with the
total number of events. We describe this absolute
position information of one event by its proportion
of true order in sequence as ?:. This proportion
reflects the absolute characteristics of one event
in the sequence, and we replace the target(0 or 1)
in binary cross-entropy with this proportion to as-
semble OCE. Thus, we design OCE as a variant
of binary cross-entropy with absolute order propor-
tion of each event:

n

0; 0;
Loce =Y ﬁ logpi + (1 — i) log(1 — pi),

i=1

so that former events lead to higher order scores.

We utilize two loss functions separately for dif-
ferent perspectives with MEtR as MEtRgor, and
MEtRpce. We also conduct comparative experi-
ments with their summation.

4 Experiment

4.1 Datasets and Tasks

Dataset train test val
ROCStories - 1871 1871
SC 9885 2370 2483
ESL 1450 294 -

Table 1: Overview of dataset statistics. ROCStories and
SC are datasets from the StoryCloze task.

We conduct experiments on StoryCloze to com-
pare baselines and EORank tasks on StoryCloze
and ESL datasets.

The original StoryCloze task entails a system
selecting the correct ending for a multi-sentence
story, where each sentence represents an event. As
the original StoryCloze task is a binary classifi-
cation task with only one number output, MEtR
is not utilized in it. We conduct an experiment
on StoryCloze datasets ROCStories(Mostafazadeh
et al., 2016) and StoryCommonsense(SC, Rashkin
et al., 2018) with baselines and other state-of-the-
art methods to compare the capabilities of baselines
in handling binary event tasks and lay a ground-
work for comparing MEtR with baselines on more
complex EORank tasks.

EORank tasks require ranking temporal order
for events in a story. We select at least two events
for ranking and, at most, five, for there are a total
of five events in a story. We randomly shuffle these



selected events, which need to be ranked, while
the rest are considered as background. Specifically,
there is no background with all five events selected.

ROCStories comprises a train dataset without
incorrect options; thus, akin to prior works, we uti-
lize its test dataset for training and the dev dataset
for validation. StoryCommonsense is a modified
version of ROCStories with additional annotations,
providing a complete and abundant train dataset.

Further, for more complex scenarios, we also
conduct EORank tasks by utilizing temporal rela-
tions of events in the Event Storyline(ESL, Caselli
and Vossen, 2017) dataset for a comprehensive
analysis.

Table 1 shows a summary of the statistics of
these datasets.

4.2 Baselines

We design two baseline methods stand for previous
pairwise and multi-class classification methods re-
spectively. We choose the box embedding method
as a pairwise method because of its superiority
over previous pairwise methods. We also design
a multi-class classification method to intuitively
give orders for all events, demonstrating promising
results in relation extraction between two events
and ensuring specific effects in EORank.

Box Model Inspired by the box model(Box
Event Relation Extraction, BERE, Hwang et al.,
2022a), we adapted BERE by employing box em-
beddings to EORank tasks, a typical pairwise
method that takes ROBERTa as its encoder. BERE
projects each event to a box representation which
calculates the conditional probability P(e; Nejle;)
stands for e; — ¢; of each event pair to construct
the relations matrix and rank the event order se-
quence.

The box embeddings make an event box contain
anthor box related to it. This design initially intends
to describe relations among multiple events, and
BERE extracts pairwise relations by the relative
position of the two boxes.

We train the model with the multi-event pairwise
loss function:

— Z sgn(oi — ()j) lOg P(CZ n Cj|C]‘) — log P(Cz N C]"CZ‘) s

where sgn is sign function, ¢; is intersection of
background b with event e;. More information
about the BERE method is in Appendix C.

Multi-class Classification Method Inspired by
Li et al., 2021, we also designed a Multi-class
Classification Method(MCM) by assembling a
Pair Input input layer into it and replacing BERT
with RoBERTa as its encoder. MCM also utilizes
RoBERTa as its encoder, like MEtR, to maintain
the consistency of structure. Thus, both models
have similar structures with different input and out-
put layers.

The input structure of MCM is Pair Input(PI),
which pairs events with the background respec-
tively to integrate them. MCM is initially designed
with background information, which can also inte-
grate Holistic Input into it, in case the background
may separate from events in the text or even not
exist.

The output of MCM approaches the EORank
task intuitively as multi-class classification, calcu-
lating the probability P; = P(y; = t|e;;.S) for
each event where ¢ represents each order number.
While this structure ensures the efficiency of MCM,
it may result in the defect of repetitive order in the
output caused by separate classification of each
event.

GPT Prompt Yuan et al., 2023b employ zero-
shot prompt(Liu et al., 2023) on ChatGPT for EO-
Rank. Additionally, aiming to compare MEtR with
a state-of-the-art LLM, we also employ GPT-3.5
by the prompt method in EORank tasks.

However, the effectiveness of prompt methods
can vary based on the specific template design.
While we select our prompt template after com-
paring results from various designs, it is crucial
to acknowledge that the effectiveness of prompts
can fluctuate with template variations. Further de-
tails regarding the prompt design can be found in
Appendix B.

Model
TransBERT(Li et al., 2021)

accuracy F1

91.8%
83.2% (zero-shot)
87.7% (few-shot)

GPT-3(Brown et al., 2020)

GraphBERT(Du et al., 2022) 89.8%
BLOOMZ(Muennighoff et al., 2023) 96.26%
BERE 59.85% 0.545
MCM 97.93% 0.661

Table 2: Model performance on original StoryCloze
dataset ROCStories. ME(R is a multi-event model and
not in this task, while StoryCloze is a binary classifica-
tion task.
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Figure 4: EORank task on StoryCloze datasets. MCM is not utilized in this task because there is no background

information when all five events are selected.

4.3 Results and Analysis

We report the average accuracy(micro-£1) to fol-
low evaluation settings in previous works and addi-
tionally report macro-F} score to characterize the
quality of event order ranking. More details about
training settings can be found in Appendix A.

Original StoryCloze We evaluate the capabili-
ties of baseline methods in handling binary event
tasks on StoryCloze. Results presented in Table 2
showcase the performance of baselines and various
other models. Since baseline MCM outperforms
other methods in this task, migrating it to the newly
proposed EORank task is promising.

TransBERT(Li et al., 2021) is structured sim-
ilarly to MCM and utilizes BERT as the PLM.
GraphBERT(Du et al., 2022), a method merging
PLM and knowledge graphs, employs additional
graph information to enhance PLM performance.
BLOOMZ(Muennighoff et al., 2023) and GPT-
3(Brown et al., 2020) are LLMs that have similar
parameter sizes to each other. BLOOMZ undergoes
multi-task prompted finetuning, while GPT-3 uti-
lizes In-Context Learning(Brown et al., 2020;Dong
et al., 2023).

Results on StoryCloze highlight the outstand-
ing performance of MCM as a typical multi-class
classification method, achieving a remarkable ac-
curacy of 97.93% on ROCStories, which surpasses
previous methods, including LLMs. Compared
with TransBERT and GraphBERT, MCM utilizes
superior ROBERTa as the encoder. Compared with
LLMs BLOOMZ and GPT-3, MCM focuses on
only one dataset with fewer parameters that can be
fully finetuned. BERE is designed to handle multi-
event tasks using the pairwise method, which may
be less effective on binary StoryCloze but guaran-
tees effective results on EORank tasks.

These results on binary event tasks lay the

groundwork for comparing MEtR with baselines
on more complex multi-event EORank tasks.

EORank: StoryCloze These tasks are based on
StoryCloze datasets, with the number of events
varying from 2 to 5, introducing increasingly com-
plex scenarios among multiple events. The results
of these tasks are in Figure 4.

Experiment results suggest that both baselines
MCM and BERE have reliable capabilities in re-
solving EORank tasks, particularly in simpler sce-
narios with 2 and 3 events. Both MEtRgor, and
MEtRocg are weak with fewer events, especially
with two events(31.3% accuracy gap at most, 2&3
events, Figure 4.a), for binary events task is close
to classification task which baselines are excelling
in, validated in original StoryCloze.

Meanwhile, MEtRocg shows its superiority of
handling fewer events with abundant training data
on dataset ROCStories than SC, obtaining a 24.65%
accuracy improvement to BERE(3 events, Fig-
ure 4.b). In more intricate scenarios, MEtRgsor
shows a stable superiority with more events, ob-
tains a 38.1% accuracy improvement at most with
6.2% F1 improvement compared to BERE(4 events,
Figure 4.b).

The difference between SOL and OCE in effec-
tiveness comes from their different emphases. SOL
focuses on the holistic order sequence, excelling
with more events, while OCE emphasizes the abso-
lute position of each event.

The prompt method employing gpt-3.5-turbo in
the most intricate scenario with five events also
suggests the remarkable effectiveness of zero-shot
methods on LLMs in resolving EORank tasks,
which falls behind MEtRgor, 0.9% at accuracy(5
events, Figure 4.a).

Among these EORank: StoryCloze tasks, MEtR
shows superior results with abundant data, espe-



cially MEtRgoL is superior to MEtRgcg and base-
lines in more intricate scenarios.
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Figure 5: Model performance on Event Storyline(ESL).
We employ Holistic Input for MCM because events are
combined with background information.

EORank: ESL.  We also conduct EORank exper-
iments on ESL for more intricate situations. For
lack of data with more events in sequential tem-
poral relations(Appendix A) and to maintain con-
sistency with experiments of the original BERE
method, we select three events in each ESL docu-
ment for EORank.

Results in Figure 5 showcase that both MEtRgor
and MEtRocg have promising capability in han-
dling intricate conditions with annotation format
utilizing trigger words. It is noticeable that BERE,
as a pairwise method, yields a 62.55% accuracy,
which maintains the same level as its original ex-
perimental(Hwang et al., 2022b), being inferior
compared with MEtR and MCM.

In contrast, MEtRgor significantly pushes the
accuracy to 85.16%(22.61% accuracy and 1.1% F;
improvement to BERE), which excels in trigger
words annotated dataset comparing to results of
EORank: StoryCloze. This improved effectiveness
of models is caused by the better integration of
events and text rather than separated sentences.

Summation of Loss Functions To further ana-
lyze the impact of loss functions, we conduct exper-
iments with the summation of both loss functions
L = LsoL + Loce. MEtRsor, ocg refers to the
model trained with two loss function combined,
and the results are in Table 3.

According to the volumes of different Sto-
ryCloze datasets, it is notable that dataset SC con-
tains a larger quantity of data compared to ROC-
Story. Consequently, both loss functions demon-

strate greater performances with increased data vol-
ume on SC.

Compared to each other, efficacy of loss func-
tions varies with the number of events. In scenarios
with fewer events like 3, OCE showcases special-
ized expertise as 14.2% F; improvement to SOL.
Conversely, with five events, the 80.15% accuracy
with 0.32 F; shows that MEtRggy is excelling in
EORank with more events.

Moreover, the summation of SOL and OCE en-
counters poor combinations as effectiveness de-
creases among EORank except for the task on Sto-
ryCommonsense with two events, which is closer
to binary classification like the original StoryCloze.
This poor combination stems from the different
emphasis of two loss functions. The shortage
of SOL with fewer events also highly affects the
summation, giving a gap of 14.1% F; between
MEtRso1 0ce and MEtRocge(3 events).

It can be concluded that in EORank tasks, it is
appropriate to utilize loss functions and methods
separately in the scenarios in which they excel.

Time Cost Pairwise methods like BERE hanl-
dle multi-event relations by constructing the matrix
consists the probability of each event pair and rank-
ing the final order sequence from the matrix, while
MECfR is designed to rank output without the matrix,
which reduces time cost.

The total time cost among EORank tasks of
ME(R is 20.1% less than BERE(33.43% less on
StoryCloze, 7.8% less on ESL).

Error Analysis MCM outputs orders by classi-
fication of each event separately and may output
repetitive orders. BERE takes event pairs as pro-
cess units and may even cause loops.

On average, in EORank tasks on StoryCommon-
sense, MCM outputs repetitive orders in 19.98% of
cases, while BERE outputs loops in 0.43%(exam-
ples in Appendix D).

Meanwhile, ME(R interprets output by treating
orders as a sequence naturally, ensuring no repet-
itive and loop output by the design of its order
sequencer.

5 Conclusion

We address the challenge of multi-event temporal
ordering from a cohesive perspective and circum-
vent defects caused by previous pairwise and multi-
class classification methods. To reach these targets,
we propose the EORank task to rank the temporal



Task on ROCStories
Model 3 3 p P Task on ESL
accuracy F1 accuracy F1 accuracy F1 accuracy F1 accuracy F1
MEtRsor. oce | 51.61% 0.508 | 32.6% 033 | 61.85% 0.356 | 59.9% 0.3 84.36% 0.478
MEtRsoL 50.70%  0.503 | 34.36% 0338 | 75.03% 0.375 | 52.38% 0.289 || 85.16% 0.479
MEtRocg 5291% 0514 | 3534% 0.343 | 2430% 0.247 | 4236% 0273 || 77.51% 0.466
Task on StoryCommonsense
Model 2 3 4 5
accuracy F1 | accuracy F1 | accuracy F1 | accuracy F1
MEtRsor, oce | 92.13% 0.648 | 3291% 0331 | 7594% 0.376 | 60.23% 0.3
MEtRsoL 51.85% 0.509 | 33.30% 0330 | 83.88% 0.385 | 80.15% 0.320
MEtRocg 51.77%  0.508 | 80.95% 0.472 | 26.88% 0.259 | 44.05% 0.275

Table 3: Comparison of loss functions.

order for events and the MEtR model to handle all
events simultaneously with less computation by its
holistic input structure and order sequencer. Exper-
imental results demonstrate the effectiveness of the
devised loss functions, SOL and OCE, showcasing
their specialization in scenarios with various exper-
imental settings. In contrast to other state-of-the-art
methods, even LLMs, MEtR outperforms them in
intricate multi-event EORank tasks, demonstrating
superior performance.

Limitations

A key limitation in our work is not addressing
simultaneous temporal relations and no-relation
within MEtR for the reasons below:

* We maintain consistency with previous
works for interpreting the holistic narrative
plot(Toro Isaza et al., 2023b).

» Datasets ROCStories and SC lack these spe-
cific types of relation. To maintain consis-
tency, we exclude these data from the ESL
dataset.

* We perceive the extraction of simultaneous
temporal relations and no-relation between
two events as subtasks, ideally performed af-
ter obtaining the temporal order sequence by
measuring the adjacent events in that order.
Notably, various established methods, such
as box embeddings, are proficient in handling
these relations, suggesting a potential avenue
for future work.
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A ME(R Training

Hyperparameters We employ AdamW as the
optimizer and utilized a cosine scheduler with hard
restarts for each cycle during the training of MEtR.
Notably, we observe that the performance of mod-
els exhibits instability with higher learning rates,
particularly with an increased number of events.
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Given this instability, we deliberately select
lower learning rates to ensure more stable train-
ing results. The recommended learning rates for
ME(R in EORank:ESL is 5 x 1076, 5¢ — 6, and the
settings in EORank:StoryCloze shown in Table 4.
Details about the code training logs can be found
in our github page.?

It is essential to note that reducing the learning
rate might necessitate increasing in the number of
training epochs to ensure models are fully trained.
Technically, the size of ME(R is similar to previous
PLM models with RoBERTa-large, whose training
duration on each task typically falls within one day
on 1*V100 under the provided settings.

Dataset
Task Model learning rate
ROCStories | SC

MEtRsoL Te-7 6e-6

5 MEtRocg 6e-6 6e-6
MEtRp; soL Se-6 6e-6
ME(tRp; ocE 5e-6 6e-6
MEtRsoL Te-7 6e-6

3 MEtRocg 6e-6 Te-7
MEtRp; soL 4e-6 S5e-6
MEtRp; ocE 6e-6 Se-6
MEtRgsoL 4e-6 6e-6

4 MEtRocg 4e-6 6e-6
MEtRp1 soL Se-6 Se-6
MEtRp; ocE 6e-6 5e-6

5 MEtRgoL Se-6 8e-7
MEtRocE 5e-6 Te-7

Table 4: Learning Rates utilized in EORank:StoryCloze.

Numbers of events in ESL In ESL, the data
volume with 4 and 5 events is 934 and 479(total
of train, test, and val) which significantly less than
other task settings(Table 5). Thus, we utilize ESL
only with 3 events in experiments.

B Prompt Design

We choose a prompt template for gpt-3.5-turbo,
designed as a step-by-step procedure. More details
of the code and prompt in github page.’

2Will be released after the review process.
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Dataset Volume
ROCStories 3742
StoryCommonsense 14738
ESL
(3 events) 1744
ESL
(4 events) 934
ESL
(5 events) 479

Table 5: Total volume of datasets.

C Box Model

We train a box model with a pairwise loss function
following the principles and techniques detailed in
the BERE method.

For comprehensive details regarding the code
we utilize, including implementation specifics
and references, more information can be found
on our GitHub page and the official page of
box embeddings (https://www.iesl.cs.umass.
edu/box-embeddings/main/index.html) for a
deeper understanding of the methodology.

D Case Study

We display the input text and output of some case
examples from baselines in Table 6 for a better
understanding of EORank tasks.


https://www.iesl.cs.umass.edu/box-embeddings/main/index.html
https://www.iesl.cs.umass.edu/box-embeddings/main/index.html
https://www.iesl.cs.umass.edu/box-embeddings/main/index.html

predict

-0

<s>Ben's Boy Scout Troop worked for |
weeks on a float. </s> |

<s>It was going to be in the town's July
4th parade.</s>

<s>They got it finished just in time. </s>

!
|
|
|
! |
1] <=1t was big enough for his whole troop: |
I'] to ride on.</s> |
I | <s>They felt proud as they went down |
|
|
|
|
|
|
|
|

pairwise
th:g:tl:‘e.e/t - people clapped.</s> : relation matrices relations
[oorn garden pemsie - OO d
R, sere | = HEEE
oooQd
Input(StoryCloze style) Output Description

[0]=[1]-[2]-[3]

e1: It was going to be...

background:
Ben’s Boy Scout Troop worked for
weeks on a float.

4
ea: They got it finished... Correct order
events: U
e1: It was going to be in the town’s . .
cIt b h...
July 4th parade. Ca: Twas llg enoug

: They felt d as...
eg: They got it just in time. €q: ey felt proud as

e3: It was big enough for his Repetitive orders
i MCM

whole troop to ride on. cause branches.

eq: They felt proud as they went relation matrices B3RS output order

down the street as people clapped. OoO0  [eioed Error pairwise

peopie clapp BERE 0080 _ e P
0008 = |5 =ey relations cause loop.
2000 |E=
Input(ESL style) Output Description

(0] [1]-[2]

A jury has handed down a guilty verdict for one of the two men
v
accused of murdering accused of murdering a Brownsville

A jury has handed down a guilty verdict for one of the two men mother of 12. Andrew Lopgz was found guilty of second-degree

€1 €2
accused of murdering accused of murdering a Brownsville

Correct order.

murder and two counts of first-degree assault in the death of

mother of 12. Andrew Lopez was found guilty of second-degree

murder and two counts of first-degree assault in the death of
€3

Zurana Horton. Jury deliberations are still underway for the

second suspect, Jonathan Carrasquillo. Horton was shot and

killed in October 2011 when gunfire erupted outside...

Zurana Horton. Jury deliberations are still underway for the
second suspect, Jonathan Carrasquillo. Horton was shot and

killed in October 2011 when gunfire erupted outside...

X

Repetitive orders
MCM 0 1 0 P ;
cause opposite branches.
relation matrices  Pairwise
relations output order
BERE E % E N == N Correct output.
ooo le2— €]

Table 6: Case examples.
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