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Abstract

Extracting relationships and ranking the tem-001
poral order of document-level events is a chal-002
lenging task in information extraction. Previ-003
ous methods primarily considered the event004
pair as the basic unit for processing, ignor-005
ing holistic connection among all events and006
background information remaining in the rest007
text. To address these issues, we redefine the008
multi-event temporal ordering as Event Or-009
der Ranking(EORank) task, and introduce the010
Multi-Event Temporal Ranking(MEtR) model.011
EORank simultaneously focuses on all events012
within a document from a holistic perspective.013
We design order loss functions for MEtR, and014
our experimental results demonstrate their su-015
perior performance compared to other state-of-016
the-art models across EORank tasks of different017
settings.1018

1 Introduction019

Understanding the semantics and temporal relation-020

ships of events has been a long-standing funda-021

mental task in natural language processing(Minsky,022

1974;Schank and Abelson, 1975;Chen et al., 2021).023

Notably, many domains can benefit from the ad-024

vancements in determining temporal relations of025

multiple events, such as the construction and rea-026

soning of the knowledge graph(Li et al., 2020, Du027

et al., 2022), event prediction(Li et al., 2018), and028

making decisions(Sun et al., 2018).029

Events in natural language, often represented030

by trigger words or the sentences containing them,031

construct a document as a story, wherein the un-032

derlying temporal relationships among them be-033

come notably intricate. The extraction of relations034

from these events scattered across the document035

is conventionally modeled as the Document-level036

Event-Event Relation Extraction(DERE) task(Yuan037

et al., 2023a;Tran Phu and Nguyen, 2021;Cohen038

1Code and data will be released after the review process.

and Bar, 2023) and subdivided into the Event Or- 039

dering task(McDowell et al., 2017; Chambers et al., 040

2014; Naik et al., 2019) to further focus on tem- 041

poral relations. Moreover, events are intertwined 042

for their temporal relations, which can be further 043

ordered as chains(Zhang et al., 2021;Chambers and 044

Jurafsky, 2008) by sequential ranking(Toro Isaza 045

et al., 2023a). 046

Mostly, previous methods explore DERE and 047

Event Ordering by identifying the relation in 048

each event pair(Chambers and Jurafsky, 2008;Jans 049

et al., 2012;Granroth-Wilding and Clark, 2016) 050

with temporal information(Pichotta and Mooney, 051

2016b;Pichotta and Mooney, 2016a), decompos- 052

ing the challenge of multiple events ordering into 053

pairwise events temporal relation extraction sub- 054

tasks (Ning et al., 2019;Zhang et al., 2022), which 055

is considered a process of multi-class classifica- 056

tion(Xiang and Wang, 2019) for each event pair. 057
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Figure 1: Example from EventStoryLine. Events are
annotated by trigger words, and the order sequence is
extracted from their relations. Some events and relations
are omitted for clarity.

However, pairwise and multi-class classifica- 058

tion methods also face defects(Examples in Ap- 059

pendix D). (1) Pairwise methods may predict a 060

cyclical relationship among events without han- 061

dling all events simultaneously, leading to a loop 062
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that makes it impossible to determine the begin-063

ning and end of a story. (2) Classification methods064

may give the same classification result for different065

events that cause repetitive orders. Pairwise meth-066

ods also need further processing to obtain the order067

sequence for events, such as constructing a rela-068

tion adjacency matrix of each event pair separately069

and additional ranking algorithms to create sequen-070

tial event chains(Toro Isaza et al., 2023a) from the071

matrix, which is computationally expensive and072

requires additional processes, reducing accuracy073

among multiple events.074

While previous works focus on event pairs, real-075

world language often entails more than two events076

intertwined within a document, as shown in Fig-077

ure 1. There is also information about events078

tangled with other events, narrated by the rest079

of the text, like an explanation of a specific con-080

cept, which can be considered background infor-081

mation(Hashimoto et al., 2014;Kruengkrai et al.,082

2017;Kadowaki et al., 2019). This fact of contain-083

ing multiple events with other background infor-084

mation within a document is critical for DERE and085

Event Ordering. Thus, having a holistic perspective086

and obtaining the global event order sequence for087

multiple events is significant, rather than focusing088

on one local pair of events each time.089

To handle events with background information090

from a holistic perspective and address defects of091

previous methods, we introduce the Events Order092

Ranking(EORank) task and propose the Multi-093

Event Temporal Ranking(MEtR) model. EO-094

Rank approaches extracting temporal relationships095

among multiple events by holistically considering096

them as one cohesive story and requires the event097

order sequence for output. Diverging from prior098

tasks, we redefine the fundamental unit for event099

ordering as all events in the same text rather than100

event pairs. We aiming to simultaneously handle all101

information and circumvent the defects mentioned102

above by ranking the order of events at once.103

The contributions of our paper are as follows:104

• We introduce the Events Order105

Ranking(EORank) task to achieve the106

multi-event temporal ordering ranking107

procedure with arranged data from datasets108

Event Storyline(Caselli and Vossen, 2017),109

ROCStory(Mostafazadeh et al., 2016) and110

StoryCommonsense(Rashkin et al., 2018).111

EORank requires ranking for event order112

sequence, enabling a holistic comprehension113

of multi-event relations. 114

• We propose Multi-Event temporal 115

Ranking(MEtR) model with two differ- 116

ent loss functions, SOL and OCE, to address 117

the EORank task, which handles all events 118

simultaneously with a holistic perspective. 119

• Experimental results in EORank show that 120

MEtR outperforms the baseline methods and 121

demonstrates a remarkable effect in handling 122

EORank tasks with more events. 123

2 Event Order Ranking 124

Task Description The task requiring ranking 125

temporal order for events is referred to as Event 126

Order Ranking (EORank). The primary objective 127

of EORank is to predict the order yi for each event 128

ei, thereby forming the temporal order sequence 129

Y = {yi|i = 1, 2, . . . , n}, e.g. considering events 130

e1, e2, e3, the predicted event order sequence Y 131

might be {y1 = 0, y2 = 2, y3 = 1} indicating the 132

temporal orders as e1 → e3 → e2. 133

In contrast with DERE, EORank does not 134

constrained to rank an event chain from event 135

pairs(Toro Isaza et al., 2023a), which allows for 136

operating on multiple events simultaneously and 137

ranking the event order sequence directly from the 138

whole story. We enable cohesive comprehension of 139

multi-event tasks for the first time through a holistic 140

perspective in EORank, which does not necessarily 141

require the basic process units to be event pairs. 142

Dataset Arrangement We modify the Sto- 143

ryCloze datasets and utilize the Event Storyline 144

dataset to arrange data for EORank. 145

The original StoryCloze task entails selecting 146

the correct ending from two candidate sentences 147

for a background story consisting four sentences, 148

each sentence represents an event and their tempo- 149

ral order aligns with their appearance. There are 150

five events in a complete story from StoryCloze 151

with the correct ending. We modify StoryCloze 152

datasets(ROCStories and StoryCommonsense) for 153

the EORank tasks by selecting and shuffling part of 154

events in a story, and the objective is to rank them 155

in order. 156

Furthermore, for more intricate situations, we 157

utilize the dataset Event Storyline(ESL, Caselli and 158

Vossen, 2017). ESL is a dataset that annotates 159

events with trigger words, designed for temporal 160

and causal relation detection among events. Un- 161

like StoryCloze, where events are ordered coher- 162
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Figure 2: Overview of MEtR. Input data comprising information of the entire story are integrated in Holistic Input,
incorporating both background(unselected events in StoryCloze and text other than trigger words in ESL) and
events(annotated by special tokens,"<s>" and "</s>" for sentences or "<trigger>" and "</trigger>" for trigger
words).

ently by their appearance in the story, events in163

ESL are not all directly narrated. Documents in164

ESL involve flashbacks and events intertwined with165

background information, offering more complex166

scenarios closer to real-world language. EORank167

task on ESL requires ranking temporal relation or-168

ders for selected events in each document.169

3 MEtR170

To handle all events simultaneously from a holistic171

perspective, we propose MEtR(Figure 2). MEtR172

inputs all events with background information si-173

multaneously in Holistic Input(HI) structure and174

encodes them by RoBERTa(Liu et al., 2019) with175

a full connection layer. MEtR calculates order176

scores by Order Sequencer as output and ranks177

these scores into order sequences. Order scores of178

events reveal their temporal salience in the story.179

Order sequencer also reduces computation expense180

by predicting and ranking the probability order181

scores instead of treating all possible event orders182

as classification targets and sorting from a rela-183

tion adjacency matrix of event pairs. To handle184

multi-event ordering with a holistic perspective, we185

devise the order sequencer with two different loss186

functions for MEtR. 187

3.1 Order Scores 188

MEtR considers a document a story S consisting of 189

interrelated events ei and background information 190

eb. Order sequencer takes S with this interrelated 191

information as the condition, defining the condi- 192

tional probability pi of each event as order score: 193

pi = Softmax(P (ei|S)). 194

Like the coherence score from Granroth-Wilding 195

and Clark, 2016 in event chains, order scores rep- 196

resent the confidence from MEtR for each event 197

in a story. A higher order score signifies ei has a 198

stronger correlation with eb and more salience in 199

temporal relation within S than other events with 200

lower scores, indicating that ei should occur ear- 201

lier(Figure 3). Order sequencer can determine the 202

event order sequence for all events by ranking order 203

scores from high to low. 204

3.2 Loss Functions 205

The objective of EORank is ranking events to ob- 206

tain an ordered sequence Y = y1, y2, . . . , yn where 207

yi represents the predicted order of event ei while 208
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Figure 3: pi represents the correlation between event
ei and background and its salience compared to other
events in the story.

sequence O = o1, o2, . . . , on represents the true209

orders where n is the number of events. MEtR210

outputs this sequence by ranking order scores211

p1, p2, . . . , pn of each event from highest to lowest.212

In order to obtain reasonable order scores, we213

devise two order loss functions: Sequence Order214

Loss(SOL) and Order Cross Entropy(OCE). We215

devise them from relative and absolute perspectives,216

respectively.217

Sequence Order Loss For events, their ranked218

order sequence signifies the before-and-after rela-219

tionship among them. Thus, SOL evaluates the220

order sequence by the relative direction and dis-221

tance characteristics in sequence between adjacent222

events. The signed value of difference between223

orders of two events oi− oj reflects the before-and-224

after direction and relative distance between them,225

e.g. if oi − oj < 0 then ei precedes ej , and the226

absolute difference |oi − oj | indicates the distance227

between ei and ej . Remarkably, the order of initial228

and final events should give the greatest difference229

and direct from the initial to the final event.230

These numerical and directional characteristics231

are consistent with the properties of vectors. Thus,232

we extract these relative characteristics of an order233

sequence as a vector Y⃗ by the adjacent signed value234

of order differences oi+1 − oi. Based on these, we235

define SOL as:236

LSOL = cosine similarity(Y⃗ , O⃗)

Y⃗ = {y′i|y′i = yi+1 − yi, i = 1, 2, · · · , n− 1}
O⃗ = {o′i|o′i = oi+1 − oi, i = 1, 2, · · · , n− 1},

237

to depict the holistic characteristics of predicted or-238

der sequences and compare them with true orders.239

Order Cross Entropy On the other hand, we in-240

troduce OCE to add absolute position information241

of each event into cross-entropy.242

The order of an event tells its absolute position in 243

the whole story, and explicitly associated with the 244

total number of events. We describe this absolute 245

position information of one event by its proportion 246

of true order in sequence as oi
n . This proportion 247

reflects the absolute characteristics of one event 248

in the sequence, and we replace the target(0 or 1) 249

in binary cross-entropy with this proportion to as- 250

semble OCE. Thus, we design OCE as a variant 251

of binary cross-entropy with absolute order propor- 252

tion of each event: 253

LOCE =
n∑

i=1

oi
n
log pi + (1− oi

n
) log(1− pi), 254

so that former events lead to higher order scores. 255

We utilize two loss functions separately for dif- 256

ferent perspectives with MEtR as MEtRSOL and 257

MEtROCE. We also conduct comparative experi- 258

ments with their summation. 259

4 Experiment 260

4.1 Datasets and Tasks 261

Dataset train test val
ROCStories - 1871 1871

SC 9885 2370 2483
ESL 1450 294 -

Table 1: Overview of dataset statistics. ROCStories and
SC are datasets from the StoryCloze task.

We conduct experiments on StoryCloze to com- 262

pare baselines and EORank tasks on StoryCloze 263

and ESL datasets. 264

The original StoryCloze task entails a system 265

selecting the correct ending for a multi-sentence 266

story, where each sentence represents an event. As 267

the original StoryCloze task is a binary classifi- 268

cation task with only one number output, MEtR 269

is not utilized in it. We conduct an experiment 270

on StoryCloze datasets ROCStories(Mostafazadeh 271

et al., 2016) and StoryCommonsense(SC, Rashkin 272

et al., 2018) with baselines and other state-of-the- 273

art methods to compare the capabilities of baselines 274

in handling binary event tasks and lay a ground- 275

work for comparing MEtR with baselines on more 276

complex EORank tasks. 277

EORank tasks require ranking temporal order 278

for events in a story. We select at least two events 279

for ranking and, at most, five, for there are a total 280

of five events in a story. We randomly shuffle these 281
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selected events, which need to be ranked, while282

the rest are considered as background. Specifically,283

there is no background with all five events selected.284

ROCStories comprises a train dataset without285

incorrect options; thus, akin to prior works, we uti-286

lize its test dataset for training and the dev dataset287

for validation. StoryCommonsense is a modified288

version of ROCStories with additional annotations,289

providing a complete and abundant train dataset.290

Further, for more complex scenarios, we also291

conduct EORank tasks by utilizing temporal rela-292

tions of events in the Event Storyline(ESL, Caselli293

and Vossen, 2017) dataset for a comprehensive294

analysis.295

Table 1 shows a summary of the statistics of296

these datasets.297

4.2 Baselines298

We design two baseline methods stand for previous299

pairwise and multi-class classification methods re-300

spectively. We choose the box embedding method301

as a pairwise method because of its superiority302

over previous pairwise methods. We also design303

a multi-class classification method to intuitively304

give orders for all events, demonstrating promising305

results in relation extraction between two events306

and ensuring specific effects in EORank.307

Box Model Inspired by the box model(Box308

Event Relation Extraction, BERE, Hwang et al.,309

2022a), we adapted BERE by employing box em-310

beddings to EORank tasks, a typical pairwise311

method that takes RoBERTa as its encoder. BERE312

projects each event to a box representation which313

calculates the conditional probability P (ei ∩ ej |ej)314

stands for ej → ei of each event pair to construct315

the relations matrix and rank the event order se-316

quence.317

The box embeddings make an event box contain318

anthor box related to it. This design initially intends319

to describe relations among multiple events, and320

BERE extracts pairwise relations by the relative321

position of the two boxes.322

We train the model with the multi-event pairwise323

loss function:324

−
∑

sgn(oi − oj)

[
logP (ci ∩ cj |cj)− logP (ci ∩ cj |ci)

]
,325

where sgn is sign function, ci is intersection of326

background b with event ei. More information327

about the BERE method is in Appendix C.328

Multi-class Classification Method Inspired by 329

Li et al., 2021, we also designed a Multi-class 330

Classification Method(MCM) by assembling a 331

Pair Input input layer into it and replacing BERT 332

with RoBERTa as its encoder. MCM also utilizes 333

RoBERTa as its encoder, like MEtR, to maintain 334

the consistency of structure. Thus, both models 335

have similar structures with different input and out- 336

put layers. 337

The input structure of MCM is Pair Input(PI), 338

which pairs events with the background respec- 339

tively to integrate them. MCM is initially designed 340

with background information, which can also inte- 341

grate Holistic Input into it, in case the background 342

may separate from events in the text or even not 343

exist. 344

The output of MCM approaches the EORank 345

task intuitively as multi-class classification, calcu- 346

lating the probability Pi = P (yi = t|ei;S) for 347

each event where t represents each order number. 348

While this structure ensures the efficiency of MCM, 349

it may result in the defect of repetitive order in the 350

output caused by separate classification of each 351

event. 352

GPT Prompt Yuan et al., 2023b employ zero- 353

shot prompt(Liu et al., 2023) on ChatGPT for EO- 354

Rank. Additionally, aiming to compare MEtR with 355

a state-of-the-art LLM, we also employ GPT-3.5 356

by the prompt method in EORank tasks. 357

However, the effectiveness of prompt methods 358

can vary based on the specific template design. 359

While we select our prompt template after com- 360

paring results from various designs, it is crucial 361

to acknowledge that the effectiveness of prompts 362

can fluctuate with template variations. Further de- 363

tails regarding the prompt design can be found in 364

Appendix B. 365

Model accuracy F1

TransBERT(Li et al., 2021) 91.8% -

GPT-3(Brown et al., 2020)
83.2% (zero-shot)
87.7% (few-shot)

-

GraphBERT(Du et al., 2022) 89.8% -

BLOOMZ(Muennighoff et al., 2023) 96.26% -

BERE 59.85% 0.545

MCM 97.93% 0.661

Table 2: Model performance on original StoryCloze
dataset ROCStories. MEtR is a multi-event model and
not in this task, while StoryCloze is a binary classifica-
tion task.

5



(a) ROCStories

accuracy F1

(%)
number of selected events number of selected events

(b). StoryCommonsence (SC)

(%)

accuracy F1

Figure 4: EORank task on StoryCloze datasets. MCM is not utilized in this task because there is no background
information when all five events are selected.

4.3 Results and Analysis366

We report the average accuracy(micro-F1) to fol-367

low evaluation settings in previous works and addi-368

tionally report macro-F1 score to characterize the369

quality of event order ranking. More details about370

training settings can be found in Appendix A.371

Original StoryCloze We evaluate the capabili-372

ties of baseline methods in handling binary event373

tasks on StoryCloze. Results presented in Table 2374

showcase the performance of baselines and various375

other models. Since baseline MCM outperforms376

other methods in this task, migrating it to the newly377

proposed EORank task is promising.378

TransBERT(Li et al., 2021) is structured sim-379

ilarly to MCM and utilizes BERT as the PLM.380

GraphBERT(Du et al., 2022), a method merging381

PLM and knowledge graphs, employs additional382

graph information to enhance PLM performance.383

BLOOMZ(Muennighoff et al., 2023) and GPT-384

3(Brown et al., 2020) are LLMs that have similar385

parameter sizes to each other. BLOOMZ undergoes386

multi-task prompted finetuning, while GPT-3 uti-387

lizes In-Context Learning(Brown et al., 2020;Dong388

et al., 2023).389

Results on StoryCloze highlight the outstand-390

ing performance of MCM as a typical multi-class391

classification method, achieving a remarkable ac-392

curacy of 97.93% on ROCStories, which surpasses393

previous methods, including LLMs. Compared394

with TransBERT and GraphBERT, MCM utilizes395

superior RoBERTa as the encoder. Compared with396

LLMs BLOOMZ and GPT-3, MCM focuses on397

only one dataset with fewer parameters that can be398

fully finetuned. BERE is designed to handle multi-399

event tasks using the pairwise method, which may400

be less effective on binary StoryCloze but guaran-401

tees effective results on EORank tasks.402

These results on binary event tasks lay the403

groundwork for comparing MEtR with baselines 404

on more complex multi-event EORank tasks. 405

EORank: StoryCloze These tasks are based on 406

StoryCloze datasets, with the number of events 407

varying from 2 to 5, introducing increasingly com- 408

plex scenarios among multiple events. The results 409

of these tasks are in Figure 4. 410

Experiment results suggest that both baselines 411

MCM and BERE have reliable capabilities in re- 412

solving EORank tasks, particularly in simpler sce- 413

narios with 2 and 3 events. Both MEtRSOL and 414

MEtROCE are weak with fewer events, especially 415

with two events(31.3% accuracy gap at most, 2&3 416

events, Figure 4.a), for binary events task is close 417

to classification task which baselines are excelling 418

in, validated in original StoryCloze. 419

Meanwhile, MEtROCE shows its superiority of 420

handling fewer events with abundant training data 421

on dataset ROCStories than SC, obtaining a 24.65% 422

accuracy improvement to BERE(3 events, Fig- 423

ure 4.b). In more intricate scenarios, MEtRSOL 424

shows a stable superiority with more events, ob- 425

tains a 38.1% accuracy improvement at most with 426

6.2% F1 improvement compared to BERE(4 events, 427

Figure 4.b). 428

The difference between SOL and OCE in effec- 429

tiveness comes from their different emphases. SOL 430

focuses on the holistic order sequence, excelling 431

with more events, while OCE emphasizes the abso- 432

lute position of each event. 433

The prompt method employing gpt-3.5-turbo in 434

the most intricate scenario with five events also 435

suggests the remarkable effectiveness of zero-shot 436

methods on LLMs in resolving EORank tasks, 437

which falls behind MEtRSOL 0.9% at accuracy(5 438

events, Figure 4.a). 439

Among these EORank: StoryCloze tasks, MEtR 440

shows superior results with abundant data, espe- 441
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cially MEtRSOL is superior to MEtROCE and base-442

lines in more intricate scenarios.443

Figure 5: Model performance on Event Storyline(ESL).
We employ Holistic Input for MCM because events are
combined with background information.

EORank: ESL We also conduct EORank exper-444

iments on ESL for more intricate situations. For445

lack of data with more events in sequential tem-446

poral relations(Appendix A) and to maintain con-447

sistency with experiments of the original BERE448

method, we select three events in each ESL docu-449

ment for EORank.450

Results in Figure 5 showcase that both MEtRSOL451

and MEtROCE have promising capability in han-452

dling intricate conditions with annotation format453

utilizing trigger words. It is noticeable that BERE,454

as a pairwise method, yields a 62.55% accuracy,455

which maintains the same level as its original ex-456

perimental(Hwang et al., 2022b), being inferior457

compared with MEtR and MCM.458

In contrast, MEtRSOL significantly pushes the459

accuracy to 85.16%(22.61% accuracy and 1.1% F1460

improvement to BERE), which excels in trigger461

words annotated dataset comparing to results of462

EORank: StoryCloze. This improved effectiveness463

of models is caused by the better integration of464

events and text rather than separated sentences.465

Summation of Loss Functions To further ana-466

lyze the impact of loss functions, we conduct exper-467

iments with the summation of both loss functions468

L = LSOL + LOCE. MEtRSOL, OCE refers to the469

model trained with two loss function combined,470

and the results are in Table 3.471

According to the volumes of different Sto-472

ryCloze datasets, it is notable that dataset SC con-473

tains a larger quantity of data compared to ROC-474

Story. Consequently, both loss functions demon-475

strate greater performances with increased data vol- 476

ume on SC. 477

Compared to each other, efficacy of loss func- 478

tions varies with the number of events. In scenarios 479

with fewer events like 3, OCE showcases special- 480

ized expertise as 14.2% F1 improvement to SOL. 481

Conversely, with five events, the 80.15% accuracy 482

with 0.32 F1 shows that MEtRSOL is excelling in 483

EORank with more events. 484

Moreover, the summation of SOL and OCE en- 485

counters poor combinations as effectiveness de- 486

creases among EORank except for the task on Sto- 487

ryCommonsense with two events, which is closer 488

to binary classification like the original StoryCloze. 489

This poor combination stems from the different 490

emphasis of two loss functions. The shortage 491

of SOL with fewer events also highly affects the 492

summation, giving a gap of 14.1% F1 between 493

MEtRSOL,OCE and MEtROCE(3 events). 494

It can be concluded that in EORank tasks, it is 495

appropriate to utilize loss functions and methods 496

separately in the scenarios in which they excel. 497

Time Cost Pairwise methods like BERE hanl- 498

dle multi-event relations by constructing the matrix 499

consists the probability of each event pair and rank- 500

ing the final order sequence from the matrix, while 501

MEtR is designed to rank output without the matrix, 502

which reduces time cost. 503

The total time cost among EORank tasks of 504

MEtR is 20.1% less than BERE(33.43% less on 505

StoryCloze, 7.8% less on ESL). 506

Error Analysis MCM outputs orders by classi- 507

fication of each event separately and may output 508

repetitive orders. BERE takes event pairs as pro- 509

cess units and may even cause loops. 510

On average, in EORank tasks on StoryCommon- 511

sense, MCM outputs repetitive orders in 19.98% of 512

cases, while BERE outputs loops in 0.43%(exam- 513

ples in Appendix D). 514

Meanwhile, MEtR interprets output by treating 515

orders as a sequence naturally, ensuring no repet- 516

itive and loop output by the design of its order 517

sequencer. 518

5 Conclusion 519

We address the challenge of multi-event temporal 520

ordering from a cohesive perspective and circum- 521

vent defects caused by previous pairwise and multi- 522

class classification methods. To reach these targets, 523

we propose the EORank task to rank the temporal 524
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Model
Task on ROCStories

Task on ESL
2 3 4 5

accuracy F1 accuracy F1 accuracy F1 accuracy F1 accuracy F1

MEtRSOL, OCE 51.61% 0.508 32.6% 0.33 61.85% 0.356 59.9% 0.3 84.36% 0.478

MEtRSOL 50.70% 0.503 34.36% 0.338 75.03% 0.375 52.38% 0.289 85.16% 0.479

MEtROCE 52.91% 0.514 35.34% 0.343 24.30% 0.247 42.36% 0.273 77.51% 0.466

Model
Task on StoryCommonsense

2 3 4 5
accuracy F1 accuracy F1 accuracy F1 accuracy F1

MEtRSOL, OCE 92.13% 0.648 32.91% 0.331 75.94% 0.376 60.23% 0.3

MEtRSOL 51.85% 0.509 33.30% 0.330 83.88% 0.385 80.15% 0.320
MEtROCE 51.77% 0.508 80.95% 0.472 26.88% 0.259 44.05% 0.275

Table 3: Comparison of loss functions.

order for events and the MEtR model to handle all525

events simultaneously with less computation by its526

holistic input structure and order sequencer. Exper-527

imental results demonstrate the effectiveness of the528

devised loss functions, SOL and OCE, showcasing529

their specialization in scenarios with various exper-530

imental settings. In contrast to other state-of-the-art531

methods, even LLMs, MEtR outperforms them in532

intricate multi-event EORank tasks, demonstrating533

superior performance.534

Limitations535

A key limitation in our work is not addressing536

simultaneous temporal relations and no-relation537

within MEtR for the reasons below:538

• We maintain consistency with previous539

works for interpreting the holistic narrative540

plot(Toro Isaza et al., 2023b).541

• Datasets ROCStories and SC lack these spe-542

cific types of relation. To maintain consis-543

tency, we exclude these data from the ESL544

dataset.545

• We perceive the extraction of simultaneous546

temporal relations and no-relation between547

two events as subtasks, ideally performed af-548

ter obtaining the temporal order sequence by549

measuring the adjacent events in that order.550

Notably, various established methods, such551

as box embeddings, are proficient in handling552

these relations, suggesting a potential avenue553

for future work.554
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Marie Francine Moens. 2012. Skip n-grams and637
ranking functions for predicting script events. In638
Proceedings of the 13th Conference of the European639
Chapter of the Association for Computational Lin-640
guistics, pages 336–344, Avignon, France. Associa-641
tion for Computational Linguistics.642

Kazuma Kadowaki, Ryu Iida, Kentaro Torisawa, Jong-643
Hoon Oh, and Julien Kloetzer. 2019. Event causal-644
ity recognition exploiting multiple annotators’ judg-645
ments and background knowledge. In Proceedings646
of the 2019 Conference on Empirical Methods in Nat-647
ural Language Processing and the 9th International648
Joint Conference on Natural Language Processing649

(EMNLP-IJCNLP), pages 5816–5822, Hong Kong, 650
China. Association for Computational Linguistics. 651

Canasai Kruengkrai, Kentaro Torisawa, Chikara 652
Hashimoto, Julien Kloetzer, Jong-Hoon Oh, and 653
Masahiro Tanaka. 2017. Improving event causal- 654
ity recognition with multiple background knowledge 655
sources using multi-column convolutional neural net- 656
works. Proceedings of the AAAI Conference on Arti- 657
ficial Intelligence, 31(1). 658

Manling Li, Qi Zeng, Ying Lin, Kyunghyun Cho, Heng 659
Ji, Jonathan May, Nathanael Chambers, and Clare 660
Voss. 2020. Connecting the dots: Event graph 661
schema induction with path language modeling. In 662
Proceedings of the 2020 Conference on Empirical 663
Methods in Natural Language Processing (EMNLP), 664
pages 684–695, Online. Association for Computa- 665
tional Linguistics. 666

Zhongyang Li, Xiao Ding, and Ting Liu. 2018. Con- 667
structing narrative event evolutionary graph for script 668
event prediction. CoRR, abs/1805.05081. 669

Zhongyang Li, Xiao Ding, and Ting Liu. 2021. Trans- 670
bert: A three-stage pre-training technology for story- 671
ending prediction. ACM Trans. Asian Low-Resour. 672
Lang. Inf. Process., 20(1). 673

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, 674
Hiroaki Hayashi, and Graham Neubig. 2023. Pre- 675
train, prompt, and predict: A systematic survey of 676
prompting methods in natural language processing. 677
ACM Comput. Surv., 55(9). 678

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man- 679
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis, 680
Luke Zettlemoyer, and Veselin Stoyanov. 2019. 681
Roberta: A robustly optimized bert pretraining ap- 682
proach. arXiv preprint arXiv:1907.11692. 683

Bill McDowell, Nathanael Chambers, Alexander Oror- 684
bia II, and David Reitter. 2017. Event ordering with 685
a generalized model for sieve prediction ranking. In 686
Proceedings of the Eighth International Joint Con- 687
ference on Natural Language Processing (Volume 1: 688
Long Papers), pages 843–853, Taipei, Taiwan. Asian 689
Federation of Natural Language Processing. 690

Marvin Minsky. 1974. A framework for representing 691
knowledge. 692

Nasrin Mostafazadeh, Nathanael Chambers, Xiaodong 693
He, Devi Parikh, Dhruv Batra, Lucy Vanderwende, 694
Pushmeet Kohli, and James Allen. 2016. A corpus 695
and cloze evaluation for deeper understanding of 696
commonsense stories. In Proceedings of the 2016 697
Conference of the North American Chapter of the 698
Association for Computational Linguistics: Human 699
Language Technologies, pages 839–849, San Diego, 700
California. Association for Computational Linguis- 701
tics. 702

Niklas Muennighoff, Thomas Wang, Lintang Sutawika, 703
Adam Roberts, Stella Biderman, Teven Le Scao, 704

9

https://doi.org/10.18653/v1/2023.findings-acl.116
https://doi.org/10.18653/v1/2023.findings-acl.116
https://doi.org/10.18653/v1/2023.findings-acl.116
http://arxiv.org/abs/2301.00234
https://doi.org/10.18653/v1/2022.findings-acl.206
https://doi.org/10.18653/v1/2022.findings-acl.206
https://doi.org/10.18653/v1/2022.findings-acl.206
https://doi.org/10.1609/aaai.v30i1.10344
https://doi.org/10.1609/aaai.v30i1.10344
https://doi.org/10.1609/aaai.v30i1.10344
https://doi.org/10.1609/aaai.v30i1.10344
https://doi.org/10.1609/aaai.v30i1.10344
https://doi.org/10.3115/v1/P14-1093
https://doi.org/10.3115/v1/P14-1093
https://doi.org/10.3115/v1/P14-1093
https://doi.org/10.3115/v1/P14-1093
https://doi.org/10.3115/v1/P14-1093
https://doi.org/10.18653/v1/2022.acl-short.26
https://doi.org/10.18653/v1/2022.acl-short.26
https://doi.org/10.18653/v1/2022.acl-short.26
https://doi.org/10.18653/v1/2022.acl-short.26
https://doi.org/10.18653/v1/2022.acl-short.26
https://doi.org/10.18653/v1/2022.acl-short.26
https://aclanthology.org/E12-1034
https://aclanthology.org/E12-1034
https://aclanthology.org/E12-1034
https://doi.org/10.18653/v1/D19-1590
https://doi.org/10.18653/v1/D19-1590
https://doi.org/10.18653/v1/D19-1590
https://doi.org/10.18653/v1/D19-1590
https://doi.org/10.18653/v1/D19-1590
https://doi.org/10.1609/aaai.v31i1.11005
https://doi.org/10.1609/aaai.v31i1.11005
https://doi.org/10.1609/aaai.v31i1.11005
https://doi.org/10.1609/aaai.v31i1.11005
https://doi.org/10.1609/aaai.v31i1.11005
https://doi.org/10.1609/aaai.v31i1.11005
https://doi.org/10.1609/aaai.v31i1.11005
https://doi.org/10.18653/v1/2020.emnlp-main.50
https://doi.org/10.18653/v1/2020.emnlp-main.50
https://doi.org/10.18653/v1/2020.emnlp-main.50
http://arxiv.org/abs/1805.05081
http://arxiv.org/abs/1805.05081
http://arxiv.org/abs/1805.05081
http://arxiv.org/abs/1805.05081
http://arxiv.org/abs/1805.05081
https://doi.org/10.1145/3427669
https://doi.org/10.1145/3427669
https://doi.org/10.1145/3427669
https://doi.org/10.1145/3427669
https://doi.org/10.1145/3427669
https://doi.org/10.1145/3560815
https://doi.org/10.1145/3560815
https://doi.org/10.1145/3560815
https://doi.org/10.1145/3560815
https://doi.org/10.1145/3560815
https://aclanthology.org/I17-1085
https://aclanthology.org/I17-1085
https://aclanthology.org/I17-1085
https://doi.org/10.18653/v1/N16-1098
https://doi.org/10.18653/v1/N16-1098
https://doi.org/10.18653/v1/N16-1098
https://doi.org/10.18653/v1/N16-1098
https://doi.org/10.18653/v1/N16-1098


M Saiful Bari, Sheng Shen, Zheng Xin Yong, Hai-705
ley Schoelkopf, Xiangru Tang, Dragomir Radev,706
Alham Fikri Aji, Khalid Almubarak, Samuel Al-707
banie, Zaid Alyafeai, Albert Webson, Edward Raff,708
and Colin Raffel. 2023. Crosslingual generaliza-709
tion through multitask finetuning. In Proceedings710
of the 61st Annual Meeting of the Association for711
Computational Linguistics (Volume 1: Long Papers),712
pages 15991–16111, Toronto, Canada. Association713
for Computational Linguistics.714

Aakanksha Naik, Luke Breitfeller, and Carolyn Rose.715
2019. TDDiscourse: A dataset for discourse-level716
temporal ordering of events. In Proceedings of the717
20th Annual SIGdial Meeting on Discourse and Dia-718
logue, pages 239–249, Stockholm, Sweden. Associa-719
tion for Computational Linguistics.720

Qiang Ning, Sanjay Subramanian, and Dan Roth. 2019.721
An improved neural baseline for temporal relation722
extraction. In Proceedings of the 2019 Conference on723
Empirical Methods in Natural Language Processing724
and the 9th International Joint Conference on Natu-725
ral Language Processing (EMNLP-IJCNLP), pages726
6203–6209, Hong Kong, China. Association for Com-727
putational Linguistics.728

Karl Pichotta and Raymond Mooney. 2016a. Statistical729
script learning with recurrent neural networks. In730
Proceedings of the Workshop on Uphill Battles in731
Language Processing: Scaling Early Achievements732
to Robust Methods, pages 11–16, Austin, TX. Asso-733
ciation for Computational Linguistics.734

Karl Pichotta and Raymond J. Mooney. 2016b. Us-735
ing sentence-level LSTM language models for script736
inference. In Proceedings of the 54th Annual Meet-737
ing of the Association for Computational Linguistics738
(Volume 1: Long Papers), pages 279–289, Berlin,739
Germany. Association for Computational Linguis-740
tics.741

Hannah Rashkin, Antoine Bosselut, Maarten Sap, Kevin742
Knight, and Yejin Choi. 2018. Modeling naive psy-743
chology of characters in simple commonsense stories.744
In Proceedings of the 56th Annual Meeting of the As-745
sociation for Computational Linguistics (Volume 1:746
Long Papers), pages 2289–2299, Melbourne, Aus-747
tralia. Association for Computational Linguistics.748

Roger C Schank and Robert P Abelson. 1975. Scripts,749
plans, and knowledge. In IJCAI, volume 75, pages750
151–157.751

Yawei Sun, Gong Cheng, and Yuzhong Qu. 2018. Read-752
ing comprehension with graph-based temporal-casual753
reasoning. In Proceedings of the 27th International754
Conference on Computational Linguistics, pages 806–755
817, Santa Fe, New Mexico, USA. Association for756
Computational Linguistics.757

Paulina Toro Isaza, Guangxuan Xu, Toye Oloko, Yufang758
Hou, Nanyun Peng, and Dakuo Wang. 2023a. Are759
fairy tales fair? analyzing gender bias in temporal760
narrative event chains of children’s fairy tales. In761

Proceedings of the 61st Annual Meeting of the As- 762
sociation for Computational Linguistics (Volume 1: 763
Long Papers), pages 6509–6531, Toronto, Canada. 764
Association for Computational Linguistics. 765

Paulina Toro Isaza, Guangxuan Xu, Toye Oloko, Yu- 766
fang Hou, Nanyun Peng, and Dakuo Wang. 2023b. 767
Are fairy tales fair? analyzing gender bias in tempo- 768
ral narrative event chains of children’s fairy tales. In 769
Proceedings of the 61st Annual Meeting of the Associ- 770
ation for Computational Linguistics (Volume 1: Long 771
Papers), page 6520, Toronto, Canada. Association 772
for Computational Linguistics. 773

Minh Tran Phu and Thien Huu Nguyen. 2021. Graph 774
convolutional networks for event causality identifi- 775
cation with rich document-level structures. In Pro- 776
ceedings of the 2021 Conference of the North Amer- 777
ican Chapter of the Association for Computational 778
Linguistics: Human Language Technologies, pages 779
3480–3490, Online. Association for Computational 780
Linguistics. 781

Wei Xiang and Bang Wang. 2019. A survey of event ex- 782
traction from text. IEEE Access, 7:173111–173137. 783

Changsen Yuan, Heyan Huang, Yixin Cao, and Yong- 784
gang Wen. 2023a. Discriminative reasoning with 785
sparse event representation for document-level event- 786
event relation extraction. In Proceedings of the 61st 787
Annual Meeting of the Association for Computational 788
Linguistics (Volume 1: Long Papers), pages 16222– 789
16234, Toronto, Canada. Association for Computa- 790
tional Linguistics. 791

Chenhan Yuan, Qianqian Xie, and Sophia Ananiadou. 792
2023b. Zero-shot temporal relation extraction with 793
ChatGPT. In The 22nd Workshop on Biomedical 794
Natural Language Processing and BioNLP Shared 795
Tasks, pages 92–102, Toronto, Canada. Association 796
for Computational Linguistics. 797

Shuaicheng Zhang, Qiang Ning, and Lifu Huang. 798
2022. Extracting temporal event relation with syntax- 799
guided graph transformer. In Findings of the Associ- 800
ation for Computational Linguistics: NAACL 2022, 801
pages 379–390, Seattle, United States. Association 802
for Computational Linguistics. 803

Xiyang Zhang, Muhao Chen, and Jonathan May. 2021. 804
Salience-aware event chain modeling for narrative 805
understanding. In Proceedings of the 2021 Confer- 806
ence on Empirical Methods in Natural Language Pro- 807
cessing, pages 1418–1428, Online and Punta Cana, 808
Dominican Republic. Association for Computational 809
Linguistics. 810

A MEtR Training 811

Hyperparameters We employ AdamW as the 812

optimizer and utilized a cosine scheduler with hard 813

restarts for each cycle during the training of MEtR. 814

Notably, we observe that the performance of mod- 815

els exhibits instability with higher learning rates, 816

particularly with an increased number of events. 817
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Given this instability, we deliberately select818

lower learning rates to ensure more stable train-819

ing results. The recommended learning rates for820

MEtR in EORank:ESL is 5×10−6, 5e−6, and the821

settings in EORank:StoryCloze shown in Table 4.822

Details about the code training logs can be found823

in our github page.2824

It is essential to note that reducing the learning825

rate might necessitate increasing in the number of826

training epochs to ensure models are fully trained.827

Technically, the size of MEtR is similar to previous828

PLM models with RoBERTa-large, whose training829

duration on each task typically falls within one day830

on 1*V100 under the provided settings.831

Task Model
Dataset

learning rate
ROCStories SC

2

MEtRSOL 7e-7 6e-6

MEtROCE 6e-6 6e-6

MEtRPI,SOL 5e-6 6e-6

MEtRPI,OCE 5e-6 6e-6

3

MEtRSOL 7e-7 6e-6

MEtROCE 6e-6 7e-7

MEtRPI,SOL 4e-6 5e-6

MEtRPI,OCE 6e-6 5e-6

4

MEtRSOL 4e-6 6e-6

MEtROCE 4e-6 6e-6

MEtRPI,SOL 5e-6 5e-6

MEtRPI,OCE 6e-6 5e-6

5
MEtRSOL 5e-6 8e-7

MEtROCE 5e-6 7e-7

Table 4: Learning Rates utilized in EORank:StoryCloze.

Numbers of events in ESL In ESL, the data832

volume with 4 and 5 events is 934 and 479(total833

of train, test, and val) which significantly less than834

other task settings(Table 5). Thus, we utilize ESL835

only with 3 events in experiments.836

B Prompt Design837

We choose a prompt template for gpt-3.5-turbo,838

designed as a step-by-step procedure. More details839

of the code and prompt in github page.2840

2Will be released after the review process.

Dataset Volume

ROCStories 3742

StoryCommonsense 14738
ESL

(3 events)
1744

ESL
(4 events)

934

ESL
(5 events)

479

Table 5: Total volume of datasets.

C Box Model 841

We train a box model with a pairwise loss function 842

following the principles and techniques detailed in 843

the BERE method. 844

For comprehensive details regarding the code 845

we utilize, including implementation specifics 846

and references, more information can be found 847

on our GitHub page and the official page of 848

box embeddings (https://www.iesl.cs.umass. 849

edu/box-embeddings/main/index.html) for a 850

deeper understanding of the methodology. 851

D Case Study 852

We display the input text and output of some case 853

examples from baselines in Table 6 for a better 854

understanding of EORank tasks. 855
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logits
predict

relation matrices
pairwise 
relations

<s>Laura loved corn. So she decided to 
grow some in her backyard.</s>

<s>But she realized that they required 
too much water.</s>

<s>The whole process of growing them 
made her very excited. </s>

<s>So Laura quickly abandoned her 
corn garden idea.</s>

<s>So she decided to grow some in her 
backyard.</s>

<s>Anna showed up to babysit the 
kids. She brought books and crafts.</s>

<s>The kids threw things and tied her 
to a chair.</s>

<s>She thought they would all have a 
fun time. </s>

<s>She never babysat those kids 
again!</s>

<s>Ben's Boy Scout Troop worked for 
weeks on a float. </s>

<s>It was big enough for his whole troop 
to ride on.</s>

<s>They got it finished just in time. </s>

<s>They felt proud as they went down 
the street as people clapped.</s>

<s>It was going to be in the town's July 
4th parade.</s>

MCM

BERE

input

Input(StoryCloze style) Output Description

background:
Ben’s Boy Scout Troop worked for
weeks on a float.

events:
e1: It was going to be in the town’s
July 4th parade.

e2: They got it just in time.

e3: It was big enough for his
whole troop to ride on.

e4: They felt proud as they went
down the street as people clapped.

0 → 1 → 2 → 3

e1: It was going to be...
⇓

e2: They got it finished...
⇓

e3: It was big enough...
⇓

e4: They felt proud as...

Correct order

MCM 0 11 2
Repetitive orders
cause branches.

BERE

pairwise 
relations

loop

relation matrices output order

Error pairwise
relations cause loop.

Input(ESL style) Output Description

A jury has handed down a guilty verdict for one of the two men 

accused of  murdering accused of murdering a Brownsville 

mother of 12. Andrew Lopez was found guilty of second-degree 

murder and two counts of first-degree assault in the death of 

Zurana Horton. Jury deliberations are still underway for the 

second suspect, Jonathan Carrasquillo. Horton was shot and 

killed in October 2011 when gunfire erupted outside...

0 → 1 → 2
A jury has handed down a guilty verdict for one of the two men 

accused of  murdering accused of murdering a Brownsville 

mother of 12. Andrew Lopez was found guilty of second-degree 

murder and two counts of first-degree assault in the death of 

Zurana Horton. Jury deliberations are still underway for the 

second suspect, Jonathan Carrasquillo. Horton was shot and 

killed in October 2011 when gunfire erupted outside...

Correct order.

MCM 0 1 0
Repetitive orders
cause opposite branches.

BERE

pairwise 
relations

relation matrices
output order

Correct output.

Table 6: Case examples.
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