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ABSTRACT

Activation steering has emerged as a cost-effective paradigm for modifying large
language model (LLM) behaviors. Existing methods typically intervene at the
block level, steering the bundled activations of selected attention heads, feedfor-
ward networks, or residual streams. However, we reveal that block-level activa-
tions are inherently heterogeneous, entangling beneficial, irrelevant, and harmful
features, thereby rendering block-level steering coarse, inefficient, and intrusive.
To investigate the root cause, we decompose block activations into fine-grained
atomic unit (AU)–level activations, where each AU-level activation corresponds
to a single dimension of the block activation, and each AU denotes a slice of the
block weight matrix. Steering an AU-level activation is thus equivalent to steering
its associated AU. Our theoretical and empirical analysis show that heterogeneity
arises because different AUs or dimensions control distinct token distributions in
LLM outputs. Hence, block-level steering inevitably moves helpful and harm-
ful token directions together, which reduces efficiency. Restricting intervention to
beneficial AUs yields more precise and effective steering. Building on this insight,
we propose AUSteer, a simple and efficient method that operates at a finer gran-
ularity of the AU level. AUSteer first identifies discriminative AUs globally by
computing activation momenta on contrastive samples. It then assigns adaptive
steering strengths tailored to diverse inputs and selected AU activations. Com-
prehensive experiments on multiple LLMs and tasks show that AUSteer consis-
tently surpasses advanced baselines while steering considerably fewer activations,
demonstrating that steering less achieves more.

1 INTRODUCTION

In the era of large language models (LLMs), activation steering has emerged as a powerful paradigm
for modulating model behavior on downstream tasks (Zou et al., 2023; Li et al., 2023b; Rimsky et al.,
2024). Unlike reinforcement learning from human feedback (Bai et al., 2022), supervised fine-
tuning (Wei et al., 2022), or prompt engineering (Brown et al., 2020), activation steering intervenes
directly in the LLM intermediate activations during forward propagation, enabling fine-grained con-
trol without additional training. Prior work (Turner et al., 2023; Rimsky et al., 2024; Han et al.,
2024; Wang et al., 2025a;b;c) generally builds task-specific steering vectors and injects them at in-
ference time as biases or rescaling factors in selected LLM components, thereby steering the model
toward the target objective.

However, a common practice in existing methods is block-level steering, where a “block” denotes
the multi-head attention (MHA), the feed-forward network (FFN), or the layer’s residual stream. As
shown in Figure 1 (a), the intervention is vector-level: every dimension of the selected block’s acti-
vation is bundled and steered simultaneously. One of the main limitations of block-level intervention
is that it ignores heterogeneity within block activations. These activations often span hundreds or
thousands of dimensions, each indicating a different feature. Some features are beneficial for the
task, while others are irrelevant or harmful. As a result, block level steering is (1) too coarse: a
block can be decomposed into finer functional units, and treating it as a single entity prevents pre-
cise targeting; (2) inefficient: steering the entire block amplifies both useful and harmful signals,
which reduces efficiency and risks performance degradation; and (3) overly intrusive: it modifies
many dimensions unnecessarily, increasing the intervention footprint.
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Figure 1: Comparison of block-level steering
(prior work) and AU-level steering (Ours).

In greater depth, we empirically and theoretically
justify the heterogeneity of block-level activations.
We first decompose block-level activations into
finer-grained atomic unit (AU) activations, where
each AU-level activation corresponds to a single di-
mension of the block activation, and each AU de-
notes a slice of the block weight matrix. Steering an
AU-level activation is thus equivalent to steering its
associated AU. As shown in Figure 1 (b), each AU-
level intervention targets a single dimension1. Both
the intervention value and the affected activation are
scalars. Empirically, we find that AU-level steer-
ing effects vary widely: some dimensions improve
performance, some degrade it, and others are neu-
tral, confirming heterogeneity. In many cases, steer-
ing a single dimension or a small subset outperforms
steering the entire block.

Our theoretical analysis reveals that the heterogene-
ity stems from different AUs modulating distinct
output-token distributions. Steering a single di-
mension therefore shifts the model’s output distri-
bution toward the distribution controlled by that AU.
Some AUs favor task-irrelevant or harmful tokens; steering their dimensions degrades performance.
This also explains why block-level steering, which mixes helpful and harmful AUs together, can un-
derperform more targeted and precise AU-level steering. Targeting only beneficial AUs can reduce
the intervention footprint and improve efficiency, that is, steering less achieves more.

Beyond the promise of AU-level steering, these findings also pose challenges: (1) how can we
localize the most important AUs for intervention? and (2) how can we ensure adaptive steering
across diverse inputs and AUs?

To address these challenges, we introduce AUSteer, a simple and efficient method with two com-
ponents. First, we propose activation momentum, a new metric that analyzes each activation’s
momentum in positive and negative samples to evaluate its discriminative power. This counting-
based metric supports global comparison and avoids the issue of increasing activation magnitudes
across layer. We then localize the most discriminative AUs or activations for steering. Second,
to ensure adaptivity across inputs and AUs, we assign a per sample steering scalar that follows
the original activation pattern rather than a constant shift. This makes the update scale with the
current activation, and preserves direction. We also assign dynamic steering strength to each AU
according to its discriminative power, with important AUs receiving higher strength. We compare
AUSteer with state-of-the-art (SOTA) methods that intervene at the block level by steering hundreds
to thousands of activations. Using far fewer steered activations (at most 100), AUSteer significantly
outperforms these methods across diverse tasks, demonstrating that steering less achieves more.

The contributions of this work are summarized as follows:

• Conceptually, we study the heterogeneity within block-level activations and its root causes, both
theoretically and empirically, and propose decomposing block-level intervention into fine-grained
AU-level intervention (§3).

• Methodologically, we propose AUSteer, a framework that localizes discriminative AUs with acti-
vation momenta for steering, and ensures adaptivity across diverse inputs and AUs (§4).

• Empirically, we evaluate AUSteer on multiple LLMs of varying sizes across diverse tasks, includ-
ing commonsense reasoning, mathematical problem solving, and open-ended generation. With
less intrusive intervention, AUSteer significantly outperforms other SOTA activation steering
methods, underscoring that steering less achieves more (§5).

1For clarity: a block-level activation is a vector associated with a block (MHA, FFN, or a layer’s residual
stream), usually comprising hundreds to thousands of dimensions, whereas an AU-level activation is a scalar
corresponding to a single dimension within that block activation.
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2 RELATED WORK

Activation steering (also known as activation editing) has become a popular and cost-effective ap-
proach for modifying LLM behaviors and aligning them with downstream tasks (Turner et al., 2023;
Rimsky et al., 2024; Han et al., 2024; Wang et al., 2025c; Soo et al., 2025; Stickland et al., 2024;
Li et al., 2023c; Wang et al., 2025a;b; Stolfo et al., 2025). The standard workflow involves ex-
tracting steering vectors from prompts or contrastive samples and injecting them into LLMs at in-
ference time. Most of these methods intervene at the block level. For instance, at MHA blocks,
ITI (Li et al., 2023b) derives steering vectors from contrastive activations in attention blocks and
then applies interventions using the extracted vectors to important heads. Bhattacharjee et al. (2024)
compute category-specific activations from attention heads to reduce unsafe responses. In residual
streams, CAA (Rimsky et al., 2024) extracts vectors from positive and negative samples and applies
them to residual streams, while van der Weij et al. (2024) extend this approach to multi-vector steer-
ing across residual streams. EAST (Rahn et al., 2024) obtains steering vectors by weighting input
prompts with entropy and injects them into the layer outputs. Postmus & Abreu (2024) use multiple
steering vectors as a conceptor to redirect behaviors via residual stream activations. Safety methods
such as SafeSwitch (Han et al., 2025) and Safety Arithmetic (Hazra et al., 2024) intervene in residual
streams to suppress harmful outputs. Konen et al. (2024) extract steering vectors from layer outputs
to control emotion and writing style, while AnyEdit (Jiang et al., 2025) updates hidden states and
knowledge by steering layer outputs. More recently, Stolfo et al. (2025) steer residual streams to
enhance instruction following. Some methods can operate across multiple blocks. For example,
SADI (Wang et al., 2025b) computes steering vectors from MHA, FFN, or residual streams, then
applies mask-adaptive steering.

Notably, STA (Wang et al., 2025a) identifies atoms in pretrained sparse autoencoders (SAEs)
(Lieberum et al., 2024; He et al., 2024; Gao et al., 2025) of target LLMs and steers residual streams
using these localized units. Although STA uses the term atom, its meaning differs from ours: in
STA, an atom is a knowledge unit in an SAE, whereas in our work an atom is a unit in the original
LLM weight matrices. Methodologically, STA depends on pretrained SAEs that currently exist for
only a few model families such as LLaMA3.1 (Touvron et al., 2023) and Gemma2 (Team et al.,
2024), which limits generalization. Moreover, STA’s intervention remains at the block level as the
computed vectors are injected into the residual stream.

In summary, prior work overwhelmingly focuses on block-level interventions, overlooking the het-
erogeneity of individual dimensions within block activations. This makes existing approaches in-
herently coarse and often blunt, limiting their precision and efficiency.

3 HETEROGENEOUS BLOCK ACTIVATIONS: STEERING LESS ACHIEVES
MORE

3.1 BLOCK DECOMPOSITION

We first show how computations within LLM blocks can be decomposed into fine-grained AU cal-
culations. The backbone architecture of LLMs is the Transformer, which consists of attention blocks
and FFN blocks in every layer. The outputs of these blocks are added to the layer residual stream for
forward propagation. In both MHA and FFN, weight matrix computations (Q,K, V,O in MHA and
the up projection and down projection in FFN) are linear projections of the form y = Wx, where x
is the input activation, W is the weight matrix, and y is the output activation.

In existing studies, block activations (x and y) are typically treated as indivisible vectors. Steering
vectors are calculated and applied at this coarse block level. To decompose blocks into finer-grained
units, we reformulate the linear projection as

y = Wx =
∑
i

xi W:,i. (1)

Here, xi denotes the i-th dimension of the input activation x. This formulation allows us to isolate
each single-dimensional activation. In this view, every scalar xi serves as the coefficient for the
corresponding column W:,i of the weight matrix. We refer to each column W:,i as an Atomic Unit

3
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(AU) in our study.2 In this way, steering the i-th dimension activation xi is equivalent to steering the
corresponding i-th AU. To clarify:

• x,y: block-level activations, represented as vectors (the standard formulation in prior work).

• W:,i: the i-th column of the weight matrix W, representing the i-th AU.

• xi: i-th dimension or i-th AU-level activation, which is a scalar and the coefficient for the i-th AU.

3.2 HETEROGENEITY IN BLOCK ACTIVATIONS

In this section, we examine the heterogeneous effects of AU-level activations within the block acti-
vation. To ensure generalizability, we adopt two representative steering methods: the pioneering ITI
(Li et al., 2023b) and SOTA SADI (Wang et al., 2025b), applying them to MHA and FFN blocks.
We use LLaMA2-7B-Chat (Touvron et al., 2023) as the backbone model and BoolQ (Clark et al.,
2019) as the illustrative dataset, where the model answers “yes” or “no” for each question and the
accuracy is reported. The experimental setup follows SADI, as described in Appendix B.

We first use ITI and SADI to identify important attention heads and FFNs for intervention, then
compare six conditions: (1) Baseline, the original model without steering; (2) ITI, block-level
intervention on attention head activations; (3) SADI (Wang et al., 2025b), block-level steering on
attention heads (128 dimensions) and FFNs (4096 dimensions); (4) Dimension Sweep, steering
single dimensions rather than whole blocks, sampling one of every four dimensions in attention
heads and one of every 100 in FFNs; (5) Positive Combination, steering a small subset of beneficial
dimensions; and (6) Mixed Comb., steering a subset of beneficial and detrimental dimensions .
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(a) Steering results for the 7th attention output in
layer 27. Positive Combination: steering four ben-
eficial dimensions (28, 40, 84, 92). Mixed Com-
bination: steering those four plus two detrimental
dimensions (108, 116).
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(b) Steering results for the FFN output in layer 20.
Positive Combination: steering four beneficial di-
mensions (0, 1300, 2300, 3000). Mixed Combi-
nation: steering those four plus two detrimental di-
mensions (1200, 1700).

Figure 2: Heterogeneous steering results for MHA and FFNs.

Figure 2a shows the results of interventions on the 7th attention head at the 27th layer. The orig-
inal model achieves 70.52% accuracy, ITI reaches 71.56%, and SADI achieves 73.70%. Steering
individual AU activations, however, produces highly heterogeneous outcomes: some dimensions
degrade performance, while others improve it. Notably, steering a single dimension can outperform
full block steering. For example, steering the 84th dimension alone achieves 74.53%, surpassing the
baseline, ITI, and SADI. Furthermore, steering only four positively contributing dimensions (Pos.
Comb.) yields even stronger results. While introducing detrimental dimensions (Mexed Comb.),
the perform drops. Similar observations hold for FFN blocks in Figure 2b. Additional empirical
results for other attention heads and FFNs are provided in Appendix A. These findings indicate that
block-level steering is inefficient, as it mixes beneficial and detrimental components. In contrast,
fine-grained AU-level steering enables selective amplification of useful features, achieving more
effective control. In short, steering less achieves more.

2Each column of W corresponds to an AU, while each row corresponds to what is traditionally termed a
“neuron.” To ensure rigor and avoid confusion, we adopt the term AU rather than neuron.
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3.3 INTERPRETING THE HETEROGENEITY

To explain the observed heterogeneity, as discussed above, we treat the block activation as coeffi-
cients on an AU basis, so steering a single dimensional activation xi is equivalent to steering its
AU. Building on prior theory of interpreting LLMs in the embedding space (Geva et al., 2022; Dar
et al., 2023), different AUs may control different token distributions in LLM outputs. Steering task-
relevant AUs promotes the probability of task-specific tokens, whereas steering task-irrelevant AUs
may increase the probability of uninformative or even harmful tokens. This provides a theoretical
justification for the observed heterogeneity.
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Figure 3: Pairwise KL divergence when
steering different AUs. s means strength.

To further validate this, we first examine the con-
vergence behavior of AU steering: different AUs
govern different output token distributions, and as
steering strength increases, the LLM’s output tends
to converge to the AU’s token distribution. For the
selected 7th attention head at the 27th layer, we scale
the AU coefficient from 10 to an extremely large
value (100,000) and compute the normalized KL di-
vergence between the output at each strength and the
output at 100,000. In Figure 3, columns 1 and 2
show these divergences for the 44th AU and the 84th
AU. The divergence decreases with strength, indicat-
ing convergence. Column 3 shows the pairwise KL divergence between the 44th AU and the 84th
AU across strengths. The divergence increases with strength, indicating that the two AUs tend to
drive the model toward different output distributions.

Probability (high  low)

AU44

AU84

AU100

'_no' 'NO' '_called' '_No' 'no'

'_yes' '_Yes' 'Yes' 'yes' '_YES'

'_your' '_they' 'your' '_Your' '_all'

Decoded top-k tokens

Figure 4: Top-k deceode tokens con-
trolled by different AUs. The answer to
input prompt is “yes”.

Figure 4 illustrates this phenomenon by reporting the
top-5 output tokens after steering three different AUs
with single-dimensional activations. The input prompt
is a question from BoolQ dataset with the answer “yes”.
Steering x84 promotes the correct answer token “yes”
while suppressing the incorrect “no”, thereby improving
accuracy. In contrast, steering dimensions x44 or x100 el-
evates task-irrelevant or incorrect tokens, resulting in de-
graded performance. These observations align with the
accuracies shown in Figure 2a.

In summary, heterogeneity arises because each AU gov-
erns a distinct output-token distribution. Block-level activations inevitably mix beneficial, irrelevant,
and harmful AUs, making block-level interventions coarse, inefficient, and intrusive. By contrast,
selectively steering only the helpful AUs amplifies the desired distribution and enables more efficient
control.

4 METHODOLOGY: AUSTEER

Breaking block-level interventions into finer-grained AU-level interventions has shown promise for
modifying LLM behaviors. Yet AU-level steering faces some fundamental challenges: identifying
important AU-level activations for intervention and ensuring adaptability across diverse inputs and
AUs. To address these challenges, we propose AUSteer shown as Figure 5.

4.1 ATOMIC UNIT LOCALIZATION

The first challenge is to identify which AUs and their activations should be steered. Prior work often
uses probing (Li et al., 2023b) or activation values (Wang et al., 2025b) of contrastive pairs as impor-
tance metrics. Here, a contrastive pair consists of a positive example with a correct or high-quality
response and a matched negative example with an incorrect or low-quality response. However, prob-
ing requires additional training resources and does not transfer well to single-dimension settings of
AUs, while activation magnitudes tend to increase with layer depth, making cross-layer comparisons
unreliable. To overcome these limitations, we propose an activation momentum strategy.

5
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Figure 5: Overview of AUSteer: (1) AU localization using activation momentum and discriminative
scores; and (2) Adaptive steering across diverse inputs and AUs.

Given N pairs of contrastive samples3, an AU is discriminative if its activation coefficient xi con-
sistently separates positives from their matched negatives. Concretely, if xi is systematically higher
(or lower) for the positive sample of each pair than for the negative sample, the AU promotes (or
suppresses) activation for positives relative to negatives. Such consistency indicates that the AU
distinguishes positive from negative cases and is therefore task-relevant.

Formally, let ui denote the i-th AU with the activation xi. For the j-th sample pair, we define the
activation momentum as

mj
i = xj,pos

i − xj,neg
i ,

where xj,pos
i and xj,neg

i are the activation values of ui on the j-th positive and negative sample,
respectively. Note that both xj,pos

i and xj,neg
i are one-dimensional scalars as defined in Eq.1. When

mj
i > 0, the AU exhibits an activation promotion effect for positive samples, whereas mj

i < 0
indicates a suppression effect. By counting the occurrences of promotion and suppression across
samples, we can assess whether an AU shows a consistent effect on positive or negative cases,
thereby quantifying its discriminative power. The proportions of positive and negative momenta are
then given by

rpos
i =

1

N

N∑
j=1

1(mj
i > 0), rneg

i =
1

N

N∑
j=1

1(mj
i < 0). (2)

The discriminative score of the i-th AU is defined as:

si = max(rpos
i , rneg

i ).

This scoring provides a unified scale for cross-layer comparison, allowing us to rank AUs globally
and select the most important k AUs for steering. To verify how activation momentum contributes
to discriminative causality and the final model outputs, we provide both theoretical and empirical
analyses in Appendix H.

4.2 ADAPTIVE STEERING

The steering of an activation xi should be adaptive in two respects. First, it should adapt to diverse
inputs. Different samples produce activations with different magnitudes and semantic contexts.
Adding a constant vector ignores this variation, can distort useful directions, and may impair model
performance. We therefore obtain the steered activation by x̂i = xi + γixi, which scales the current
activation, preserves its sign, and adapts well across varies samples.

Second, steering should adapt across AUs. More discriminative AUs receive stronger steering, while
less important ones receive weaker intervention. This concentrates changes on useful AUs and limits
unnecessary perturbations. To achieve this, we compute γi as

γi =

{
α rpos

i , rpos
i > rneg

i ,

−α rneg
i , otherwise,

3Details of contrastive sample construction can be found in Appendix B.1
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where α is a global steering strength factor, rpos
i and rneg

i are the positive and negative discriminative
scores of the i-th AU calculated by Eq.2. The steering direction is determined by whether the AU
has a promotive or suppressive effect. Finally, for the selected AUs, activations are updated as

x̂i = xi + γixi.

Applicability of AUSteer. The proposed AUSteer can be applied to all key components of LLMs,
including MHA, FFN, and residual streams, as the analysis above holds uniformly across these mod-
ules. Unlike previous approaches that operate on entire block-level activations, AUSteer intervenes
only on the most important dimensions within each block activation. This yields interventions that
are both more efficient and less intrusive, embodying the principle of steering less to achieve more.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

Tasks and Evaluation Metrics. We evaluate AUSteer on three types of tasks:

• Commonsense reasoning. We use widely adopted datasets including BoolQ (Clark et al., 2019),
COPA (Gordon et al., 2012), and WinoGrande (Sakaguchi et al., 2021), and report accuracy of
the model’s responses using exact match.

• Math problem solving. We experiment with SVAMP (Patel et al., 2021) and MAWPS (Koncel-
Kedziorski et al., 2016), where the model is required to solve math questions with or without
reasoning. We evaluate accuracy by comparing the predicted answer with the correct number.

• Open-ended generation. We employ RealToxicPrompts (Gehman et al., 2020) and BPO (Cheng
et al., 2024). For RealToxicPrompts, which contains challenging prompts that often elicit toxic
content, we apply different steering methods to reduce toxicity. Automatic evaluation follows
prior work (Wang et al., 2025a): detoxification performance, where toxicity is measured using
the Perspective API 4. For BPO, which aligns model outputs with human-preferred behaviors,
we adopt the automatic evaluation protocol of Zheng et al. (2023); Liang et al. (2024) and report
∆WR = WRsteered − WRoriginal. The win-rates are obtained by using GPT-5-mini (OpenAI,
2025) and prompts from Liang et al. (2024) to compare the original and steered responses. For
both datasets, human evaluation is conducted, where 3 annotators assess text quality (fluency,
diversity) and alignment with the target objective on a 1–5 scale.

Target LLMs. We evaluate AUSteer on a diverse set of LLMs: (1) LLaMA2-7B-Chat (Touvron
et al., 2023), which serves as the backbone in many related studies; (2) Gemma2-9B-it (Team et al.,
2024), a strong decoder-only model for text generation; and (3) Qwen3-8B (Yang et al., 2025), one
of the most recent LLMs. To further assess scalability, we also experiment with other LLMs and
larger variants (e.g., 13B, 27B), with results reported in §5.4.

Baselines. We compare AUSteer against several competitive activation steering methods:

• ITI (Li et al., 2023b), which uses contrastive samples to identify important attention heads, then
derives steering vectors from activation differences for intervention.

• CAA (Rimsky et al., 2024), which extracts steering vectors from activation differences in residual
streams and applies them at the block level.

• SADI (Wang et al., 2025b), which localizes important attention heads, FFNs, or layers via activa-
tion differences, and applies adaptive steering through masking and scaling. We report results for
its best-performing variant, SADI-HEAD.

• STA (Wang et al., 2025a), which identifies important atoms in sparse autoencoders (SAEs) of the
target LLM, then applies steering vectors to residual streams. Since pretrained SAEs are currently
available only for LLaMA 3.1 and Gemma2, we report its results only on Gemma2.

AUSteer Variants. The proposed method can be applied to any key component of LLMs. Since
the two core modules in each Transformer layer are the attention and FFN blocks, we validate the

4https://www.perspectiveapi.com
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Table 1: Overall results of baseline methods and the proposed AUSteer across seven tasks. “#Acts”
denotes the number of intervened activations for each method. kh indicates the number of selected
attention heads, ranging from 2 to 64. Results with † are from (Wang et al., 2025a;b).

Model Method #Acts (↓) Commonsense Reasoning (↑) Math Problem Solving (↑) Avg. Open Generation (↑)

BoolQ COPA WinoG. SVAMP MAWPS Acc. Detox. ∆WR

LLaMA2-7B-Chat

Vanilla 0 70.52† 70.80† 50.91† 36.00 51.83 56.01 – –
ITI kh · 128 74.10† 77.20† 52.80† 36.67 54.08 58.97 83.49 12.50
CAA 4096 74.98† 75.20† 52.64† 34.33 55.21 58.47 84.57 11.00
SADI kh · 128 74.35† 78.80† 53.04† 36.33 54.93 59.49 86.32 13.50

AUSteer-Head ≤ 100 76.27 75.40 52.80 37.67 56.06 59.64 89.66 16.00
AUSteer-FFN ≤ 100 75.57 82.80 53.28 37.00 58.03 61.34 89.24 22.00

Gemma2-9B-it

Vanilla 0 86.64 77.40 67.25 67.67 92.11 78.21 – –
ITI kh · 256 86.82 88.40 68.11 69.00 93.52 81.17 98.83 23.00
CAA 3584 86.85 89.40 68.35 68.00 92.96 81.11 98.75† 23.50
SADI kh · 256 86.79 92.40 69.53 68.00 93.52 82.05 99.08 25.50
STA 3584 87.03 91.60 69.61 68.67 92.39 81.86 99.33† 25.00

AUSteer-Head ≤ 100 86.79 91.00 70.72 71.00 94.65 82.83 99.00 26.50
AUSteer-FFN ≤ 100 87.25 97.60 70.88 70.00 94.08 83.96 99.25 30.00

Qwen3-8B

Vanilla 0 87.43 89.00 63.61 68.67 84.51 78.64 – –
ITI kh · 128 87.40 90.80 65.59 69.67 87.32 80.16 75.15 26.00
CAA 4096 87.83 91.20 64.01 71.67 88.45 80.63 76.23 27.00
SADI kh · 128 87.65 93.20 64.25 73.00 85.92 80.80 78.07 25.50

AUSteer-Head ≤ 100 87.71 95.40 65.35 76.33 91.27 83.21 80.90 26.00
AUSteer-FFN ≤ 100 88.20 90.80 67.25 71.67 89.58 81.50 81.65 34.00

generalizability of AUSteer by implementing two variants: AUSteer-Head, which steers AU-level
activations in MHA, and AUSteer-FFN, which steers AU-level activations in FFN.

Implementation details for AUSteer and all other baseline methods, including contrastive pair
construction, dataset statistics, and prompt templates, are provided in Appendix B.

Hyperparameter settings. For baseline methods, we perform hyperparameter sweeps following
the recommendations in their papers to ensure a fair comparison. AUSteer introduces two hyper-
parameters: (1) k, the number of AU-level activations selected for steering; and (2) α, a global
steering-strength factor. To verify the claim that we can steer less to achieve more, we cap the
number of steered activations at 100 and then run the sweep. Full details appear in Appendix C.

5.2 MAIN RESULTS

AUSteer significantly improves commonsense reasoning and math problem solving with min-
imal intervention. Table 1 reports overall results on LLaMA2-7B-Chat, Gemma2-9B-it, and
Qwen3-8B. Across all five tasks on commonsense reasoning and math questions, either AUSteer-
FFN or AUSteer-Head attains the highest average accuracy while steering at most 100 activations,
in contrast to SADI’s kh × 128 head interventions and CAA/STA, which modify thousands of acti-
vations. Concretely, AUSteer-FFN improves the average over SADI by +1.85 on LLaMA2-7B-Chat
(61.34 vs. 59.49), +1.91 on Gemma2-9B-it (83.96 vs. 82.05), and +0.7 on Qwen3-8B. AUSteer-
Head is also competitive, exceeding SADI on Qwen3-8B by +2.41 under the same low-budget con-
straint. Beyond averages, AUSteer-Head or AUSteer-FFN consistently achieves the best scores on
individual tasks across the five commonsense and math benchmarks.

Table 2: Human evaluation on open-ended generation tasks.

LLaMA2-7B-Chat Gemma2-9B-it Qwen3-8B

SADI AUSteer SADI STA AUSteer SADI AUSteer

Quality (↑) 3.3 3.4 4.2 4.4 4.3 4.1 4.3
Alignment (↑) 3.6 3.8 4.5 4.7 4.7 3.9 4.1

AUSteer improves open-ended gen-
eration. In automatic evaluation
(Table 1), AUSteer significantly in-
creases detoxification rates under
toxic prompts. Compared with
SADI, it yields around 2%-3% higher
detoxification on Llama2 and Qwen3.
On BPO datasets, AUSteer steers
models toward human-preferred responses, improving win-rates (∆WR) by 8.5%, 4.5%, and 7%
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on the three LLMs, respectively. In human evaluation (Table 2), AUSteer outperforms baselines in
most cases on generation quality (fluency and diversity) and on alignment with the generation target.

5.3 ABLATION STUDIES

Table 3: Ablation study results on
Gemma2-9B-it.

Method Avg. Acc

AUSteer-FFN 83.96
Random Loc. 79.08 (-4.88)
Act. Diff. 83.12 (-0.84)
Fixed. Vec. 82.05 (-1.91)
Fixed. Strength 83.04 (-0.92)

We evaluate the contribution of each component in AUS-
teer: AU localization and adaptive steering. To assess
the proposed activation momentum localization, we com-
pare it with (1) random localization, which selects acti-
vations at random for steering, and (2) activation differ-
ence across contrastive samples for localization, as intro-
duced in SADI. To assess adaptive steering, we compare
it with (3) a fixed steering vector, which replaces γixi

with the mean activation difference, following ITI, and
(4) a fixed steering strength γ, which applies the same
strength across all selected AUs.

The average accuracy across commonsense reasoning and math questions are shown in Table 3.
When using random or activation-difference localization, steering performance drops substantially,
verifying the effectiveness of the proposed activation momentum-based localization. Similarly,
replacing adaptive steering with a fixed vector or fixed strength reduces performance by 1.91 and
0.92, respectively, demonstrating the importance of adaptivity across diverse inputs and AUs.

5.4 SCALABILITY AND GENERALIZABILITY OF AUSTEER

Table 4: Experimental results on more LLMs.

LLaMA3.1-8B-Instruct LLaMA2-13B-Chat Gemma2-27B-it
BoolQ COPA WinoG. BoolQ COPA WinoG. BoolQ COPA WinoG.

Vanilla 82.57 83.80 57.77 84.01 89.00 53.99 86.88 86.00 63.61
AUSteer-Head 83.18 86.00 60.38 85.25 91.00 59.43 88.10 90.20 67.25
AUSteer-FFN 83.79 86.00 61.56 85.02 91.20 58.88 88.41 89.80 66.30

We evaluate AUSTEER on larger and varied LLMs, including LLaMA3.1-8B-Instruct, LLaMA2-
13B-Chat (Touvron et al., 2023), and Gemma2-27B-it (Team et al., 2024), on commonsense rea-
soning tasks. Table 4 reports the results. Both AUSTEER-HEAD and AUSTEER-FFN substantially
improve the base models, confirming the method’s scalability and generalizability. More results
on larger LLMs with diverse structures including Qwen3-30B-A3B and Llama-3.3-70B-Instruct are
provided in Appendidx G.

5.5 FURTHER ANALYSIS

To investigate the internal mechanisms of AUSteer more comprehensively, we provide the following
discussions.

• Appendix C. We illustrate the hyperparameter sweep for k and α and report their optimal values
across tasks. We also provide guidelines for hyperparameter search in both resource-sufficient and
resource-constrained settings.

• Appendix D. We characterize activation momentum for different AUs and analyze the locations
of AUs within MHA and FFN.

• Appendix E. We present and discuss the overlap of localized AUs across tasks.

• Appendix F. We evaluate AUSTEER under varying numbers of contrastive pairs used for AU
localization.

• Appendix G. We demonstrate AUSteer’s scalability on larger LLMs with diverse architectures,
including Qwen3-30B-A3B (a sparse MoE model) and Llama-3.3-70B-Instruct (evaluated in its
4-bit quantized form).
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• Appendix H. We verify how activation momentum contributes to discriminative causality and final
model outputs, providing both theoretical and empirical analyses.

• Appendix I. We present a detailed analysis of AUSteer’s efficiency and computational overhead
compared with baseline methods. Overhead results on Llama-3.3-70B-Instruct are also included.

• Appendix J. We experiment with additional control variants of AUSteer—such as steering all AUs
or broader subsets—and confirm that, as with AUSteer, steering should be limited to task-relevant
and beneficial AUs rather than blindly steering all or large numbers of units.

• Appendix K. To determine whether we should promote useful AUs or suppress unhelpful ones, we
conduct both empirical and theoretical analyses and show that promotion consistently outperforms
suppression.

6 CONCLUSION

In this work, we investigate the heterogeneity and its root cause of block-level activations and pro-
pose AUSteer, a fine-grained AU-level activation steering method. AUSteer localizes salient AUs
via activation momentum and assigns dynamic steering strengths per input and AU. Extensive ex-
periments show that, with far fewer intervened activations, AUSteer significantly outperforms state-
of-the-art methods across diverse tasks, demonstrating that steering less achieves more.
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A MORE RESULTS ON ACTIVATION HETEROGENEITY

We present additional results for attention heads and FFNs in Figures 6 to 8, confirming heterogene-
ity in block level activations.
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Figure 6: Steering results for 26th attention output at 15th layer. Positive Combination: steering
four beneficial dimensions (32, 36, 48, 64). Mixed Combination: steering those four plus two
detrimental dimensions (44, 88).
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Figure 7: Steering results for 1st attention output at 19th layer. Positive Combination: steering three
beneficial dimensions (28, 40, 100). Mixed Combination: steering those three plus two detrimental
dimensions (64, 68).
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Figure 8: Steering results for the FFN output at layer 17. Positive Combination: steering three
beneficial dimensions (400, 800, 2400). Mixed Combination: steering those three plus two detri-
mental dimensions (2200, 3500).

B DETAILED EXPERIMENT SETUP

B.1 CONTRASTIVE SAMPLE CONSTRUCTION

Contrastive sample pairs are required by AUSteer and all baseline methods. To ensure a fair com-
parison, we follow SADI (Wang et al., 2025b) and STA (Wang et al., 2025a) to construct same pairs
for every method. For each sample in commonsense reasoning, we form a positive sample by con-
catenating the question with the correct answer, and a negative sample by concatenating the question
with a randomly selected incorrect answer. In math problem solving, we use the question plus the
correct answer as the positive sample. For the negative sample, we use a sentence encoder to select
the most semantically similar incorrect answer from the answer pool and concatenate it with the
question. For detoxification, we select entries from RealToxicityPrompts with high toxicity scores
as negative prompts. Following STA, the safe response is used as the positive sample. In BPO,
we use the original prompt paired with a high-quality (human-preferred) response as the positive
sample, and the same prompt paired with a low-quality response from the dataset as the negative
sample.

We clarify that (1) contrastive samples are required by almost all activation steering methods and
are a common practice in prior work (Li et al., 2023b; Rimsky et al., 2024; Wang et al., 2025b;a),
rather than a limitation unique to AUSteer; (2) constructing these pairs is generally straightforward
based on available samples and easy to implement; and (3) we provide and verify a simple, general,
and ready-to-use procedure for constructing contrastive pairs across different and new tasks.

(1) Contrastive samples are widely required in activation steering. Existing activation steering
methods, including ITI, CAA, SADI, and STA, all rely on contrastive positive–negative samples
to localize important components and/or to estimate steering vectors. Thus, the requirement of
contrastive pairs is not a limitation specific to AUSteer, but rather a standard and widely adopted
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practice. For fair comparison, we also ensure that all baseline methods use the same contrastive
pairs in our experiments.

(2) Constructing contrastive pairs is simple in practice. Following prior work such as SADI and
STA, constructing contrastive pairs is straightforward. For commonsense reasoning tasks, the neg-
ative sample can be obtained by pairing the question with an incorrect answer. For other datasets,
negative samples can be generated by selecting semantically similar responses from a pool of can-
didate answers, or by using datasets that already include ready-to-use negative samples.

(3) A general solution for new tasks. For tasks not covered in existing studies, we propose a
general and effective approach. Positive sample: concatenate the question with the correct answer.
Negative sample: use a sentence encoder to identify the most semantically similar incorrect answer
from the answer pool and concatenate it with the question. For example, previous studies did not
include math tasks, so we constructed contrastive pairs for those tasks using this method. For all
other tasks, we use the contrastive pairs provided by prior work to ensure fair comparison.

(4) Empirical verification of the general solution. Using the above general construction method,
we re-evaluated AUSteer on Llama2-7B-Chat. As shown in Table 5, this simple approach achieves
performance comparable to or even slightly better than our original results.

Table 5: Results on LLaMA2-7B-Chat with new contrastive pairs.

Method Avg. Acc. (5 tasks) Detox BPO
Vanilla 56.01 – –
SADI 59.49 86.32 13.50
AUSteer (previous result) 61.34 89.24 22.00
AUSteer (new solution) 61.53 89.99 22.50

In summary, contrastive pairs are commonly required across activation steering studies and are not
a unique limitation of AUSteer. Moreover, constructing them is straightforward, and our general
solution is simple, effective, and empirically validated to yield strong performance. We acknowledge
that the reliance on contrastive pairs is an inherent limitation of existing activation-steering methods,
and we plan to explore approaches that reduce or eliminate this requirement in future work.

B.2 DATA STATISTICS

Following SADI, we use at most 1,000 contrastive pairs per task to identify important MHA and
FFN components or to generate steering vectors. For evaluation, we use the full test set of each task.
Detailed dataset statistics are provided in Table 6.

B.3 PROMPTS FOR DATASETS AND EVALUATION

To ensure a fair comparison, we use identical prompt templates across all methods. For common-
sense reasoning tasks, the templates strictly follow SADI (Wang et al., 2025b) and the authors’
released code. For RealToxicityPrompts, the templates follow STA (Wang et al., 2025a). Figure 9
shows the templates for SVAMP and MAWPS. For BPO, we use the prompts provided in the dataset
directly.

C HYPERPARAMETER SENSITIVITY

AUSteer introduces two hyperparameters: (1) k, the number of AU-level activations selected for
steering; and (2) α, a global steering-strength factor. To verify the claim that we can steer less

Table 6: The number of contrastive pairs and testing samples for 7 tasks.

BoolQ COPA WinoGrande SVAMP MAWPS Detox BPO
# of contrastive pairs 1000 1000 1000 700 1000 1000 1000
Test 3270 500 1267 300 355 1199 200
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SVAMP
Answer the following grade-school 
math word problem. Reply with only the 
final answer as a number.
Question: {question}
Answer:

MAWPS
Answer the grade school math word 
problem below, using step-by-step 
problem-solving process. Print the final 
answer after \"####\.
Question: {question}
Answer:

Figure 9: Prompt templates for math problems.
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Figure 10: Performance heatmaps for COPA, MAWPS, and BPO tasks as functions of α and k.

to achieve more, we cap the number of steered activations at 100 and sweep both k and α from
1 to 100 for main experiments. Figure 10 reports performance across COPA, MAWPS, and BPO.
Neighboring settings around the optimal hyperparameters achieve comparable results, indicating
robustness. The optimal values vary across tasks to some extent, showing that the hyperparameters
are task-specific, a trend consistent with Wang et al. (2025b).

To set the hyperparameters for each task, we provide two solutions: (1) under sufficient computing
resources, we perform a full hyperparameter sweep, which is consistent with previous studies (Li
et al., 2023b; Rimsky et al., 2024; Wang et al., 2025b;a); and (2) in computing-constrained scenarios,
we recommend using a very small validation set to conduct a quick hyperparameter sweep. In
addition, (3) the optimal hyperparameters used in our experiments are reported in Tables 8 and 9.

General hyperparameter sweep (resource-sufficient case). Task-specific hyperparameters are
still a common challenge in activation steering, and the standard solution used widely in existing
studies is to perform a sweep (Li et al., 2023b; Rimsky et al., 2024; Wang et al., 2025b;a). Following
these studies, we perform a full hyperparameter sweep to empirically determine optimal α and k.
We also run the same sweep for all baseline methods to ensure fair comparison in Table 1. Across
tasks, both α and k typically fall within 1–100 and consistently yield strong results.

Fast sweep using a small validation set (resource- or time-constrained case). When resources
are limited, we recommend sweeping using only 50–100 validation samples. This process is ex-
tremely fast (e.g., ∼5 minutes on an H100 GPU for 100 samples for the COPA task). Results
using this small-set search are shown in below Table 7. It can be observed that even with only very
few samples for hyperparameter selection, our proposed method still significantly outperforms the
baseline methods and achieves results comparable to the full search.

Table 7: Results of fast sweep on LLaMA2-7B-Chat

Method Avg. Acc. (5 tasks) Detox BPO
Vanilla 56.01 – –
SADI 59.49 86.32 13.50
AUSteer (100-sample search) 61.03 88.49 22.00
AUSteer (Full search) 61.34 89.24 22.00

The optimal values of α and k used for each task are reported in Tables 8 and 9. These values were
obtained via full sweep, and the same process was applied to baseline methods for fairness. The
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task-specific variation of hyperparameters aligns with observations from prior work, indicating that
different tasks may require different hyperparameter values.

However, for any given task, the hyperparameters are stable and robust. For example, an shown
in Figure 10, for the COPA task, when 20 ≤ α ≤ 50 and 64 ≤ k ≤ 100, the performance remains
stable and varies within only 1.5%, while still significantly outperforming the baseline methods.
For the MAWPS task, when 10 ≤ α ≤ 50 and 16 ≤ k ≤ 50, the performance also varies within
approximately 1.5%. Therefore, for each specific task, our method is hyperparameter-robust, and
within the optimal region, it achieves comparable results with only small variations.

Table 8: Optimal α for main experiments.

BoolQ COPA Winogrande SVAMP MAWPS Detoxic. BPO
15 50 100 8 8 15 32
50 50 100 100 50 8 10
10 20 20 10 50 10 16

Table 9: Optimal k for main experiments.

BoolQ COPA Winogrande SVAMP MAWPS Detoxic. BPO
100 16 2 50 80 16 16

8 80 64 4 8 16 8
100 8 100 100 2 8 10

In summary, although the hyperparameters remain robust within an individual task, task-specific
hyperparameters are still a common challenge in activation steering. The standard solution used
widely in existing studies is to perform a sweep. To further reduce cost, we show that sweeping on
a very small validation set is both efficient and highly effective, while still outperforming strong
baselines. We will explore more principled approaches to reducing task-dependent hyperparameter
sensitivity in future work.

D CHARACTERISTICS OF ACTIVATION MOMENTUM AND LOCALIZED AUS
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(a) AU scores in the MHA of Gemma2-9B-it on the
COPA dataset.
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(b) AU scores in the FFN of Gemma2-9B-it on the
COPA dataset.

Figure 11: Characteristics of AUs in MHA and FFN.

Figures 11a and 11b report the discriminative score si for each AU in both MHA and FFN, computed
via activation momentum. We observe pronounced heterogeneity: within attention heads and FFN
blocks, some dimensions/AUs are strongly discriminative while others are not. Moreover, most AUs
localize to the middle or latter layers, consistent with prior findings (Wang et al., 2025b) that middle
layers support reasoning while latter layers are critical for language generation.
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(a) Overlap of identified AUs
in the MHA of Gemma2-9B-it
across different tasks.
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Figure 12: Overlap of localized AUs across tasks. Tasks 1–7 correspond to BoolQ, COPA, Wino-
Grande, SVAMP, MAWPS, Detoxification, and BPO.
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Figure 13: Relationship between accuracy and the number of contrastive pairs

E AU OVERLAP ACROSS TASKS

We visualize the overlap of localized AUs across tasks in Figures 12a and 12b. Only very few
AUs are shared between tasks, indicating that the AUs supporting different functions are highly
specialized. This pattern is consistent with prior studies (Li et al., 2023a; Wang et al., 2025b).

F STEERING STABILITY WITH VARYING DATA SIZE

Following prior work, AUSteer uses contrastive sample pairs to localize important AUs. We evaluate
how its accuracy varies with the number of contrastive pairs. As shown in Figure 13, the accuracy on
Gemma2-9B-it improves as the dataset grows. Notably, with 300–500 pairs, AUSteer achieves per-
formance comparable to using 1,000 pairs. This demonstrates its effectiveness in low-data regimes.

G SCALABILITY ON MORE LLMS

To further verify the generalizability and scalability of AUSteer, we evaluate it on two representative
large models with diverse structures: (1) Qwen3-30B-A3B, a 30B-scale sparse MoE model; and
(2) Llama-3.3-70B-Instruct, where we use the 4-bit quantized version to enable evaluation on
a consumer GPU and to test AUSteer’s compatibility with heavily quantized LLMs. The results
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are shown in Table 10. In most cases, AUSteer improves performance by 1%–3%, confirming its
effectiveness and scalability across larger, structurally diverse and heavily quantized LLMs.

Table 10: More results of diverse and larger LLMs.

Model Method BoolQ COPA WinoG
Qwen3-30B-A3B Vanilla 86.82 93.40 65.98

AUSteer 88.69 97.80 67.17
Llama-3.3-70B-Instruct Vanilla 89.54 98.60 78.14

AUSteer 90.67 99.20 79.95

H ANALYZING ACTIVATION MOMENTUM IN DISCRIMINATIVE CAUSALITY

We explain the connection between activation momentum and causality based on both theoretical
justification and empirical evidence.

Theoretical Justification. Prior work in LLM interpretability (Dar et al., 2023; Geva et al., 2022;
Li et al., 2024; Katz et al., 2024; Neo et al., 2025) shows that intermediate hidden states x in LLMs
can be directly projected to the output logits through the LM head. This projection directly affects
the model’s final next-token distribution. Formally, the LM head M computes:

o = Mx,

where o is the vector of output logits.

This aligns with our observations in Section 3.3: different AUs govern different output token distri-
butions, and as steering strength increases, the LLM’s output tends to converge to the AU’s token
distribution. For a contrastive pair, the logit difference caused by the two inputs is:

∆o = opos − oneg.

For AU ui and contrastive pair j, define the activation momentum:

mj
i = xpos

i − xneg
i .

Based on o = Mx, we apply a first-order Taylor expansion around xneg
i :

o(xpos
i ) ≈ o(xneg

i ) +
∂o

∂xi

(
xpos
i − xneg

i

)
.

Rearranging gives:

∆oji = opos − oneg ≈ ∂o

∂xi
mj

i .

This equation shows that the change in activation of AU ui directly causes a proportional change in
the output logits. Thus:

• mj
i > 0 tends to increase the logit difference favoring the positive sample.

• mj
i < 0 tends to favor the negative sample.

• If mj
i is consistent across many pairs, then the AU ui has a stable discriminative causal

effect on the output logits.

This provides the theoretical grounding for activation momentum.

Empirical Evidence To further validate the effectiveness of activation momentum, we compare it
against two alternatives: (i) randomly selected AUs and (ii) the activation-difference method used in
SADI. On Gemma2-9B-it, the performance follows the order: 83.96 (activation momentum, ours)
> 83.12 (activation difference by SADI) > 79.08 (random selection). These results demonstrate the
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superior performance of activation momentum. Additional experimental details are provided in
Section 5.3.

To summarize, we establish the connection between activation momentum and discriminative output
causality through both theoretical analysis and empirical validation, thereby grounding and verifying
our method.

I COMPUTATION OVERHEAD ANALYSIS

We conducted a detailed efficiency and computation analysis from two perspectives: (1) smaller
steering footprint, and (2) the actual computational overhead measured in practice, including
activation-momentum computation time, inference-time cost, latency, and stability. Our results show
that AUSteer requires less overhead and fewer interventions while achieving better performance
than baseline methods.

Smaller steering footprint. As shown in Table 1, baseline methods typically require intervening on
3,000–4,000 activations (or kh×128), whereas AUSteer requires at most 100 intervened activations
while still achieving the best results on most tasks.

Detailed overhead analysis. We examine the computational overhead of our method and all base-
lines at each stage of the method. In the preparation phase, AUSteer extracts activations from con-
trastive pairs to compute activation momentum, whereas baseline methods usually require compo-
nent localization and steering-vector estimation. During inference, each method applies its corre-
sponding intervention, and we compare the resulting overhead across methods. It is worth men-
tioning that activation momentum calculation only requires a single forward pass over a small set
of contrastive examples. No backward pass, gradient computation, model modification, or training
is needed. Extracting activations simply involves reading intermediate hidden states. Therefore,
for any LLM size, activation momentum can always be computed using the same GPU memory
required for standard inference, since both perform identical forward passes.

Table 11 below compares the computation cost of AUSteer with ITI and SADI across six metrics:
(1) GPU memory for contrastive samples of all tasks, (2) total runtime on all contrastive samples,
(3) GPU memory during inference, (4) inference time over seven tasks, (5) latency, and (6) latency
stability (std from five repeated trials). It is noted that all methods rely on contrastive samples to
compute the necessary steering signals—whether for activation differences, localization, activation
momentum (ours), or steering-vector estimation (other methods). The backbone LLM is Gemma2-
9B-it (batch size = 1, GPU = NVIDIA H100).

Compared to other activation-steering baselines, AUSteer has the lowest overhead while achieving
the best results. Specifically, AUSteer requires only ∼15 minutes to compute activation momentum
and localization, no additional GPU memory beyond inference, and exhibits lower overhead than
ITI and SADI while achieving better performance, demonstrating its computational efficiency.
During inference (steering), AUSteer also requires slightly less time than the baseline methods,
further demonstrating its efficiency in runtime overhead.

Table 11: Computation Overhead Comparison.

Method GPU Memory (contrastive) Time (contrastive) GPU Memory (Inference) Inference Time Latency Stability
Vanilla LLM – – 18 GB 53 min 12 sec 0.45 s/sample ∆0.005
ITI 18 GB 18 min 39 sec 18 GB 59 min 29 sec 0.50 s/sample ∆0.01
SADI 18 GB 14 min 41 sec 18 GB 55 min 05 sec 0.47 s/sample ∆0.005
AUSteer (Ours) 18 GB 14 min 41 sec 18 GB 54 min 41 sec 0.46 s/sample ∆0.007

For the computational cost on larger LLMs such as 4-bit Llama-3.3-70B-Instruct, taking COPA
as an example, we report both the preparation (activation-momentum computation) and inference
overhead. During the activation-momentum computation stage, using 1000 contrastive pairs, AUS-
teer requires 40 GB of GPU memory and around 15 minutes. During inference, the vanilla LLM
requires 40 GB of GPU memory and 3 min 46 sec to run all test samples, while AUSteer requires 40
GB and 3 min 54 sec. These empirical results show that activation momentum scales successfully
to large LLMs and remains far from computationally intensive, even on a 70B LLM.

To summarize, our proposed method requires the least intervention footprint and lowest com-
putational overhead, while achieving the best performance on most tasks. This provides clear
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empirical evidence supporting our argument that a smaller steering footprint can achieve improved
efficiency.

J BROADER CONTROL VARIANTS OF AUSTEER

We conducted additional experiments on broader steering variants and found that, contrary to the
assumption that “steering more AUs should be better,” precise partial AU control is the correct
strategy. It offers clear advantages over steering a large portion—or all—of the AUs.

Steering all AUs leads to consistent performance degradation. To test whether AUSteer is merely
a constrained version of a more general “steer-all-units” method, we applied AUSteer-style dynamic
weights to all AUs (e.g., 32×4096 = 131,072 AUs in LLaMA2-7B-Chat). After extensive hyperpa-
rameter sweeps, steering all AUs still failed to outperform the vanilla model (without any steering).
This matches our analysis in Section 3.3: different AUs regulate different output distributions,
and only a small subset is task-relevant. Steering all AUs inevitably introduces strong task-irrelevant
signals, effectively injecting noise into the model outputs. In contrast, partial AU steering focuses
only on useful and task-relevant subspaces, yielding meaningful and targeted interventions.

Broader AU steering does not guarantee better performance. We further tested variants that
steer increasingly large subsets of AUs. Table 12 (COPA, LLaMA2-7B-Chat) shows that steering
more than 5,000 AUs results in worse performance than the vanilla model. This again confirms
that broader steering introduces many task-irrelevant or harmful output distributions, degrading
performance. These findings also align with our results in Section 3.2, where steering certain AUs
leads to negative effects.

Table 12: Experimental results on steering broader AUs using COPA and LLaMA2-7B-Chat. There
are 32× 4096 = 131,072 AUs in total in LLaMA2-7B-Chat.

# of AUs 0 (vanilla) < 100 200 500 1000 3000 5000 10000
Accuracy (%) 70.8 82.8 77.2 73.2 70.8 70.6 70.4 70.4

Overall, our experiments demonstrate that AUSteer should only steer task-relevant or beneficial
AUs, rather than steering a broad or full set of units. Partial AU control is therefore not a restricted
version of a more general steering method—it is the correct and uniquely effective strategy for
activation steering in LLMs.

K PROMOTION VERSUS SUPPRESSION

To determine whether we should promote useful AUs or suppress unhelpful ones, we conduct both
empirical and theoretical analyses and show that promotion consistently outperforms suppression.

Empirical evidence. To evaluate the “suppression” strategy, we use AU importance scores to iden-
tify the least important AUs and apply a decreasing factor to suppress their activations. We vary
the number of suppressed AUs from 0% to 99.95%, search decreasing factors from 0.05 to 0.99,
and report the best results in Table 13. Experiments are conducted on LLaMA2-7B-Chat using
three commonsense reasoning datasets. The results show that although suppression can yield im-
provements over the vanilla model, it consistently underperforms compared to the promotion-based
steering used in AUSteer.

Table 13: Experimental results of suppressing AUs.

Method BoolQ COPA WinoG.
Vanilla 70.52 70.8 50.91
Suppression 73.36 71.6 53.12
Promotion (AUSteer, ours) 75.57 82.8 53.28

Theoretical explanation. Prior work (Geva et al., 2022; Dar et al., 2023) shows that LLMs update
predictions primarily through a promotion mechanism, where top-candidate tokens are driven by
dominant positive sub-updates rather than by suppressing irrelevant ones. Consequently, directly
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promoting task-relevant AUs aligns better with the model’s intrinsic update dynamics, producing
stronger and more targeted effects than suppression.
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