

000 001 002 003 004 005 FINE-GRAINED ACTIVATION STEERING: STEERING 006 LESS, ACHIEVING MORE 007 008 009

010 **Anonymous authors**
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Paper under double-blind review

ABSTRACT

Activation steering has emerged as a cost-effective paradigm for modifying large language model (LLM) behaviors. Existing methods typically intervene at the block level, steering the bundled activations of selected attention heads, feedforward networks, or residual streams. However, we reveal that block-level activations are inherently heterogeneous, entangling beneficial, irrelevant, and harmful features, thereby rendering block-level steering coarse, inefficient, and intrusive. To investigate the root cause, we decompose block activations into fine-grained atomic unit (AU)-level activations, where each AU-level activation corresponds to a single dimension of the block activation, and each AU denotes a slice of the block weight matrix. Steering an AU-level activation is thus equivalent to steering its associated AU. Our theoretical and empirical analysis show that heterogeneity arises because different AUs or dimensions control distinct token distributions in LLM outputs. Hence, block-level steering inevitably moves helpful and harmful token directions together, which reduces efficiency. Restricting intervention to beneficial AUs yields more precise and effective steering. Building on this insight, we propose AUSteer, a simple and efficient method that operates at a finer granularity of the AU level. AUSteer first identifies discriminative AUs globally by computing activation momenta on contrastive samples. It then assigns adaptive steering strengths tailored to diverse inputs and selected AU activations. Comprehensive experiments on multiple LLMs and tasks show that AUSteer consistently surpasses advanced baselines while steering considerably fewer activations, demonstrating that *steering less achieves more*.

1 INTRODUCTION

In the era of large language models (LLMs), activation steering has emerged as a powerful paradigm for modulating model behavior on downstream tasks (Zou et al., 2023; Li et al., 2023b; Rimsky et al., 2024). Unlike reinforcement learning from human feedback (Bai et al., 2022), supervised fine-tuning (Wei et al., 2022), or prompt engineering (Brown et al., 2020), activation steering intervenes directly in the LLM intermediate activations during forward propagation, enabling fine-grained control without additional training. Prior work (Turner et al., 2023; Rimsky et al., 2024; Han et al., 2024; Wang et al., 2025a;b;c) generally builds task-specific steering vectors and injects them at inference time as biases or rescaling factors in selected LLM components, thereby steering the model toward the target objective.

However, a common practice in existing methods is **block-level steering**, where a “block” denotes the multi-head attention (MHA), the feed-forward network (FFN), or the layer’s residual stream. As shown in Figure 1 (a), the intervention is vector-level: every dimension of the selected block’s activation is bundled and steered simultaneously. One of the main limitations of block-level intervention is that it ignores **heterogeneity** within block activations. These activations often span hundreds or thousands of dimensions, each indicating a different feature. Some features are beneficial for the task, while others are irrelevant or harmful. As a result, block level steering is (1) too coarse: a block can be decomposed into finer functional units, and treating it as a single entity prevents precise targeting; (2) inefficient: steering the entire block amplifies both useful and harmful signals, which reduces efficiency and risks performance degradation; and (3) overly intrusive: it modifies many dimensions unnecessarily, increasing the intervention footprint.

In greater depth, we empirically and theoretically justify the heterogeneity of block-level activations. We first decompose block-level activations into finer-grained atomic unit (AU) activations, where each AU-level activation corresponds to a single dimension of the block activation, and each AU denotes a slice of the block weight matrix. Steering an AU-level activation is thus equivalent to steering its associated AU. As shown in Figure 1 (b), each AU-level intervention targets a single dimension¹. Both the intervention value and the affected activation are scalars. Empirically, we find that AU-level steering effects vary widely: some dimensions improve performance, some degrade it, and others are neutral, confirming heterogeneity. In many cases, steering a single dimension or a small subset outperforms steering the entire block.

Our theoretical analysis reveals that the **heterogeneity stems from different AUs modulating distinct output-token distributions**. Steering a single dimension therefore shifts the model’s output distribution toward the distribution controlled by that AU. Some AUs favor task-irrelevant or harmful tokens; steering their dimensions degrades performance. This also explains why block-level steering, which mixes helpful and harmful AUs together, can underperform more targeted and precise AU-level steering. Targeting only beneficial AUs can reduce the intervention footprint and improve efficiency, that is, **steering less achieves more**.

Beyond the promise of AU-level steering, these findings also pose challenges: (1) how can we localize the most important AUs for intervention? and (2) how can we ensure adaptive steering across diverse inputs and AUs?

To address these challenges, we introduce **AUSteer**, a simple and efficient method with two components. First, we propose **activation momentum**, a new metric that analyzes each activation’s momentum in positive and negative samples to evaluate its discriminative power. This counting-based metric supports global comparison and avoids the issue of increasing activation magnitudes across layer. We then localize the most discriminative AUs or activations for steering. Second, to ensure **adaptivity** across inputs and AUs, we assign a per sample steering scalar that follows the original activation pattern rather than a constant shift. This makes the update scale with the current activation, and preserves direction. We also assign dynamic steering strength to each AU according to its discriminative power, with important AUs receiving higher strength. We compare AUSteer with state-of-the-art (SOTA) methods that intervene at the block level by steering hundreds to thousands of activations. Using far fewer steered activations (at most 100), AUSteer significantly outperforms these methods across diverse tasks, demonstrating that **steering less achieves more**.

The contributions of this work are summarized as follows:

- Conceptually, we study the heterogeneity within block-level activations and its root causes, both theoretically and empirically, and propose decomposing block-level intervention into fine-grained AU-level intervention (§3).
- Methodologically, we propose AUSteer, a framework that localizes discriminative AUs with activation momenta for steering, and ensures adaptivity across diverse inputs and AUs (§4).
- Empirically, we evaluate AUSteer on multiple LLMs of varying sizes across diverse tasks, including commonsense reasoning, mathematical problem solving, and open-ended generation. With less intrusive intervention, AUSteer significantly outperforms other SOTA activation steering methods, underscoring that steering less achieves more (§5).

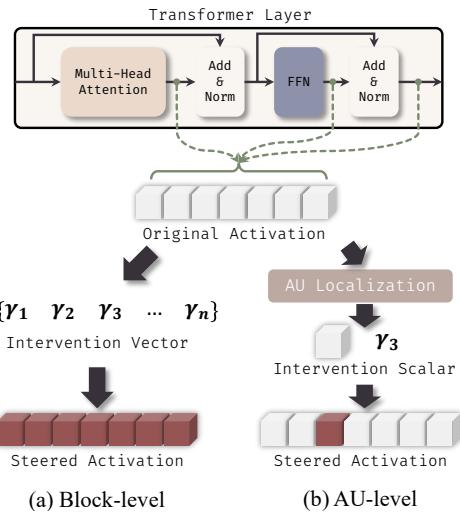


Figure 1: Comparison of block-level steering (prior work) and AU-level steering (Ours).

¹For clarity: a block-level activation is a vector associated with a block (MHA, FFN, or a layer’s residual stream), usually comprising hundreds to thousands of dimensions, whereas an AU-level activation is a scalar corresponding to a single dimension within that block activation.

108

2 RELATED WORK

109
 110 Activation steering (also known as activation editing) has become a popular and cost-effective approach for modifying LLM behaviors and aligning them with downstream tasks (Turner et al., 2023; Rimsky et al., 2024; Han et al., 2024; Wang et al., 2025c; Soo et al., 2025; Stickland et al., 2024; Li et al., 2023c; Wang et al., 2025a;b; Stolfo et al., 2025). The standard workflow involves extracting steering vectors from prompts or contrastive samples and injecting them into LLMs at inference time. Most of these methods intervene at the **block level**. For instance, at **MHA blocks**, ITI (Li et al., 2023b) derives steering vectors from contrastive activations in attention blocks and then applies interventions using the extracted vectors to important heads. Bhattacharjee et al. (2024) compute category-specific activations from attention heads to reduce unsafe responses. In **residual streams**, CAA (Rimsky et al., 2024) extracts vectors from positive and negative samples and applies them to residual streams, while van der Weij et al. (2024) extend this approach to multi-vector steering across residual streams. EAST (Rahn et al., 2024) obtains steering vectors by weighting input prompts with entropy and injects them into the layer outputs. Postmus & Abreu (2024) use multiple steering vectors as a concept to redirect behaviors via residual stream activations. Safety methods such as SafeSwitch (Han et al., 2025) and Safety Arithmetic (Hazra et al., 2024) intervene in residual streams to suppress harmful outputs. Konen et al. (2024) extract steering vectors from layer outputs to control emotion and writing style, while AnyEdit (Jiang et al., 2025) updates hidden states and knowledge by steering layer outputs. More recently, Stolfo et al. (2025) steer residual streams to enhance instruction following. Some methods can operate across multiple blocks. For example, SADI (Wang et al., 2025b) computes steering vectors from **MHA**, **FFN**, or **residual streams**, then applies mask-adaptive steering.

130 Notably, STA (Wang et al., 2025a) identifies atoms in pretrained sparse autoencoders (SAEs) (Lieberum et al., 2024; He et al., 2024; Gao et al., 2025) of target LLMs and steers *residual streams* using these localized units. Although STA uses the term *atom*, its meaning differs from ours: in STA, an atom is a knowledge unit in an SAE, whereas in our work an atom is a unit in the original LLM weight matrices. Methodologically, STA depends on pretrained SAEs that currently exist for only a few model families such as LLaMA3.1 (Touvron et al., 2023) and Gemma2 (Team et al., 2024), which limits generalization. Moreover, STA’s intervention remains at the block level as the computed vectors are injected into the residual stream.

138 In summary, prior work overwhelmingly focuses on **block-level** interventions, overlooking the heterogeneity of individual dimensions within block activations. This makes existing approaches inherently coarse and often blunt, limiting their precision and efficiency.

141
 142

3 HETEROGENEOUS BLOCK ACTIVATIONS: STEERING LESS ACHIEVES 143 MORE

145

3.1 BLOCK DECOMPOSITION

147 We first show how computations within LLM blocks can be decomposed into fine-grained AU calculations. The backbone architecture of LLMs is the Transformer, which consists of attention blocks 148 and FFN blocks in every layer. The outputs of these blocks are added to the layer residual stream for 149 forward propagation. In both MHA and FFN, weight matrix computations (Q, K, V, O in MHA and 150 the up projection and down projection in FFN) are linear projections of the form $\mathbf{y} = \mathbf{W}\mathbf{x}$, where \mathbf{x} 151 is the input activation, \mathbf{W} is the weight matrix, and \mathbf{y} is the output activation.

153 In existing studies, block activations (\mathbf{x} and \mathbf{y}) are typically treated as indivisible vectors. Steering 154 vectors are calculated and applied at this coarse block level. To decompose blocks into finer-grained 155 units, we reformulate the linear projection as

$$157 \mathbf{y} = \mathbf{W}\mathbf{x} = \sum_i x_i \mathbf{W}_{:,i}. \quad (1)$$

159 Here, x_i denotes the i -th dimension of the input activation \mathbf{x} . This formulation allows us to isolate 160 each single-dimensional activation. In this view, every scalar x_i serves as the coefficient for the 161 corresponding column $\mathbf{W}_{:,i}$ of the weight matrix. We refer to each column $\mathbf{W}_{:,i}$ as an **Atomic Unit**

(AU) in our study.² In this way, steering the i -th dimension activation x_i is equivalent to steering the corresponding i -th AU. To clarify:

- \mathbf{x}, \mathbf{y} : block-level activations, represented as vectors (the standard formulation in prior work).
- $\mathbf{W}_{\cdot, i}$: the i -th column of the weight matrix \mathbf{W} , representing the i -th AU.
- x_i : i -th dimension or i -th AU-level activation, which is a scalar and the coefficient for the i -th AU.

3.2 HETEROGENEITY IN BLOCK ACTIVATIONS

In this section, we examine the heterogeneous effects of AU-level activations within the block activation. To ensure generalizability, we adopt two representative steering methods: the pioneering ITI (Li et al., 2023b) and SOTA SADI (Wang et al., 2025b), applying them to MHA and FFN blocks. We use LLaMA2-7B-Chat (Touvron et al., 2023) as the backbone model and BoolQ (Clark et al., 2019) as the illustrative dataset, where the model answers “yes” or “no” for each question and the accuracy is reported. The experimental setup follows SADI, as described in Appendix B.

We first use ITI and SADI to identify important attention heads and FFNs for intervention, then compare six conditions: (1) **Baseline**, the original model without steering; (2) **ITI**, block-level intervention on attention head activations; (3) **SADI** (Wang et al., 2025b), block-level steering on attention heads (128 dimensions) and FFNs (4096 dimensions); (4) **Dimension Sweep**, steering single dimensions rather than whole blocks, sampling one of every four dimensions in attention heads and one of every 100 in FFNs; (5) **Positive Combination**, steering a small subset of beneficial dimensions; and (6) **Mixed Comb.**, steering a subset of beneficial and detrimental dimensions .

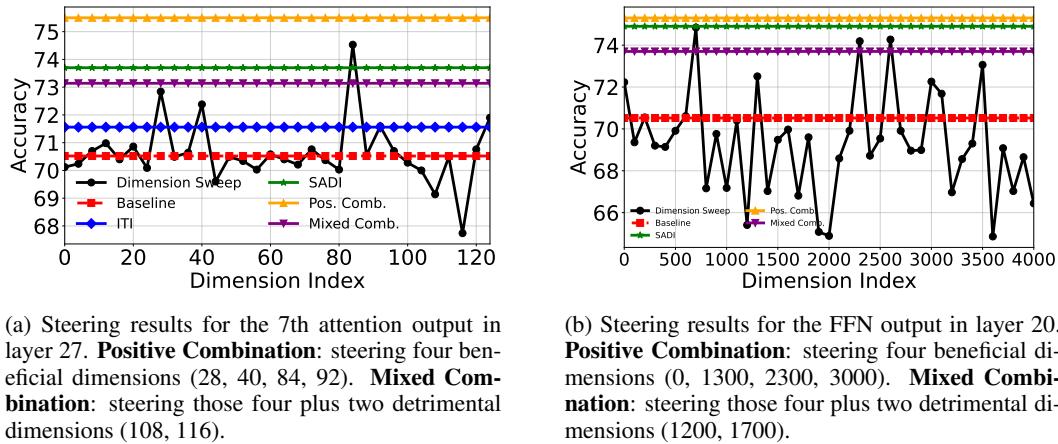


Figure 2: Heterogeneous steering results for MHA and FFNs.

Figure 2a shows the results of interventions on the 7th attention head at the 27th layer. The original model achieves 70.52% accuracy, ITI reaches 71.56%, and SADI achieves 73.70%. Steering individual AU activations, however, produces highly **heterogeneous** outcomes: some dimensions degrade performance, while others improve it. Notably, steering a single dimension can outperform full block steering. For example, steering the 84th dimension alone achieves 74.53%, surpassing the baseline, ITI, and SADI. Furthermore, steering only four positively contributing dimensions (Pos. Comb.) yields even stronger results. While introducing detrimental dimensions (Mixed Comb.), the performance drops. Similar observations hold for FFN blocks in Figure 2b. Additional empirical results for other attention heads and FFNs are provided in Appendix A. These findings indicate that block-level steering is inefficient, as it mixes beneficial and detrimental components. In contrast, fine-grained AU-level steering enables selective amplification of useful features, achieving more effective control. In short, **steering less achieves more**.

²Each column of \mathbf{W} corresponds to an AU, while each row corresponds to what is traditionally termed a “neuron.” To ensure rigor and avoid confusion, we adopt the term AU rather than neuron.

216
217

3.3 INTERPRETING THE HETEROGENEITY

218
219
220
221
222
223
224

To explain the observed heterogeneity, as discussed above, we treat the block activation as coefficients on an AU basis, so steering a single dimensional activation x_i is equivalent to steering its AU. Building on prior theory of interpreting LLMs in the embedding space (Geva et al., 2022; Dar et al., 2023), different AUs may control different token distributions in LLM outputs. Steering task-relevant AUs promotes the probability of task-specific tokens, whereas steering task-irrelevant AUs may increase the probability of uninformative or even harmful tokens. This provides a theoretical justification for the observed heterogeneity.

225
226
227
228
229
230
231
232
233
234
235
236
237
238

To further validate this, we first examine the **convergence** behavior of AU steering: different AUs govern different output token distributions, and as steering strength increases, the LLM’s output tends to converge to the AU’s token distribution. For the selected 7th attention head at the 27th layer, we scale the AU coefficient from 10 to an extremely large value (100,000) and compute the normalized KL divergence between the output at each strength and the output at 100,000. In Figure 3, columns 1 and 2 show these divergences for the 44th AU and the 84th AU. The divergence decreases with strength, indicating convergence. Column 3 shows the pairwise KL divergence between the 44th AU and the 84th AU across strengths. The divergence increases with strength, indicating that the two AUs tend to drive the model toward different output distributions.

239
240
241
242
243
244
245
246
247
248

Figure 4 illustrates this phenomenon by reporting the top-5 output tokens after steering three different AUs with single-dimensional activations. The input prompt is a question from BoolQ dataset with the answer “yes”. Steering x_{84} promotes the correct answer token “yes” while suppressing the incorrect “no”, thereby improving accuracy. In contrast, steering dimensions x_{44} or x_{100} elevates task-irrelevant or incorrect tokens, resulting in degraded performance. These observations align with the accuracies shown in Figure 2a.

249
250
251
252
253

In summary, heterogeneity arises because each AU governs a distinct output-token distribution. Block-level activations inevitably mix beneficial, irrelevant, and harmful AUs, making block-level interventions coarse, inefficient, and intrusive. By contrast, selectively steering only the helpful AUs amplifies the desired distribution and enables more efficient control.

254
255
256

4 METHODOLOGY: AUSTEER

257
258
259
260
261

Breaking block-level interventions into finer-grained AU-level interventions has shown promise for modifying LLM behaviors. Yet AU-level steering faces some fundamental challenges: identifying important AU-level activations for intervention and ensuring adaptability across diverse inputs and AUs. To address these challenges, we propose AUSteer shown as Figure 5.

262
263

4.1 ATOMIC UNIT LOCALIZATION

264
265
266
267
268
269

The first challenge is to identify which AUs and their activations should be steered. Prior work often uses probing (Li et al., 2023b) or activation values (Wang et al., 2025b) of contrastive pairs as importance metrics. Here, a contrastive pair consists of a positive example with a correct or high-quality response and a matched negative example with an incorrect or low-quality response. However, probing requires additional training resources and does not transfer well to single-dimension settings of AUs, while activation magnitudes tend to increase with layer depth, making cross-layer comparisons unreliable. To overcome these limitations, we propose an **activation momentum** strategy.

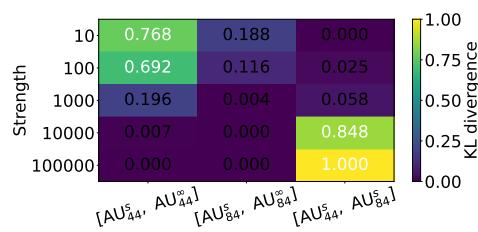


Figure 3: Pairwise KL divergence when steering different AUs. s means strength.

Decoded top-k tokens					
	'_no'	'NO'	'_called'	'_No'	'no'
AU ₄₄	'_no'	'NO'	'_called'	'_No'	'no'
AU ₈₄	'yes'	'_Yes'	'Yes'	'yes'	'_YES'
AU ₁₀₀	'_your'	'_they'	'your'	'_Your'	'_all'

Probability (high \rightarrow low)

Figure 4: Top-k decode tokens controlled by different AUs. The answer to input prompt is “yes”.

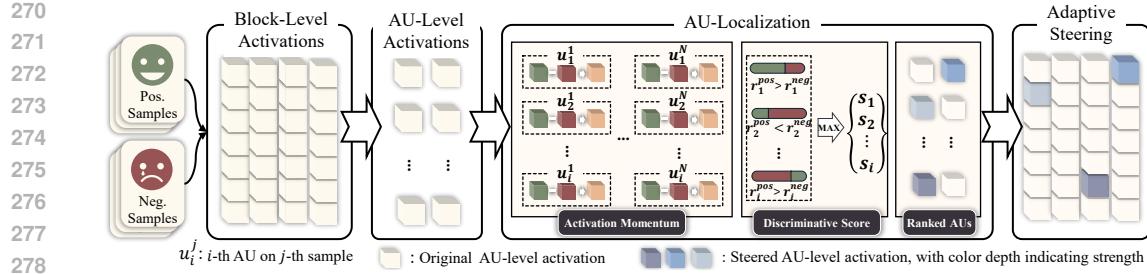


Figure 5: Overview of AUSTeer: (1) AU localization using activation momentum and discriminative scores; and (2) Adaptive steering across diverse inputs and AUs.

Given N pairs of contrastive samples³, an AU is **discriminative** if its activation coefficient x_i consistently separates positives from their matched negatives. Concretely, if x_i is systematically higher (or lower) for the positive sample of each pair than for the negative sample, the AU promotes (or suppresses) activation for positives relative to negatives. Such consistency indicates that the AU distinguishes positive from negative cases and is therefore task-relevant.

Formally, let u_i denote the i -th AU with the activation x_i . For the j -th sample pair, we define the activation momentum as

$$m_i^j = x_i^{j,\text{pos}} - x_i^{j,\text{neg}},$$

where $x_i^{j,\text{pos}}$ and $x_i^{j,\text{neg}}$ are the activation values of u_i on the j -th positive and negative sample, respectively. Note that both $x_i^{j,\text{pos}}$ and $x_i^{j,\text{neg}}$ are one-dimensional scalars as defined in Eq.1. When $m_i^j > 0$, the AU exhibits an activation promotion effect for positive samples, whereas $m_i^j < 0$ indicates a suppression effect. By counting the occurrences of promotion and suppression across samples, we can assess whether an AU shows a consistent effect on positive or negative cases, thereby quantifying its discriminative power. The proportions of positive and negative momenta are then given by

$$r_i^{\text{pos}} = \frac{1}{N} \sum_{j=1}^N \mathbb{1}(m_i^j > 0), \quad r_i^{\text{neg}} = \frac{1}{N} \sum_{j=1}^N \mathbb{1}(m_i^j < 0). \quad (2)$$

The discriminative score of the i -th AU is defined as:

$$s_i = \max(r_i^{\text{pos}}, r_i^{\text{neg}}).$$

This scoring provides a unified scale for cross-layer comparison, allowing us to rank AUs globally and select the most important k AUs for steering. **To verify how activation momentum contributes to discriminative causality and the final model outputs, we provide both theoretical and empirical analyses in Appendix H.**

4.2 ADAPTIVE STEERING

The steering of an activation x_i should be adaptive in two respects. First, it should adapt to diverse inputs. Different samples produce activations with different magnitudes and semantic contexts. Adding a constant vector ignores this variation, can distort useful directions, and may impair model performance. We therefore obtain the steered activation by $\hat{x}_i = x_i + \gamma_i x_i$, which scales the current activation, preserves its sign, and adapts well across varies samples.

Second, steering should adapt across AUs. More discriminative AUs receive stronger steering, while less important ones receive weaker intervention. This concentrates changes on useful AUs and limits unnecessary perturbations. To achieve this, we compute γ_i as

$$\gamma_i = \begin{cases} \alpha r_i^{\text{pos}}, & r_i^{\text{pos}} > r_i^{\text{neg}}, \\ -\alpha r_i^{\text{neg}}, & \text{otherwise,} \end{cases}$$

³Details of contrastive sample construction can be found in Appendix B.1

324 where α is a global steering strength factor, r_i^{pos} and r_i^{neg} are the positive and negative discriminative
 325 scores of the i -th AU calculated by Eq.2. The steering direction is determined by whether the AU
 326 has a promotive or suppressive effect. Finally, for the selected AUs, activations are updated as
 327

$$\hat{x}_i = x_i + \gamma_i x_i.$$

328
 329 **Applicability of AUSteer.** The proposed AUSteer can be applied to all key components of LLMs,
 330 including MHA, FFN, and residual streams, as the analysis above holds uniformly across these mod-
 331 ules. Unlike previous approaches that operate on entire block-level activations, AUSteer intervenes
 332 only on the most important dimensions within each block activation. This yields interventions that
 333 are both more efficient and less intrusive, embodying the principle of **steering less to achieve more**.
 334

335 5 EXPERIMENTS

336 5.1 EXPERIMENTAL SETTINGS

337 **Tasks and Evaluation Metrics.** We evaluate AUSteer on three types of tasks:
 338

- 339 • **Commonsense reasoning.** We use widely adopted datasets including BoolQ (Clark et al., 2019),
 340 COPA (Gordon et al., 2012), and WinoGrande (Sakaguchi et al., 2021), and report **accuracy** of
 341 the model’s responses using exact match.
- 342 • **Math problem solving.** We experiment with SVAMP (Patel et al., 2021) and MAWPS (Koncel-
 343 Kedziorski et al., 2016), where the model is required to solve math questions with or without
 344 reasoning. We evaluate **accuracy** by comparing the predicted answer with the correct number.
- 345 • **Open-ended generation.** We employ RealToxicPrompts (Gehman et al., 2020) and BPO (Cheng
 346 et al., 2024). For RealToxicPrompts, which contains challenging prompts that often elicit toxic
 347 content, we apply different steering methods to reduce toxicity. Automatic evaluation follows
 348 prior work (Wang et al., 2025a): **detoxification** performance, where toxicity is measured using
 349 the Perspective API⁴. For BPO, which aligns model outputs with human-preferred behaviors,
 350 we adopt the automatic evaluation protocol of Zheng et al. (2023); Liang et al. (2024) and report
 351 $\Delta\text{WR} = \text{WR}_{\text{steered}} - \text{WR}_{\text{original}}$. The win-rates are obtained by using GPT-5-mini (OpenAI,
 352 2025) and prompts from Liang et al. (2024) to compare the original and steered responses. For
 353 both datasets, **human evaluation** is conducted, where 3 annotators assess text **quality** (fluency,
 354 diversity) and **alignment** with the target objective on a 1–5 scale.

355 **Target LLMs.** We evaluate AUSteer on a diverse set of LLMs: (1) LLaMA2-7B-Chat (Touvron
 356 et al., 2023), which serves as the backbone in many related studies; (2) Gemma2-9B-it (Team et al.,
 357 2024), a strong decoder-only model for text generation; and (3) Qwen3-8B (Yang et al., 2025), one
 358 of the most recent LLMs. To further assess scalability, we also experiment with other LLMs and
 359 larger variants (e.g., 13B, 27B), with results reported in §5.4.

360 **Baselines.** We compare AUSteer against several competitive activation steering methods:
 361

- 362 • **ITI** (Li et al., 2023b), which uses contrastive samples to identify important attention heads, then
 363 derives steering vectors from activation differences for intervention.
- 364 • **CAA** (Rimsky et al., 2024), which extracts steering vectors from activation differences in residual
 365 streams and applies them at the block level.
- 366 • **SADI** (Wang et al., 2025b), which localizes important attention heads, FFNs, or layers via activa-
 367 tion differences, and applies adaptive steering through masking and scaling. We report results for
 368 its best-performing variant, SADI-HEAD.
- 369 • **STA** (Wang et al., 2025a), which identifies important atoms in sparse autoencoders (SAEs) of the
 370 target LLM, then applies steering vectors to residual streams. Since pretrained SAEs are currently
 371 available only for LLaMA 3.1 and Gemma2, we report its results only on Gemma2.

372 **AUSteer Variants.** The proposed method can be applied to any key component of LLMs. Since
 373 the two core modules in each Transformer layer are the attention and FFN blocks, we validate the
 374

⁴<https://www.perspectiveapi.com>

378 Table 1: Overall results of baseline methods and the proposed AUSteer across seven tasks. “#Acts”
 379 denotes the number of intervened activations for each method. k_h indicates the number of selected
 380 attention heads, ranging from 2 to 64. Results with \dagger are from (Wang et al., 2025a;b).
 381

382 Model	383 Method	#Acts (↓)	384 Commonsense Reasoning (↑)			385 Math Problem Solving (↑)		386 Avg.	387 Open Generation (↑)
			388 BoolQ	389 COPA	390 WinoG.	391 SVAMP	392 MAWPS		
388 LLaMA2-7B-Chat	Vanilla	0	70.52 \dagger	70.80 \dagger	50.91 \dagger	36.00	51.83	56.01	—
	ITI	$k_h \cdot 128$	74.10 \dagger	77.20 \dagger	52.80 \dagger	36.67	54.08	58.97	83.49
	CAA	4096	74.98 \dagger	75.20 \dagger	52.64 \dagger	34.33	55.21	58.47	84.57
	SADI	$k_h \cdot 128$	74.35 \dagger	78.80 \dagger	53.04 \dagger	36.33	54.93	59.49	86.32
	AUSteer-Head	≤ 100	76.27	75.40	52.80	37.67	56.06	59.64	89.66
	AUSteer-FFN	≤ 100	75.57	82.80	53.28	37.00	58.03	61.34	89.24
390 Gemma2-9B-it	Vanilla	0	86.64	77.40	67.25	67.67	92.11	78.21	—
	ITI	$k_h \cdot 256$	86.82	88.40	68.11	69.00	93.52	81.17	98.83
	CAA	3584	86.85	89.40	68.35	68.00	92.96	81.11	98.75 \dagger
	SADI	$k_h \cdot 256$	86.79	92.40	69.53	68.00	93.52	82.05	99.08
	STA	3584	87.03	91.60	69.61	68.67	92.39	81.86	99.33\dagger
	AUSteer-Head	≤ 100	86.79	91.00	70.72	71.00	94.65	82.83	99.00
394 Qwen3-8B	AUSteer-FFN	≤ 100	87.25	97.60	70.88	70.00	94.08	83.96	99.25
	Vanilla	0	87.43	89.00	63.61	68.67	84.51	78.64	—
	ITI	$k_h \cdot 128$	87.40	90.80	65.59	69.67	87.32	80.16	75.15
	CAA	4096	87.83	91.20	64.01	71.67	88.45	80.63	76.23
	SADI	$k_h \cdot 128$	87.65	93.20	64.25	73.00	85.92	80.80	78.07
	AUSteer-Head	≤ 100	87.71	95.40	65.35	76.33	91.27	83.21	80.90
	AUSteer-FFN	≤ 100	88.20	90.80	67.25	71.67	89.58	81.50	81.65

400
 401 generalizability of AUSteer by implementing two variants: **AUSteer-Head**, which steers AU-level
 402 activations in MHA, and **AUSteer-FFN**, which steers AU-level activations in FFN.

404 **Implementation details** for AUSteer and all other baseline methods, including contrastive pair
 405 construction, dataset statistics, and prompt templates, are provided in Appendix B.

406 **Hyperparameter settings.** For baseline methods, we perform hyperparameter sweeps following
 407 the recommendations in their papers to ensure a fair comparison. AUSteer introduces two hyper-
 408 parameters: (1) k , the number of AU-level activations selected for steering; and (2) α , a global
 409 steering-strength factor. To verify the claim that we can *steer less to achieve more*, we cap the
 410 number of steered activations at 100 and then run the sweep. Full details appear in Appendix C.

412 5.2 MAIN RESULTS

414
 415 **AUSteer significantly improves commonsense reasoning and math problem solving with min-
 416 imal intervention.** Table 1 reports overall results on LLaMA2-7B-Chat, Gemma2-9B-it, and
 417 Qwen3-8B. Across all five tasks on commonsense reasoning and math questions, either AUSteer-
 418 FFN or AUSteer-Head attains the highest average accuracy while steering at most 100 activations,
 419 in contrast to SADI’s $k_h \times 128$ head interventions and CAA/STA, which modify thousands of acti-
 420 vations. Concretely, AUSteer-FFN improves the average over SADI by **+1.85** on LLaMA2-7B-Chat
 421 (61.34 vs. 59.49), **+1.91** on Gemma2-9B-it (83.96 vs. 82.05), and **+0.7** on Qwen3-8B. AUSteer-
 422 Head is also competitive, exceeding SADI on Qwen3-8B by **+2.41** under the same low-budget con-
 423 straint. Beyond averages, AUSteer-Head or AUSteer-FFN consistently achieves the best scores on
 424 individual tasks across the five commonsense and math benchmarks.

425 **AUSteer improves open-ended gen-
 426 eration.** In automatic evaluation
 427 (Table 1), AUSteer significantly in-
 428 creases detoxification rates under
 429 toxic prompts. Compared with
 430 SADI, it yields around 2%-3% higher
 431 detoxification on Llama2 and Qwen3.
 432 On BPO datasets, AUSteer steers
 433 models toward human-preferred responses, improving win-rates (ΔWR) by 8.5%, 4.5%, and 7%

434 Table 2: Human evaluation on open-ended generation tasks.

	435 LLaMA2-7B-Chat		436 Gemma2-9B-it		437 Qwen3-8B		
	438 SADI	439 AUSteer	440 SADI	441 STA	442 AUSteer	443 SADI	444 AUSteer
445 Quality (↑)	3.3	3.4	4.2	4.4	4.3	4.1	4.3
446 Alignment (↑)	3.6	3.8	4.5	4.7	4.7	3.9	4.1

432 on the three LLMs, respectively. In human evaluation (Table 2), AUSteer outperforms baselines in
 433 most cases on generation quality (fluency and diversity) and on alignment with the generation target.
 434

435 5.3 ABLATION STUDIES

437 We evaluate the contribution of each component in AUS-
 438 teer: AU localization and adaptive steering. To assess
 439 the proposed activation momentum localization, we com-
 440 pare it with (1) **random localization**, which selects acti-
 441 vations at random for steering, and (2) **activation differ-
 442 ence** across contrastive samples for localization, as intro-
 443 duced in SADI. To assess adaptive steering, we compare
 444 it with (3) a **fixed steering vector**, which replaces $\gamma_i x_i$
 445 with the mean activation difference, following ITI, and
 446 (4) a **fixed steering strength** γ , which applies the same
 447 strength across all selected AUs.

448 The average accuracy across commonsense reasoning and math questions are shown in Table 3.
 449 When using random or activation-difference localization, steering performance drops substantially,
 450 verifying the effectiveness of the proposed activation momentum-based localization. Similarly,
 451 replacing adaptive steering with a fixed vector or fixed strength reduces performance by 1.91 and
 452 0.92, respectively, demonstrating the importance of adaptivity across diverse inputs and AUs.

453 5.4 SCALABILITY AND GENERALIZABILITY OF AUSTEER

454 Table 4: Experimental results on more LLMs.

	LLaMA3.1-8B-Instruct			LLaMA2-13B-Chat			Gemma2-27B-it		
	BoolQ	COPA	WinoG.	BoolQ	COPA	WinoG.	BoolQ	COPA	WinoG.
Vanilla	82.57	83.80	57.77	84.01	89.00	53.99	86.88	86.00	63.61
AUSteer-Head	83.18	86.00	60.38	85.25	91.00	59.43	88.10	90.20	67.25
AUSteer-FFN	83.79	86.00	61.56	85.02	91.20	58.88	88.41	89.80	66.30

463 We evaluate AUSTEER on larger and varied LLMs, including LLaMA3.1-8B-Instruct, LLaMA2-
 464 13B-Chat (Touvron et al., 2023), and Gemma2-27B-it (Team et al., 2024), on commonsense rea-
 465 soning tasks. Table 4 reports the results. Both AUSTEER-HEAD and AUSTEER-FFN substantially
 466 improve the base models, confirming the method’s scalability and generalizability. [More results](#)
 467 on larger LLMs with diverse structures including Qwen3-30B-A3B and Llama-3.3-70B-Instruct are
 468 provided in Appendix G.

470 5.5 FURTHER ANALYSIS

471 To investigate the internal mechanisms of AUSteer more comprehensively, we provide the following
 472 discussions.

- 473 • Appendix C. We illustrate the hyperparameter sweep for k and α and report their optimal values
 474 across tasks. [We also provide guidelines for hyperparameter search in both resource-sufficient and
 475 resource-constrained settings.](#)
- 476 • Appendix D. We characterize activation momentum for different AUs and analyze the locations
 477 of AUs within MHA and FFN.
- 478 • Appendix E. We present and discuss the overlap of localized AUs across tasks.
- 479 • Appendix F. We evaluate AUSTEER under varying numbers of contrastive pairs used for AU
 480 localization.
- 481 • Appendix G. [We demonstrate AUSteer’s scalability on larger LLMs with diverse architectures,
 482 including Qwen3-30B-A3B \(a sparse MoE model\) and Llama-3.3-70B-Instruct \(evaluated in its
 483 4-bit quantized form\).](#)

Table 3: Ablation study results on Gemma2-9B-it.

Method	Avg. Acc
AUSteer-FFN	83.96
Random Loc.	79.08 (-4.88)
Act. Diff.	83.12 (-0.84)
Fixed. Vec.	82.05 (-1.91)
Fixed. Strength	83.04 (-0.92)

- 486 • Appendix H. We verify how activation momentum contributes to discriminative causality and final
487 model outputs, providing both theoretical and empirical analyses.
- 488 • Appendix I. We present a detailed analysis of AUSteer’s efficiency and computational overhead
489 compared with baseline methods. Overhead results on Llama-3.3-70B-Instruct are also included.
- 490 • Appendix J. We experiment with additional control variants of AUSteer—such as steering all AUs
491 or broader subsets—and confirm that, as with AUSteer, steering should be limited to task-relevant
492 and beneficial AUs rather than blindly steering all or large numbers of units.
- 493 • Appendix K. To determine whether we should promote useful AUs or suppress unhelpful ones, we
494 conduct both empirical and theoretical analyses and show that promotion consistently outperforms
495 suppression.

497 6 CONCLUSION

500 In this work, we investigate the heterogeneity and its root cause of block-level activations and pro-
501 pose AUSteer, a fine-grained AU-level activation steering method. AUSteer localizes salient AUs
502 via activation momentum and assigns dynamic steering strengths per input and AU. Extensive ex-
503 periments show that, with far fewer intervened activations, AUSteer significantly outperforms state-
504 of-the-art methods across diverse tasks, demonstrating that *steering less achieves more*.

506 REFERENCES

508 Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn
509 Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless
510 assistant with reinforcement learning from human feedback. *arXiv preprint arXiv:2204.05862*,
511 2022.

512 Amrita Bhattacharjee, Shaona Ghosh, Traian Rebedea, and Christopher Parisien. Towards inference-
513 time category-wise safety steering for large language models. In *Neurips Safe Generative AI*
514 *Workshop 2024*, 2024.

515 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhari-
516 wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agar-
517 wal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
518 Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz
519 Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
520 Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. In
521 H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), *Advances in Neu-
522 ral Information Processing Systems*, volume 33, pp. 1877–1901. Curran Associates, Inc.,
523 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

525 Jiale Cheng, Xiao Liu, Kehan Zheng, Pei Ke, Hongning Wang, Yuxiao Dong, Jie Tang, and Minlie
526 Huang. Black-box prompt optimization: Aligning large language models without model training.
527 In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Proceedings of the 62nd Annual Meet-
528 ing of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 3201–3219,
529 Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi: 10.18653/v1/
530 2024.acl-long.176. URL <https://aclanthology.org/2024.acl-long.176/>.

531 Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
532 Toutanova. BoolQ: Exploring the surprising difficulty of natural yes/no questions. In Jill
533 Burstein, Christy Doran, and Thamar Solorio (eds.), *Proceedings of the 2019 Conference of
534 the North American Chapter of the Association for Computational Linguistics: Human Lan-
535 guage Technologies, Volume 1 (Long and Short Papers)*, pp. 2924–2936, Minneapolis, Min-
536 nesota, June 2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1300. URL
537 <https://aclanthology.org/N19-1300/>.

538 Guy Dar, Mor Geva, Ankit Gupta, and Jonathan Berant. Analyzing transformers in embedding
539 space. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), *Proceedings of the*

540 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Pa-
 541 pers), pp. 16124–16170, Toronto, Canada, July 2023. Association for Computational Linguis-
 542 tics. doi: 10.18653/v1/2023.acl-long.893. URL <https://aclanthology.org/2023.acl-long.893/>.

543 544 Leo Gao, Tom Dupre la Tour, Henk Tillman, Gabriel Goh, Rajan Troll, Alec Radford, Ilya Sutskever,
 545 Jan Leike, and Jeffrey Wu. Scaling and evaluating sparse autoencoders. In *The Thirteenth Inter-
 546 national Conference on Learning Representations*, 2025.

547 548 Samuel Gehman, Suchin Gururangan, Maarten Sap, Yejin Choi, and Noah A. Smith. RealToxic-
 549 ityPrompts: Evaluating neural toxic degeneration in language models. In Trevor Cohn, Yulan
 550 He, and Yang Liu (eds.), *Findings of the Association for Computational Linguistics: EMNLP*
 551 2020, pp. 3356–3369, Online, November 2020. Association for Computational Linguistics.
 552 doi: 10.18653/v1/2020.findings-emnlp.301. URL <https://aclanthology.org/2020.findings-emnlp.301/>.

553 554 Mor Geva, Avi Caciularu, Kevin Wang, and Yoav Goldberg. Transformer feed-forward layers
 555 build predictions by promoting concepts in the vocabulary space. In Yoav Goldberg, Zornitsa
 556 Kozareva, and Yue Zhang (eds.), *Proceedings of the 2022 Conference on Empirical Methods*
 557 in *Natural Language Processing*, pp. 30–45, Abu Dhabi, United Arab Emirates, December
 558 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.emnlp-main.3. URL
 559 <https://aclanthology.org/2022.emnlp-main.3/>.

560 561 Andrew Gordon, Zornitsa Kozareva, and Melissa Roemmele. SemEval-2012 task 7: Choice of plau-
 562 sible alternatives: An evaluation of commonsense causal reasoning. In Eneko Agirre, Johan Bos,
 563 Mona Diab, Suresh Manandhar, Yuval Marton, and Deniz Yuret (eds.), **SEM 2012: The First*
 564 *Joint Conference on Lexical and Computational Semantics – Volume 1: Proceedings of the main*
 565 *conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop*
 566 *on Semantic Evaluation (SemEval 2012)*, pp. 394–398, Montréal, Canada, 7–8 June 2012. Asso-
 567 ciation for Computational Linguistics. URL <https://aclanthology.org/S12-1052/>.

568 569 Chi Han, Jialiang Xu, Manling Li, Yi Fung, Chenkai Sun, Nan Jiang, Tarek Abdelzaher, and Heng
 570 Ji. Word embeddings are steers for language models. In Lun-Wei Ku, Andre Martins, and
 571 Vivek Srikumar (eds.), *Proceedings of the 62nd Annual Meeting of the Association for Com-
 572 putational Linguistics (Volume 1: Long Papers)*, pp. 16410–16430, Bangkok, Thailand, August
 573 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.864. URL
 574 <https://aclanthology.org/2024.acl-long.864/>.

575 576 Peixuan Han, Cheng Qian, Xiusi Chen, Yuji Zhang, Denghui Zhang, and Heng Ji. Internal activation
 577 as the polar star for steering unsafe llm behavior. *arXiv preprint arXiv:2502.01042*, 2025.

578 579 Rima Hazra, Sayan Layek, Somnath Banerjee, and Soujanya Poria. Safety arithmetic: A framework
 580 for test-time safety alignment of language models by steering parameters and activations. In Yaser
 581 Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), *Proceedings of the 2024 Conference on*
 582 *Empirical Methods in Natural Language Processing*, pp. 21759–21776, Miami, Florida, USA,
 583 November 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.
 584 1212. URL <https://aclanthology.org/2024.emnlp-main.1212/>.

585 586 Zhengfu He, Wentao Shu, Xuyang Ge, Lingjie Chen, Junxuan Wang, Yunhua Zhou, Frances Liu,
 587 Qipeng Guo, Xuanjing Huang, Zuxuan Wu, et al. Llama scope: Extracting millions of features
 588 from llama-3.1-8b with sparse autoencoders. *arXiv preprint arXiv:2410.20526*, 2024.

589 590 Houcheng Jiang, Junfeng Fang, Ningyu Zhang, Mingyang Wan, Guojun Ma, Xiang Wang, Xiangnan
 591 He, and Tat-Seng Chua. Anyedit: Edit any knowledge encoded in language models. In *Forty-
 592 second International Conference on Machine Learning*, 2025.

593 594 Shahar Katz, Yonatan Belinkov, Mor Geva, and Lior Wolf. Backward lens: Projecting lan-
 595 guage model gradients into the vocabulary space. In Yaser Al-Onaizan, Mohit Bansal, and
 596 Yun-Nung Chen (eds.), *Proceedings of the 2024 Conference on Empirical Methods in Nat-
 597 ural Language Processing*, pp. 2390–2422, Miami, Florida, USA, November 2024. Associa-
 598 tion for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.142. URL <https://aclanthology.org/2024.emnlp-main.142/>.

594 Rik Koncel-Kedziorski, Subhro Roy, Aida Amini, Nate Kushman, and Hannaneh Hajishirzi.
 595 MAWPS: A math word problem repository. In Kevin Knight, Ani Nenkova, and Owen Rambow
 596 (eds.), *Proceedings of the 2016 Conference of the North American Chapter of the Association for*
 597 *Computational Linguistics: Human Language Technologies*, pp. 1152–1157, San Diego, California,
 598 June 2016. Association for Computational Linguistics. doi: 10.18653/v1/N16-1136. URL
 599 <https://aclanthology.org/N16-1136/>.

600 Kai Konen, Sophie Jentzsch, Diaoulé Diallo, Peer Schütt, Oliver Bensch, Roxanne El Baff, Dominik
 601 Opitz, and Tobias Hecking. Style vectors for steering generative large language models. In Yvette
 602 Graham and Matthew Purver (eds.), *Findings of the Association for Computational Linguistics:*
 603 *EACL 2024*, pp. 782–802, St. Julian’s, Malta, March 2024. Association for Computational Lin-
 604 guistics. URL <https://aclanthology.org/2024.findings-eacl.52/>.

605 Chong Li, Shaonan Wang, Yunhao Zhang, Jiajun Zhang, and Chengqing Zong. Interpreting and
 606 exploiting functional specialization in multi-head attention under multi-task learning. In Houda
 607 Bouamor, Juan Pino, and Kalika Bali (eds.), *Proceedings of the 2023 Conference on Empiri-
 608 cal Methods in Natural Language Processing*, pp. 16460–16476, Singapore, December 2023a.
 609 Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.1026. URL
 610 <https://aclanthology.org/2023.emnlp-main.1026/>.

611 Kenneth Li, Oam Patel, Fernanda Viégas, Hanspeter Pfister, and Martin Wattenberg. Inference-
 612 time intervention: Eliciting truthful answers from a language model. In A. Oh, T. Nau-
 613 mann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), *Advances in Neural*
 614 *Information Processing Systems*, volume 36, pp. 41451–41530. Curran Associates, Inc.,
 615 2023b. URL https://proceedings.neurips.cc/paper_files/paper/2023/file/81b8390039b7302c909cb769f8b6cd93-Paper-Conference.pdf.

616 Kenneth Li, Oam Patel, Fernanda Viégas, Hanspeter Pfister, and Martin Wattenberg. Inference-time
 617 intervention: Eliciting truthful answers from a language model. *Advances in Neural Information*
 618 *Processing Systems*, 36:41451–41530, 2023c.

619 Zhaoyi Li, Gangwei Jiang, Hong Xie, Linqi Song, Defu Lian, and Ying Wei. Understanding and
 620 patching compositional reasoning in LLMs. In Lun-Wei Ku, Andre Martins, and Vivek Sriku-
 621 mar (eds.), *Findings of the Association for Computational Linguistics: ACL 2024*, pp. 9668–9688,
 622 Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi: 10.18653/
 623 v1/2024.findings-acl.576. URL <https://aclanthology.org/2024.findings-acl.576/>.

624 Zihan Liang, Ben Chen, Zhuoran Ran, Zihan Wang, Huangyu Dai, Yufei Ma, Dehong Gao, Xi-
 625 aoyan Cai, and Libin Yang. Self-renewal prompt optimizing with implicit reasoning. In Yaser
 626 Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), *Findings of the Association for Com-
 627 putational Linguistics: EMNLP 2024*, pp. 3030–3041, Miami, Florida, USA, November 2024.
 628 Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-emnlp.171. URL
 629 <https://aclanthology.org/2024.findings-emnlp.171/>.

630 Tom Lieberum, Senthooran Rajamanoharan, Arthur Conmy, Lewis Smith, Nicolas Sonnerat, Vikrant
 631 Varma, Janos Kramar, Anca Dragan, Rohin Shah, and Neel Nanda. Gemma scope: Open sparse
 632 autoencoders everywhere all at once on gemma 2. In Yonatan Belinkov, Najoung Kim, Jaap
 633 Jumelet, Hosein Mohebbi, Aaron Mueller, and Hanjie Chen (eds.), *Proceedings of the 7th Black-
 634 boxNLP Workshop: Analyzing and Interpreting Neural Networks for NLP*, pp. 278–300, Miami,
 635 Florida, US, November 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.
 636 blackboxnlp-1.19. URL <https://aclanthology.org/2024.blackboxnlp-1.19/>.

637 Clement Neo, Luke Ong, Philip Torr, Mor Geva, David Krueger, and Fazl Barez. Towards inter-
 638 pretting visual information processing in vision-language models. In *The Thirteenth International*
 639 *Conference on Learning Representations*, 2025.

640 OpenAI. Gpt-5 models. <https://platform.openai.com/docs/models>, 2025.

641 Arkil Patel, Satwik Bhattacharya, and Navin Goyal. Are NLP models really able to solve sim-
 642 ple math word problems? In Kristina Toutanova, Anna Rumshisky, Luke Zettlemoyer, Dilek
 643 Hakkani-Tur, Iz Beltagy, Steven Bethard, Ryan Cotterell, Tanmoy Chakraborty, and Yichao Zhou

648 (eds.), *Proceedings of the 2021 Conference of the North American Chapter of the Association*
 649 *for Computational Linguistics: Human Language Technologies*, pp. 2080–2094, Online, June
 650 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.naacl-main.168. URL
 651 <https://aclanthology.org/2021.naacl-main.168/>.

652

653 Joris Postmus and Steven Abreu. Steering large language models using conceptors: Improving
 654 addition-based activation engineering. *arXiv preprint arXiv:2410.16314*, 2024.

655

656 Nate Rahn, Pierluca D’Oro, and Marc G Bellemare. Controlling large language model agents with
 657 entropic activation steering. In *ICML 2024 Workshop on Mechanistic Interpretability*, 2024.

658

659 Nina Rimsky, Nick Gabrieli, Julian Schulz, Meg Tong, Evan Hubinger, and Alexander Turner.
 660 Steering llama 2 via contrastive activation addition. In Lun-Wei Ku, Andre Martins, and
 661 Vivek Srikumar (eds.), *Proceedings of the 62nd Annual Meeting of the Association for Com-
 662 putational Linguistics (Volume 1: Long Papers)*, pp. 15504–15522, Bangkok, Thailand, August
 663 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.828. URL
 664 <https://aclanthology.org/2024.acl-long.828/>.

665

666 Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: an adver-
 667 sarial winograd schema challenge at scale. *Commun. ACM*, 64(9):99–106, August 2021. ISSN
 668 0001-0782. doi: 10.1145/3474381. URL <https://doi.org/10.1145/3474381>.

669

670 Samuel Soo, Wesley Teng, and Chandrasekaran Balaganesh. Steering large language models with
 671 feature guided activation additions. *arXiv e-prints*, pp. arXiv–2501, 2025.

672

673 Asa Cooper Stickland, Alexander Lyzhov, Jacob Pfau, Salsabila Mahdi, and Samuel R Bowman.
 674 Steering without side effects: Improving post-deployment control of language models. In *Neurips
 675 Safe Generative AI Workshop 2024*, 2024.

676

677 Alessandro Stolfo, Vidhisha Balachandran, Safoora Yousefi, Eric Horvitz, and Besmira Nushi. Im-
 678 proving instruction-following in language models through activation steering. In *The Thirteenth
 679 International Conference on Learning Representations*, 2025.

680

681 Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya
 682 Pathak, Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale, Juliette Love, et al. Gemma: Open
 683 models based on gemini research and technology. *arXiv preprint arXiv:2403.08295*, 2024.

684

685 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
 686 lay Bashlykov, Soumya Batra, Prajwäl Bhargava, Shruti Bhosale, et al. Llama 2: Open foun-
 687 dation and fine-tuned chat models. *arXiv preprint arXiv:2307.09288*, 2023.

688

689 Alexander Matt Turner, Lisa Thiergart, Gavin Leech, David Udell, Juan J Vazquez, Ulisse Mini, and
 690 Monte MacDiarmid. Activation addition: Steering language models without optimization. *arXiv
 691 e-prints*, pp. arXiv–2308, 2023.

692

693 Teun van der Weij, Massimo Poesio, and Nandi Schoots. Extending activation steering to broad
 694 skills and multiple behaviours. *arXiv preprint arXiv:2403.05767*, 2024.

695

696 Mengru Wang, Ziwen Xu, Shengyu Mao, Shumin Deng, Zhaopeng Tu, Huajun Chen, and Ningyu
 697 Zhang. Beyond prompt engineering: Robust behavior control in LLMs via steering target atoms.
 698 In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.),
 699 *Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Vol-
 700 ume 1: Long Papers)*, pp. 23381–23399, Vienna, Austria, July 2025a. Association for Com-
 701 putational Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/2025.acl-long.1139. URL
 702 <https://aclanthology.org/2025.acl-long.1139/>.

703

704 Weixuan Wang, JINGYUAN YANG, and Wei Peng. Semantics-adaptive activation intervention
 705 for llms via dynamic steering vectors. In *The Thirteenth International Conference on Learning
 706 Representations*, 2025b.

702 Xintong Wang, Jingheng Pan, Liang Ding, Longyue Wang, Longqin Jiang, Xingshan Li, and Chris
 703 Biemann. CogSteer: Cognition-inspired selective layer intervention for efficiently steering large
 704 language models. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher
 705 Pilehvar (eds.), *Findings of the Association for Computational Linguistics: ACL 2025*, pp. 25507–
 706 25522, Vienna, Austria, July 2025c. Association for Computational Linguistics. ISBN 979-8-
 707 89176-256-5. doi: 10.18653/v1/2025.findings-acl.1308. URL <https://aclanthology.org/2025.findings-acl.1308/>.

709 Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du, An-
 710 drew M Dai, and Quoc V Le. Finetuned language models are zero-shot learners. In *International
 711 Conference on Learning Representations*, 2022.

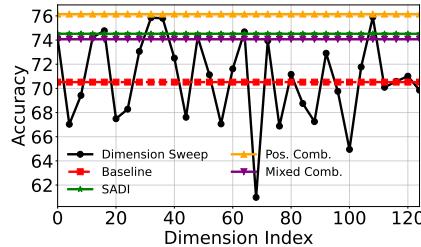
713 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
 714 Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. *arXiv preprint
 715 arXiv:2505.09388*, 2025.

716 Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
 717 Zi Lin, Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica.
 718 Judging llm-as-a-judge with mt-bench and chatbot arena. In *Proceedings of the 37th International
 719 Conference on Neural Information Processing Systems*, NIPS '23, Red Hook, NY, USA, 2023.
 720 Curran Associates Inc.

721 Andy Zou, Long Phan, Sarah Chen, James Campbell, Phillip Guo, Richard Ren, Alexander Pan,
 722 Xuwang Yin, Mantas Mazeika, Ann-Kathrin Dombrowski, et al. Representation engineering: A
 723 top-down approach to ai transparency. *arXiv preprint arXiv:2310.01405*, 2023.

726 A MORE RESULTS ON ACTIVATION HETEROGENEITY

728 We present additional results for attention heads and FFNs in Figures 6 to 8, confirming heterogeneity
 729 in block level activations.



731 Figure 6: Steering results for 26th attention output at 15th layer. **Positive Combination**: steering
 732 four beneficial dimensions (32, 36, 48, 64). **Mixed Combination**: steering those four plus two
 733 detrimental dimensions (44, 88).

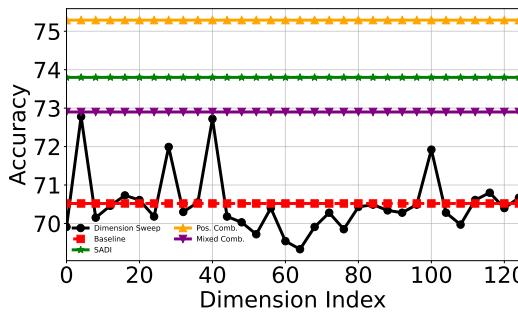


Figure 7: Steering results for 1st attention output at 19th layer. **Positive Combination**: steering three beneficial dimensions (28, 40, 100). **Mixed Combination**: steering those three plus two detrimental dimensions (64, 68).

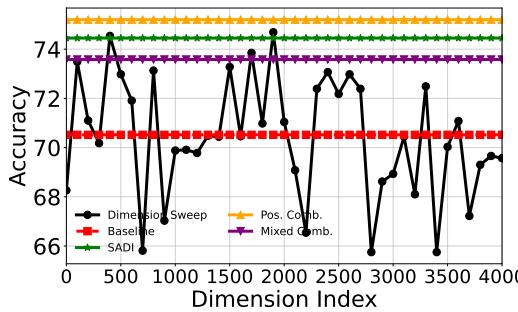


Figure 8: Steering results for the FFN output at layer 17. **Positive Combination**: steering three beneficial dimensions (400, 800, 2400). **Mixed Combination**: steering those three plus two detrimental dimensions (2200, 3500).

B DETAILED EXPERIMENT SETUP

B.1 CONTRASTIVE SAMPLE CONSTRUCTION

Contrastive sample pairs are required by AUSteer and all baseline methods. To ensure a fair comparison, we follow SADI (Wang et al., 2025b) and STA (Wang et al., 2025a) to construct same pairs for every method. For each sample in commonsense reasoning, we form a positive sample by concatenating the question with the correct answer, and a negative sample by concatenating the question with a randomly selected incorrect answer. In math problem solving, we use the question plus the correct answer as the positive sample. For the negative sample, we use a sentence encoder to select the most semantically similar incorrect answer from the answer pool and concatenate it with the question. For detoxification, we select entries from RealToxicityPrompts with high toxicity scores as negative prompts. Following STA, the safe response is used as the positive sample. In BPO, we use the original prompt paired with a high-quality (human-preferred) response as the positive sample, and the same prompt paired with a low-quality response from the dataset as the negative sample.

We clarify that (1) contrastive samples are required by almost all activation steering methods and are a common practice in prior work (Li et al., 2023b; Rimsky et al., 2024; Wang et al., 2025b;a), rather than a limitation unique to AUSteer; (2) constructing these pairs is generally straightforward based on available samples and easy to implement; and (3) we provide and verify a simple, general, and ready-to-use procedure for constructing contrastive pairs across different and new tasks.

(1) Contrastive samples are widely required in activation steering. Existing activation steering methods, including ITI, CAA, SADI, and STA, all rely on contrastive positive–negative samples to localize important components and/or to estimate steering vectors. Thus, the requirement of contrastive pairs is not a limitation specific to AUSteer, but rather a standard and widely adopted

810 practice. For fair comparison, we also ensure that all baseline methods use the same contrastive
 811 pairs in our experiments.
 812

813 **(2) Constructing contrastive pairs is simple in practice.** Following prior work such as SADI and
 814 STA, constructing contrastive pairs is straightforward. For commonsense reasoning tasks, the nega-
 815 tive sample can be obtained by pairing the question with an incorrect answer. For other datasets,
 816 negative samples can be generated by selecting semantically similar responses from a pool of can-
 817 didate answers, or by using datasets that already include ready-to-use negative samples.
 818

819 **(3) A general solution for new tasks.** For tasks not covered in existing studies, we propose a
 820 general and effective approach. **Positive sample:** concatenate the question with the correct answer.
 821 **Negative sample:** use a sentence encoder to identify the most semantically similar *incorrect* answer
 822 from the answer pool and concatenate it with the question. For example, previous studies did not
 823 include math tasks, so we constructed contrastive pairs for those tasks using this method. For all
 824 other tasks, we use the contrastive pairs provided by prior work to ensure fair comparison.
 825

826 **(4) Empirical verification of the general solution.** Using the above general construction method,
 827 we re-evaluated AUSteer on Llama2-7B-Chat. As shown in Table 5, this simple approach achieves
 828 performance *comparable to or even slightly better* than our original results.
 829

830 Table 5: Results on LLaMA2-7B-Chat with new contrastive pairs.
 831

Method	Avg. Acc. (5 tasks)	Detox	BPO
Vanilla	56.01	—	—
SADI	59.49	86.32	13.50
AUSteer (previous result)	61.34	89.24	22.00
AUSteer (new solution)	61.53	89.99	22.50

832 In summary, contrastive pairs are commonly required across activation steering studies and are not
 833 a unique limitation of AUSteer. Moreover, constructing them is straightforward, and our general
 834 solution is simple, effective, and empirically validated to yield strong performance. We acknowledge
 835 that the reliance on contrastive pairs is an inherent limitation of existing activation-steering methods,
 836 and we plan to explore approaches that reduce or eliminate this requirement in future work.
 837

838 B.2 DATA STATISTICS

839 Following SADI, we use at most 1,000 contrastive pairs per task to identify important MHA and
 840 FFN components or to generate steering vectors. For evaluation, we use the full test set of each task.
 841 Detailed dataset statistics are provided in Table 6.
 842

843 B.3 PROMPTS FOR DATASETS AND EVALUATION

844 To ensure a fair comparison, we use identical prompt templates across all methods. For common-
 845 sense reasoning tasks, the templates strictly follow SADI (Wang et al., 2025b) and the authors’
 846 released code. For RealToxicityPrompts, the templates follow STA (Wang et al., 2025a). Figure 9
 847 shows the templates for SVAMP and MAWPS. For BPO, we use the prompts provided in the dataset
 848 directly.
 849

850 C HYPERPARAMETER SENSITIVITY

851 AUSteer introduces two hyperparameters: (1) k , the number of AU-level activations selected for
 852 steering; and (2) α , a global steering-strength factor. To verify the claim that we can *steer less*
 853

854 Table 6: The number of contrastive pairs and testing samples for 7 tasks.
 855

	BoolQ	COPA	WinoGrande	SVAMP	MAWPS	Detox	BPO
# of contrastive pairs	1000	1000	1000	700	1000	1000	1000
Test	3270	500	1267	300	355	1199	200

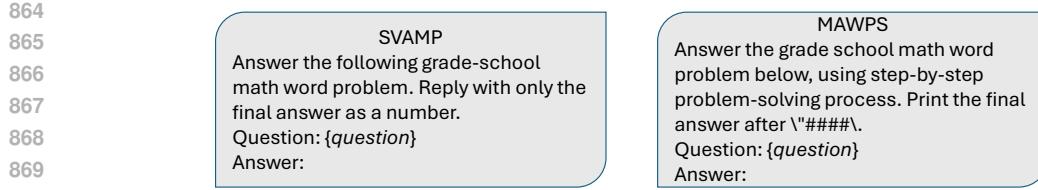
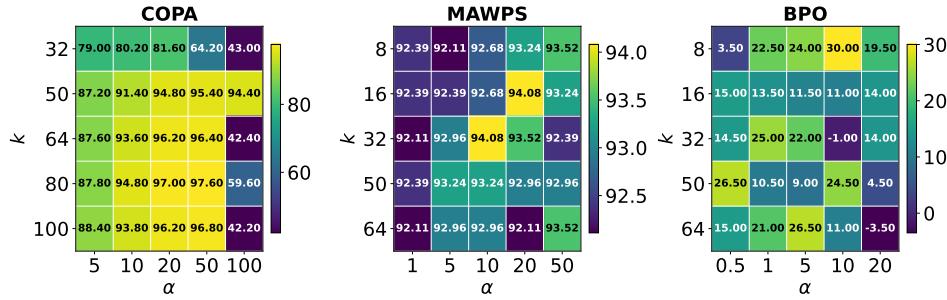


Figure 9: Prompt templates for math problems.

Figure 10: Performance heatmaps for COPA, MAWPS, and BPO tasks as functions of α and k .

883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

to achieve more, we cap the number of steered activations at 100 and sweep both k and α from 1 to 100 for main experiments. Figure 10 reports performance across COPA, MAWPS, and BPO. Neighboring settings around the optimal hyperparameters achieve comparable results, indicating robustness. The optimal values vary across tasks to some extent, showing that the hyperparameters are task-specific, a trend consistent with Wang et al. (2025b).

To set the hyperparameters for each task, we provide two solutions: (1) under sufficient computing resources, we perform a full hyperparameter sweep, which is consistent with previous studies (Li et al., 2023b; Rimsky et al., 2024; Wang et al., 2025b;a); and (2) in computing-constrained scenarios, we recommend using a very small validation set to conduct a quick hyperparameter sweep. In addition, (3) the optimal hyperparameters used in our experiments are reported in Tables 8 and 9.

General hyperparameter sweep (resource-sufficient case). Task-specific hyperparameters are still a common challenge in activation steering, and the standard solution used widely in existing studies is to perform a sweep (Li et al., 2023b; Rimsky et al., 2024; Wang et al., 2025b;a). Following these studies, we perform a full hyperparameter sweep to empirically determine optimal α and k . We also run the same sweep for all baseline methods to ensure fair comparison in Table 1. Across tasks, both α and k typically fall within **1–100** and consistently yield strong results.

Fast sweep using a small validation set (resource- or time-constrained case). When resources are limited, we recommend sweeping using only **50–100 validation samples**. This process is extremely fast (e.g., \sim **5 minutes** on an H100 GPU for 100 samples for the COPA task). Results using this small-set search are shown in below Table 7. It can be observed that even with only very few samples for hyperparameter selection, our proposed method still significantly outperforms the baseline methods and achieves results comparable to the full search.

Table 7: Results of fast sweep on LLaMA2-7B-Chat

Method	Avg. Acc. (5 tasks)	Detox	BPO
Vanilla	56.01	–	–
SADI	59.49	86.32	13.50
AUSteer (100-sample search)	61.03	88.49	22.00
AUSteer (Full search)	61.34	89.24	22.00

The optimal values of α and k used for each task are reported in Tables 8 and 9. These values were obtained via full sweep, and the same process was applied to baseline methods for fairness. The

918 task-specific variation of hyperparameters aligns with observations from prior work, indicating that
 919 different tasks may require different hyperparameter values.
 920

921 However, **for any given task, the hyperparameters are stable and robust**. For example, as shown
 922 in Figure 10, for the COPA task, when $20 \leq \alpha \leq 50$ and $64 \leq k \leq 100$, the performance remains
 923 stable and varies within only 1.5%, while still significantly outperforming the baseline methods.
 924 For the MAWPS task, when $10 \leq \alpha \leq 50$ and $16 \leq k \leq 50$, the performance also varies within
 925 approximately 1.5%. Therefore, for each specific task, our method is hyperparameter-robust, and
 926 within the optimal region, it achieves comparable results with only small variations.
 927

928 Table 8: Optimal α for main experiments.
 929

BoolQ	COPA	Winogrande	SVAMP	MAWPS	Detoxic.	BPO
15	50	100	8	8	15	32
50	50	100	100	50	8	10
10	20	20	10	50	10	16

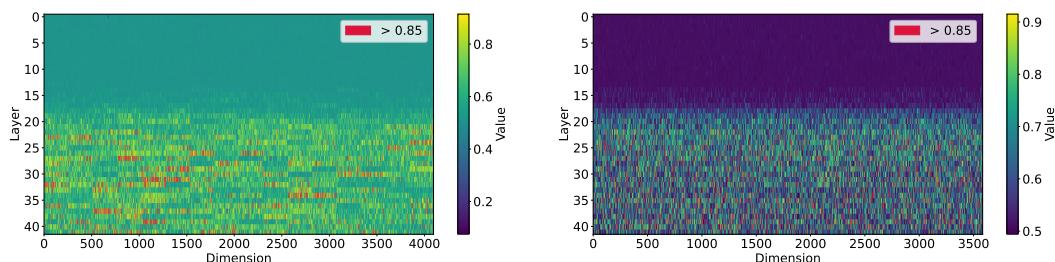
936 Table 9: Optimal k for main experiments.
 937

BoolQ	COPA	Winogrande	SVAMP	MAWPS	Detoxic.	BPO
100	16	2	50	80	16	16
8	80	64	4	8	16	8
100	8	100	100	2	8	10

943 In summary, although the hyperparameters remain robust within an individual task, task-specific
 944 hyperparameters are still a common challenge in activation steering. The standard solution used
 945 widely in existing studies is to perform a sweep. To further reduce cost, we show that sweeping on
 946 a very small validation set is both **efficient** and **highly effective**, while still outperforming strong
 947 baselines. We will explore more principled approaches to reducing task-dependent hyperparameter
 948 sensitivity in future work.
 949

950

D CHARACTERISTICS OF ACTIVATION MOMENTUM AND LOCALIZED AUS

 951963 (a) AU scores in the MHA of Gemma2-9B-it on the
 964 COPA dataset.963 (b) AU scores in the FFN of Gemma2-9B-it on the
 964 COPA dataset.965 Figure 11: Characteristics of AUs in MHA and FFN.
 966

968 Figures 11a and 11b report the discriminative score s_i for each AU in both MHA and FFN, computed
 969 via activation momentum. We observe pronounced heterogeneity: within attention heads and FFN
 970 blocks, some dimensions/AUs are strongly discriminative while others are not. Moreover, most AUs
 971 localize to the middle or latter layers, consistent with prior findings (Wang et al., 2025b) that middle
 972 layers support reasoning while latter layers are critical for language generation.

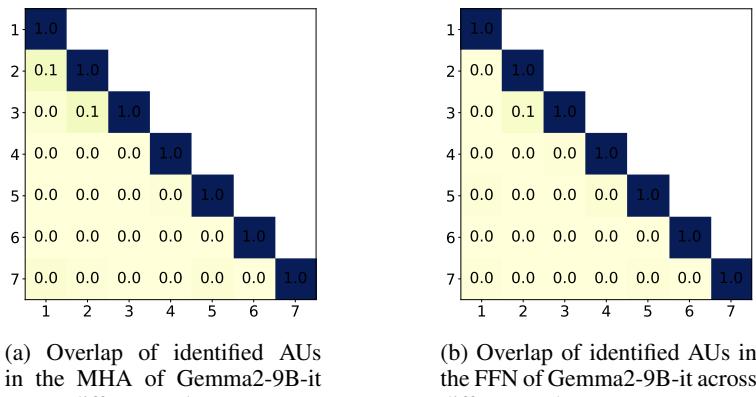


Figure 12: Overlap of localized AUs across tasks. Tasks 1–7 correspond to BoolQ, COPA, Winogrande, SVAMP, MAWPS, Detoxification, and BPO.

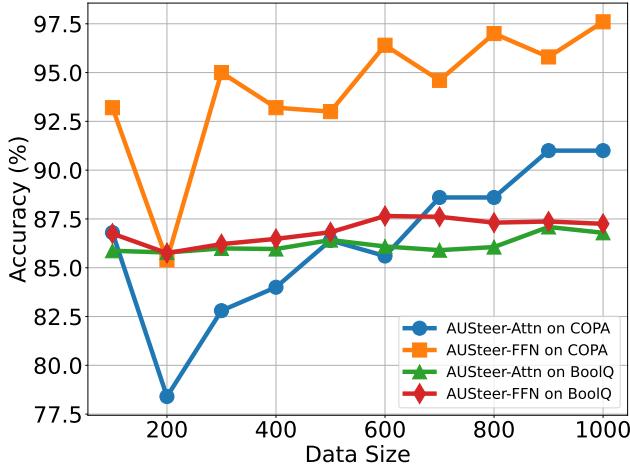


Figure 13: Relationship between accuracy and the number of contrastive pairs

E AU OVERLAP ACROSS TASKS

We visualize the overlap of localized AUs across tasks in Figures 12a and 12b. Only very few AUs are shared between tasks, indicating that the AUs supporting different functions are highly specialized. This pattern is consistent with prior studies (Li et al., 2023a; Wang et al., 2025b).

F STEERING STABILITY WITH VARYING DATA SIZE

Following prior work, AUSteer uses contrastive sample pairs to localize important AUs. We evaluate how its accuracy varies with the number of contrastive pairs. As shown in Figure 13, the accuracy on Gemma2-9B-it improves as the dataset grows. Notably, with 300–500 pairs, AUSteer achieves performance comparable to using 1,000 pairs. This demonstrates its effectiveness in low-data regimes.

G SCALABILITY ON MORE LLMs

To further verify the generalizability and scalability of AUSteer, we evaluate it on two representative large models with diverse structures: (1) **Qwen3-30B-A3B**, a 30B-scale **MoE** model; and (2) **Llama-3.3-70B-Instruct**, where we use the **4-bit quantized** version to enable evaluation on a consumer GPU and to test AUSteer’s compatibility with **heavily quantized LLMs**. The results

are shown in Table 10. In most cases, AUSteer improves performance by **1%-3%**, confirming its effectiveness and scalability across larger, structurally diverse and heavily quantized LLMs.

Table 10: More results of diverse and larger LLMs.

Model	Method	BoolQ	COPA	WinoG
Qwen3-30B-A3B	Vanilla	86.82	93.40	65.98
	AUSteer	88.69	97.80	67.17
Llama-3.3-70B-Instruct	Vanilla	89.54	98.60	78.14
	AUSteer	90.67	99.20	79.95

H ANALYZING ACTIVATION MOMENTUM IN DISCRIMINATIVE CAUSALITY

We explain the connection between activation momentum and causality based on both theoretical justification and empirical evidence.

Theoretical Justification. Prior work in LLM interpretability (Dar et al., 2023; Geva et al., 2022; Li et al., 2024; Katz et al., 2024; Neo et al., 2025) shows that intermediate hidden states x in LLMs can be directly projected to the output logits through the LM head. This projection directly affects the model's final next-token distribution. Formally, the LM head \mathcal{M} computes:

$$o = \mathcal{M}x,$$

where o is the vector of output logits.

This aligns with our observations in Section 3.3: different AUs govern different output token distributions, and as steering strength increases, the LLM’s output tends to converge to the AU’s token distribution. For a contrastive pair, the logit difference caused by the two inputs is:

$$\Delta o = o^{\text{pos}} - o^{\text{neg}}.$$

For AU u_i and contrastive pair j , define the activation momentum:

$$m_i^j = x_i^{\text{pos}} - x_i^{\text{neg}}.$$

Based on $o = \mathcal{M}x$, we apply a first-order Taylor expansion around x_i^{neg} :

$$o(x_i^{\text{pos}}) \approx o(x_i^{\text{neg}}) + \frac{\partial o}{\partial x_i} (x_i^{\text{pos}} - x_i^{\text{neg}}).$$

Rearranging gives:

$$\Delta o_i^j = o^{\text{pos}} - o^{\text{neg}} \approx \frac{\partial o}{\partial x_i} m_i^j.$$

This equation shows that the change in activation of AU u_i directly causes a proportional change in the output logits. Thus:

- $m_i^j > 0$ tends to increase the logit difference favoring the positive sample.
- $m_i^j < 0$ tends to favor the negative sample.
- If m_i^j is **consistent across many pairs**, then the AU u_i has a **stable discriminative causal effect** on the output logits.

This provides the theoretical grounding for activation momentum.

Empirical Evidence To further validate the effectiveness of activation momentum, we compare it against two alternatives: (i) randomly selected AUs and (ii) the activation-difference method used in SADI. On Gemma2-9B-it, the performance follows the order: 83.96 (activation momentum, ours) > 83.12 (activation difference by SADI) > 79.08 (random selection). These results demonstrate the

1080 superior performance of activation momentum. Additional experimental details are provided in
 1081 Section 5.3.

1082 To summarize, we establish the connection between activation momentum and discriminative output
 1083 causality through both theoretical analysis and empirical validation, thereby grounding and verifying
 1084 our method.

1085

I COMPUTATION OVERHEAD ANALYSIS

1086

1087 We conducted a detailed efficiency and computation analysis from two perspectives: (1) smaller
 1088 steering footprint, and (2) the actual computational overhead measured in practice, including
 1089 activation-momentum computation time, inference-time cost, latency, and stability. Our results show
 1090 that AUSteer requires **less overhead and fewer interventions** while achieving **better performance**
 1091 than baseline methods.

1092

1093 **Smaller steering footprint.** As shown in Table 1, baseline methods typically require intervening on
 1094 3,000–4,000 activations (or $k_h \times 128$), whereas AUSteer requires at most **100** intervened activations
 1095 while still achieving the best results on most tasks.

1096

1097 **Detailed overhead analysis.** We examine the computational overhead of our method and all base-
 1098 lines at each stage of the method. In the preparation phase, AUSteer extracts activations from con-
 1099 trastive pairs to compute activation momentum, whereas baseline methods usually require compo-
 1100 nent localization and steering-vector estimation. During inference, each method applies its corre-
 1101 sponding intervention, and we compare the resulting overhead across methods. It is worth men-
 1102 tioning that activation momentum calculation only requires a single forward pass over a small set
 1103 of contrastive examples. No backward pass, gradient computation, model modification, or training
 1104 is needed. Extracting activations simply involves reading intermediate hidden states. Therefore,
 1105 for any LLM size, activation momentum can always be computed using the same GPU memory
 1106 required for standard inference, since both perform identical forward passes.

1107

1108 Table 11 below compares the computation cost of AUSteer with ITI and SADI across six metrics:
 1109 (1) GPU memory for contrastive samples of all tasks, (2) total runtime on all contrastive samples,
 1110 (3) GPU memory during inference, (4) inference time over seven tasks, (5) latency, and (6) latency
 1111 stability (std from five repeated trials). It is noted that all methods rely on contrastive samples to
 1112 compute the necessary steering signals—whether for activation differences, localization, activation
 1113 momentum (ours), or steering-vector estimation (other methods). The backbone LLM is Gemma2-
 1114 9B-bit (batch size = 1, GPU = NVIDIA H100).

1115

1116 Compared to other activation-steering baselines, AUSteer has the lowest overhead while achieving
 1117 the best results. Specifically, AUSteer requires **only ~15 minutes** to compute activation momentum
 1118 and localization, **no additional GPU memory** beyond inference, and exhibits **lower overhead** than
 1119 ITI and SADI while achieving **better performance**, demonstrating its computational efficiency.
 1120 During inference (steering), AUSteer also requires slightly less time than the baseline methods,
 1121 further demonstrating its efficiency in runtime overhead.

1122

1123 Table 11: Computation Overhead Comparison.

1124

Method	GPU Memory (contrastive)	Time (contrastive)	GPU Memory (Inference)	Inference Time	Latency	Stability
Vanilla LLM	—	—	18 GB	53 min 12 sec	0.45 s/sample	Δ0.005
ITI	18 GB	18 min 39 sec	18 GB	59 min 29 sec	0.50 s/sample	Δ0.01
SADI	18 GB	14 min 41 sec	18 GB	55 min 05 sec	0.47 s/sample	Δ0.005
AUSteer (Ours)	18 GB	14 min 41 sec	18 GB	54 min 41 sec	0.46 s/sample	Δ0.007

1125

1126 For the **computational cost on larger LLMs such as 4-bit Llama-3.3-70B-Instruct**, taking COPA
 1127 as an example, we report both the preparation (activation-momentum computation) and inference
 1128 overhead. During the activation-momentum computation stage, using 1000 contrastive pairs, AU-
 1129 steer requires 40 GB of GPU memory and around 15 minutes. During inference, the vanilla LLM
 1130 requires 40 GB of GPU memory and 3 min 46 sec to run all test samples, while AUSteer requires 40
 1131 GB and 3 min 54 sec. These empirical results show that activation momentum scales successfully
 1132 to large LLMs and remains far from computationally intensive, even on a 70B LLM.

1133

To summarize, our proposed method requires the **least intervention footprint** and **lowest computational overhead**, while achieving the **best performance** on most tasks. This provides clear

1134 empirical evidence supporting our argument that a smaller steering footprint can achieve improved
 1135 efficiency.
 1136

1137 J BROADER CONTROL VARIANTS OF AUSTEER

1139 We conducted additional experiments on broader steering variants and found that, contrary to the
 1140 assumption that “steering more AUs should be better,” **precise partial AU control is the correct**
 1141 **strategy**. It offers clear advantages over steering a large portion—or all—of the AUs.
 1142

1143 **Steering all AUs leads to consistent performance degradation.** To test whether AUSteer is merely
 1144 a constrained version of a more general “steer-all-units” method, we applied AUSteer-style dynamic
 1145 weights to *all* AUs (e.g., $32 \times 4096 = 131,072$ AUs in LLaMA2-7B-Chat). After extensive hyperpa-
 1146 rameter sweeps, steering all AUs still failed to outperform the vanilla model (without any steering).
 1147 This matches our analysis in Section 3.3: **different AUs regulate different output distributions**,
 1148 and only a small subset is task-relevant. Steering all AUs inevitably introduces strong task-irrelevant
 1149 signals, effectively injecting noise into the model outputs. In contrast, partial AU steering focuses
 1150 only on useful and task-relevant subspaces, yielding meaningful and targeted interventions.
 1151

1152 **Broader AU steering does not guarantee better performance.** We further tested variants that
 1153 steer increasingly large subsets of AUs. Table 12 (COPA, LLaMA2-7B-Chat) shows that steering
 1154 more than 5,000 AUs results in *worse* performance than the vanilla model. This again confirms
 1155 that broader steering introduces many **task-irrelevant or harmful output distributions**, degrading
 1156 performance. These findings also align with our results in Section 3.2, where steering certain AUs
 1157 leads to negative effects.
 1158

1157 Table 12: Experimental results on steering broader AUs using COPA and LLaMA2-7B-Chat. There
 1158 are $32 \times 4096 = 131,072$ AUs in total in LLaMA2-7B-Chat.

# of AUs	0 (vanilla)	< 100	200	500	1000	3000	5000	10000
Accuracy (%)	70.8	82.8	77.2	73.2	70.8	70.6	70.4	70.4

1162 Overall, our experiments demonstrate that **AUSteer should only steer task-relevant or beneficial**
 1163 **AUs**, rather than steering a broad or full set of units. Partial AU control is therefore **not** a restricted
 1164 version of a more general steering method—it is the **correct and uniquely effective** strategy for
 1165 activation steering in LLMs.
 1166

1167 K PROMOTION VERSUS SUPPRESSION

1170 To determine whether we should promote useful AUs or suppress unhelpful ones, we conduct both
 1171 empirical and theoretical analyses and show that promotion consistently outperforms suppression.

1172 **Empirical evidence.** To evaluate the “suppression” strategy, we use AU importance scores to iden-
 1173 tify the least important AUs and apply a decreasing factor to suppress their activations. We vary
 1174 the number of suppressed AUs from 0% to 99.95%, search decreasing factors from 0.05 to 0.99,
 1175 and report the best results in Table 13. Experiments are conducted on LLaMA2-7B-Chat using
 1176 three commonsense reasoning datasets. The results show that although suppression can yield im-
 1177 provements over the vanilla model, it consistently underperforms compared to the promotion-based
 1178 steering used in AUSteer.
 1179

Table 13: Experimental results of suppressing AUs.

Method	BoolQ	COPA	WinoG.
Vanilla	70.52	70.8	50.91
Suppression	73.36	71.6	53.12
Promotion (AUSteer, ours)	75.57	82.8	53.28

1186 **Theoretical explanation.** Prior work (Geva et al., 2022; Dar et al., 2023) shows that LLMs update
 1187 predictions primarily through a **promotion mechanism**, where top-candidate tokens are driven by
 1188 dominant positive sub-updates rather than by suppressing irrelevant ones. Consequently, directly

1188
1189 *promoting* task-relevant AUs aligns better with the model’s intrinsic update dynamics, producing
1190 stronger and more targeted effects than suppression.
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241