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ABSTRACT

Neural networks are known to be highly sensitive to adversarial examples. These
may arise due to different factors, such as random initialization, or spurious corre-
lations in the learning problem. To better understand these factors, we provide a
precise study of the adversarial robustness in different scenarios, from initializa-
tion to the end of training in different regimes, as well as intermediate scenarios,
where initialization still plays a role due to “lazy” training. We consider over-
parameterized networks in high dimensions with quadratic targets and infinite
samples. Our analysis allows us to identify new tradeoffs between approximation
(as measured via test error) and robustness, whereby robustness can only get worse
when test error improves, and vice versa. We also show how linearized lazy training
regimes can worsen robustness, due to improperly scaled random initialization.
Our theoretical results are illustrated with numerical experiments.

1 INTRODUCTION

Deep neural networks have enjoyed tremendous practical success in many applications involving high-
dimensional data, such as images. Yet, such models are highly sensitive to small perturbations known
as adversarial examples (Szegedy et al., 2013), which are often imperceptible by humans. While
various strategies such as adversarial training (Madry et al., 2018) can mitigate this vulnerability
empirically, the situation remains highly problematic for many safety-critical applications like
autonomous vehicles and health, and motivates a better theoretical understanding of what mechanisms
may be causing this.

Various factors are known to contribute to adversarial examples. In linear models, features that
are only weakly correlated with the label, possibly in a spurious manner, may improve prediction
accuracy but induce large sensitivity to adversarial perturbations (Tsipras et al., 2019; Sanyal et al.,
2021). On the other hand, common neural networks may exhibit high sensitivity to adversarial
perturbations at random initialization (Simon-Gabriel et al., 2019; Daniely & Shacham, 2020; Bubeck
et al., 2021). While such settings already capture interesting phenomena behind adversarial examples,
they are restricted to either trained linear models, or nonlinear networks at initialization. Trained,
nonlinear networks may thus involve multiple sources of vulnerability arising from initialization,
training algorithms, as well as the data distribution. Capturing the interaction between these different
components is of crucial importance for a more complete understanding of adversarial robustness.

In this paper, we study the interplay between these different factors by analyzing approximation
(i.e how well the model fits the data) and robustness properties (i.e the sensitivity of the model’s
outputs w.r.t perturbations in test data) of two-layer neural networks in different learning regimes. We
consider two-layer finite-width networks in high dimensions with infinite training data, in asymptotic
regimes inspired by Ghorbani et al. (2019). This allows us to focus on the effects inherent to the
data distribution and the inductive bias of architecture (choice of activation function, number of
hidden neurons per input dimension, etc.) and training algorithms, while side-stepping issues due
to finite samples. Following Ghorbani et al. (2019), we focus on nonlinear regression settings with
structured quadratic target functions, and consider commonly studied training regimes for two-layer
networks, namely (i) neural networks with quadratic activations trained with stochastic gradient
descent on the population risk which finds the global optimum; (ii) random features (RF, Rahimi
& Recht, 2008), (iii) neural tangent (NT, Jacot et al., 2018), as well as (iv) ”lazy” training (Chizat
et al., 2019) regimes for basic RF and NT, where we consider a first-order Taylor expansion of the
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network around initialization, including the initialization term itself (in contrast to the standard RF
and NT regimes which ignore the offset due to initialization). Note that, though the theoretical setting
is inspired by Ghorbani et al. (2019), our work differs from theirs in its focus and scope. Indeed, we
are concerned with robustness and its interplay with approximation, in different learning regimes,
while they are only concerned with approximation. We also note that the lazy/linearized regimes we
study as part of this work were not considered by Ghorbani et al. (2019), and help us highlight the
impact of initialization on robustness.

Note that unlike the other regimes, SGD exhibits a kind of feature learning, whereby the first
layer weights are learning specific directions by approximating the matrix B. In particular, this
involves non-trivial feature selection via non-linear learning, while the other regimes (RF and
NT) are linear estimators on top of non-linear but fixed features.

Main contributions. Our work establishes theoretical results which uncover novel tradeoffs be-
tween approximation (as measured via test error) and robustness that are inherent to all the regimes
considered. These tradeoffs appear to be due to misalignment between the target function and the
input distribution (weight distribution) for random features (Section 4), or to the inductive bias of
fully-trained networks (Section 3 and Appendix E). We also show that improperly scaled random
initialization can further degrade robustness in lazy/linearized models (Section 5), since the resulting
models might inherit the nonrobustness inherent to random initialization. This raises the question of
how small should the initialization be in order to enhance the robustness of the trained model. Our
theoretical results are empirically verified with extensive numerical experiments on simulated data.

The setting of our work is regression in a student-teacher setup where the student is a two-layer
feedforward neural network and the teacher is a quadratic form. We assume access to infinite training
data. Thus, the only complexity parameters are the coefficient matrix of the teacher model, the input
dimension d and the width of the neural network m, assumed to both ”large” but proportional to one
another. Refer to Section 2 for details. In Appendix I, we also show similar but weaker trade-offs for
arbitrary student and teacher models. The infinite-sample setting allows us to focus on the effects
inherent to the data distribution and the inductive bias of architecture (choice of activation function)
and different learning regimes, while side-stepping issues due to finite samples and label noise. Also
note that in this infinite-data setting, label noise provably has no influence on the learned model, in
all the learning regimes considered. The observation that there is a tradeoff between robustness and
approximation, even in this infinite-sample setting, is one of the surprising findings of our work. This
complements related works such as (Bubeck et al., 2020b; Bubeck & Sellke, 2021), which show that
finite training samples with label noise is a possible source of nonrobustness in neural networks.

Related works. Various works have theoretically studied adversarial examples and robustness in
supervised learning, and the relationship to ordinary test error / accuracy. Tsipras et al. (2019) consid-
ers a specific data distribution where good test error implies poor robustness. Shafahi et al. (2018);
Mahloujifar et al. (2018); Gilmer et al. (2018); Dohmatob (2019) show that for high-dimensional
data distributions which have concentration property (e.g., multivariate Gaussians, distributions
satisfying log-Sobolev inequalities, etc.), an imperfect classifier will admit adversarial examples. On
the other hand, Yang et al. (2020) observed empirically that natural images are well-separated, and
so locally-lipschitz classifies shouldn’t suffer any kind of test error vs robustness tradeoff. How-
ever, gradient-descent is not likely to find such models. Our work studies regression problems
with quadratic targets, and shows that there are indeed tradeoffs between test error and robustness
which are controlled by the learning algorithm / regime and model. Schmidt et al. (2018); Khim
& Loh (2018); Yin et al. (2019); Bhattacharjee et al. (2021); Min et al. (2021b;a) study the sample
complexity of robust learning. In contrasts, our work focuses on the case of infinite data, so that the
only complexity parameters are the input dimension d and the network width m.

Gao et al. (2019); Bubeck et al. (2020b); Bubeck & Sellke (2021) show that over-parameterization
may be necessary for robust interpolation in the presence of noise. In contrast, our paper considers a
structured problem with noiseless signal and infinite training data, where the network width m and
the input dimension d tend to infinity proportionately. In this under-complete asymptotic setting, our
results show a systematic and precise tradeoff between approximation (test error) and robustness
in different learning regimes. Thus, our work nuances the picture presented by previous works by
exhibiting a nontrivial interplay between robustness and test error, which persists even in the case of
infinite training data where the resulting model isn’t affected by label noise.
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Dohmatob (2021); Hassani & Javanmard (2022) study the tradeoffs between interpolation,
predictive performance (test error), and robustness for finite-width over-parameterized net-
works in kernel regimes with noisy linear target functions. In contrast, we consider structured
quadratic target functions and compare different learning settings, including SGD optimization
in a non-kernel regime, as well as lazy/linearized models.

Robustness has also been studied from a causality perspective. For example, Rothenhausler
et al. (2021) studies tradeoffs between test error and robustness in linear regression under
distributional shifts on the marginal distribution of the covariates.

We provide a more detailed discussion of the related work in Appendix A.

Remark 1.1. Note that the term ”over-parametrization” is not used in our paper in the same sense
as in Bubeck et al. (2020b); Bubeck & Sellke (2021); Hassani & Javanmard (2022). In those works,
the setup is finite samples (n <∞), and over-parametrization means that m is substantially larger
than n/d, where d is the input-dimension, and m is the network with (i.e number of neurons in the
hidden layer). In our work, we focus on the infinite-sample case (n = ∞), and over-parametrization
means m/d is large. Finally, the findings of Bubeck et al. (2020b); Bubeck & Sellke (2021) –namely,
that over-parametrization is beneficial for robustness, and of Hassani & Javanmard (2022) –namely,
that over-parametrization is detrimental to robustness, are nuanced by Zhu et al. (2022) which shows
that as the width m of a neural network is increased, there transition from over-parametrization
being detrimental, to being benificial for robustness. More precisely, they derived upper-bounds
for robustness error which show that there critical value m0 such that the robustness error is an
increasing function of width in the interval [1,m0] (over-parametrization hurts) and a decreasing
function of width in the interval [m0,∞) (i.e over-parametrization becomes beneficial). Overall,
the exact role of over-parametrization in robustness remains partly unclear, even though progress is
being made on the subject.

2 PRELIMINARIES

Notations. We use standard notations in our manuscript. A cheat sheet is provided in supplemental /
appendix.

2.1 THE TEACHER MODEL: A QUADRATIC FORM

We consider the following regression setup proposed by Ghorbani et al. (2019). Let B be a fixed
d× d psd matrix and let b0 ∈ R be a fixed unknown scalar. Consider the quadratic teacher model

f⋆(x) := x⊤Bx+ b0, for any x ∈ Rd. (1)

We assume the input data is distributed according to N(0, Id), the standard Gaussian distribution in d
dimensions. Thus, the structure of the problem of learning the teacher model f⋆ in (1) is completely
determined by the unknown d× d matrix B. We assume an idealized scenario where the learner has
access to an infinite number of iid samples of the form (x, f⋆(x)) width x ∼ Px := N(0, Id). For
simplicity of analysis, we will further assume as in (Ghorbani et al., 2019) that the teacher model f⋆
defined in (1) is centered, i.e Ex∼N(0,Id)[f⋆(x)] = 0. This forces the offset b0 = −tr(B).

2.2 THE STUDENT MODEL: A TWO-LAYER NEURAL NETWORK

Consider a two-layer student neural network

fW,z,s(x) :=

m∑
j=1

zjσ(x
⊤wj) + s, (2)

where m is the network width, i.e., the number of hidden neurons each with parameter vector
wj ∈ Rd, output weights z = (z1, . . . , zm) ∈ Rm, and activation function σ : R → R. We define W
as the m× d matrix with jth row wj . The scalar s is an offset which we will sometimes set to 0, in
which case we will simply write fW,z,s := fW,z,0. Note that the teacher model f⋆ is itself a two-layer
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neural network with output weights fixed to 1, quadratic activation function, and m = d hidden
neurons with parameters W⋆ := B1/2, where B1/2 is the unique psd matrix such that (B1/2)2 = B.

The aim of learning is to approximate the teacher model f⋆ as closely as possible with the student
model fW,z,s. We will consider the following high-dimensional setup:

– Infinite training data, wherein the sample size n is equal to ∞, i.e., the learner has access to the
entire data distribution, allowing us to step-aside issues linked with finite samples.

– Proportionate scaling of input dimension d and student network width m, wherein d and m are
finite, and large of the same order, i.e.,

m, d→ ∞, m/d→ ρ ∈ (0,∞). (3)

The parameterization rate ρ (which corresponds to the number of hidden neurons per input dimen-
sion), will play a crucial role in our analysis. The case ρ < 1 corresponds to under-parametrization,
while ρ > 1 corresponds to over-parametrization. Occasionally, we will also consider the extreme
over-parametrization regime corresponding to ρ≫ 1, or more precisely, the limiting case ρ→ ∞.

2.3 METRICS FOR TEST ERROR AND ROBUSTNESS

Test error. The test / approximation error of a student model f : Rd → R is defined by

εtest(f) := ∥f − f⋆∥2L2(Px)
= EPx

(f(x)− f⋆(x))
2, (4)

where Px is the distribution of the features. (4) measures how well the student f approximates the
teacher model f⋆. Except otherwise explicitly stated, in this article we will always consider the
isotropic case where the distribution of the features is Px = N(0, Id), as in Ghorbani et al. (2019).

It will be instructive to compare the test error of f to that of the null predictor which outputs 0 on
every input, namely ∥f⋆∥2L2(Px)

. Thus, consider the normalized test error,

ε̃test(f) := εtest(f)/∥f⋆∥2L2(Px)
. (5)

This quantity was studied in Ghorbani et al. (2019) where explicit analytic formulae were ob-
tained for two-layer networks in various regimes of interest: networks fully trained by stochastic
gradient-descent (SGD) on the population risk, random features (RF), and neural tangent (NT). We
shall consider these same regimes and establish tradeoffs between test error and robustness of the
corresponding models. This will paint a picture complementary to Ghorbani et al. (2019).

Measure of robustness / sensitivity. We will measure the robustness of a smooth student model
f : Rd → R (e.g., the two-layer neural net (2)) by what we call its robustness error, defined as the
square-root of its Dirichlet energy εrob(f) w.r.t. to a random test point x ∼ Px, that is

εrob(f) := ∥∇xf∥2L2(Px)
= EPx

∥∇xf(x)∥2. (6)

Smoothness here is in the very general sense of Gigli & Ledoux (2013, Section 4.1) with euclidean
structure. The smaller the value of εrob(f), the more robust / less sensitive f is to changes in a
test data point, on average. We justify the choice of this quantity as a measure of robustness in
Appendix D, where we will link it to more classical notions of robustness error (Madry et al., 2018).
In particular, the teacher model has εrob(f⋆) = 4∥B∥2F . Finally, note that, measures of robustness
based on notions of sensitivity have been considered in other works like Bubeck et al. (2020b);
Bubeck & Sellke (2021) for regression, and Wu et al. (2021) for classification settings.

It will be convenient to compare the robustness of a student model f to that of the baseline quadratic
teacher model f⋆ defined in (1). To this end, consider the normalized robustness error f defined by

ε̃rob(f) := εrob(f)/εrob(f⋆), (7)

which measures the relative robustness error of the student. The objective of our paper is to study the
quantity ε̃rob(f) for neural networks (2) in various regimes in the limit (3), and put to light interesting
phenomena. In particular, we will establish tradeoffs between test error and robustness error, in the
form of a nontrivial relationship

ε̃test(f) + ε̃rob(f) = 1, (8)

for different learning regimes. This paints a picture complementary to Ghorbani et al. (2019).
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Remark 2.1. Note that it might be tempting to thing that

∥f − f⋆∥L2(Px) ≈ 0 =⇒ ∥∇f∥L2(Px) ≈ ∥∇f⋆∥L2(Px), (9)

Such an implication would automatically lead to a (at least) heuristic explanation of our tradeoffs
(8). However, (9) is false in general. Indeed, a smooth function (small ∥∇f∥L2(Px)) can be
approximated very well in L2 by functions by very rough functions (large ∥∇f∥L2(Px). This point
is elaborated in Appendix K. To establish our tradeoffs, we exploit the fine structure of two-layer
neural networks in the different learning regimes considered.

3 RESULTS FOR TWO-LAYER NEURAL NETWORKS TRAINED VIA SGD

Consider a student neural network model with quadratic activation fSGD : Rd → R, i.e

fSGD(x) :=

m∑
j=1

(x⊤wj)
2 + s. (10)

Here, W = (w1, . . . , wm) ∈ Rm×d is a matrix of learnable parameters (one per hidden neuron), and
s ∈ R is a learnable offset. The output weights vector is fixed to z = 1m := (1, . . . , 1), while W
and s are optimized via SGD (hence the subscript), where each update is on a single new sample
point. It is shown in Theorem 3 of Ghorbani et al. (2019) that if Wt ∈ Rm×d is the matrix of
hidden parameters after t steps of SGD, then in the limit (3), the matrix WtW

⊤
t ∈ Rm×m converges

a.s to the best rank-m approximation of B. Thus, by continuity of matrix norms, we deduce that
∥WtW

⊤
t ∥2F converges a.s to ∥B∥2F,m, in the infinite data limit t→ ∞.

Combining with Lemma G.1 establishes the following asymptotic formula for the (normalized)
robustness of the resulting model fSGD, in the high-dimensional limit (3).

Theorem 3.1. In the limit (3), it holds that ε̃rob(fSGD)
a.s−→

∥B∥2F,m

∥B∥2F
=

∑m∧d
k=1 λk(B)2∑d
j=1 λk(B)2

≤ 1, with

equality iff rank(B) ≤ m. In particular, if ρ ≥ 1, then in the limit (3), it holds that ε̃rob(fSGD)
a.s−→ 1.

Tradeoff approximation and robustness. We see from the above theorem that if m ≥ rank(B),
then the robustness error for the learned student converges to that of the true model if m ≥ d, namely
εrob(fSGD)

p→
∑d

j=1 λj(B)2 = εrob(f⋆). This is the case if m ≥ d, for example. Otherwise (i.e if
m < rank(B)), then the limiting value of εrob(fSGD) can be arbitrarily less than εrob(f⋆), i.e., the
learned student will be much more robust (i.e., stable) than the ground truth model. Comparing with
Theorem 3 and Proposition 1 of Ghorbani et al. (2019), we can see that any decrease in robustness
error of the learned student (compared to the teacher model) is at the expense of increased test error,
and vise versa. Indeed, it was shown in that paper that the normalized test error ε̃test(fSGD) verifies

ε̃test(fSGD)
p−→ 1− lim ∥B∥2F,m/∥B∥2F , in the limit (3) (11)

Combining with our Theorem 3.1 above, we deduce that

ε̃test(fSGD) + ε̃rob(fSGD)
p−→ 1, in the limit (3). (12)

The above formula highlights a tradeoff between test error and robustness error. Thus, we have
identified a novel tradeoff between approximation and robustness for the neural network model (2)
trained via SGD. In the sequel, we shall establish such tradeoffs for other learning regimes.

4 RESULTS FOR THE RANDOM FEATURES MODEL

Consider the two-layer model (2) with hidden neuron parameters w1, . . . , wm sampled iid from a
d-dimensional multivariate Gaussian distribution N(0,Γ) with covariance matrix Γ. We denote this
so-called random features (RF) student model fRF, defined by

fRF(x) = fW,zRF(x) = z⊤RFσ(Wx), (13)
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where zRF ∈ Rm solves the following linear regression problem

arg min
z∈Rm

Ex∼N(0,Id)[(z
⊤σ(Wx)− f⋆(x))

2]. (14)

It is easily seen that for x ∼ N(0, Id), one has zRF = U−1v, with

Ujk := Ex[σ(x
⊤wj)σ(x

⊤wk)]∀j, k ∈ [m], (15)

vj := Ex[f⋆(x)σ(x
⊤wj)]∀j ∈ [m]. (16)

The covariance matrix Γ encompasses the inductive bias of the neurons at initialization to different
directions in feature space. Define the alignment α = α(B,Γ) of the hidden neurons to the task at
hand, namely learning the teacher model f⋆, as follows

α :=
tr(BΓ)

∥B∥F ∥Γ∥F
≤ 1. (17)

As we shall see, the task-alignment α plays a crucial role in the dynamics of prediction performance
(test error) and robustness fRF.

4.1 ASSUMPTIONS AND KEY QUANTITIES

As in Ghorbani et al. (2019), we will need the following mild technical conditions on Γ.
Condition 4.1. The covariance matrix Γ satisfies: (A) tr(Γ) = 1 and d · ∥Γ∥op = O(1). (B) The
empirical eigenvalue distribution of d · Γ converges weakly to a probability distribution D on R+.

This condition is quite reasonable, and moreover, it allows us to leverage standard tools from random
matrix theory (RMT) in our analysis. We will also need the following technical condition on the
activation function σ.
Condition 4.2. σ is weakly continuously-differentiable and satisfies the growth condition σ(t)2 ≤
c0e

c1t
2

for some c0 > 0 and c1 < 1, and for all t ∈ R. Moreover, σ is not a purely affine function.

The above growth condition is a classical condition usually imposed for the theoretical analysis of
neural networks (see, e.g., Ghorbani et al., 2019; Mei & Montanari, 2019; Montanari & Zhong, 2020),
and is satisfied by all popular activation functions used in practice. One of its main purposes is to
ensure that all the Hermite coefficients (λk)k∈N of the activation function exist. Refer to Section G.2
for precise definition of Hermite coefficients. We will also need the following condition.
Condition 4.3. (A) λ0 := λ0(σ) = 0. (B) λ2 := λ2(σ) ̸= 0.

Part (A) of this condition was introduced by Ghorbani et al. (2019) to simplify the analysis of the test
error of the random features model fRF. Part (B) ensures that the random features model fRF does
not degenerate to the null predictor.
Definition 4.1. With z ∼ N(0, 1), define the following scalars

λ := E[σ(z)2]− λ21, κ := λ22∥Γ∥2F d/2, τ := λ2tr(BΓ)
√
d,

λ′ := E[σ′(z)2]− λ21, κ
′ := λ23∥Γ∥2F d/2.

(18)

These coefficients will turn out to be “sufficient statistics” which will completely capture the influence
of activation function σ on the robustness of the random features model fRF. Note that by construction,
λ, κ, λ′, and κ′ are nonnegative. Now, consider the random psd matrices A0 and D0 defined by

A0 := λIm + λ21Θ, D0 := λ′Im + (κ′/d+ λ21)Θ, (19)

with Θ := WW⊤ ∈ Rm×m. These matrices appear upon linearizing the expressions for the test
error and the robustness error of the RF model, using RMT techniques from El Karoui (2010). By
employing the so-called Silverstein fixed-point equation (Silverstein & Choi, 1995; Ledoit & Péché,
2011; Dobriban & Wager, 2018), one can show that there exist positive constants ψ1 and ψ2 such that

tr(A−1
0 )/d

a.s→ ψ1, tr(A
−2
0 D0)/d

a.s→ ψ2 in the limit (3). (20)
Moreover, the ψk’s only depend on (i) the parametrization rate ρ, and (ii) the limiting eigenvalue
distribution D of the rescaled covariance matrix d · Γ of the hidden neurons at initialization. Also,
since λ and λ′ are strictly positive (thanks to Condition 4.2), so are the ψk’s by definition of D0 and
A0 in (19). These scalars together with those defined in (18) will play a crucial role in our analysis.
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4.2 TEST ERROR / PREDICTION PERFORMANCE IN RANDOM FEATURES REGIME

We recall that the (normalized) test error ε̃test(fRF) of the random features model fRF was completely
analyzed in Ghorbani et al. (2019). Indeed, the following was established that

ε̃test(fRF) = 1− ψ1τ
2

∥B∥2F (2κψ1 + 2)
+ od,P(1), in the limit (3). (21)

See Theorem 1 of the said paper. Thus, the normalized test error only depends on the aspect ratio ρ,
the limiting spectral distribution D of d · Γ, and the scale parameters (λ, κ, τ) defined in (18). It was
further that, if the task-alignment α of the hidden neurons defined in (17), admits a limit α∞ when
d→ ∞, then w.p 1

lim
ρ→∞

lim
m,d→∞
m/d→ρ

ε̃test(fRF) = 1− α2
∞. (22)

Thus, (21) predicts that the normalized test error ε̃test(fRF) vanishes if (i) Γ ∝ B and (ii) the number
of neurons per input dimension m/d diverges, corresponding to extreme over-parametrization.

4.3 ANALYSIS OF ROBUSTNESS IN RANDOM FEATURES REGIME

The following result establishes an analytic formula for the robustness in the RF regime.
Theorem 4.1. Consider the random features model fRF (13), with covariance matrix Γ satisfying
Condition 4.1 and activation function σ satisfying Conditions 4.2 and 4.3.

(A) In the limit (3), we have the following approximation

ε̃rob(fRF) =
τ2(2κψ2

1 + ψ2)

∥B∥2F (2κψ1 + 2)2
+ od,P(1). (23)

(B) Moreover, if lim
d→∞

α = α∞, then lim
ρ→∞

lim
m,d→∞
m/d→ρ

ε̃rob(fRF) = α2
∞ w.p 1. In particular, for the

optimal choice of Γ in terms of test error, namely Γ ∝ B, one has lim
ρ→∞

lim
m,d→∞
m/d→ρ

ε̃rob(fRF) = 1 w.p 1.

Thus, the robustness only depends on the aspect ratio ρ, the limiting spectral distribution D of d · Γ
(via ψ1 and ψ2), and the scale parameters defined in (18). The theorem is proved in the Appendix G.4.

Tradeoff between approximation and robustness. We deduce from the above theorem that in the
limit (3), the random features model fRF is more robust (i.e., less sensitive to perturbations) than the
teacher model f⋆. Interestingly, we see that this gap in robustness between the two models closes with
increasing alignment α between the covariance matrix of the random features Γ and the coefficient
matrix B. Comparing with (22), we obtain the following relationship (provided ∥Γ∥2F ≫ 1/m),

ε̃test(fRF) + ε̃rob(fRF)
p→ 1− α2

∞ + α2
∞ = 1, in the limit (3), (24)

which trades-off between the normalized test error ε̃test(fRF) (defined in (21)) and the normalized
robustness ε̃rob(fRF) of fRF. Thus, we have identified another novel tradeoff between the test error
and the robustness in random features models.

Theorem 4.1 and Corollary H.1 are empirically verified in Fig. 1. Results for the ReLU activation
function are also shown. Notice the perfect match between our theoretical results and experiments.

5 NEURAL TANGENT REGIME

Consider a two-layer network width output weights z0j fixed to 1, and hidden weight wj ∈ Rd drawn
from N(0,Γ). For the quadratic activation σ(t) := t2, the neural tangent (NT) approximation (Jacot
et al., 2018; Chizat et al., 2019) w.r.t. the first layer parameters is given by

fW+A(x) ≈ finit(x) + tr(A∇W fW (x)) = finit(x) + 2

m∑
j=1

(x⊤(z0j aj))(x
⊤wj). (25)
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Figure 1: Empirical validation of Theorem 4.1 and Corollary H.1. Showing (normalized) test / test
error ε̃test and robustness ε̃rob of random features model (13) as a function of the number of the
network width, for different choices of the covariance matrix Γ of the random weights of the hidden
neurons: the optimal choice Γ⋆ ∝ B and the naive choice Id. Here, the input-dimension is d = 450
and the regularization λ is zero. Horizontal broken lines correspond to asymptotes at α2

∞ at 1− α2
∞,

where α∞ := limd→∞ tr(BΓ)/(∥B∥F ∥Γ∥F ) is the level of task-alignment of the covariance matrix
Γ of hidden neurons, w.r.t learning the teacher model f⋆ defined in (1). Broken curves are theoretical
predictions, while solid curves correspond to actual experiments.

where finit is the function computed by the neural network at initialization (see Appendix E for
details), and A = (a1, . . . , am) = (∆w1, . . . ,∆wm) ∈ Rm×d is the change in W . We will see that
the initialization term finit might have drastic influence on the robustness of the resulting model.

5.1 NEURAL TANGENT APPROXIMATION WITHOUT INITIALIZATION TERM

We temporarily discard the initialization term finit(x) from the RHS of (25), and consider the
simplified approximation

fNT(x;A; c) := 2

m∑
j=1

(x⊤aj)(x
⊤wj)− c, (26)

where, WLOG, we absorb the output weights zj in the parameters aj in the first-order term. In (26),
A ∈ Rm×d and c ∈ R are model parameters that are optimized. In terms of test error, let ANT and
cNT be optimal in fNT(·;A, c), and let fNT = fNT(·;ANT, cNT) for short. In Thm. 2 of Ghorbani
et al. (2019), it is shown that the (normalized) test error of the linearized model fNT is given by

EW [ε̃test(fNT)] = (1− ρ)2+(1− β) + (1− ρ)+β + od(1). (27)

where β = β(B) := tr(B)2/(d∥B∥2F ) ∈ (0, 1]. We now establish an analytic formula for the
robustness error of fNT.

Theorem 5.1. Consider the neural tangent model fNT in (26). In the limit (3) it holds that,

EW [ε̃rob(fNT)] = (ρ+ ρ2)/2 + (ρ− ρ2)β/2 + od(1), where ρ := min(ρ, 1). (28)

Further observe that because 0 ≤ β ≤ 1, the RHS of (28) is further upper-bounded by ρ ≤ 1 with
equality when β = 1 (e.g., for B ∝ Id). We deduce that in the NT regime, the student neural network
is at least as robust as the teacher model f⋆. Comparing with (27), we obtain the following tradeoff
between test error and robustness, stated only for β = 1 for simplicity of presentation.

Corollary 5.1. If β = 1 (i.e., if B ∝ Id), then in the limit (3), it holds that

EW [ε̃test(fNT) + ε̃rob(fNT)] = 1 + od(1). (29)

5.2 NEURAL TANGENT APPROXIMATION WITH INITIALIZATION TERM

We now consider the neural tangent approximation (25) without discarding the initialization term
finit from the RHS of (25). Also, let z0 ∈ Rm be the output weights, drawn iid from N(0, 1/m) and
frozen, and let Q be the m×m diagonal matrix with z0 as its diagonal. This corresponds to what

8



Under review as a conference paper at ICLR 2023

0 500 1000 1500
width m

0

1

2 test(finit)

rob(finit)

(a) NN at large random init

0 500 1000 1500
width m

0

1

2
test(fNT) rob(fNT)

(b) NT regime

0 500 1000 1500
width m

0

1

2
test(fNTL) rob(fNTL)

(c) Lazy, small random init
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Figure 2: Showing curves of (normalized) test error ε̃test and robustness ε̃rob for a two-layer neural
network in different learning regimes of the hidden weights. Here, the input dimension is d = 450
and the width m sweeps a range of values from 10 to 1500. Dashed curves correspond to theoretical
predictions, while solid curves correspond to actual values observed in the experiment (5 runs). We
use n = 106 training samples as a proxy for infinite data. The covariance matrix of the hidden neurons
is fixed at Γ = (1/d)Id. For simplicity of this experiment, we also take the coefficient matrix B of
the teacher model to be proportional to Id. (c) ”Small random init” means B = (1/

√
d)Id, so that

B is much larger than Γ. (d) ”Large random init” means that B = (1/d)Id, and thus is of the same
order as Γ (in Frobenius norm). In this case, the initialization degrades the robustness, as predicted
by Thm. 5.2. Note that, as predicted by Thm. 5.2, random initialization has no impact on the test
error of the NT approximation. Results for (a) the neural network at initialization (Thm. E.1 and E.2)
and (b) In the NT regime (Thm. 5.1) are also depicted for reference.

could be referred to as lazy training Chizat et al. (2019) regime of the hidden layer. Let fNTL(x;A, c)
be RHS of (25),

fNTL(x;A, c) := fW,z,c(x) + 2
∑m

j=1(x
⊤wj)(x

⊤aj) = finit(x) + fNT(x;A, c), (30)

where finit(x) :=
∑m

j=1 z
0
j (x

⊤wj)
2 = x⊤W⊤QWx defines the neural network at initialization.

Theorem 5.2. Suppose the output weights z0 at initialization are iid from N(0, (1/m)Im). Then, in
the limit (3), the following identities hold

E{W,z0}[ε̃test(fNTL)] = EW [ε̃test(fNT)] + od(1), (31)

E{W,z0}[ε̃rob(fNTL)] = EW [ε̃rob(fNT)] + E{W,z0}[ε̃rob(finit)] + od(1). (32)

Thus, on average (over initialization): (i) fNTL and fNT have the same test error, i.e., the initialization
term finit in fNTL does not affect its test error. (ii) On the other hand, fNTL is less robust than fNT;
the deficit in robustness, namely the term (1 + ∥Γ∥2F )/∥B∥2F , corresponds exactly to the contribution
of the initialization. The situation is empirically illustrated in Fig. 2. Notice the perfect match
between our theoretical results and experiments.

6 CONCLUDING REMARKS

In this paper, we have studied the adversarial robustness of two-layer neural networks in different
high-dimensional learning regimes, and established a number of new tradeoffs between prediction
performance and robustness, in the form (8). Our analysis also shows that random initialization can
further degrade the robustness in lazy training regimes: for ”large” random initialization, the trained
neural network inherits additional vulnerability already present at initialization. Our work can be
seen as a first step towards a rigorous theoretical understanding of the robustness of trained neural
networks, an important subject which is still understudied.
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single gradient step finds adversarial examples on random two-layers neural networks. In Advances
in Neural Information Processing Systems, 2021.

Lenaic Chizat, Edouard Oyallon, and Francis Bach. On lazy training in differentiable programming.
2019.

Amit Daniely and Hadas Shacham. Most relu networks suffer from \ellˆ2 adversarial perturbations.
In Advances in Neural Information Processing Systems, volume 33, pp. 6629–6636. Curran
Associates, Inc., 2020.

Edgar Dobriban and Stefan Wager. High-dimensional asymptotics of prediction: Ridge regression
and classification. The Annals of Statistics, 46(1):247 – 279, 2018.

Edgar Dobriban, Hamed Hassani, David Hong, and Alexander Robey. Provable tradeoffs in adversar-
ially robust classification. arXiv preprint arXiv:2006.05161, 2020.

Elvis Dohmatob. Generalized no free lunch theorem for adversarial robustness. In Proceedings of
the 36th International Conference on Machine Learning (ICML), volume 97 of Proceedings of
Machine Learning Research. PMLR, 2019.

Elvis Dohmatob. Fundamental tradeoffs between memorization and robustness in random features
and neural tangent regimes. arXiv preprint arXiv:2106.02630, 2021.

Noureddine El Karoui. The spectrum of kernel random matrices. Ann. Statist., 2010.

Ruiqi Gao, Tianle Cai, Haochuan Li, Cho-Jui Hsieh, Liwei Wang, and Jason D Lee. Convergence
of adversarial training in overparametrized neural networks. In Advances in Neural Information
Processing Systems, volume 32. Curran Associates, Inc., 2019.

Behrooz Ghorbani, Song Mei, Theodor Misiakiewicz, and Andrea Montanari. Limitations of lazy
training of two-layers neural network. In Advances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc., 2019.

Nicola Gigli and Michel Ledoux. From log Sobolev to Talagrand: A quick proof. Discrete and
Continuous Dynamical Systems, 33(5):1927–1935, 2013.

Justin Gilmer, Luke Metz, Fartash Faghri, Samuel S. Schoenholz, Maithra Raghu, Martin Wattenberg,
and Ian J. Goodfellow. Adversarial spheres. CoRR, abs/1801.02774, 2018.

Hamed Hassani and Adel Javanmard. The curse of overparametrization in adversarial training: Precise
analysis of robust generalization for random features regression. arXiv preprint arXiv:2201.05149,
2022.

Arthur Jacot, Franck Gabriel, and Clement Hongler. Neural tangent kernel: Convergence and
generalization in neural networks. In Advances in Neural Information Processing Systems 31.
2018.

Justin Khim and Po-Ling Loh. Adversarial risk bounds via function transformation. arXiv preprint
arXiv:1810.09519, 2018.
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A FURTHER RELATED WORK

Various works have theoretically studied adversarial examples and robustness in supervised learning,
and the relationship to ordinary predictive performance / test error. We present a detailed list here.

Tsipras et al. (2019) considers a specific data distribution where good accuracy implies poor robustness.
Shafahi et al. (2018); Mahloujifar et al. (2018); Gilmer et al. (2018); Dohmatob (2019) show that for
high-dimensional data distributions which have concentration property (e.g., multivariate Gaussians,
distributions satisfying log-Sobolev inequalities, etc.), an imperfect classifier will admit adversarial
examples. Dobriban et al. (2020) studies tradeoffs in Gaussian mixture classification problems,
highlighting the impact of class imbalance. On the other hand, Yang et al. (2020) observed empirically
that natural images are well-separated, and so locally-lipschitz classifies shouldn’t suffer any kind of
test error vs robustness tradeoff. However, gradient-descent is not likely to find such models. Our
work studies regression problems with quadratic targets, and shows that there are indeed tradeoffs
between test error and robustness which are controlled by the learning algorithm / regime and model.

Simon-Gabriel et al. (2019); Daniely & Shacham (2020); Bubeck et al. (2021); Bartlett et al. (2021)
study adversarial vulnerability of neural networks at initialization, but do not consider the effects of
training the model, in contrast to our work.

Schmidt et al. (2018); Khim & Loh (2018); Yin et al. (2019); Bhattacharjee et al. (2021); Min et al.
(2021b;a) study the sample complexity of robust learning. In contrasts, our work focuses on the case
of infinite data, so that the only complexity parameters are the input dimension d and the network
width m. Bhattacharjee et al. (2021) studies robustness vs accuracy for data distributions which are
well-separated (e.g., say the two classes are supported on disjoint balls). The main finding in that
paper is that (i) the robustness vs accuracy tradeoff doesn’t exist for well-separated datasets. The
work also posits that (ii) real-world datasets are well-separated. We think (i) is only an artifact of the
well-separatedness assumption (an assumption which fails for Gaussians (as noted in the paper), say,
due to infinite support). Also, (ii) is likely due to the fact that most real datasets are limited in sample
size, and so, deceptively appear to be well-separated. Indeed, in the real world, there are cats which
look like dogs (e.g, Siamese cats), even though such data might be under-represented in ML datasets.

Gao et al. (2019); Bubeck et al. (2020b); Bubeck & Sellke (2021) show that over-parameterization
may be necessary for robust interpolation in the presence of noise. In contrast, our paper considers a
structured problem with noiseless signal and infinite-data n = ∞, where the network width m and
the input dimension d tend to infinity proportionately. In this under-complete asymptotic setting, our
results show a precise picture of the tradeoffs between approximation (test error) and robustness in
different learning regimes. Our work nuances this picture by exhibiting a nontrivial interplay between
robustness and test error which persists even in the case of infinite samples, where the model isn’t
affected by label noise.

B NOTATIONS

Linear algebra. The set of integers from 1 through d will be denoted [d]. We will denote the
identity matrix of size d by Id. The euclidean norm of a vector x ∈ Rd will be denoted ∥x∥. The kth
largest singular-value of a matrix A will be denoted sk(A), and equals the positive square-root of the
kth largest eigenvalue of the positive-semidefinite (psd) matrix AA⊤. In particular, ∥A∥op := s1(A)
is the spectral norm of A. If A is itself psd, then its singular-values coincide with its eigenvalues.

The Frobenius norm of A is denoted ∥A∥F and defined by ∥A∥F :=
√∑d

k=1 sk(A)
2. More

generally, we define ∥A∥F,m :=
√∑m∧d

k=1 sk(A)
2, so that ∥A∥F,d = ∥A∥F in particular. Note that

m 7→ ∥A∥F,m is a nondecreasing function which is upper-bounded by ∥A∥F . The Hadamard /
element-wise product of two matrices A1 and A2 of the same shape will be denoted A1 ◦A2. The
squared L2-norm of a function f : Rd → R w.r.t a distribution P on Rd will be denoted ∥f∥2P , and
defined by ∥f∥L2(P ) := EP [f(x)

2], whenever this integral exists. Given a psd matrix of size d, we
denote by N(0,Σ) the d-dimensional multivariate gaussian distribution with covariance matrix Σ.

Asymptotics. The usual notation Od(1) (resp. Od,P(1)) is used to denote a quantity which remains
bounded (resp. bounded in probability) in the limit d→ ∞. Likewise od(1) (resp. od,P(1)) denotes a
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quantity which goes to zero (resp. which goes to zero in probability) in the limit d→ ∞. As usual,
the acronym ”a.s” stands for almost-surely, while ”w.p p” stands for with probability at least p.

C WARM-UP: AN INSIGHT FROM LINEAR REGRESSION

Before providing complete proofs in the sequel, in this section we will use linear regression to develop
an intuitive understanding for the tradeoffs established in the paper.

Consider n sample points (x1, y1), . . . , (xn, yn) in Rd × R. Now, let X = (x1, . . . , xn) ∈ Rn×d be
the design matrix and y := (y1, . . . , yn) ∈ Rn be the response vector. For any nonempty subset S of
[n], let XS ∈ R|S|×d (resp. yS ∈ R|S|) be the version of X (resp. y) with all rows (resp. columns)
not in S removed. For a (possibly random) sequence of nonempty subsets (St)

∞
t=1 of [n], and a

sequence of sufficiently small stepsizes (αt)
∞
t=1, the following discrete dynamics

wt = wt−1 − αtX
⊤
St
(XSt

wt−1 − ySt
)/|St| (33)

represents GD or SGD initialized at w0 ∈ Rd. In particular, GD corresponds to taking St = [n] for
all t ≥ 1. By construction, it is clear from (33) that at any iteration t,

wt − w0 ∈ span(X) := {X⊤z | z ∈ Rn}. (34)

On the other hand, suppose w⋆ ∈ Rd is an interpolant, i.e Xw⋆ = y. It is well-known that wt

converges to a point w∞ which is the orthogonal projection of w0 onto the affine space of interpolants
I := {w ∈ Rd | Xw = y} = w⋆ + kern(X), where kern(X) ⊆ Rd is the kernel of X . Thanks to
(34) and the closedness of the subspace span(X), it is clear that w∞ −w0 ∈ span(X). We conclude
that w∞ − w⋆ is orthogonal to w∞ − w0, and so ∥w⋆ − w0∥2 = ∥w⋆ − w∞∥2 + ∥w∞ − w0∥2, by
Pythagoras’ Theorem. In particular, taking w0 = 0, the previous identity becomes

∥w∞ − w⋆∥2︸ ︷︷ ︸
test error of w∞

+ ∥w∞∥2︸ ︷︷ ︸
rob. error of w∞

= ∥w⋆∥2︸ ︷︷ ︸
constant

, (35)

where the test error is w.r.t to test data generated according to the linear model x ∼ Px := N(0, Id),
y = fw⋆

(x), with fw(x) := x⊤w for all w, x ∈ Rd. Dividing through by ∥w⋆∥2 = ∥fw⋆
∥2L2(Px)

,
we deduce the following result which can be seen as the inductive bias of GD and SGD on linear
regression.

Proposition C.1. For GD or SGD started at w0 = 0, it holds that ε̃test(fw∞) + ε̃rob(fw∞) = 1.

This is a tradeoff between the test error and the robustness error for GD and SGD! It is valid for all
sample sizes n ≥ 1. In contrast, the tradeoffs established in the nonlinear settings of the previous
sections persist hold for infinite samples where n = ∞. Perhaps, sufficiently large but finite n is
sufficient, but this investigation is left for future work.

D JUSTIFICATION OF OUR PROPOSED MEASURE OF ROBUSTNESS

Let us begin by explaining why our proposed measure of robustness based on Dirichlet energy (6) is
actually a measure of robustness.

Unless otherwise stated, in this section the feature distribution will be any distribution Px on Rd.
Given smooth1 f : Rd → R, consider the d× d psd matrix J(f) and scalar S(f) ≥ 0 defined by

J(f) := EPx [∇f(x)∇f(x)⊤], S(f) := tr(J(f))1/2. (36)

Note that εrob(f) = S(f)2. The following lemma shows that S(f) measures the sensitivity of f to
random local fluctuations in test data, on average.

1Here, derivatives are allowed to be defined only almost-everywhere, as in neural networks with ReLU
activation function. This notion of smoothness is completely subsumed by the more general notion presented in
Section 4.1 of Gigli & Ledoux (2013).
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Lemma D.1 (Measure of local sensitivity). We have

lim
δ→0+

1

δ
EPx

[∆f (x; δ)] = S(f), (37)

where ∆f (x; δ) := sup∥v∥2≤δ |f(x+ v)− f(x)|.

This lemma is a direct corollary to Lemma D.3 proved later below.

The next lemma shows that ∥J(f)∥op measures the (non)robustness of f to universal adversarial
perturbations, in the sense of Moosavi-Dezfooli et al. (2017).
Lemma D.2 (Measure of robustness to universal perturbations). We have the identity

lim
δ→0+

1

δ
∆f (δ) = ∥J(f)∥1/2op , (38)

where ∆f (δ)
2 := sup∥v∥≤δ EPx(f(x+ v)− f(x))2.

In particular, the leading eigenvector of J(f) corresponds to (first-order) universal adversarial
perturbations of f , in the sense of Moosavi-Dezfooli et al. (2017), which can be efficiently computed
using the Power Method, for example.

A rough sketch of the proof of the above lemma is as follows. To first-order, we have f(x+v)−f(x) ≈
v⊤∇f(x). Thus,

∆f (δ)
2 := sup

∥v∥≤δ

EPx
[(f(x+ v)− f(x))2]

≈ sup
∥v∥≤δ

EPx
[(v⊤∇f(x))2]

= sup
∥v∥≤δ

v⊤J(f)v = δ2∥J(f)∥2op.

The first lemma is proved via a similar argument.

D.1 WHY NOT USE LIPSCHITZ CONSTANTS TO MEASURE ROBUSTNESS ?

Note for any that smooth function, S(f) is always a lower-bound for the Lipschitz constant ∥f∥Lip
of f . Recall that ∥f∥Lip is defined by

∥f∥Lip := sup
x̸=x′

|f(x)− f(x′)|
∥x− x′∥

. (39)

One special case where there is equality S(f) = ∥f∥Lip is when f is a linear function. However, this
is far from true in general: ∥f∥Lip is a worst-case measure, while S(f) is an average-case measure
for each q. If ∥f∥Lip is small (i.e., of order O(1)), then a small perturbation (i.e., of size O(1)) can
only result in mild change in the output of f (i.e., of order O(1)). However, a large value of ∥f∥Lip
is uninformative regarding adversarial examples (for example, one can think of a function which is
smooth everywhere except on a set of measure zero). In contrast, a large value for S(f) indicates
that, on average, it is possible for an adversarial to drastically change the output of f via a small
modification of its input.

An illustrative example. Consider a quadratic function f(x) := (1/2)x⊤Bx+ c with isotropic
feature distribution Px = N(0, Id). Note that the teacher model f⋆ defined in (1) is of this form.
A direct computation reveals that ∇f(x) = Bx and so S(f)2 := EPx

∥∇f(x)∥2 = EPx
∥Bx∥2 =

∥B∥2F . However, the Lipschitz constant of f restricted to the ball of radius
√
d is2,

∥f∥
L̃ip

= sup
∥x∥≤

√
d

∥∇f(x)∥ = sup
∥x∥≤

√
d

∥Bx∥ =
√
d∥B∥op,

which can be up to
√
d times larger than S(f) = ∥B∥F . For example, takeB to be an ill-conditioned,

e.g., rank-1, matrix.
2For fair comparison with our measure of robustness, we restrict the computation of Lipschitz constant to

this ball since
√
d is the length of a typical random vector from N(0, Id).
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D.2 PROOFS FOR DIRICHLET ENERGY AS A MEASURE OF ADVERSARIAL VULNERABILITY

Let ∥ · ∥ be any norm on Rd with dual norm ∥ · ∥⋆. Given a function f : Rd → R, a tolerance
parameter δ ≥ 0 (the attack budget), and a scalar q ≥ 1, define Rδ(f) by

Rq,δ(f, g) := EPx
[∆f (x; δ)

q] , (40)

where ∆f (x; δ) := sup∥x′−x∥≤δ |f(x′) − f(x)| is the maximal variation of f in a neighborhood
of size δ around x. For q = 2, we simply write Rδ(f, g) for Rδ,2(f, g). In particular, Gδ(f) :=
E[Rδ(f, f⋆)] is adversarial test error and G0(f) := E[R0(f, f⋆)] is the ordinary test error of f ,
where the expectations are w.r.t all sources of randomness in f and f⋆. Of course Gδ(f) is an
increasing function of δ.

Define Rq,δ(f) := Rq,δ(f, f) and Rδ(f) := R2,δ(f, f), which measure the deviation of the outputs
of f w.r.t to the outputs of f , under adversarial attack. Note Rq(f) ≡ 0. Also note that in the case
where ∥ · ∥ is the euclidean L2-norm: if f is a near perfect model (in the classical sense), meaning
that its ordinary test error G0(f) is small, then Rδ(f) is a good approximation for Gδ(f). Finally,
(at least for small values of α), we can further approximate Rα(f) (and therefore Gδ(f), for near
perfect f ) by δ2 times the Dirichlet energy S(f)2. Indeed,

Lemma D.3. Let q ∈ [1,∞), and f : Rd → R be a smooth function. Define Sq(f) by

Sq(f) := (EPx
[∥∇f(x)∥q⋆])

1/q
. (41)

Note that, in particular, if ∥ · ∥ is the euclidean L2-norm and q = 2, then Sq(f)
2 is the Dirichlet

energy defined in (6) as our measure of robustness. We have the following

(A) General case. Sq(f) is the right derivative of the mapping δ 7→ Rδ(f)
1/q at δ = 0. More

precisely, we have the following

lim
δ→0+

Rq,δ(f)
1/q

δ
= Sq(f), (42)

or equivalently, Rq,δ(f) = δq ·S(f)q + Higher order terms in δq .

(B) Case of Dirichlet energy In particular, if ∥ · ∥ is the euclidean L2-norm, and we take q = 2,

Rδ(f) = δ2 ·Sq(f)
2 + Higher order terms in δ2. (43)

Remark D.1. A heuristic argument was used in Simon-Gabriel et al. (2019) to justify the use of aver-
age (dual-)norm of gradient (i.e the average local Lipschitz constant) EPx

[∥∇f(x)∥⋆] (corresponding
to q = 1 in the above) as a proxy for the adversarial generalization.

The proof of Lemma D.3 follows directly Fubini’s Theorem and the following lemma.

Lemma D.4. If f is differentiable at x, then the function δ 7→ ∆f (x; δ) := sup
∥x′−x∥≤δ

|f(x′)− f(x)|

is right-differentiable at 0 with derivative given by ∆′
f (x; 0) = ∥∇f(x)∥⋆.

Proof. As f is differentiable, f(x′) = f(x) +∇f(x)⊤(x′ − x) + o(∥x′ − x∥) around x. Therefore
for sufficiently small δ, if B(x; δ) is ball of radius δ around x, then

∆f (x; δ) = sup
x′∈B(x;δ)

| ∇f(x)⊤(x′ − x) + o(∥x′ − x∥) |

≤ sup
x′∈B(x;δ)

|∇f(x)⊤(x′ − x)|+ sup
y∈B(x;δ)

o(∥x′ − x∥)

= ∥∇f(x)∥⋆δ + sup
y∈B(x;δ)

o(∥x′ − x∥)∆f (x; δ)

δ

≤ ∥∇f(x)∥⋆ + sup
x′∈B(x;δ)

o(∥x′ − x∥)
δ

(44)
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Note that supx′∈B(x;δ)

o(∥x′ − x∥)
δ

→ 0. This proves lim supδ→0+(1/δ)∆f (x; δ) ≤ ∥∇f(x)∥⋆.
Similarly, one computes

∆f (x; δ) = sup | ∇f(x)⊤(x′ − x) + o(∥x′ − x∥) |
≥ sup |∇f(x)⊤(x′ − x)| − sup o(∥x′ − x∥)
= ∥∇f(x)∥δ − sup o(∥x′ − x∥)

(45)

Hence lim infδ→0+(1/δ)∆f (x; δ) ≥ ∥∇f(x)∥⋆, and we conclude that δ 7→ ∆f (x; δ) is differen-
tiable at δ = 0, with derivative ∆′

f (x; 0) = ∥∇f(x)∥⋆ as claimed.

Proof of Lemma D.3. By basic properties of limits, one has(
lim

δ→0+

Rq,δ(f)
1/q

δq

)q

= lim
δ→0+

Rq,δ(f)

δ

= lim
δ→0+

EPx
[|∆f (x; δ)|q]

δ

= EPx

[
lim

δ→0+

|∆f (x; δ)|q

δ

]
= EPx

[(
lim

δ→0+

|∆f (x; δ)|
δ

)q]
= EPx

[∥∇f(x)∥q⋆]
:= Sq(f)

q,

(46)

where the 3rd line is thanks to Fubini’s Theorem, and the 5th line is thanks to lemma D.4 (and the
fact that ∆f (x; 0) ≡ 0). Noting that Rq,0(f) ≡ 0 then concludes the proof.

E NEURAL NETWORKS AT (RANDOM) INITIALIZATION

We now consider networks at initialization, wherein the hidden weights matrix W = (w1, . . . , wm)
is a random m× d matrix with iid rows from N(0,Γ) as in the random features regime (13), but we
freeze the output weight vector z = z0 ∈ Rm at random initialization, with random iid entries from
N(0, 1/m), following standard initialization procedures. Let finit denote this random network, i.e.,

finit(x) := (z0)⊤σ(Wx) =

m∑
j=1

z0jσ(x
⊤wj). (47)

Theorem E.1. Under the Conditions 4.1 and 4.2, we have the identity in the limit (3),

ε̃rob(finit) =
∥σ′∥2L2(N(0,1)) + λ23∥Γ∥2F /2 + λ22∥Γ∥2F

4∥B∥2F
+ od,P(1), where λk is the kth Hermite coef-

ficient of the activation function σ. In particular, for the quadratic activation function σ(t) = t2 − 1,

we have ε̃rob(finit) =
1 + ∥Γ∥2F
∥B∥2F

+ od,P(1).

Analogously, the test error for the NN at initialization is given by the following result.
Theorem E.2. Under the Conditions 4.1 and 4.2, we have the following identity in the limit (3),

ε̃test(finit) = 1 +
∥σ∥2L2(N(0,1)) + λ22∥Γ∥2F /2

2∥B∥2F
+ od,P(1). In particular, for the quadratic activation

σ(t) := t2 − 1, we have the following identity ε̃test(finit) = 1 +
1 + ∥Γ∥2F
∥B∥2F

+ od,P(1).

Combining Thm. E.2 with formula (11), we deduce that training a randomly initialized neural
network always improves its test error, as one would expect. On the other hand, combining Thm. 3.1
and Thm. E.1, we deduce that fully training the networks (10) via SGD:
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(1) Degrades robustness if ∥B∥2F ≳ ∥Γ∥2F + 1. This is because in this case, the parameters of the
model align to the signal matrix B, which has much larger energy than the parameters at initialization.
Indeed, SGD tends to move the covariance structure of the hidden neurons from Γ to B.

(2) Improves robustness if ∥B∥2F ≲ ∥Γ∥2F + 1.

F MISCELLANEOUS

F.1 LAZY TRAINING OF OUTPUT LAYER IN RF REGIME

We now study the influence of the initialization on the random features regime. Let W =
(w1, . . . , wm) ∈ Rm×d with random rows drawn iid from N(0,Γ) as in the RF model (13), and let
the output layer be initialized at z = z0 ∼ N(0, (1/m)Id) and updated via single-pass gradient-flow
on the entire data distribution (infinite data). In this so-called random features lazy (RFL) regime, we
posit the following approximation neural network (2)

fRFL(x) := z⊤RFL,λσ(Wx) = finit(x) + δ⊤λ σ(Wx), (48)

where zRFL,λ := z0 + δλ and δλ ∈ Rm solves the following ridge-regression problem

arg min
δ∈Rm

Ex∼N(0,Id)[(δ
⊤σ(Wx) + finit(x)− f⋆(x))

2] + λ∥δ∥2. (49)

The use of the ridge parameter here can be thought of as a proxy for early-stopping at iteration
t ∝ 1/λ Ali et al. (2020); λ = 0 corresponds to training the output layer to optimality.
Theorem F.1. We have the following identities

Ez0 [ε̃test(fRFL,λ)] = ε̃test(fRF) +
tr(P 2

λU)/m

2∥B∥2F
+ od,P(1) (50)

Ez0 [ε̃rob(fRFL,λ)] = ε̃rob(fRF) +
tr(P 2

λC)/m

4∥B∥2F
+ od,P(1), (51)

where U = U(W ) and C = C(W ) are the random matrices defined in (15) and (54) respectively.

Because P 2
λ , U , and C are psd matrices, the residual terms tr(P 2

λU)/m and tr(P 2
λC)/m in the above

formulae are nonnegative. We deduce that random initialization of the output weights hurts both test
error and robustness, as long as the RFL regime is valid.

Infinitely regularized case λ → ∞. Note that Pλ converges in spectral norm a.s to the identity
matrix Im in the limit λ → ∞. Thus, in this limit, zRF,λ converges almost-surely to the all-zero
m-dimensional vector and so, thanks to (91), the output weights zRFL,λ of fRFL,λ converge to the
value at initialization z0. Therefore, fRFL,λ and all its derivatives converge a.s point-wise its state
finit at initialization (47). We deduce that in the λ→ ∞ limit, the neural network in the lazy regime
is equivalent to an untrained model finit, in terms of test error and robustness. This does not come as
much of a surprise, since λ→ ∞, corresponds to early-stopping at t = 0, i.e., no optimization.

Unregularized case λ→ 0+. By an analogous argument as above, Pλ converges a.s. to the all-zero
m ×m matrix in the limit λ → 0+, and so thanks to (91), we have the almost-sure convergence
∥zRFL,λ− zRF,λ∥ → 0. We deduce that in this limit, the unregularized lazy training regime is exactly
equivalent to the unregularized vanilla RF regime. Thus, the random features lazy (RFL) regime
corresponding to the approximation fRFL is an interpolation between the random features regime
(corresponding to fRF) and the untrained regime (corresponding to finit).

Although this is not useful in our infinite data regime, we remark that a non-zero amount of regulariza-
tion is often crucial for good statistical performance with finite samples. In this, case, Pλ is non-zero,
and we expect both the test error and robustness to become worse in this lazy RF approximation,
compared to vanilla RF.

F.2 EFFECT OF REGULARIZATION IN RF REGIME

Suppose the estimation of the output weights of the RF model is regularized, i.e., for a fixed λ ≥ 0,
consider instead the model fRF,λ(x) := z⊤RF,λσ(Wx), where zRF,λ is chosen to solve the following
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ridge-regularized problem
min
z∈Rm

∥fW,z − f⋆∥2L2(N(0,Id))
+ λ∥z∥2. (52)

A simple computation gives the explicit form
zRF,λ = U−1

λ v, (53)
where Uλ := U + λIm, U = U(W ) is the random matrix defined in (15), and v ∈ Rm is random
vector defined in (16). An inspection of the proof of Theorem 4.1 (see Appendix G.4) reveals
that the situation in the presence of ridge regularization is equivalent to the unregularized case in
which we replace λ by λ+ λ in the definition of the matrix A0 which appears in (20). This has the
effect of decreasing ψ1 and ψ2, and thanks to (23), decreasing the robustness of the random features
model. That is, ε̃rob(fRF,λ) is a decreasing function of the amount of regularization of λ, and in fact,
lim
λ→∞

ε̃rob(fRF,λ) = 0.

G TECHNICAL PROOFS

Before proving the main results of the manuscript, we first state and prove some auxiliary results
which will be instrumental.

G.1 A USEFUL LEMMA

Recall the definitions of the approximation error and robustness metrics from Section 2.3. The
following lemma was used to express the measure of (non)robustness εrob(fW,z,s)

2 of a two-layer
neural network fW,z,s as a quadratic form in the output weights, with coefficient matrix which
depends on the distribution of the hidden weights.

Let us start by deriving an analytic formula for the robustness measure for the neural network general
model (2). This result will be exploited in the sequel in the analysis of the different learning regimes
we will consider.
Lemma G.1. For the neural net fW,z,s defined in (2), we have the analytic formula εrob(fW,z,s) =
z⊤Cz, where C = C(W ) is the m×m psd matrix with entries given by (with x ∼ N(0, Id))

cj,k := (w⊤
j wk)Ex[σ

′(x⊤wj)σ
′(x⊤wk)]∀j, k ∈ [m]. (54)

In particular, for a quadratic activation σ(t) ≡ t2 + s, we have cj,k = 4(w⊤
j wk)

2 ∀j, k ∈ [m].

Proof. One directly computes ∇xfW,z,s(x) =
∑m

j=1 zjσ
′(x⊤wj)wj , and so the Laplacian of fW,z,s

at x is given by

∥∇xfW,z,s(x)∥2 =
m∑

j,k=1

zjzk(w
⊤
j wk)σ

′(x⊤wj)σ
′(x⊤wk). (55)

Thus, S(fW,z,s)
2 evaluates to

εrob(fW,z,s) := Ex∼N(0,Id)∥∇xfW,z,s(x)∥2 =

m∑
j,k=1

zjzk(w
⊤
j wk)Ex[σ

′(x⊤wj)σ
′(x⊤wk)] = z⊤C(W )z,

where the m ×m psd matrix C(W ) is as defined in Lemma G.1. In particular, for the activation
function σ(t) := t2 + s, one computes

cj,k := (w⊤
j wk)Ex∼N(0,Id)[σ

′(x⊤wj)σ
′(x⊤wk)]

= 4(w⊤
j wk)Ex∼N(0,Id)[(x

⊤wj)(x
⊤wk)] = 4(w⊤

j wk)
2,

where the last step is due to the fact that
Ex∼N(0,Id)[(x

⊤wj)(x
⊤wk)] = Ex[x

⊤wjw
⊤
k x] = tr(Cov(x)wjw

⊤
k ) = w⊤

j wk,

by a standard result on the mean of a quadratic form.

Corollary G.1 (Robustness error of teacher model). It holds that εrob(f⋆) = 4∥B∥2F .

Proof. For the first part follows directly from Lemma G.1 with activation function σ(t) := t2 + b0/d
and fixed output weight vector z = 1m := (1, . . . , 1).
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G.2 HERMITE COEFFICIENTS

For any nonnegative integer k, let Hek : R → R be the (probabilist’s) kth Hermite polynomial.
For example, note that He0(t) := 0, He1(t) := t, He2(t) ≡ t2 − 1, He3(t) := t3 − 3t, etc. The
sequence (Hek)k forms an orthonormal basis for the Hilbert space L2 = L2(N(0, 1)) for functions
R → R which are square-integrable w.r.t the standard normal distribution N(0, 1). Under suitable
integrability conditions (refer to Section 4.1), the coefficients of the activation function σ in this basis
are called its Hermite coefficients, denoted λk, and are given by

λk = λk(σ) := EG∼N(0,1)[σ(G)Hek(G)]. (56)

Finally, ∥σ∥2L2(N(0,1)) = EG∼N(0,1)[σ(G)
2] defines the squared L2-norm of σ w.r.t the standard

Gaussian distribution N(0, 1). Note that by construction, one has ∥σ∥2L2(N(0,1)) =
∑∞

k=0 λ
2
k(σ).

G.3 APPROXIMATION OF RANDOM MATRICES

This section establishes some technical results for ”linearizing” a number of complicated random
matrices which occur in our analysis. We will make heavy use of random matrix theory (RMT)
techniques developed in Silverstein & Choi (1995); El Karoui (2010); Ledoit & Péché (2011);
Dobriban & Wager (2018)

We begin by recalling the following definition for future reference.
Definition 4.1. With z ∼ N(0, 1), define the following scalars

λ := E[σ(z)2]− λ21, κ := λ22∥Γ∥2F d/2, τ := λ2tr(BΓ)
√
d,

λ′ := E[σ′(z)2]− λ21, κ
′ := λ23∥Γ∥2F d/2.

(18)

Let U be the random m×m psd matrix defined in (15) and let v ∈ Rm be the random vector defined
in (16). Recall that λk = λk(σ) is the k Hermite coefficient of the activation function σ. Also recall
the definition of the scalars λ, κ, τ , λ′, and κ′ from (18). The following result was established in
Ghorbani et al. (2019).
Proposition G.1 (Lemma 2 of Ghorbani et al. (2019)). If λ0 = 0 and Conditions 4.1, 4.2 are in
place, then in the limit (3), it holds that

∥U − U0∥op = od,P(1), (57)

∥v − (τ/
√
d)1m∥ = od,P(1), (58)

where the random m×m psd matrix U0 is defined by

U0 := λIm + λ21WW⊤ + (κ/d)1m1⊤m + µµ⊤, (59)

and µ = (µ1, . . . , µm) ∈ Rm with µi := λ2 · (∥wi∥2 − 1)/2.

A careful inspection of the proof of the estimate (57) reveals that we can remove the condition
λ0 = 0, at the expense of incurring rank-1 perturbations in the matrix U0. Indeed, let us rewrite
σ = σ + λ0, and with λ0(G) = EG[σ(G)] = 0 with G ∼ N(0, 1) independent of the wi’s. Let
T0 be the m×m matrix with entries (T0)ij := λ0(σi)λ0(σj), where σi is the function defined by
σi(z) := σ(∥wi∥z) = σi(z) + λ0, with σ(∥wi∥z) := σ(∥wi∥z). Thus, we have the decomposition

T0 = T 0 + λ0(u1
⊤
m + 1mu

⊤) + λ201m1⊤m, (60)

where u = (λ0(σi))i∈[m]. Let T 0 be the m ×m psd matrix with entries (T 0)ij := λ0(σi)λ0(σj).
Using the arguments from Ghorbani et al. (2019) (since λ0(σ) = 0), one has

∥T 0 − µµ⊤∥op = od,P(1). (61)

Furthermore, observe that one can write u1⊤m = Rµ1⊤m, where R is the m×m diagonal matrix with
Rii := λ0(σi)/µi. Now, for large d and any i ∈ [m], one computes

Rii = EG

[
σ(∥wi∥G)− σ(G)

λ2 · (∥wi∥2 − 1)/2

]
= EG

[
σ(∥wi∥G)− σ(G)

∥wi∥ − 1

]
· 1

λ2 · (∥wi∥+ 1)/2

→ EG[Gσ
′(G)]

λ2 · 2/2
=
λ2
λ2

= 1.

(62)

21



Under review as a conference paper at ICLR 2023

We deduce that ∥R−Im∥op = od,P(1), and so ∥u1⊤m−µ1⊤m∥op = od,P(1). This proves the following
extension of the above lemma which will be crucial in the sequel.
Lemma G.2 (Linearization of U without the Condition λ0(σ) = 0). Suppose Conditions 4.1 and 4.2
are in place. In the limit (3), it holds that

∥U − Ũ0∥op = od,P(1), (63)

where Ũ0 is the m×m random psd matrix given by

Ũ0 := λ̃Im + λ21WW⊤ + (κ/d)1m1⊤m + µ̃µ̃⊤, (64)

with µ̃ := µ+ λ01m and λ̃ := λ− λ20 = EG∼N(0,1)[σ(G)
2]− λ20 − λ21.

Let C = C(W ) be the random m×m psd matrix with entries given by

cij := (w⊤
i wj)Ex∼N(0,Id)[σ

′(x⊤wi)σ
′(x⊤wj)]. (65)

Thanks to Lemma G.1, we know that εrob(fRF) = z⊤RFCzRF = v⊤U−1CU−1v, a random quadratic
form in v. We start by linearizing the nonlinear random coefficient matrix C.
Lemma G.3 (Linearization of C). Suppose Conditions 4.1 and 4.2 are in place. Then, in the limit
(3), we have the following approximation

∥C − C0∥op = od,P(1), (66)

where C0 is the m×m random psd matrix given by

C0 := λ′Im + (κ′/d+ λ21)WW⊤ + (2κ/d)1m1⊤m, (67)

with κ′ := d · λ23∥Γ∥2F /2 ≥ 0, and λ′ := ∥σ′∥2L2(N(0,1)) − λ21.

Proof. Note that C = (WW⊤)⊙ U ′, where U ′ is the m×m random psd matrix with entries given
by U ′

ij := Ex∼N(0,Im)[σ
′(x⊤wi)σ

′(x⊤wj)].

– Step 1: Linearization. Invoking the previous lemma with σ′ in place of σ, we know that

∥U ′ − U ′
0∥op = od,P(1), (68)

where U ′
0 is the m×m random matrix given by

U ′
0 := λ′Im + λ1(σ

′)2WW⊤ + (κ(σ′)/d)1m1⊤m + (µ+ λ0(σ
′)1m)(µ+ λ0(σ

′)1m)⊤

= λ′Im + λ2(σ)
2WW⊤ + (κ′/d)1m1⊤m + (µ+ λ1(σ)1m)(µ+ λ1(σ)1m)⊤,

(69)

and we have used the fact that

λ0((σ
′)2)− λ0(σ

′)2 − λ1(σ
′)2 = λ0((σ

′)2)− λ1(σ)
2 − λ2(σ)

2 = λ′ − λ2(σ)
2 =: λ′.

Now, since ∥WW⊤∥op = Od,P(1) by standard RMT, we deduce that from (68) that,

∥C − (WW⊤)⊙ U ′∥op = ∥(WW⊤)⊙ (U ′ − U ′
0)∥op

≤ ∥WW⊤∥op · ∥U ′ − U ′
0∥op

= od,P(1).

(70)

– Step 2: Simplification. Let E := diag((∥wi∥2)i∈[m]) and F := (WW⊤)⊙ (WW⊤). Then

(WW⊤)⊙ U ′
0 = λ′E + λ2(σ)

2F + (κ′/d)WW⊤ + 2λ1(σ)diag(µ)WW⊤ + λ1(σ)
2WW⊤

= λ′E + λ1(σ)
2F + (κ′/d+ λ1(σ)

2)WW⊤ + 2λ1(σ)diag(µ)WW⊤.
(71)

Further, because maxi∈[n] |∥wi∥2 − 1| = od,P(1) by basic concentration, we have

∥E − Im∥op, ∥diag(µ)∥op = od,P(1). (72)
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Also, thanks to (El Karoui, 2010, Theorem 2.3), we may linearize F like so

∥F − (Im + ∥Γ∥2F 1m1⊤m)∥op = od,P(1). (73)

Combining with (71) gives (recalling that κ := d · λ2(σ)2∥Γ∥2F /2)

(WW⊤)⊙ U ′ = (λ′ + λ2(σ)
2)Im + (κ′/d+ λ1(σ)

2)WW⊤ + (2κ/d)1m1⊤m +∆

= λ′Im + (κ′/d+ λ1(σ)
2)WW⊤ + (2κ/d)1m1⊤m +∆

= C0 +∆,

(74)

where ∥∆∥op = od,P(1).

Let us rewrite U0 = A1 + µµ⊤ and C0 = D0 + (2κ/d)1m1⊤m, where

A1 := A0 + (κ/d)1m1⊤m,

A0 := λ̃Im + λ21WW⊤,

D0 := λ′Im + (κ′/d+ λ21)WW⊤.

(75)

We will need the following lemmas.
Lemma G.4. We have the following approximation

εrob(fRF) = u⊤C0u+ od,P(1)

= τ2
1⊤mU

−1
0 C0U

−1
0 1m

d
+ od,P(1),

(76)

where u := U−1
0 h, with h := (τ/

√
d)1m = λ2 · tr(BΓ)1m and U0 is defined as in Proposition G.1

and C0 is as defined in Lemma G.3.

Proof. Thanks to Proposition G.1, the fitted output weights vector zRF ∈ Rm concentrates around
u := U−1

0 h. On the other hand, we know from Lemma G.1 that εrob(fRF) = z⊤RFCzRF. The result
then follows from Lemma G.3.

Lemma G.5. Under Condition 4.3, the following holds in the limit (3)

1⊤mU
−1
0 1m
d

=
ψ1

1 + κψ1
+ od,P(1), (77)

1⊤mA
−1
1 µ√
d

= od,P(1), (78)

∥A−1
1 ∥op, ∥D0∥op = Od,P(1). (79)

where ψ1 > 0 is as defined in (20).

Proof. Formula (77) was established in the proof of (Ghorbani et al., 2019, Theorem 1), whilst (78)
was established in the proof of Lemma 5 of the same paper.

As for (79), we note that

∥A−1
1 ∥op = ∥(λIm + λ21WW⊤)−1∥op = Od,P(1/λ, λ

2
1) = Od,P(1),

since λ = Ωd(1) under Condition 4.3. Similarly, one computes ∥D0∥op = Od(WW⊤) = Od,P(1),
by standard RMT arguments Vershynin (2012).

We will need one final lemma.
Lemma G.6. Let A1, A0, and D0 be the random matrices defined in (75). Then, it holds that

1⊤mA
−1
1 D0A

−1
1 1m

d
=

ψ2

(1 + κψ1)2
+ od,P(1), (80)

where ψ1 and ψ2 as defined in (20).

23



Under review as a conference paper at ICLR 2023

Proof. By Sherman-Morrison formula, we have

A−1
1 = A−1

0 − κ
A−1

0 1m1⊤mA
−1
0 /d

(1 + κ1⊤mA
−1
0 1m/d)

,

and so
1⊤mA

−1
1 D0A

−1
1 1m

d
= a− 2ab− ab2 = a(1− b)2 = ac2, where

a := 1⊤mA
−1
0 D0A

−1
0 1m/d,

b :=
κ1⊤mA

−1
0 1m/d

1 + κ1⊤mA
−1
0 1m/d

,

c := 1− b =
1

1 + κ1⊤mA
−1
0 1m/d

.

(81)

Now, one has 1⊤mA
−1
0 1m/d = tr(A−1

0 )/d + od,P(1), thanks to Lemmas 5 and 6 of Ghorbani et al.
(2019). By an analogous argument, one can show that 1⊤mA

−1
0 D0A

−1
0 1m/d = tr(A−2

0 D0)/d +
od,P(1). Finally, the fact that tr(A0)

−1/d and tr(A−2
0 D0)/d converge to deterministic values ψ1 and

ψ2 respectively, can be established via standard RMT arguments Silverstein & Choi (1995); Ledoit &
Péché (2011).

G.4 PROOF OF THEOREM 4.1: ANALYTIC FORMULA FOR ROBUSTNESS OF RF MODEL

We are now ready to prove Theorem 4.1, restated here for convenience.
Theorem 4.1. Consider the random features model fRF (13), with covariance matrix Γ satisfying
Condition 4.1 and activation function σ satisfying Conditions 4.2 and 4.3.

(A) In the limit (3), we have the following approximation

ε̃rob(fRF) =
τ2(2κψ2

1 + ψ2)

∥B∥2F (2κψ1 + 2)2
+ od,P(1). (23)

(B) Moreover, if lim
d→∞

α = α∞, then lim
ρ→∞

lim
m,d→∞
m/d→ρ

ε̃rob(fRF) = α2
∞ w.p 1. In particular, for the

optimal choice of Γ in terms of test error, namely Γ ∝ B, one has lim
ρ→∞

lim
m,d→∞
m/d→ρ

ε̃rob(fRF) = 1 w.p 1.

Proof. From Lemmas G.1 and G.3, we know that

εrob(fRF) = z⊤RFCzRF = u⊤C0u+ od,P(1) = τ2
1⊤mU

−1
0 C0U

−1
0 1m

d
+ od,P(1), (82)

where u := U−1
0 h, with h := (τ/

√
d)1m = λ2 · tr(BΓ)1m and U0 defined as in Lemma G.2 and C,

C0 are as defined in Lemma G.3. Let A1, A0, and D0 be the random matrices defined in (75). Since,
C0 = D0 + (2κ/d)1m1⊤m, one computes

1⊤mU
−1
0 C0U

−1
0 1m

d
=

1⊤mU
−1
0 D0U

−1
0 1m

d
+ 2κ · 1

⊤
mU

−1
0 1m1⊤mU

−1
0 1m

d2

=
1⊤mU

−1
0 D0U

−1
0 1m

d
+ 2κ ·

(
1⊤mU

−1
0 1m
d

)2

=
1⊤mU

−1
0 D0U

−1
0 1m

d
+

2κψ2
1

(1 + κψ1)2
+ od,P(1),

(83)

where the last step is thanks to Lemma G.5. It remains to estimate the first term in the above display.

Using the Sherman-Morrison formula, we have

U−1
0 = A−1

1 − A−1
1 µµ⊤A−1

1

1 + µ⊤A−1
1 µ

. (84)
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We deduce that
1⊤mU

−1
0 D0U

−1
0 1m

d
= a11 − a12 − a21 + a22 + od,P(1), (85)

where a11, a12, a21, and a22 are defined by

a11 :=
1⊤mA

−1
1 D0A

−1
1 1m

d
,

a12 :=
1⊤mA

−1
1 D0A

−1
1 µµ⊤A−1

1 1m

(1 + µ⊤A−1
1 µ)d

,

a21 :=
1⊤mA

−1
1 D0A

−1
1 µµ⊤A−1

1 1m

(1 + µ⊤A−1
1 µ)d

,

a22 :=
1⊤mA

−1
1 µµ⊤A−1

1 D0A
−1
1 µµ⊤A−1

1 1m

(1 + µ⊤A−1
1 µ)2d

.

(86)

Now, one easily computes

max(|a12|, |a21|) ≤ ∥D0∥op∥A−1
1 ∥op ·

1⊤mA
−1
1 µµ⊤A−1

1 1m

(1 + µ⊤A−1
1 µ)d

≲
(1⊤mA

−1
1 µ/

√
d)2

(1 + µ⊤A−1
1 µ)

= od,P(1),

where we have used Lemma G.5 in the last two steps. Similarly, we have,

|a22| ≤ ∥D0∥op∥A−1
1 ∥op︸ ︷︷ ︸

Od,P(1)

· 1⊤mA−1
1 µ/

√
d︸ ︷︷ ︸

od,P(1)

· µ⊤A−1
1 µ

(1 + µ⊤A−1
1 µ)2︸ ︷︷ ︸

Od,P(1)

·µ⊤A−1
1 1m/

√
d︸ ︷︷ ︸

od,P(1)

= od,P(1),

again thanks to Lemma G.5. We conclude from (85) that

1⊤mU
−1
0 D0U

−1
0 1m

d
= a11 + od,P(1). (87)

Finally, we know from Lemma G.6 that

a11 :=
1⊤mA

−1
1 D0A

−1
1 1m

d
=

ψ2

(1 + κψ1)2
+ od,P(1).

part (A) of the theorem them follows upon dividing (85) by εrob(f⋆) = 4∥B∥2F .

For part (B), one notes that ψ1 > 0 and so

τ2(2κψ2
1 + ψ2)

∥B∥2F (2κψ1 + 2)2
=

tr(BΓ)2d(∥Γ∥2F dψ1 + ψ2)

(∥Γ∥2F dψ1 + 2)2∥B∥2F
=

tr(BΓ)2d2∥Γ∥2F dψ1

(∥Γ∥2F dψ1 + 2)2∥B∥2F
+ od(1)

=
tr(BΓ)2

∥Γ∥2F ∥B∥2F
+ od(1) → α2

∞,

which completes the proof.

H PROOFS OF MAIN RESULTS

H.1 PROOF OF THEOREM E.1: ROBUSTNESS ERROR OF NEURAL NETWORKS AT
INITIALIZATION

We restate the result here for convenience. Let finit be the function computed by the neural network
at initialization, as defined in (47).
Theorem E.1. Under the Conditions 4.1 and 4.2, we have the identity in the limit (3),

ε̃rob(finit) =
∥σ′∥2L2(N(0,1)) + λ23∥Γ∥2F /2 + λ22∥Γ∥2F

4∥B∥2F
+ od,P(1), where λk is the kth Hermite coef-

ficient of the activation function σ. In particular, for the quadratic activation function σ(t) = t2 − 1,

we have ε̃rob(finit) =
1 + ∥Γ∥2F
∥B∥2F

+ od,P(1).
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Proof. Thanks to Lemma G.1, we know that εrob(finit) = z⊤Cz, where C is the random m×m psd
matrix defined in (65). By standard RMT, z⊤Cz = tr(C)/m+ od,P(1). Now, let C0 be the random
matrix introduced in Lemma G.3. Since ∥C − C0∥op = od,P(1) (thanks to the aforementioned
lemma), one has tr(C)/m = tr(C0)/m + od,P(1). Let D0 := λ′Im + (κ′/d + λ21)WW⊤ be the
matrix defined in (75) so that C0 = D0 + (2κ/d)1m1⊤m. We deduce that in the limit (3),

εrob(finit) = tr(D0)/m+ 2κ/d+ od,P(1)

= (κ′/d+ λ21)tr(WW⊤)/m+ λ′ + 2κ/d+ od,P(1)

= k′/d+ λ21 + λ′ + 2κ/d+ od,P(1)

= ∥σ′∥2L2(N(0,1)) + κ′/d+ 2κ/d+ od,P(1)

= ∥σ′∥2L2(N(0,1)) + λ23∥Γ∥2F /2 + λ22∥Γ∥2F + od,P(1)

(88)

where the third line is because tr(WW⊤)/m = (1/m)
∑m

j=1 ∥wj∥2 which converges in probability
to tr(Γ) = 1, by the weak law of large numbers. Dividing by both sides of the above display by
εrob(f⋆) = 4∥B∥2F then gives the result.

In particular, in the case of quadratic activation σ(t) := t2 − 1, we have λ2 = 2, ∥σ′∥2L2(N(0,1)) = 4,
λ3 = 0, and so we deduce that ε̃rob(finit) = (4 + 4∥Γ∥2F )/(4∥B∥2F ) = (1 + ∥Γ∥2F )/∥B∥2F .

H.2 PROOF OF THEOREM E.2: TEST ERROR OF NEURAL NETWORK AT INITIALIZATION

Theorem E.2. Under the Conditions 4.1 and 4.2, we have the following identity in the limit (3),

ε̃test(finit) = 1 +
∥σ∥2L2(N(0,1)) + λ22∥Γ∥2F /2

2∥B∥2F
+ od,P(1). In particular, for the quadratic activation

σ(t) := t2 − 1, we have the following identity ε̃test(finit) = 1 +
1 + ∥Γ∥2F
∥B∥2F

+ od,P(1).

Proof. For random initial output weights z0 ∼ N(0, (1/m)1m) independent of the (random) hidden
weights matrix W , one computes

Ez[εtest(finit)] := EzEx∼N(0,Id)[(finit(x)− f⋆(x))
2] = EzEx[finit(x)

2] + Ex[f⋆(x)
2], (89)

where we have used the fact that Ez = 0. The second term in the rightmost expression equals
∥f⋆∥2L2(N(0,Id))

= 2∥B∥2F . Let Q be the m×m diagonal matrix with the output weights z on the
diagonal, and let U be the m×m matrix with entries Uij := Ex[σ(x

⊤wj)σ(x
⊤wj)] introduced in

(15), and let U0 := λIm + λ21WW⊤ + (κ/d)1m1⊤m +µµ⊤ with µ := (λ2(∥wj∥2 − 1))j∈[m] ∈ Rm,
be its approximation given in Proposition G.1. Then

Ex[finit(x)
2] = Ex[σ(Wx)⊤Qσ(Wx)] = z⊤Ex[σ(Wx)σ(Wx)⊤]z = z⊤Uz

= tr(U)/m+ od,P(1), by concentration of random quadratic forms
= tr(U0)/m+ od,P(1), thanks to Proposition G.1

= λ+ λ21 tr(WW⊤)/m︸ ︷︷ ︸
1+od,P(1)

+k/d+ λ2

m∑
i=1

(∥wi∥2 − 1)2/m︸ ︷︷ ︸
od,P(1)

+od,P(1)

= λ+ λ21 + κ/d+ od,P(1)

= ∥σ∥2L2(N(0,1)) + λ22∥Γ∥2F /2 + od,P(1).

(90)

The first part of the result then follows upon dividing through by ∥f⋆∥2L2(N(0,Id))
= 2∥B∥2F .

In particular, if σ is the quadratic activation, then ∥σ∥2L2(N(0,Id))
= λ2 = 2, and the second part of

the result follows.

26



Under review as a conference paper at ICLR 2023

H.3 THE SPECIAL CASE OF QUADRATIC ACTIVATIONS

We now specialize Theorem 4.1 to the case of the quadratic activation function and obtain more
transparent formulae.
Corollary H.1. Consider the random features model fRF with covariance matrix Γ satisfying
Condition 4.1 and quadratic activation function σ(t) := t2 − 1. Then, in the limit (3), it holds that

ε̃rob(fRF) =
tr(BΓ)2∥Γ∥2F

(1/m+ ∥Γ∥2F )2∥B∥2F
+ od,P(1). Furthermore, part (B) of Theorem 4.1 holds.

Proof. For quadratic activation, one easily computes

λ1 = λ0 = 0, λ2 = 2, λ = 2, λ′ = 4, κ = λ22∥Γ∥2F d/2 = 2∥Γ∥2F d, τ := 2tr(BΓ)/
√
d, κ′ = 0,

and so A0 = 2Im and D0 = 4Im. In this case, one deduces

ψ1 := lim
m,d→∞
d/m→ρ

tr(A−1
0 )/d = ρ/2 and ψ2 := lim

m,d→∞
d/m→γ

tr(A−2
0 D0)/d = ρ.

Plugging these into formula (23) of Theorem 4.1 yields

ε̃rob(fRF) =
4tr(BΓ)2d · 2 · 2∥Γ∥2F d · (ρ/2)2

(2 + 2 · 2∥Γ∥2F d · ρ/2)2∥B∥2F
+ od,P(1)

=
4tr(BΓ)2∥Γ∥2F (ρd)2

(2 + 2∥Γ∥2F ρd)2∥B∥2F
+ od,P(1)

=
tr(BΓ)2∥Γ∥2F

(1/m+ ∥Γ∥2F )2∥B∥2F
+ od,P(1),

which proves the first part of the corollary. The second part follows directly from the second part of
Theorem 4.1.

H.4 PROOF OF THEOREM F.1: RANDOM FEATURES LAZY (RFL) REGIME

Theorem F.1. We have the following identities

Ez0 [ε̃test(fRFL,λ)] = ε̃test(fRF) +
tr(P 2

λU)/m

2∥B∥2F
+ od,P(1) (50)

Ez0 [ε̃rob(fRFL,λ)] = ε̃rob(fRF) +
tr(P 2

λC)/m

4∥B∥2F
+ od,P(1), (51)

where U = U(W ) and C = C(W ) are the random matrices defined in (15) and (54) respectively.

Proof. By construction, note that the vector δλ is equivalent to the output weights of a RF approxima-
tion with true labels f̃⋆(x) := f⋆(x)−finit(x). If U and v are as defined in (15) and (16) respectively,
then we have the closed-form solution (with Uλ := U + λIm)

δλ = U−1
λ (Ex[(f⋆(x)− fz0(x))σ(Wx)])

= U−1
λ (v − Ex[(z

0)⊤σ(Wx)σ(Wx)⊤])

= U−1
λ (v − Uz0) = zRF,λ − U−1

λ Uz0.

Thus, for a fixed regularization parameter λ > 0, the output weights vector in this lazy training
regime is given by

zRFL,λ = δλ + z0 = zRF,λ + Pλz
0, (91)

where Pλ := Im − U−1
λ U . We deduce that in the presence of any amount of ridge regularization, the

lazy random features (RFL) regime is equivalent to the vanilla random features (RF) regime, with
an additive bias of Pλz

0 ∈ Rm on the fitted output weights vector. In particular, note that if λ = 0,
then zRFL,0 = zRF,0, that is in the absence of regularization, the RFL and RF correspond to the same
regime (i.e., the initialization has no impact on the final model).
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– test error. From formula (91), and noting that z0 is independent of W , one computes the test error
of flazy,λ averaged over the initial output weights vector z0 as

Ez0 [εtest(flazy,λ)] := Ez0 [∥flazy,λ − f⋆∥2L2(N(0,Id))
]

= ∥fRF − f⋆∥2L2(N(0,Id))
+ Ez0 [∥fW,Pλz0∥2L2(N(0,Id))

]

= εtest(fRF,λ) + Ea0
[(z0)⊤PλUPλz

0]

= εtest(fRF,λ) + tr(P 2
λU)/m,

where U = U(W ) is the matrix defined in (15).

– (Non)robustness. From formula (91), one computes

S(fRFL, λ)
2 = z⊤RFL,λCzRFL,λ = z⊤RF,λCzRF,λ + 2zRF,λCPλz

0 + (z0)⊤PλCPλz
0

= S(fRF,λ)
2 + 2zRF,λCPλz

0 + (z0)⊤PλCPλz
0,

where C = C(W ) is the matrix defined in (65). Taking expectations w.r.t z0, and noting that z0 is
independent of Pλ and C only depend on W and are therefore independent of z0, we have

Ez0 [S(flazy,λ)
2] = S(fRF,λ)

2 + tr(P 2
λC)/m. (92)

H.5 PROOF OF THEOREM 5.1: NEURAL TANGENT (NT) REGIME

Theorem 5.1. Consider the neural tangent model fNT in (26). In the limit (3) it holds that,

EW [ε̃rob(fNT)] = (ρ+ ρ2)/2 + (ρ− ρ2)β/2 + od(1), where ρ := min(ρ, 1). (28)

Let r ≤ min(m, d) be the rank of W . It is clear that r = min(m, d) w.p 1. Let

W⊤ = P1SV
⊤ (93)

be the singular-value decomposition of W⊤, where P1 ∈ Rd×r (resp. V ∈ Rm×r) is the column-
orthogonal matrix of singular-vectors of W⊤ (resp. W ), and S ∈ Rr×r is the diagonal matrix of
nonzero singular-values. For any A ∈ Rm×d, set G(A) := SV ⊤A ∈ Rr×d. In their proof of (27),
Ghorbani et al. (2019) showed that it is optimal (in terms of test error) to chose ANT such that
G(ANT) = P⊤

1 B/2. Multiplying through by the orthogonal projection matrix P1 gives

P1P
⊤
1 B/2 = P1G(ANT) = P1SV

⊤ANT =W⊤ANT. (94)

For the proof of Theorem 5.1, we will need the following lemma.

Lemma H.1. εrob(fNT) = 4∥W⊤A+A⊤W∥2F .

Proof. Note that we can rewrite

fNT(x) = 2tr((W⊤A)xx⊤)− c,

which is linear in xx⊤ ∈ Rd×d. One then readily computes ∇fNT(x) = 2(W⊤A+A⊤W )x, from
which we deduce that ∥∇fNT(x)∥2 = 4x⊤(W⊤A+A⊤W )2x. Averaging over x ∼ N(0, Id) then
gives

εrob(fNT)

4
:= Ex∥∇fNT(x)∥2 = Ex[x

⊤(W⊤A+A⊤W )2x]

= tr((W⊤A+A⊤W )2) = ∥W⊤A+A⊤W∥2F ,

which completes the proof.

We will also need the following auxiliary lemma.
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Lemma H.2. Let P1 be as in (93) and let β := tr(B)2/(d∥B∥2F ) as usual. In the limit (3), we have
the identities

EW ∥P1P
⊤
1 B∥2F = ∥B∥2F (ρ+ od(1)), (95)

EW ∥P⊤
1 BP1∥2F = ∥B∥2F (ρ2(1− β) + ρβ + od(1)), (96)

where ρ := min(ρ, 1).

Proof. WLOG, let B be a diagonal matrix, so that B2 =
∑

j λ
2
jeje

⊤
j , where ej is the jth standard

unit-vector in Rd. Then, with P = P1P
⊤
1 , we have

∥P1P
⊤
1 B∥2F = tr(PB2) =

∑
i

(PB2)ii =
∑
i,j

Pij(B
2)ji

=
∑
i,j

Pij(B
2)ji =

∑
i,j

λiPijδ
2
ij =

∑
j

λjPjj .
(97)

Therefore, EW [∥P1P
⊤
1 B∥2F ] = (1/d)EW [tr(P )]·

∑
j λ

2
j = min(m/d, 1)∥B∥2F = ∥B∥2(ρ+od(1)),

where we have used the fact that EWPjj = (1/d)EW tr(P ) for all j, due to rotation-invariance. This
proves (95).

The proof of (96) is completely analogous to the proof of formula (69) in Ghorbani et al. (2019), with
ρ therein replaced with 1− ρ, and is thus omitted.

Proof of Theorem 5.1. From Lemma H.1 and formula (94)), we know that

εrob(fNT) = 4∥W⊤ANT +A⊤
NTW∥2F

= 4∥P1P
⊤
1 B/2 +BP1P

⊤
1 /2∥2F

= 2∥P1P
⊤
1 B∥2F + 2∥P⊤

1 BP1∥2F .
(98)

The result then follows upon taking expectations w.r.t the hidden weights matrix W and applying
Lemma H.2.

H.6 PROOF OF THEOREM 5.2: NEURAL TANGENT LAZY (NTL) REGIME

Theorem 5.2. Suppose the output weights z0 at initialization are iid from N(0, (1/m)Im). Then, in
the limit (3), the following identities hold

E{W,z0}[ε̃test(fNTL)] = EW [ε̃test(fNT)] + od(1), (31)

E{W,z0}[ε̃rob(fNTL)] = EW [ε̃rob(fNT)] + E{W,z0}[ε̃rob(finit)] + od(1). (32)

Proof. First observe that f⋆(x)− fNTL(x;A, c) = f̃⋆(x)− fNT(x;A, c), where,

f̃⋆(x) := f⋆(x)− finit(x) = x⊤B̃x+ b0, (99)

and the d× d matrix B̃ is defined by

B̃ := B −W⊤QW. (100)

Thus, fitting the model fNTL(·;A, c) to the teacher model f⋆ with coefficient matrix B is equivalent
to fitting fNT(·;A, c) to the modified teacher model f̃⋆ with coefficient matrix B̃.

In terms of test error (4), let ANTL, cNTL be optimal in fNT(·;A, c), and for simplicity of notation
define

fNTL(x) := fNTL(x;ANTL, cNTL). (101)

We split the proof into two parts. In the first part, we establish (32). The second part handles (31).
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– Robustness error. Proceeding in the same way as in the paragraph leading to (94), one has

εrob(fNTL) = 2∥P1P
⊤
1 B̃∥2F + 2∥P⊤

1 B̃P1∥2F , (102)

where P1 ∈ Rd×r is the column-orthogonal matrix in (93) and r := min(m, d) is the rank of W (w.p
1). Now, by definition of B̃, one has B̃2 = (B −W⊤QW )(B −W⊤QW ), and so

P1P
⊤
1 B̃

2 = P1P
⊤
1 B

2 − P1P
⊤
1 BW

⊤QW − P1P
⊤
1 W

⊤QWB + P1P
⊤
1 W

⊤QWW⊤QW. (103)

We now take the expectation w.r.t (W, z0), of each term on the RHS. Thanks to Lemma H.2, we
recognize the expectation w.r.t W of the trace of the first term in (103) as

EW [tr(P1P
⊤
1 B

2)] = EW [∥P1P
⊤
1 B∥2F ] = ∥B∥2F (ρ+ od(1)), (104)

Now, since W and z0 are independent and z0 has zero mean, the second and third terms in (102)
have zero expectation w.r.t (W, z0) because they are linear in Q = diag(z0).

Finally, one notes that

P1P
⊤
1 W

⊤QWW⊤QW = P1SV
⊤DWW⊤QV SP⊤

1 =W⊤QWW⊤QW, (105)

and so taking expectation w.r.t W and D (i.e z0) yields

E{W,z0}[tr(P1P
⊤
1 W

⊤QWW⊤QW )] = E{W,z0}[tr(WW⊤QWW⊤Q)]

= E{W,z0}[z
⊤((WW⊤)⊙ (WW⊤))z]

=
1

4
E{W,z0}[εrob(finit)],

(106)

where the last step is thanks to the second part of Lemma G.1. Putting things together, we have at
this point established that

E{W,z0}[∥P1P
⊤
1 B̃∥2F ] = ∥B∥2F (ρ+ od(1)) +

1

4
E{W,z0}[εrob(finit)]. (107)

Similarly, noting that P1P
⊤
1 W

⊤ =W⊤ by definition of P1, one has

∥P1B̃P
⊤
1 ∥2F = tr(P1P

⊤
1 B̃P1P

⊤
1 B̃) = tr((P1P

⊤
1 B −W⊤QW )(P1P

⊤
1 B −W⊤QW ))

= tr(P1P
⊤
1 BP1P

⊤
1 )− tr(P1P

⊤
1 BW

⊤QW )− tr(P1P
⊤
1 W

⊤WQWB)

+ tr(W⊤QWW⊤QW ).

(108)

Taking expectation w.r.t W and z0 then gives

E{W,z0}∥P⊤
1 B̃P1∥2F = EW [∥P⊤

1 BP1∥2F ] + E{W,z0}[tr(WW⊤QWW⊤Q)]

= ∥B∥2F (ρ2(1− β) + ρβ + od(1)) +
1

4
E{W,z0}[εrob(finit)].

(109)

Combining (102), (107), (109), and (28) then completes the proof of (32).

– test error. The proof of formula (31) build on the proof of Theorem 2 in Ghorbani et al. (2019).
Let P2 be a d × (d − min(m, d)) matrix such that the combined columns of P1 and P2 form an
orthonormal basis for Rd. Then, one computes

εtest(fNTL) := ∥fNTL − f⋆∥L2(N(0,Id)) = Ex[|fNTL(x)− f⋆(x)|2]
(a)
= min

A∈Rm×d
2∥B̃ −W⊤A−A⊤W∥2F

(b)
= 2∥P⊤

2 B̃P2∥2F = 2∥P⊤
2 (B −W⊤QW )P2∥2F

(c)
= 2∥P⊤

2 BP2∥2F = εtest(fNT).

where (a) and (b) are due to arguments analogous to arguments made in the beginning of proof of
Theorem 2 in Ghorbani et al. (2019) (except that our B̃ plays the role of B in Ghorbani et al. (2019))
and (c) is because P⊤

2 P1 = 0 ∈ R(d−min(m,d))×d by construction of P2. Dividing through the above
display by εrob(f⋆) = 4∥B∥2F then gives (31).
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I GENERAL NONLINEAR TEACHER AND STUDENT MODELS

The results we established so far are for student-teacher models which are two-layer neural networks
in certain learning regimes with Gaussian data. In this section, we consider much more general
scenarios, and show lower-bounds that display similar tradeoffs between test error and robustness.

Suppose the distribution Px of the features is any distribution on Rd which satisfies a Poincaré
inequality with constant c2 > 0. This means that for any smooth function f : Rd → R, one
has VarPx(f) ≤ c2∥∇f∥2L2(Px)

, where VarPx(f) := ∥f − f∥2L2(Px)
is the variance of f and f :=

EPx
f ∈ R is its mean w.r.t Px. For example, N(0,Σ) verifies a Poincaré inequality with c2 = ∥Σ∥op.

Consider a teacher model f⋆ which is now any function in L2(Px) with mean f⋆ = 0.

Theorem I.1. For every smooth student model f : Rd → R (neural network or not!), it holds that√
εtest(f) + c ·

√
εrob(f) ≥ ∥f⋆∥L2(Px).

The nature of Theorem I.1 is a tradeoff since it directly implies that the test error cannot be decreased
without increasing the robustness error. In the particular case of isotropic features where Px =
N(0, Id) as considered in the preceding sections, a Poincaré inequality with constant c2 = 1 is
satisfied, and we deduce from the above theorem that, for any smooth student model f , one has√

εtest(f) +
√
εrob(f) ≥ ∥f⋆∥L2(Px). (110)

Of course, apart from being only one-sided, the inequality (110) is weaker than the tradeoffs estab-
lished in the preceding sections, due to the square-roots in the former. However, (110) holds without
any real restriction on the teacher model f⋆, student f model, or learning algorithm / regime; it is
solely a consequence of the high-dimensional geometry of the distribution of the features, manifested
via the Poincaré inequality. In contrast, the tradeoffs established in the preceding sections where for
student-teacher models which where two-layer neural networks in various learning regimes.

J PROOF OF THEOREM I.1

Theorem I.1. For every smooth student model f : Rd → R (neural network or not!), it holds that√
εtest(f) + c ·

√
εrob(f) ≥ ∥f⋆∥L2(Px).

Proof. WLOG, assume εtest(f) ≤ ∥f⋆∥L2(Px), since the claimed lower-bound trivially holds other-
wise. By the Poincaré inequality, we have

c2εrob(f) := c2∥∇xf∥2L2(Px)
≥ VarPx

(f) := ∥f − f∥2L2(Px)
, where f ∈ R is mean of f

≥
∣∣∣∥f⋆ − f∥L2(Px) − ∥f − f⋆∥L2(Px)

∣∣∣2, by the triangle inequality.

In particular, we have

c
√
εrob(f) ≥ ∥f⋆ − f∥L2(Px) − ∥f − f⋆∥L2(Px)

≥
√
VarPx

(f⋆)−
√
εtest(f) = ∥f⋆∥L2(Px) −

√
εtest(f).

where the last line follows from ∥f⋆∥2L2(Px)
= VarPx

(f⋆) ≤ ∥f⋆−f∥2L2(Px)
. The result then follows

from a simple rearrangement of the terms in the above display.

K APPROXIMATING FUNCTION VALUES DOESN’T AMOUNT TO
APPROXIMATING GRANDIENTS

K.1 DISPROVING (9)

Henceforth, for a student model f , consider the residue function h := f−f⋆. Thus, ∇f−∇f⋆ = ∇h.
In the student-teacher setup considered in our work, the student f is in general mis-specified w.r.t to
the teacher f⋆ (for example, because the students activation is arbitrary while the teacher’s activation
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function is fixed to quadratic), and so the residue function h has no specific structure in general.
Mindful of the previous remark, to disprove (1), it is sufficient to construct a subspace H of the
weighted Sobolev space W 1,2(N(0, Id)) (consisting of functions g : Rd → R which are square-
integrable w.r.t N(0, Id) with weak-derivatives which are square-integrable w.r.t N(0, Id)), such
that:

for every ϵ, C > 0, there exists h0 ∈ H with ∥h0∥L2(N(0,Id)) ≤ ϵ and ∥∇h0∥L2(N(0,Id)) > C.(111)

Indeed, take H = W 1,2(N(0, Id)), and for fixed α ∈ (0, 1), consider the sequence of residue
functions (hn)n in H given by hn(x) := (1/nα) sin(nx1), for every positive integer n, and x =
(x1, . . . , xd) ∈ Rd. Note that a constructive way for realizing such residue functions is by taking
B = 0 in the teacher model f⋆, and activation function σ(t) ≡ sin(t) in the student model f . Now, a
simple computation gives ∇hn(x) = (1/nβ) cos(nx1)e1, where β := 1− α ∈ (0, 1) and ej is jth
standard basis vector in Rd. Furthermore,

∥hn∥2L2(N(0,Id))
= n−2αEx1∼N(0,1)[sin

2(nx1)] = n−2αe−n2

sinh(n2)

= n−2α(1− e−2n2

)/2
n→∞−→ 0,

∥∇hn∥2L2(N(0,Id))
= Ex1∼N(0,1)[n

2β cos2(nx1)] = n2βe−n2

cosh(n2)

= n2β(1 + e−2n2

)/2
n→∞−→ ∞.

Thus, (2) holds and we conclude that the implication (1) claimed by the reviewer fails in general. □

K.2 SOME EXCEPTIONAL CASES WHERE (1) HOLDS

Let us roundup by noting that (1) can be true in very specific circumstances. For example, if the
activation function σ of the student is quadratic, just like the teacher model f⋆. Indeed, in this case the
set of all residue functions f − f⋆ is contained in the set of polynomials of degree at most 2 in d real
variables; this is a finite-dimensional subspace H = P2(Rd) of L2(N(0, Id)). In fact, it is easy to
show via a simple counting argument that dim(H) = dim(P2(Rd)) =

(
d+2
d

)
= (d+2)(d+1)/2 ≲ d2.

Thus, the gradient operator ∇ is a finite-rank, and therefore compact operator on H . It follows that
the H-restricted operator norm ∥∇|H∥op defined by

∥∇|H∥op := sup
h∈H\{0}

∥∇h∥L2(N(0,Id))

∥h∥L2(N(0,Id))
. (112)

is finite and thus the implication (1) holds in this case. This argument is valid whenever the linear
span H of the residue functions f −f⋆ is a finite-dimensional subspace of L2(N(0, Id)), for example
linear models, or more generally, polynomial models of degree ≤ D (corresponding to the case where
the activation function σ of the student is a polynomial of degree ≤ D), for some fixed integer D ≥ 1;
indeedH = PD(Rd) in this case, and has dimension

(
d+D
d

)
= (d+D)(d+D−1) . . . (d+1)/D! ≲

dD.
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