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ABSTRACT

We present WorldCrafter, a novel framework that enables interactive dynamic
scene generation from a single image by leveraging geometry-aware and tem-
poral modeling. Existing methods often suffer from texture distortion, structural
inaccuracies, and temporal flickering under large viewpoint changes. These is-
sues mainly caused by explicit pixel-wise reprojection strategies. To address these
challenges, WorldCrafter introduces two complementary modules: 1) Geometry-
aware Video Depth Refinement, which enhances structural fidelity by refining
depth with multi-frame geometric priors and semantic cues; and 2) Object-
consistent Temporal Modeling, which disentangles video frames into object-
level layers to improve coherence between static backgrounds and dynamic fore-
grounds. These components form a unified rendering-inpainting framework for
photorealistic and camera-controllable dynamic scene generation. Experiments
demonstrate that WorldCrafter produces geometrically accurate and temporally
coherent results across diverse scenes and camera trajectories.

1 INTRODUCTION

Input 
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Figure 1: Motivation. Existing pixel-wise repro-
jection methods (e.g., TrajectoryCrafter (YU et al.,
2025), TrajectoryAttention (Xiao et al., 2025)) of-
ten struggle with geometric distortions and tempo-
ral inconsistency. As shown, a 60◦ pan-left intro-
duces noticeable artifacts, including boat deforma-
tion (top) and a curved road (bottom). These fail-
ures reveal the limitations of explicit reprojection
and motivate the pursuit of geometry-aware and
temporally coherent generation. Our method alle-
viates these issues, with consistent results (right).

Recent progress in world models (Yu et al.,
2025; Shriram et al., 2025; Yu et al., 2024a;
Chung et al., 2023; Yu et al., 2023; Höllein
et al., 2023; Liang et al., 2025) has enabled
the generation of photorealistic and camera-
controllable scenes by leveraging depth esti-
mation, segmentation, and inpainting. How-
ever, most of these methods focus on static
scenes and lack the ability to model tempo-
ral dynamics, making them unsuitable for sce-
narios involving motion or large viewpoint
changes. This gap arises from the inher-
ent challenges of modeling dynamic geome-
try and ensuring spatial-temporal coherence
across frames. To bridge this gap, we take
a step forward in dynamic scene generation
by unifying geometry-aware modeling with
spatial-temporal consistency.

Meanwhile, video world models (Xiao et al.,
2025; YU et al., 2025; Yu et al., 2024b; Bai
et al., 2025; Mao et al., 2025; Han et al., 2025)
move beyond static scene synthesis, generating dynamic scenes through warping-based pipelines
guided by depth and camera pose estimations (e.g., DUSt3R (Wang et al., 2024), MASt3R (Leroy
et al., 2024)). These approaches compute transformation maps from camera pose changes and point
maps, but their direct pixel warping often results in flickering, distortion, and structural collapse
under large viewpoint shifts (See Figure 1, 2).
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Prompt: The Grand Canal in Venice, boats, historical buildings, waterway.

Figure 2: Comparison with camera-controlled video generation methods. Existing methods of-
ten produce distortions without geometry-aware constraints and spatial-temporal guidance. Our
WorldCrafter interactively generates dynamic scenes with geometric and temporal consistency,
aligned with the input image, text prompt and camera trajectory.

In this paper, we propose WorldCrafter, an interactive framework for dynamic scene generation from
a single image with user-defined camera trajectories. Unlike previous methods (Xiao et al., 2025;
YU et al., 2025) that rely on explicit pixel-wise reprojection, our WorldCrafter employs geometry-
aware depth refinement and object-consistent temporal modeling with a video diffusion framework.
This unified design enables temporally coherent and geometrically consistent generation even un-
der large camera motion. To ensure both geometric and temporal consistency, we introduce two
key components: 1) A geometry-aware video depth refinement module that improves spatial coher-
ence within semantic regions and stabilizes depth across frames. 2) An object-consistent temporal
modeling module that uses geometric priors, segmentation constraints, and temporal cues to guide
inpainting. This enables object-level consistency and coherent novel-view video synthesis.

In particular, the geometry-aware video depth refinement module integrates semantic cues into the
generative process in a soft and implicit manner. Instead of explicit pixel-wise warping, this module
produces temporally aligned depth features that guide the video diffusion model towards consistent
geometry-aware scene synthesis over time. The object-consistent temporal modeling module ex-
plicitly decomposes the scene into static backgrounds and dynamic foregrounds. By disentangling
object motion from scene structure, this module improves temporal depth refinement and enhances
consistency across objects. This design enables fine-grained control of object dynamics, which is
crucial for generating coherent scene videos under complex camera trajectories.

Our contributions are as follows:

• We introduce WorldCrafter, an interactive framework for dynamic scene generation from a
single image with geometric and temporal consistency.

• We propose a geometry-aware video depth refinement module that achieves temporally
stable depth without relying on explicit pixel-wise reprojection.

• We introduce object-consistent temporal modeling that separates foregrounds from back-
grounds, enhancing object-to-object coherence and controllability.

• Extensive experiments demonstrate that WorldCrafter produces consistent dynamic scenes
from a single image, preserving geometry- and object-consistent results under large camera
motions and diverse scenarios.
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2 RELATED WORKS

Static 3D World Generation. Interactive 3D world models aim to synthesize realistic environ-
ments for user exploration. Recent works have primarily focused on generating static 3D scenes
from images or text prompts. WonderWorld (Yu et al., 2025) introduced depth-conditioned diffu-
sion for scene synthesis, while WonderJourney (Yu et al., 2024a) adopted point-based rendering to
enhance view consistency. LucidDreamer (Chung et al., 2023) and RealmDreamer (Shriram et al.,
2025) leveraged domain-agnostic point clouds and depth priors for generalizable scene generation.
Text2Room (Höllein et al., 2023) and Text2NeRF (Zhang et al., 2024) employed modular pipelines
to create room-scale environments from text, and DreamScene (Li et al., 2024) introduced a text-
to-3D framework with formation pattern sampling. PhotoconsistentNVS (Yu et al., 2023) improved
multi-view alignment through autoregressive diffusion, while Wonderland (Liang et al., 2025) ap-
plied 3DGS for efficient reconstruction. Although effective for static settings, these methods lack
temporal modeling and cannot handle dynamic content or camera motion.

Video World Models. Extending static world models to dynamic scene generation introduces chal-
lenges such as occlusion, geometric distortion, and temporal flickering. Video world models are
typically formulated as video prediction tasks, synthesizing future frames conditioned on camera
trajectories or text prompts. Trajectory-Attention (Xiao et al., 2025) and TrajectoryCrafter (YU
et al., 2025) employed attention mechanisms and dual-stream diffusion to improve camera con-
trol, but both rely on pixel-wise reprojection, which often fails under fast motion or occlusion.
ViewCrafter (Yu et al., 2024b) and ReCamMaster (Bai et al., 2025) enhanced realism through
trajectory supervision and diffusion priors, yet depend heavily on synthetic multi-view datasets.
Free4D (Liu et al., 2025b) proposed a tuning-free, point-guided video diffusion pipeline but strug-
gled with structural realism. VideoScene (Wang et al., 2025b) distilled spatial-temporal structure
into video outputs, while GCD (Van Hoorick et al., 2024) enforced consistency with geometric
priors. NWM (Bar et al., 2025) focused on egocentric view prediction for downstream planning
tasks. Overall, most video world models lack geometry-guided modeling, leading to temporal in-
consistency and structural artifacts. In contrast, our approach incorporates geometry-aware depth
refinement to enable coherent dynamic scene generation.

3 PROPOSED METHODOLOGY

3.1 PRELIMINARIES

Video diffusion models (Song et al., 2020; Blattmann et al., 2023; Hong et al., 2022; Yang et al.,
2024) generate temporally coherent videos by denoising a sequence of latent representations through
a stochastic reverse process. Formally, given a video x0 ∈ RL×3×H×W , the forward process grad-
ually adds Gaussian noise to x0, resulting in a noisy sample xt at timestep t:

xt =
√
ᾱtx0 +

√
1− ᾱtϵ, ϵ ∼ N (0, I), (1)

where ᾱt is a cumulative product of the noise schedule coefficients and t ∈ [0, 1] denotes the contin-
uous diffusion time step. The reverse process is learned through a neural network ϵθ(xt, t) trained
to predict added noise, with the denoising objective:

Ldenoising = Et,ϵ

[
∥ϵθ(xt, t)− ϵ∥22

]
. (2)

We implement ϵθ using the diffusion Transformer DiT (Peebles & Xie, 2023) that is originally de-
veloped for high-resolution image synthesis. Its self-attention mechanism effectively models long-
range spatial and temporal dependencies making it well-suited for interactive dynamic scene gener-
ation. Building on this, we employ a pre-trained latent video diffusion model to generate temporally
evolving scenes from a single image. We adapt the model to support interactive dynamic scene
generation with user-specified camera trajectories and text prompts.

3.2 OUR WORLDCRAFTER

Overview. Figure 3 illustrates our WorldCrafter, an interactive framework that generates dynamic
scenes from a single image with user-specified camera trajectories and text prompt. The framework

3
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Figure 3: Overview of the proposed WorldCrafter. From a single input image, an Image-to-Video
model generates an initial video whose outputs serve as reference frames. WorldCrafter introduces
two key modules: (1) geometry-aware video depth refinement, which estimates and refines depth
maps to preserve geometric structure, and (2) object-consistent temporal modeling, which leverages
object masks and reference frames to enforce spatial-temporal coherence. These modules jointly
enable controllable and photorealistic novel-view scene generation.

integrates a geometry-aware depth refinement module that enforces geometric consistency with an
object-consistent temporal modeling strategy that disentangles dynamic motions from static back-
grounds, enhancing controllability and spatio-temporal coherence. These components jointly enable
geometry-aware, temporally consistent dynamic scene generation.

Motivation. Despite recent progress in 3D world models (Yu et al., 2025; Shriram et al., 2025; Yu
et al., 2024a; Chung et al., 2023; Yu et al., 2023; Höllein et al., 2023; Liang et al., 2025; Liu et al.,
2025a), most approaches remain limited to static scenes and struggle to capture temporal dynamics
or handle large camera motions robustly. Pixel-wise reprojection methods (YU et al., 2025; Xiao
et al., 2025), which estimate optical flow from changes in depth and pose of the camera, often lead
to geometric distortions and temporal flickering (see Figure 1).

To overcome these limitations, we propose a unified framework for dynamic scene generation with
three objectives: (1) controllability from a single image, (2) temporal and geometric consistency,
and (3) interactive control through decomposed scene components. In contrast to pixel-wise repro-
jection methods such as TrajectoryCrafter (YU et al., 2025) and TrajectoryAttention (Xiao et al.,
2025), which suffer from deformation and bending artifacts under large viewpoint changes, our
approach refines depth and enforces object consistency through 3D geometry-aware and object-
level modeling. By avoiding explicit pixel-wise reprojection, our framework achieves coherent,
geometry-aware, and temporally consistent dynamic scene generation from a single image.

Formulation. We formulate interactive dynamic scene generation as a sequential process, where
the model predicts the next frame Vt+1 conditioned on the current observation and user input.
Unlike WonderWorld (Yu et al., 2025) which focuses on static 3D world synthesis, our formulation
explicitly models temporal dynamics, capturing how the scene evolves over time. At each timestep t,
the model receives a triplet (Ct,Nt,Lt), where Ct = {It,Pt} denotes the current scene, consisting of
the image It and a scene-level prompt Pt. Nt specifies the desired next-scene content, such as object
actions or scene transitions. Lt = {Tt,Yt} provides layout guidance, where Tt = (C1, . . . ,CN ) is
a sequence of camera poses and Yt is a text description of the desired camera trajectory. The next
scene is then generated by the world model:

Vt+1 = Gworld(Wupdate(Ct,Nt,Lt)) , (3)
where Wupdate is the scene state updater (e.g., latent encoding or motion modeling), and Gworld is
the rendering module that synthesizes the next dynamic scene.

3.3 GEOMETRY-AWARE VIDEO DEPTH REFINEMENT

Given a video V = {It}Tt=1 generated by an Image-to-Video model (Wang et al., 2025a; Team.,
2025), our goal is to lift it into a dynamic scene representation by refining its depth sequence in
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Figure 4: Geometry-aware depth refinement and object-consistent temporal modeling. A depth
estimator and a segmentation network generate depth maps and object masks, which are refined by
region grouping and median filtering. The refined cues are then integrated through object-consistent
temporal modeling to render spatially coherent and temporally stable frames.

a way that preserves both geometric accuracy and temporal consistency. To this end, we adopt
DepthCrafter (Hu et al., 2025) as our base video depth estimator, which predicts an initial depth
map Dt for each frame It. Although DepthCrafter provides coherent depth predictions, it often
introduces geometric artifacts, including flying points, depth leakage across object boundaries, and
structural distortions under large viewpoint changes.

To address these issues, we propose a geometry-aware video depth refinement module guided by
semantic segmentation cues (See Figure 4). For each frame It, we apply SAM (Kirillov et al.,
2023) to obtain a set of binary masks {Sj}Ns

j=1, where each Sj ∈ {0, 1}H×W corresponds to a
distinct semantic region. These masks group pixels with similar geometric properties, enabling
more consistent depth refinement within each segment. The key insight is that semantic regions in
video frames, such as walls, vehicles, or trees, often correspond to physically coherent structures that
share similar depth distributions. To leverage this prior, we enforce intra-segment depth consistency
to reduce artifacts and enhance geometric alignment across frames. We refine the depth for each
object-level region using a filtering operator such as Median Filtering (Huang et al., 1979).

Given the initial depth map Dt at time t and a set of Ns semantic masks {Sj}Ns
j=1 predicted by SAM,

the refined depth D̂t is computed as:

D̂t(x, y) =

Ns∑
j=1

Sj(x, y)R(Dt,Sj)(x, y)

+
(
1−

Ns∑
j=1

Sj(x, y)
)
Dt(x, y), (4)

where
∑Ns

j=1 Sj(x, y) indicates whether pixel (x, y) is covered by any semantic mask. Since the
masks are binary and non-overlapping, the sum evaluates to either 0 or 1, thus selecting the refined
or original depth accordingly. The operatorR(Dt,Sj)(x, y) denotes the refined depth of pixel (x, y)
within region Sj , typically defined as

R(Dt,Sj)(x, y) = median
{
Dt(x

′, y′) | Sj(x′, y′) = 1
}
.

This refinement promotes spatial coherence within semantic regions and enhances temporal stabil-
ity across video frames. It preserves geometric boundaries, suppresses floating artifacts, and ex-
ploits segment-level structural priors for more consistent depth estimation. Ablation studies further
demonstrate that the refined depth maps supply explicit geometric cues that benefit both geometry-
aware rendering and dynamic scene generation.

3.4 OBJECT-CONSISTENT TEMPORAL MODELING

We leverage geometric, semantic, and temporal cues to guide inpainting, ensuring object-level con-
sistency and coherent novel-view synthesis. Given video frames {It}Tt=1, their refined depth maps
{D̂t}Tt=1, and estimated camera parameters {Ct = (Kt, Rt, Tt)}Tt=1 with intrinsic matrix Kt and
extrinsics (Rt, Tt), we incorporate per-frame semantic masks {Stj}

Ns
j=1 from SAM (Kirillov et al.,

5
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2023; Lan et al., 2024). For each frame t, pixels (x, y) are back-projected into 3D and assigned to
their corresponding semantic segment:

Xj
t (x, y) = R−1

t

(
D̂t(x, y) ·K−1

t

[
x
y
1

]
− Tt

)
, if Stj(x, y) = 1. (5)

These 3D points are grouped and encoded as segment-conditioned 3D Gaussians:

Gjt =
{(

µj
i ,Σ

j
i , c

j
i , α

j
i

)
| (x, y) ∈ supp(Stj)

}
,

where each Gaussian is defined by position µj
i , covariance Σj

i , color cji , and opacity αj
i within

segment j. Here, supp(Stj) denotes the support of binary mask Stj , i.e., pixels with Stj(x, y) = 1. To
render a novel view at pose Ct = (Kt, Rt, Tt), we aggregate Gaussians from previous frames and
segments via the 3DGS renderer (Kerbl et al., 2023; Yu et al., 2025):

Ĩview
t (x, y) = R3DGS

τ−1⋃
t=1

Ns⋃
j=1

Gjt , Ct

 ,

where Gjt denotes the Gaussian representation of pixel (x, y) at time t. The renderer integrates vis-
ibility, depth, and appearance to produce object-aware novel views with temporal consistency. This
design enables object-consistent reconstruction by combining geometric alignment with learned pri-
ors in the 3D Gaussian representation.

Due to occlusions and visibility constraints, Ĩview
t may contain missing or uncertain regions. To

address this, we compute a binary mask Mt ∈ {0, 1}H×W , where each pixel indicates the absence
of confident rendered content. Unlike traditional warping-based masks, Mt is derived directly from
undistorted 3D object geometry, enabling more accurate detection of occluded regions. We then
apply a rendering-guided video inpainting module based on a modified CogVideoX (Yang et al.,
2024), which takes the rendered frame Ĩview

t , visibility mask Mt, and a text prompt p as inputs:

Ît = Inet(Ĩ
view
t ,Mt, p),

and outputs the final inpainted frame Ît. This module extends CogVideoX to our geometry-aware
pipeline, enabling high-fidelity synthesis with temporal coherence and fine-grained object consis-
tency. As shown in Table 3, this integration improves Subject Consistency and Imaging Quality on
VBench by bridging geometry-aware refinement with object-consistent modeling.

4 EXPERIMENTS

Evaluation Metrics and Dataset. We evaluate all models on the WonderWorld (Yu et al., 2025)
dataset using VBench (Huang et al., 2024) and CLIP (Radford et al., 2021) to assess temporal coher-
ence, view consistency, and text alignment. Specifically, CLIP-T measures frame-to-text alignment,
CLIP-F computes temporal coherence via similarity between adjacent frames, and CLIP-V evaluates
consistency between the source and generated views.

Implementation Details. We use single images and prompts from the WonderWorld (Yu
et al., 2025) dataset and follow official inference pipelines to simulate six camera motions pan
(left/right/up/down) and zoom (in/out) for fair comparison. Our framework is built on WonderWorld,
using CogVideoX-Fun-5B (Yang et al., 2024) as the video diffusion model, DepthCrafter (Hu et al.,
2024) for video depth estimator, and used SAM (Kirillov et al., 2023) as the segmentation network.
All experiments were conducted on an NVIDIA RTX 6000 GPU (48 GB). Additional details are
provided in the supplementary material.

4.1 QUANTITATIVE COMPARISONS

We evaluate WorldCrafter against both interactive 3D world models and camera-controlled video
generation methods, focusing on semantic alignment, temporal coherence, and structural consis-
tency. As shown in Table 1, WorldCrafter consistently outperforms state-of-the-art baselines across

6
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Table 1: CLIP-based quantitative comparison on WonderWorld (Yu et al., 2025). “CLIP-T”: text
alignment, “CLIP-F”: temporal coherence, “CLIP-V”: view consistency. Higher is better. Best in
bold, second-best underlined.

Method CLIP-T ↑ CLIP-F ↑ CLIP-V ↑

TrajectoryCrafter (YU et al., 2025) 28.01 96.83 86.60
ReCamMaster (Bai et al., 2025) 30.54 99.14 93.35
TrajectoryAttention (Xiao et al., 2025) 30.24 98.91 91.37
WonderJourney (Yu et al., 2024a) 31.08 96.09 94.11
WonderWorld (Yu et al., 2025) 30.16 97.40 93.88

WorldCrafter (Ours) 31.49 99.34 95.81

Table 2: Quantitative comparison using VBench (Huang et al., 2024). We evaluate on the in-the-
wild image benchmark from the WonderWorld (Yu et al., 2025) dataset and report VBench (Huang
et al., 2024) scores for results generated along novel trajectories. “Camera.” denotes camera-
controlled video generation, while “3D.” refers to interactive 3D scene generation. The best results
are shown in bold, and the second-best are underlined.

Method Subject
Consistency ↑ Background

Consistency ↑ Motion
Smoothness ↑

Imaging
Quality ↑

C
am

er
a. TrajectoryCrafter (YU et al., 2025) (ICCV 2025) 0.8967 0.9413 0.9841 0.7323

ReCamMaster (Bai et al., 2025) (ICCV 2025) 0.9017 0.9457 0.9903 0.6902
TrajectoryAttention (Xiao et al., 2025) (ICLR 2025) 0.8744 0.9127 0.9662 0.7022

3D
. WonderJourney (Yu et al., 2024a) (CVPR 2024) 0.9108 0.9402 0.9380 0.7062

WonderWorld (Yu et al., 2025) (CVPR 2025) 0.9330 0.9488 0.9687 0.7094

WorldCrafter (Ours) 0.9463 0.9685 0.9885 0.7466

all CLIP-based metrics, where higher values reflect stronger text alignment and visual coherence.
Notably, CLIP-V improves from 93.88 in WonderWorld to 95.81 with our approach, indicating su-
perior view consistency under novel camera trajectories. To further assess interactive dynamic scene
generation, we benchmark using VBench (Huang et al., 2024), which evaluates subject consistency,
background consistency, motion smoothness, aesthetic quality, and imaging quality. Results in Ta-
ble 2 show that our method achieves the highest performance in subject consistency, background
consistency, and overall perceptual quality. For example, background consistency improves from
0.9488 in WonderWorld to 0.9685 in WorldCrafter, while imaging quality increases from 0.7094
to 0.7466. These gains highlight the effectiveness of our geometry-aware and temporal modeling
strategies in reducing artifacts such as incoherent structures and object duplication. Overall, the
results show that WorldCrafter surpasses existing methods and delivers high-fidelity and temporally
consistent dynamic scenes, establishing a new framework for interactive video world modeling.

4.2 QUALITATIVE COMPARISONS

We qualitatively compare WorldCrafter with interactive 3D world models and camera-based video
generation methods under large viewpoint changes (Figures 2, 5, and 6). As shown in Figure 2,
baseline methods often produce unstable or distorted frames due to limited geometry constraints
and weak spatial-temporal modeling. In contrast, WorldCrafter generates stable and spatially con-
sistent sequences that remain faithful to the input image and prompt. Figure 5 highlights object-level
inconsistencies in prior methods, where objects deform or change appearance across frames (blue
dashed boxes). Our method maintains consistent object representations with strong spatial-temporal
coherence. Figure 6 further illustrates the advantage of geometry-aware guidance. Camera-based
methods (YU et al., 2025; Bai et al., 2025; Xiao et al., 2025) frequently suffer from artifacts un-
der large viewpoint changes due to inaccurate warping, whereas our approach preserves geometric
consistency and scene fidelity. Interactive 3D world models (Yu et al., 2024a; 2025) may produce
high-quality single frames but lack temporal modeling, leading to inconsistent sequences. Static
3D models cannot produce dynamic scenes at all. Camera-based approaches rely on warping with
estimated poses and depth, which often fail under complex motion. Our WorldCrafter achieves
geometry-aware, object-consistent, and temporally coherent dynamic scene generation.

7
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Prompt: Historic university building, prominent bell tower, lush green lawn, blue sky.

Figure 5: Comparison with static 3D world models.
Baselines show object changes across time (dashed
boxes), while ours preserve temporal coherence.
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Figure 6: Comparison with video world
models. Baselines suffer from artifacts
under large viewpoint changes.

Table 3: Ablation study. “Subj.”: Subject Consistency, “Back.”: Background Consistency,
“Smooth.”: Motion Smoothness, “Img.”: Imaging Quality, “Geom.”: Geometry-aware, “Obj.-
Consist.”: Object-consistent, “Re.-Inpaint”: Rendering-guided Video Inpainting.

Method Geom. Re.-Inpaint Obj.-Consist. CLIP-T ↑ CLIP-F ↑ CLIP-V ↑ Subj.↑ Back.↑ Smooth.↑ Img.↑

Baseline 31.20 96.51 94.80 0.9175 0.9452 0.9530 0.7072
+ Geometry-aware ✓ 31.30 96.58 95.00 0.9171 0.9459 0.9530 0.7105
+ Render-Inpaint ✓ 31.48 99.13 95.48 0.9403 0.9663 0.9877 0.7392
+ Object-consistent ✓ 31.34 99.14 95.92 0.9467 0.9684 0.9881 0.7385
Full (Ours) ✓ ✓ ✓ 31.49 99.34 95.81 0.9463 0.9685 0.9885 0.7466

4.3 ABLATION STUDY

We conduct ablation studies using CLIP and VBench score to evaluate the effectiveness of our
modules (Table 3, Figures 7 and 8). Our full model demonstrates robust object-level consistency
and effectively mitigates truncated objects, incoherent structures, and ghosting artifacts.
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Prompt: The Grand Canal in Venice, boats, historical buildings, waterway.

Figure 7: Ablation study. Our full model
achieves object-level consistency, mitigating
truncated objects (second row) and incoher-
ent structures (first row).

Effect of Geometry-aware Video Depth Refine-
ment. We evaluate the effectiveness of our refine-
ment module by removing it from the pipeline (de-
noted as w/o Geometry-aware). As shown in Fig-
ure 7, this results in truncated and distorted object
structures under camera motion, due to the lack of
geometric and temporal consistency. In Table 3,
compared with the baseline, CLIP-V improves from
94.80 to 95.00, reflecting stronger view alignment,
while Imaging Quality rises from 0.7072 to 0.7105
when the refinement is enabled. Our refinement pre-
serves both geometric and temporal consistency, en-
abling realistic and stable dynamic scene generation.

Effect of Rendering-guided Video Inpainting.
Figure 7 shows replacement of our rendering-guided
video inpainting module (denoted as w/o Render-
Inpaint ) with an image inpainting model (Rom-
bach et al., 2022) leads to temporal inconsistencies.
In particular, flickering artifacts and structural mis-
matches of dynamic objects undergoing appearance changes and spatial displacements across
frames. This issue is further validated by the VBench scores in Table 3. Compared with the baseline,
CLIP-V improves from 94.80 to 95.48, indicating enhanced view alignment, while Imaging Quality
increases from 0.7072 to 0.7392 when the rendering-guided video inpainting module is enabled.
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These results highlight the importance of our rendering-guided video inpainting in preserving object
consistency and temporal coherence under large viewpoint changes.
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Prompt: Link taking adventure in a world brimming with 

                 magic and wonder, majestic mountains, river, boy.

Figure 8: Ablation on object-consistent
temporal modeling. Ghosting and duplica-
tion appear without temporal modeling.

Effect of Object-consistent Temporal Modeling.
To evaluate the impact of our object-consistent tem-
poral modeling strategy, we replace it with the
frame-wise layer composition method from Wonder-
World (Yu et al., 2025), which does not incorporate
explicit temporal modeling. As illustrated in Fig-
ure 8, this replacement introduces temporal artifacts,
most notably ghosting where dynamic objects ap-
pear duplicated within a single frame. For example,
in the first row the boy is rendered twice due to in-
consistent object positioning across frames. These
artifacts result from the frame-independent nature
of WonderWorld’s layering, which processes each
frame in isolation without temporal context. Conse-
quently, dynamic objects exhibit duplication, ghost-
ing, or abrupt structural shifts. In Table 3, compared
with the baseline, object-consistent modeling yields clear gains: Subject Consistency rises from
0.9175 to 0.9467, and Motion Smoothness improves from 0.9530 to 0.9881, when the object-
consistent temporal modeling module is enabled. Our object-consistent temporal modeling ex-
plicitly tracks both static and dynamic components across frames, maintaining geometrically and
temporally coherent dynamic scene generation.

4.4 USER STUDY

Table 4: User study. Percentage of participants
preferring each method as the best visual result.

Method Preference (%)

TrajectoryAttention (Xiao et al., 2025) 12.0
WonderWorld (Yu et al., 2025) 2.6
WonderJourney (Yu et al., 2024a) 1.3

WorldCrafter (Ours) 84.1

We conducted a user study with approximately
50 anonymous participants to evaluate percep-
tual quality. Each participant was shown videos
generated by our method and three baselines:
TrajectoryAttention (Xiao et al., 2025), Wonder-
World (Yu et al., 2025), and WonderJourney (Yu
et al., 2024a). The videos were presented in ran-
dom order across seven scene styles. All methods
were tested with same input images, text prompts,
and camera trajectory for a fair comparison. Participants were asked to select the result they found
most visually appealing among the four options. As summarized in Table 4, WorldCrafter achieved a
preference of 84.1%, substantially higher than the baselines (12.0%, 2.6%, and 1.3%). These results
show that users consistently favor our method for its visual quality, structural fidelity, and temporal
coherence. Additional details of user study are provided in Appendix K.

5 CONCLUSION

We introduce WorldCrafter, a new framework for interactive dynamic scene generation from a sin-
gle image that enforces both geometric and temporal consistency. The design integrates geometry-
aware depth refinement with object-consistent temporal modeling, reducing artifacts such as texture
distortion, ghosting, and temporal flickering while avoiding explicit pixel-wise reprojection. Quan-
titative and qualitative experiments across diverse scenes demonstrate that WorldCrafter achieves
high-fidelity, temporally coherent, and controllable results, establishing a promising direction for
single-view interactive dynamic scene synthesis.

Limitations. Although our method enables interactive dynamic scene generation and opens new
research directions, it cannot model physics-based interactions in complex or high-resolution scenes.

Broader Impacts. We will release code and models for reproducibility. This work enables creative
and educational applications by supporting controllable dynamic scene generation from a single
image. Potential misuse, such as unauthorized media manipulation of interactive media content,
should be carefully considered and mitigated in future use.
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A APPENDIX OVERVIEW

We provide a comprehensive appendix to support the proposed WorldCrafter framework. Section B
summarizes the compared methods, grouped into Interactive 3D Scene Generation and Camera-
controlled Video Generation. Section C introduces the evaluation metrics, CLIP (Radford et al.,
2021) and VBench (Huang et al., 2024), used to evaluate semantic alignment, temporal coherence,
and view consistency on the WonderWorld (Yu et al., 2025) dataset. Section D describes the dataset
adapted from WonderWorld, while Section E introduces the preliminaries. Section F explains the
architecture, and Section G describes the implementation details. Section H provides pseudocode
for the core components, Geometry-aware Video Depth Refinement and Object-consistent Temporal
Modeling. Section I presents the details of the ablation studies, Section J presents extended qualita-
tive comparisons, Section K describes a perceptual user study, and Section L discusses failure cases.
To support reproducibility, we have uploaded the source code and will release it publicly.

B COMPARED METHODS

We compare our approach against representative baselines from two categories: Interactive 3D
Scene Generation and Camera-Controlled Video Generation, abbreviated as 3D. and Camera., re-
spectively, in Table 1 of the main paper.

Interactive 3D Scene Generation.

• WonderJourney (Yu et al., 2024a): Generates editable 3D scenes from single images or text
prompts via point cloud reconstruction. It supports user-guided editing and scene composition but
lacks real-time interaction and efficient rendering.

• WonderWorld (Yu et al., 2025): Extends WonderJourney by enabling interactive 3D scene edit-
ing and accelerating rendering with the Fast LAyered Gaussian Surfels (FLAGS) representation.
However, it remains limited in generalization to dynamic scenes and diverse camera motions.

Camera-Controlled Video Generation.

• TrajectoryCrafter (YU et al., 2025): Proposes a dual-stream diffusion framework for monocular
video redirection conditioned on camera trajectories. It performs well in controlled settings but
struggles with large viewpoint shifts.

• TrajectoryAttention (Xiao et al., 2025): Introduces trajectory-aware attention mechanisms for
fine-grained, motion-conditioned video generation. While it improves camera control, it shows
instability under noisy or ambiguous trajectories.

• ReCamMaster (Bai et al., 2025): Adapts text-to-video generation models for novel-view video
synthesis, showing strong results in synthetic environments but failing to generalize to real-world
data due to limited motion diversity and insufficient occlusion handling.

These baselines cover both interactive 3D scene and camera-conditioned video generation, providing
a comprehensive comparison for evaluating our proposed framework.

C EVALUATION METRICS

We evaluate scene generation methods using CLIP (Radford et al., 2021) and VBench (Huang et al.,
2024), measuring semantic alignment, temporal coherence, and view consistency. All methods are
tested on the WonderWorld (Yu et al., 2025) dataset for fair comparison.

CLIP-based Metrics.

• CLIP-T (Text-to-Frame Alignment): Measures the average CLIP similarity between each video
frame and its text prompt, reflecting how well the visual content aligns with the description.

• CLIP-F (Temporal Coherence): Computes the average CLIP similarity between consecutive
video frames, capturing temporal smoothness and visual continuity.

• CLIP-V (View Consistency): Evaluates the CLIP similarity between source and generated
frames at the same timestamp, indicating consistency across camera trajectories.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

VBench Evaluation Protocols.

• Subject Consistency: Evaluates the temporal consistency of the main subject’s appearance, en-
suring attributes such as identity, color, shape, and texture are preserved across frames. Failures
may lead to identity drift or artifacts that reduce realism.

• Background Consistency: Evaluates the coherence of background elements, checking whether
lighting, structure, and texture remain stable across frames. Inconsistencies reduce visual quality
and expose weaknesses in the model’s ability to generate stable videos.

• Motion Smoothness: Evaluates the continuity of motion, verifying that trajectories are realistic
and free of jitter. Smooth motion enhances realism and reflects the model’s ability to generate
temporally coherent sequences.

• Aesthetic Quality: Evaluates the visual appeal of video frames, considering composition, color
harmony, and overall impression. High aesthetic quality reflects the model’s ability to generate
content aligned with human preferences.

• Imaging Quality: Measures the technical fidelity of video frames, focusing on resolution, sharp-
ness, noise, and the absence of artifacts. High imaging quality reflects the model’s capacity to
generate clear and stable visuals.

These metrics jointly offer a comprehensive assessment of scene consistency, visual fidelity, and
temporal stability in dynamic scene generation. Higher scores reflect stronger performance.

D DATASET

We evaluate WorldCrafter and all baselines on the WonderWorld dataset (Yu et al., 2025), which
includes seven diverse scenes spanning nature, city, fantasy, and campus categories. To simulate
camera motion, we apply predefined trajectories such as panning (left, right, up, down), zooming
(in, out), and rotations of ±20◦, ±40◦, and ±60◦. These motion patterns generate dynamic scenes
for a comprehensive evaluation of model performance.

E PRELIMINARIES

Gaussian Splatting. 3D Gaussian Splatting (3DGS) (Kerbl et al., 2023) represents scenes using ex-
plicit 3D representation for efficient reconstruction and novel view synthesis. Unlike implicit meth-
ods such as NeRF (Mildenhall et al., 2020), 3DGS (Kerbl et al., 2023) directly projects Gaussians
into image space via a differentiable splatting pipeline to support fast optimization and real-time
rendering. Each 3D Gaussian point is defined by several key attributes: spatial position X ∈ R3,
color represented as spherical harmonics (SH) C ∈ Rk, opacity α ∈ R, orientation encoded as a
quaternion r ∈ R4, and scale s ∈ R3. k denotes the number of SH functions. To render an image,
each pixel aggregates contributions from multiple Gaussians. When multiple Gaussians influence
the same pixel, the final color is obtained by compositing the N ordered contributions as follows:

C =
∑
i∈N

ciαi

i−1∏
j=1

(1− αj), (6)

where ci and αi denote the color and opacity of the i-th Gaussian, respectively. In our framework,
3DGS provides explicit spatial rendering capabilities for interactive dynamic scene generation with
high-quality dynamic composition and fast photorealistic rendering.

F ARCHITECTURE

WorldCrafter adopts an image-to-scene pipeline that synthesizes an initial video from a single input
image and text prompt (See Figure 3). The process begins with an Image-to-Video model (e.g.,
CogVideoX), which generates initial frames used as reference inputs for subsequent refinement. To
enhance geometric fidelity, a depth estimator produces per-frame depth maps, which are refined by
the geometry-aware depth module. This refinement enforces intra-segment consistency guided by
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Algorithm 1 Interactive Dynamic Scene Generation (WorldCrafter)

Input: Initial image I0, initial prompt P0

Output: Dynamic scenesW = {W0,W1, . . . ,WT−1}
Runtime Output: Accumulated rendered video Vrend
Runtime User Interaction: Camera pose Ct, text prompt Pt

1: C0 ← Identity(4× 4) ▷ Initialize camera pose
2: M0 ← 1H×W ▷ Initial scene mask (fully visible)
3: V0 ← ImageToVideo(I0,P0) ▷ Generate initial video
4: D0 ← VideoDepthEstimator(V0) ▷ Estimate depth
5: Drefined

0 ← GeometryAwareRefiner(D0) ▷ Refine geometry
6: W0 ← ObjectConsistentModeling(V0,D

refined
0 ,P0,C0) ▷ Initialize dynamic scene

7: W ← {W0}
8: Vrend ← Render(W0,C0) ▷ Initial rendering
9: for t = 0 to T − 1 do

10: Observe current sceneWt

11: Receive user input: text prompt Pt+1 and camera pose Ct+1

12: Mt+1 ←Mt ▷ Keep mask fixed across time
13: Zt+1 ←Wupdate(Wt,Mt+1,Pt+1,Ct+1) ▷ Update latent state
14: Wt+1 ← Gworld(Zt+1) ▷ Generate new dynamic scene
15: W ←W ∪ {Wt+1} ▷ Append to sequence
16: Vrend ← Vrend ∥Render(Wt+1,Ct+1) ▷ Accumulate rendered video
17: end for
18: returnW

semantic masks, suppressing artifacts such as distorted boundaries or flying points. The refined
depths are then processed by the object-consistent temporal modeling module, which back-projects
pixels into 3D, groups them into segment-conditioned Gaussian primitives, and renders novel views
under the current camera pose. This stage maintains spatial-temporal coherence by explicitly track-
ing objects across frames and detecting occlusions via a geometry-aware visibility mask. Finally,
the rendered frames and masks are combined with text embeddings from a pretrained encoder,
which guide a rendering-aware inpainting network to fill missing regions and align content with
user-provided descriptions. The outputs are decoded into novel-view dynamic scenes with stable
geometry, coherent motion, and preserved semantics. Our framework follows the interactive set-
ting of previous works (e.g., WonderWorld (Yu et al., 2025) and WonderJourney (Yu et al., 2024a))
but extends it with explicit geometry-aware refinement and object-consistent modeling, enabling
controllable and realistic dynamic scene generation.

G IMPLEMENTATION DETAILS

All experiments are conducted on an NVIDIA RTX 6000 GPU with 46 GB memory. Following
WonderWorld (Yu et al., 2025), we use single input images and associated text prompts to simulate
six camera motions (pan left/right/up/down, zoom in/out) via the official inference pipelines of each
baseline for fair comparison. Our method extends the static 3D framework of WonderWorld by in-
corporating CogVideoX-Fun-5B (Yang et al., 2024) for video diffusion (output resolution: 512×512)
and DepthCrafter (Hu et al., 2024) for generating temporally consistent depth maps. We evaluate
performance both quantitatively and qualitatively across all motion types.

H ALGORITHMS

H.1 WORLDCRAFTER ALGORITHM OVERVIEW

We present the pseudo-code of the proposed WorldCrafter framework in Algorithm 1, which enables
dynamic scene generation from a single initial image and text prompt. The framework consists of
two stages: initialization and iterative scene generation.

In the initialization stage, given a single input image I0 and text prompt P0, WorldCrafter synthe-
sizes an initial video V0 using an image-to-video model (Wang et al., 2025a; Team., 2025). A
corresponding depth map D0 is estimated with a video depth estimator (Hu et al., 2025) and refined
to ensure spatial consistency. An object-consistent temporal modeling module then integrates the
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video, refined depth, and initial camera pose C0 to construct the initial dynamic sceneW0, which
is rendered to produce the output video Vrend.

In the iterative stage, the user provides updated text prompts Pt+1 and camera poses Ct+1 at each
time step. A latent updater integrates the current worldWt, a fixed spatial mask Mt, and the user
inputs to compute a latent representation Zt+1, which is decoded into the next dynamic sceneWt+1.
The new scene is rendered and appended to the accumulated output Vrend.

H.2 GEOMETRY-AWARE VIDEO DEPTH REFINEMENT

As shown in Algorithm 2, the refinement employs binary semantic masks from SAM (Kirillov et al.,
2023) to partition each frame into coherent regions. A filtering operator (e.g., median filtering) is
then applied within each region to replace noisy depth values with a region-level statistic, while
pixels outside the masks retain their original depth. This process produces spatially consistent depth
maps that support stable rendering and dynamic scene generation.

Algorithm 2 Geometry-aware Video Depth Refinement

Input: Video frames V = {It}Tt=1

Output: Refined depth maps D̂ = {D̂t}Tt=1

1: for t = 1 to T do
2: Dt ← DepthEstimator(It) ▷ Initial depth from video depth estimator (Hu et al., 2025)
3: S = {Sj}Ns

j=1 ← SAM(It) ▷ Semantic masks from SAM (Kirillov et al., 2023)
4: Initialize D̂t ← 0H×W ▷ Refined depth map
5: for j = 1 to Ns do
6: Mj ← Sj ▷ Binary mask for segment j
7: vj ← median {Dt(x, y) |Mj(x, y) = 1} ▷ Segment-wise depth median
8: for all pixels (x, y) where Mj(x, y) = 1 do
9: D̂t(x, y)← vj ▷ Assign median to all pixels in segment

10: end for
11: end for
12: for all pixels (x, y) not covered by any Mj do
13: D̂t(x, y)← Dt(x, y) ▷ Keep original depth
14: end for
15: end for
16: return D̂

H.3 OBJECT-CONSISTENT TEMPORAL MODELING

As illustrated in Algorithm 3, the object-consistent temporal modeling module integrates geometric
cues, semantic segmentation, and temporal memory to maintain coherence across frames. For each
frame, semantic masks from SAM (Kirillov et al., 2023) guide the grouping of pixels into object-
level regions, which are back-projected into 3D and represented as Gaussian primitives. These rep-
resentations are accumulated over time and rendered from the current camera pose to obtain novel-
view candidates. An occlusion-aware visibility mask Mt is then derived from the rendered geometry
to identify unreliable regions. Finally, a prompt-guided inpainting network Inet(Ĩviewt ,Mt,P) fills
in the masked areas, and the temporal memoryM is updated to preserve object consistency across
the sequence. This design yields temporally coherent frames while ensuring object-level alignment
for dynamic scene generation.

I ABLATION DETAILS

We provide additional explanations for the ablation experiments reported in Table 3 of the main
paper. All variants are evaluated under the VBench (Huang et al., 2024) protocol to evaluate the
contributions of each component in our framework. Ablations are conducted by enabling specific
modules, with each row in Table 3 showing the modules used (✓). CLIP scores are reported on a
scale from 0 to 100, with other metrics normalized to [0,1]. Settings are summarized below:
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Algorithm 3 Object-consistent Temporal Modeling

Input: Video Frames V = {It}Tt=1,
Depth Maps D = {Dt}Tt=1,
Camera Pose C = {Ct = (Kt, Rt, Tt)}Tt=1,
Text Prompt P

Output: Final Dynamic Scenes V̂ = {Ît}Tt=1

1: Initialize memory bufferM← ∅ ▷ Temporal memory for object tracking
2: for t = 1 to T do
3: S = {Stj}

Ns
j=1 ← SAM(It) ▷ Semantic masks

4: Initialize Gt ← ∅ ▷ Set of 3D Gaussians for current frame
5: for j = 1 to Ns do
6: for all pixels (x, y) where Stj(x, y) = 1 do
7: P3D

t,j (x, y)← R−1
t

(
Dt(x, y) ·K−1

t [x, y, 1]T − Tt

)
▷ Backproject pixel to 3D

8: (µj
i ,Σ

j
i , c

j
i , α

j
i )← EncodeGaussian(P3D

t,j , It(x, y))

9: Add Gaussian to Gjt
10: end for
11: Add Gjt to Gt
12: end for
13: Ĩview

t ← R3DGS

(⋃t−1
s=1 Gs ∪ Gt, Ct

)
▷ Render from temporally accumulated Gaussians

14: Mt ← VisibilityMaskFromGeometry(Ĩview
t , Dt) ▷ Binary occlusion-aware mask

15: Ît ← Inet(Ĩ
view
t ,Mt, p) ▷ Rendering-guided inpainting using prompt

16: Add Ît to V̂
17: M← UpdateTemporalMemory(M,S,Gt) ▷ Track segments and update memory
18: end for
19: return V̂

• Baseline: Serves as the minimal configuration without geometry-aware depth refinement,
rendering-guided inpainting, or object-consistent temporal modeling. This setting exhibits severe
structural distortions, temporal flickering, and inconsistent object appearances.

• + Geometry-Aware Depth Refinement: Incorporating geometry-aware refinement alleviates
truncated or deformed structures during camera motion, improving overall scene stability. How-
ever, temporal inconsistencies remain due to the absence of inpainting and temporal modeling.

• + Rendering-Guided Inpainting: Adding the rendering-guided video inpainting module (instead
of an image-only alternative (Rombach et al., 2022)) provides temporally coherent texture com-
pletion. This reduces flickering artifacts and improves visual continuity of dynamic objects.

• + Object-Consistent Temporal Modeling: Introducing object-consistent temporal modeling fur-
ther enforces identity and state consistency of moving entities. Compared with frame-independent
composition strategies (e.g., WonderWorld (Yu et al., 2025)), this component suppresses ghosting
artifacts such as object duplication.

• Full (Ours): Combines all three components (✓in all columns), delivering geometry-preserving,
temporally stable, and object-consistent video generation across diverse camera trajectories.

J QUALITATIVE COMPARISON AND ANALYSIS

We present additional qualitative comparisons in Figures 11–13, focusing on camera-controlled
video generation. Our method produces geometry-aware scenes that remain stable across frames,
while prior approaches (Xiao et al., 2025; YU et al., 2025) relying on pixel-wise reprojection often
suffer from distortions or ghosting under large viewpoint changes. Figures 14 and 15 compare in-
teractive 3D scene models (Yu et al., 2024a; 2025). WorldCrafter better keeps temporal coherence,
yielding smoother and more consistent interactions in dynamic environments. Overall, WorldCrafter
generates coherent, high-fidelity dynamic scenes that preserve input semantics and appearance, even
under complex motions and camera changes.
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K USER STUDY

We conducted a user study on the questionnaire platform to evaluate perceptual preferences in video
quality and temporal consistency, with approximately 50 participants anonymously recruited. Each
participant viewed a set of videos generated by our method and three baselines: TrajectoryAtten-
tion (Xiao et al., 2025), WonderWorld (Yu et al., 2025), and WonderJourney (Yu et al., 2024a).
The videos were presented in randomized order to avoid bias. For fair comparison, each set was
generated in seven distinct styles from the same input image and text prompt. As shown in Fig-
ure 10, participants were instructed:“Please compare the four videos below and select the one with
the best overall quality.” They selected a single preferred video for each comparison, considering
visual fidelity, geometric accuracy, and temporal coherence. This study design directly captures
user preferences across diverse styles and motion scenarios, providing perceptual validation of our
method’s effectiveness.

L FAILURE CASE ANALYSIS

Figure 9 shows representative failure cases that illustrate the limitations of our approach. In par-
ticular, the method struggles with fine-grained details such as dynamic water surfaces (e.g., spring
water), leading to artifacts like unrealistic shadows. These observations suggest potential future
directions, including incorporating physically grounded models of real-world environments.

Input Image t1 t2 t3

Prompt: Elegant building, dynamic fountain set, Mediterranean building, campus setting. 

Figure 9: Failure case under dynamic water and sunlight. Our method generates physically in-
consistent water shadows, reflecting the difficulty of modeling complex interactions between moving
water surfaces and sunlight.

Figure 10: Screenshot of the user study interface.
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Prompt: A vibrant city avenue, bustling traffic, pedestrians, towering skyscrapers.
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Prompt: A vibrant city avenue, bustling traffic, pedestrians, towering skyscrapers.

Figure 11: Comparison with camera-controlled video generation. Previous methods lack geom-
etry and temporal constraints, causing distortions. WorldCrafter ensures consistency with the input
image and prompt. (Top: Pan-Up, Bottom: Pan-Left)
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Prompt: Historic university building, prominent bell tower, lush green lawn, blue sky.
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Prompt: Historic university building, prominent bell tower, lush green lawn, blue sky.

Figure 12: Comparison with camera-controlled video generation. Existing methods suffer from
distortions due to missing geometric and temporal constraints. WorldCrafter maintains consistency
with the input image and prompt. (Top: Pan-Left, Bottom: Pan-Right)
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Prompt: Bustling village scene in a traditional Ukiyo-e style 

                      depicting daily life with a backdrop of mountains and sea.

Prompt: Bustling village scene in a traditional Ukiyo-e style 

                   depicting daily life with a backdrop of mountains and sea.

Figure 13: Comparison with camera-controlled video generation. Existing methods yield distor-
tions due to limited geometric and temporal constraints. WorldCrafter maintains consistency with
the input image and prompt. (Top: Pan-Left, Bottom: Pan-Up)
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Prompt:Elegant building, dynamic fountain set, Mediterranean building, campus setting.
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Figure 14: Comparison with 3D interactive models over time. Traditional methods show object
drift due to missing coherence modeling. WorldCrafter ensures spatial-temporal consistency within
dynamic scene. (Top: Pan-Right, Bottom: Pan-Down)
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Prompt: The Grand Canal in Venice, boats, historical buildings, waterway.
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Prompt: Link taking adventure in a world brimming with magic 

        and wonder, majestic mountains, river, boy.
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Figure 15: Comparison with 3D interactive models over time. Previous methods show temporal
inconsistencies due to lack of object-level coherence. WorldCrafter keep spatial-temporal consis-
tency in dynamic scene. (Top: Pan-Left, Bottom: Pan-Right)
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Figure 16: Qualitative results of the proposed WorldCrafter on in-the-wild images. Our framework
generates temporally coherent dynamic scenes under diverse camera trajectories (pan and zoom)
while preserving object consistency and realism.
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Figure 17: Qualitative results of the proposed WorldCrafter on in-the-wild images. Our framework
generates temporally coherent dynamic scenes under diverse camera trajectories (pan and zoom)
while preserving object consistency and realism.
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