Beyond Sample-Level Feedback: Using Reference-Level Feedback to Guide
Data Synthesis

Anonymous ACL submission

Abstract

LLMs demonstrate remarkable capabilities
in following natural language instructions,
largely due to instruction-tuning on high-
quality datasets. While synthetic data gener-
ation has emerged as a scalable approach for
creating such datasets, maintaining consistent
quality standards remains challenging. Recent
approaches incorporate feedback to improve
data quality, but typically operate at the sam-
ple level, generating and applying feedback for
each response individually. In this work, we
propose REFERENCE-LEVEL FEEDBACK, a
novel methodology that instead collects feed-
back based on high-quality reference samples
from carefully curated seed data. We use this
feedback to capture rich signals of desirable
characteristics and propagate it throughout the
data synthesis process. We present REFED, a
dataset of 10K instruction-response pairs syn-
thesized using such feedback. We demonstrate
the effectiveness of our approach by show-
ing that Llama-3.1-8B-Instruct finetuned on
REFED achieves state-of-the-art performance
among similar-sized SFT-based models on Al-
pacaEval 2.0 and strong results on Arena-Hard.
Through extensive experiments, we show that
our approach consistently outperforms tradi-
tional sample-level feedback methods with sig-
nificantly fewer feedback collections and im-
proves performance across different model ar-
chitectures.

1 Introduction

Large Language Models (LLMs) demonstrate re-
markable capabilities in following natural language
instructions and performing real-world tasks (Ope-
nAl et al., 2024b; Dubey et al., 2024). This can
be largely attributed to instruction-tuning, which
refers to supervised finetuning (SFT) on instruction-
response pairs (Wei et al., 2022; Bai et al., 2022a;
Ouyang et al., 2022). Recent advancements in
instruction-tuning emphasize the importance of

Traditional Sample-Level

{ Reference-Level Feedback
Feedback /

Reference Sample
High-quality sample from
seed data

Generated Sample

il

Reference-Level
Feedback

Sample-Level :
Feedback :
: Improved Improved
Sample Sample
25 : / \
Improved Sample ' Improved Improved
Sample Sample

Figure 1: Comparison of feedback approaches for data
synthesis. Left: Traditional sample-level feedback gen-
erates and applies feedback individually for each sample.
Right: Our REFERENCE-LEVEL FEEDBACK approach
collects feedback once from a high-quality reference
sample and applies it to synthesize and improve multi-
ple new samples.

high-quality datasets in enhancing model perfor-
mance (Chen et al., 2024b; Zhou et al., 2023).

Traditionally, high-quality instruction-tuning
datasets are created by repurposing existing
datasets or using human annotators (Wei et al.,
2022; Wang et al., 2022; Ouyang et al., 2022; Zhou
et al., 2023; Chen et al., 2024c). However, these
methods present challenges that prevent the cre-
ation of large-scale datasets, such as data scarcity
and the considerable cost and time required for
human annotation (Liu et al., 2024; Long et al.,
2024; Singh et al., 2024). The use of synthetic data
for the creation of instruction-tuning datasets has
emerged as a reliable alternative that overcomes
such challenges (Wang et al., 2023b; Taori et al.,
2023; Xu et al., 2023; Peng et al., 2023).

To further improve the quality of the synthe-
sized data, recent approaches incorporate natural
language feedback (Chen et al., 2024d,a; Sun et al.,

2024; Bai et al., 2022b). In these approaches, an
LLM generates a response to an existing instruc-
tion, then collects feedback on their response either
through self-reflection, from a stronger LLM or a
human annotator. This resulting feedback is pro-
vided to the LLLM to refine its initial response. Such
uses of feedback has proven effective in improv-
ing LLM performance on alignment benchmarks
as well as reinforcing specific principles such as
helpfulness and truthfulness (Chen et al., 2024a;
Sun et al., 2024; Bai et al., 2022b). The current
feedback-driven approaches operate at the sample-
level, which means that feedback is generated for
and applied to each response individually.

Rather than collecting sample-level feedback,
we propose REFERENCE-LEVEL FEEDBACK, a
novel approach that uses feedback collected from
the high-quality reference samples in a seed dataset,
as shown in Figure 1. Many data synthesis ap-
proaches carefully curate reference samples to use
as seed data, which are used as in-context examples
for synthesis (Wang et al., 2023b; Taori et al., 2023).
We extend this and collect feedback based on these
reference samples, since they serve as exemplars
for training data. These samples are of higher qual-
ity than model generated samples, so the captured
feedback provides a richer signal towards the de-
sirable characteristics (i.e. clarity, relevance) for a
data sample.

Our framework is presented in Figure 2. For
each reference sample, we identify the desirable
characteristics of both the instruction and response
components and use it to create instruction and
response feedback, respectively. The instruction-
specific feedback is used to guide the synthesis of
new instructions, and response-specific feedback is
used to refine the corresponding responses. Since
synthesized instructions share key characteristics
of their reference counterparts, response-specific
feedback remains relevant and is used to improve
the quality of synthesized responses. This frame-
work enables us to systematically propagate the
desirable qualities of reference samples to newly
generated samples, establishing overall higher qual-
ity standards for data synthesis.

We demonstrate the effectiveness of our
approach through REference-Level Feedback
Enhanced Data (REFED), a dataset synthesized us-
ing our framework. Models fine-tuned on REFED
achieve state-of-the-art performance on instruction-
following benchmarks AlpacaEval 2.0 (Dubois
et al., 2024) and Arena-Hard (Li et al., 2024c).

Through comprehensive experiments and analyses,
we demonstrate that using REFERENCE-LEVEL
FEEDBACK is more effective for synthetic data
generation compared to existing approaches.

The main contributions of this work are !:

* We introduce REFERENCE-LEVEL FEED-
BACK for data synthesis, a novel method that
leverages feedback collected from reference
samples to capture and propagate desirable
characteristics to newly synthesized data. Us-
ing our framework, and the LIMA (Zhou et al.,
2023) training dataset as seed data, we syn-
thesize REFED, a dataset of 10K instruction-
response pairs.

* We demonstrate the effectiveness of our ap-
proach by presenting Llama-3.1-8B-Instruct-
REFED, a Llama-3.1-8B-Instruct model fine-
tuned on REFED. The resulting model
achieves state-of-the-art performance among
similarly sized models trained only with SFT
on the AlpacaEval 2.0 leaderboard (Dubois
et al., 2024), with a 21.06% improvement
in length-controlled win rate. It also shows
strong performance on Arena-Hard, outper-
forming larger models like GPT-3.5-Turbo (Li
et al., 2024c¢).

* Through comprehensive experiments, we
demonstrate that our approach: (1) out-
performs models trained on other synthetic
instruction-tuning datasets, (2) consistently
improves base and instruct variants of differ-
ent model architectures, and (3) provides more
effective quality improvements compared to
traditional sample-level feedback approaches,
while also being more efficient.

2 Related Work

Synthetic Data for Instruction Tuning. Data
synthesis has emerged as an effective and scalable
approach to creating instruction-tuning datasets.
One line of approaches use instruction-response
pairs from a seed dataset as in-context examples
to guide synthesis (Wang et al., 2023b; Taori et al.,
2023; Peng et al., 2023). While Wang et al. (2023b)
use models to self-generate their training data, sub-
sequent works leverage more capable proprietary

LOur code and data are available at https://anonymous.
4open.science/r/anon_refed-DD20

https://anonymous.4open.science/r/anon_refed-DD20
https://anonymous.4open.science/r/anon_refed-DD20

models to generate higher quality data (Taori et al.,
2023; Peng et al., 2023).

Other approaches have explored alternative syn-
thesis strategies. There are works that use struc-
tured guidance through manually curated tax-
onomies or LLM-generated skill sets (Li et al.,
2024a; Kaur et al., 2024). Xu et al. (2024) uses
pre-query templates to sample instructions from
aligned LLMs and generate instructions that reflect
the LLM’s existing knowledge.

Many works have explored methods for enhanc-
ing the quality of synthesized data. Xu et al. (2023)
proposes Evol-Instruct, which generates increas-
ingly complex versions of existing instructions.
Other approaches include using multi-agent simu-
lation (Tang et al., 2024) or incorporating natural
language feedback (Bai et al., 2022b; Chen et al.,
2024a; Sun et al., 2023).

Natural Language Feedback. Natural language
serves as a rich medium for providing feedback to
LLMs, effective in conveying detailed and nuanced
information. Recent work has demonstrated the
effectiveness of using LLMs to generate this feed-
back. Madaan et al. (2023) introduce Self-Refine,
which has LLMs generate feedback and refine their
own responses. Following this, several works have
shown that using various feedback methods and
fine-tuned critic models can yield further improve-
ments (Jin et al., 2023; Wang et al., 2023a; Gou
et al., 2024; Wu et al., 2024).

Another application of feedback is at the dataset
level, focusing on creating higher-quality training
data. Constitutional Al (Bai et al., 2022b) generates
self-critiques and revisions to create training data
aligned with specific principles. In a similar man-
ner, Self-Align (Sun et al., 2023) uses natural lan-
guage descriptions of desirable qualities to guide
LLMs towards producing more aligned outputs,
IterAlign (Chen et al., 2024d) uses an iterative pro-
cess to discover constitutions and self-correct, and
Chen et al. (2024a) demonstrate the effectiveness
of feedback-based refinement in code generation
tasks.

In order to more effectively incorporate feed-
back for data synthesis, we introduce REFERENCE-
LEVEL FEEDBACK. It fundamentally differs from
existing feedback-based methods in three key as-
pects. First, while previous work collects feedback
at the sample-level, we collect feedback from high-
quality reference samples in the seed data. This
enables us to identify and propagate desirable qual-

ities from reference samples and establish higher
quality standards for the data synthesis.

Secondly, our approach more effectively lever-
ages seed datasets. Rather than just using seed data
samples as in-context examples for synthesizing
similar samples, we systematically analyze and cap-
ture the specific qualities that make the reference
sample effective.

Lastly, we expand the role of feedback beyond re-
sponse refinement and guide the entire data synthe-
sis process: our method uses feedback to synthesize
new instructions and to refine the corresponding
responses.

3 Method

In this section, we present our data synthesis
pipeline that leverages REFERENCE-LEVEL FEED-
BACK to generate high-quality instruction-response
pairs. An overview of the pipeline is presented in
Figure 2, and the steps are detailed in the following
subsections. Complete examples for each step can
be found in Appendix A, and the prompts used for
each section can be found in Appendix B.

3.1 Feedback Collection

Our pipeline begins with a seed dataset — a small
collection of carefully curated instruction-response
pairs that serve as exemplars for synthesized data
samples. It can be either manually crafted by hu-
man annotators or automatically selected using
quality-based criteria. These reference samples
are high-quality and exhibit desirable characteris-
tics such as clarity and relevance, which we aim to
replicate in our synthetic data. For REFERENCE-
LEVEL FEEDBACK, we systematically identify and
capture such qualities through a framework that
identifies the strength of each sample, as well as
potential areas for improvement.

Unlike traditional approaches that collect feed-
back on generated responses at the sample-level,
our method identifies the qualities that make ref-
erence samples high-quality and uses it for feed-
back. This feedback captures a richer signal than
feedback collected at the sample-level, establishing
higher quality standards for synthesis and provid-
ing more effective guidance for generating training
data that exhibits similar properties to the reference
samples.

For each reference sample in the seed dataset,
we collect REFERENCE-LEVEL FEEDBACK from
both the instruction and the response:

Step 2: Instruction

Step 1: Reference-Level Feedback ey Step 3: Response Synthesis and Refinement

Collection Synthesis
- Reference Sample Inst ion Feed| Synthesized Instruction
>\
< Sl Instruction: Best way to The subject areas of this L. Hoﬁ:vsttii:;":aat:daslz;ig:; ifti' e
\ \ \ start investing, for a young instruction are: personal :
v person just starting their H finance and investing . N N
career? principles, including For each synthesized instruction, we
Seed Data Response: First off, I highly | ! budgeting, debt synthesize their corresponding response.
recommend the book Get a management, and basic e T TTTTTy T TTTTTTTmmmtmmmesmm---m------------------------

A reference sample Financial Life. The basics of fl"an‘;5| planning for FereEe el
is selected from the personal finance and money eginners. Response (Only relevant parts are shown)

management are pretty
straightforward, and this 1. Creating a budget for the first time

'
'
'
seed dataset. H
: I
book does a great... H H ! is an essential step in gaining control
'
'
'
'
'
v

Engagement could be improved by
incorporating a more conversational tone.
Addressing implied user needs, such as
establishing an emergency fund and
managing debt, would provide a more
rounded financial approach.

The instruction over your finances, and sticking to it
feedback is used as requires discipline and commitment.
guidelines to Here's a comprehensive approach...

synthesize 10 new ..
instructions.

The reference sample is
analyzed, and Reference-Level
Feedback is collected for both
the instruction and response.

1 The responses are improved

Reference-Level Feedback using the response feedback.

Response Synthesized Instructions

Feedback Improved Responses

Instruction
Feedback

1. How to create a budget for

the first time and stick to it? 1. Creating a budget for the first time is an exciting step towards taking

2. ... ! control of your finances! It might feel a bit daunting at first, but with some
H discipline and commitment, you'll find it empowering.

Figure 2: An overview of our data synthesis pipeline. Starting from our seed data, we select a reference sample
and collect REFERENCE-LEVEL FEEDBACK on both the instruction and response. Instruction feedback is used to
synthesize new instructions. We generate their corresponding responses, and then improve it using the response

feedback.

Instruction Feedback. To collect feedback
from a reference instruction and capture essential
features that make it effective for training, we ana-
lyze key attributes (e.g., clarity and actionability).
We also ensure comprehensive coverage along a
wide breadth by collecting feedback along two di-
mensions: relevant subject areas (e.g. cellular biol-
ogy, csv file manipulation, legislative processes)
and relevant skills necessary to respond to the
instruction (e.g. understanding of specific tools,
knowledge of processes, analysis). This enables us
to systematically identify desirable characteristics
of instructions while maximizing the breadth of
instruction types.

Response Feedback. When collecting feedback
from a reference response, we identify key qualities
that make it an effective response to the instruction.
We evaluate along multiple critical dimensions, in-
cluding factual accuracy, relevance to the instruc-
tion, and comprehensiveness. This feedback cap-
tures both the strengths of the reference response
and specific areas where it can be improved upon.

3.2 Data Synthesis

Now, we use the collected REFERENCE-LEVEL
FEEDBACK from the previous stage to synthesize
new data samples, while maintaining the quality
standards established by our reference data. For
each reference sample and its corresponding feed-
back, we employ a two-phase synthesis process, as
illustrated in Figure 2:

1. Instruction Synthesis. We provide an LLM
the reference instruction as an example and
the instruction feedback as guidelines to syn-
thesize new instructions that maintain the qual-
ities specified in the feedback. As depicted in
Step 2 of Figure 2, we synthesize 10 new in-
structions for subject-based feedback, which
produces instructions that align with the sub-
ject areas of the reference response. We also
synthesize 10 new instructions for skill-based
feedback, which produces instructions that
align with the skills needed to respond to the
reference instruction.

2. Response Synthesis and Refinement. For
each synthesized instruction, we first generate
an initial response. We then enhance this re-
sponse using the reference response feedback,
instructing the language model to analyze the
feedback and incorporate the relevant aspects.
This process is shown in Step 3 of Figure 2.

Note on relevance of response feedback.
Although the response feedback was orig-
inally collected for the reference response,
many aspects of it can still remain applicable
because of the shared characteristics between
the reference and synthesized instructions. We
acknowledge that not all feedback elements
may transfer, and to account for this, we ex-
plicitly instruct the model to selectively apply

only the relevant aspects of the feedback and
ignore the irrelevant aspects. An example of
this can be found in A.

This synthesis process enables us to synthesize
new data, while systematically propagating the
high-quality characteristics of reference samples.

3.3 Theoretical Efficiency Analysis

Our presented pipeline for data synthesis with
REFERENCE-LEVEL FEEDBACK is significantly
more efficient than using traditional sample-level
feedback methods, specifically in the frequency
of feedback collection. While sample-level ap-
proaches require feedback for every synthesized
sample, our method only requires feedback once
for every reference sample. This translates to a
reduction from O(n) feedback collections, where
n represents the number of synthesized samples,
to O(1). However, it is also important to note that
this efficiency gain comes with an initial fixed cost
of collecting and curating seed data.

4 Experiments

4.1 Experimental Setup

Data Synthesis. We use the LIMA (Zhou et al.,
2023) training dataset as our seed dataset, which
comprises of one thousand carefully curated
instruction-response pairs. The samples were either
manually written or selected from community fo-
rums, and were selected based on quality as well as
diversity. This dataset was chosen because it is con-
cise enough to serve as a seed dataset, while being
well-designed and has demonstrated effectiveness
for instruction tuning (Zhou et al., 2023).

In our experiments, we use GPT-40 mini (Ope-
nAl, 2024) with our data synthesis framework to
create REFED, an instruction tuning dataset with
10K data samples.

Training Setup. We finetune the base and in-
struct variants of Llama-3.1-8B (Grattafiori et al.,
2024) and Mistral-7B (Jiang et al., 2023) on
REFED. We use a learning rate of 1 x 1075 for
instruct variants, and 2 x 10~° for base variants.
All other hyperparameters remain consistent across
models: linear warmup ratio of 0.03, cosine decay,
batch size of 128, and maximum sequence length of
2048. The models are trained for 15 epochs, with
checkpoint selection based on length-controlled
win-rate (Dubois et al., 2024) on a held-out vali-
dation set of 100 synthesized instruction-response

pairs that were synthesized with GPT-40 (OpenAl
et al., 2024a).

When training on larger datasets like Evol In-
struct (Xu et al., 2023) and UltraChat (Ding et al.,
2023), we follow prior works and modify our train-
ing setup as follows: 100 warmup steps, batch size
of 32, and train for 2 epochs (Xu et al., 2024).

Evaluation. To evaluate our model’s instruction-
following abilities, we use two benchmarks: Al-
pacaEval 2.0 (Dubois et al., 2024) and Arena-Hard
(Li et al., 2024c). These benchmarks are auto-
matic evaluators of language models’ instruction-
following abilities and have demonstrated the high-
est correlations with human preferences from Chat-
bot Arena (Li et al., 2024b; Dubois et al., 2024).

Both benchmarks compute win rates by using
a powerful LLM as a judge to compare model re-
sponses against established responses from a refer-
ence model. To further improve correlation with hu-
man preferences, AlpacaEval 2.0 additionally com-
putes a length-controlled win rate that mitigates
biases towards longer responses by comparing re-
sponses of similar length (Dubois et al., 2024).

In our experiments, we follow standard evalu-
ation protocols and use GPT-4-Turbo (1106) as a
judge. For AlpacaEval 2.0, we use GPT-4-Turbo
(1106) as the reference model, and GPT-4-Turbo
(0314) for the reference model in Arena-Hard.

4.2 Experimental Results

4.2.1 Experiment 1: How Effective is
REFERENCE-LEVEL FEEDBACK for
Data Synthesis?

The first set of experiments evaluate the effec-
tiveness of REFERENCE-LEVEL FEEDBACK for
data synthesis by comparing it against traditional
sample-level feedback, and also systematically ana-
lyzing different components in our framework. For
each approach, we synthesize datasets with 10K
samples, finetune Llama-3.1-8B-Instruct on that
data, then evaluate.

We conduct an ablation study by progres-
sively introducing the different components of the
reference-level feedback in our framework, instruc-
tion and response feedback. Starting with a base-
line of no feedback, we finetune on just our initial
seed dataset. Next, we train on a dataset with 10K
samples that was created by incorporating instruc-
tion feedback from REFERENCE-LEVEL FEED-
BACK and generate the corresponding response.
Lastly, we evaluate our complete approach by syn-

AlpacaEval 2 Arena-Hard
Feedback T
cedback Lype LC(%) WR(%) SE Len. WR(%) Tok.
No Feedback 32.45¢9_55 32.98¢9_54 1.65 2106 29'2T7-5’ 873
REF-LEVEL Instruction Feedback 38.99»“(54()9 35.3471149() 1.68 1926 298T85 634
REF-LEVEL Instruction + Sample-Level Response Feedback 42.92190.02 41.74418.30 1.73 1959 30.849.5 642
REF-LEVEL Instruction + Response Feedback 43-96T21.(J6 42-247‘18.8[] 1.74 1950 35-9T14.(i 670

Table 1: Analysis of the different components of REFERENCE-LEVEL FEEDBACK for data synthesis. We evaluate
the impact of the instruction and response feedback, and also compare against traditional sample-level feedback for
response improvement, while using reference samples from LIMA (Zhou et al., 2023). Results show performance
after finetuning Llama-3.1-8B-Instruct on each generated dataset. Green subscripts indicate improvements after
fine-tuning. Metrics shown are: Length-Controlled Win Rate (LC), Win Rate (WR), Standard Error (SE), Average

Length (Len.), and Average # Tokens (Tok.).

AlpacaEval 2 Arena-Hard
Model # 1

ode Samples o) WR (%) SE Len. WR (%) Tok.
Llama-3.1-8B-Instruct - 2290 2344 149 2181 213 861
+ Alpaca 52K 10.80 4.60 0.72 530 6.6 321

+ Evol Instruct 143K 13.65 6.77 0.88 949 7.0 532

+ UltraChat 208K 13.57 6.52 086 853 7.8 500

+ Instruct-SkillMix-SDA 4K 43.31 3843 1.71 1658 252 466
Infinity-Instruct-7M-Gen-Llama3.1-8B M 31.62 25.78 1.54 1588 33.1 716
Llama-3-8B-Instruct-SkillMix 4K 38.63 4298 1.75 4058 12.8 1790
Gpt-3.5-turbo-0613 - 22.35 14.10 1.04 1331 24.8 401
Llama-3.1-405B-Instruct - 39.26 39.11 143 1988 69.3 658
Claude 3 Opus (02/29) - 40.51 29.11 139 1388 60.4 541
Llama-3.1-8B-Instruct-REFED 10K 4396 4224 1.74 1950 359 670

Table 2: Evaluation results of Llama-3.1-8B-Instruct finetuned on REFED against selected baselines (detailed in
Section 4.2.2). Top shows results from finetuning on various synthetic datasets. Middle shows the performance of
leading models from AlpacaEval 2.0 leaderboard. Bottom shows our model trained on REFED. Results demonstrate
that our model outperforms these baselines across both evaluation benchmarks.

thesizing a dataset that also incorporates the re-
sponse feedback to improve the generated response
(REFED).

Additionally, we compare against sample-level
feedback, where feedback is generated and applied
individually for each response. Here, the synthesis
pipeline remains consistent, with minimal prompt
modifications to accommodate different feedback
types. With this, we can effectively isolate the
impact of different feedback strategies on response
quality.

Results. The results in Table 1 demonstrate im-
provements in performance as each component of
our framework is introduced. On both benchmarks,
we see a clear improvement as we introduce us-
ing instruction feedback, and response feedback to
synthesize data.

On AlpacaEval 2.0, using the complete
REFERENCE-LEVEL FEEDBACK for data synthe-
sis achieves a length-controlled win rate of 43.96%
and win rate of 42.25%, showing that it is supe-

rior to sample-level feedback (LC: 42.92%, WR:
41.74%). Results on Arena-Hard are similar, where
it achieves a win rate of 35.9%, substantially out-
performing sample-level feedback (WR: 30.8%).

The consistent performance gains across both
benchmarks demonstrate that REFERENCE-LEVEL
FEEDBACK is more effective for improving re-
sponses and generating high-quality data compared
to alternative feedback types.

4.2.2 Experiment 2: How Does Our Method
Compare Against Other Baselines?

We evaluate the performance of our synthetic data
by comparing a Llama-3.1-8B-Instruct model fine-
tuned on our dataset against several baselines.

Baselines. For the first set of baselines, we fine-
tune Llama-3.1-8B-Instruct on various well-known
synthetic datasets: Alpaca (Taori et al., 2023), Evol
Instruct (Xu et al., 2023), UltraChat 200K (Ding
et al., 2023), and Instruct-Skillmix-SDA (Kaur
et al., 2024). We use an identical training setup

AlpacaEval 2 Arena-Hard
Model

LC (%) WR (%) SE Len. WR (%) Tok.

Mistral-7B-v0.3 - - - - - -
+ REFED 16.97 17.70 1.34 2070 3.6 669
Mistral-7B-Instruct-v0.3 20.61 16.69 1.11 1581 12.6 541
+ REFED 41.10420.49 40.55423.86 1.73 2069 25.01412.4 648

Llama-3.1-8B - - - - - -
+ REFED 29.63 30.10 1.62 2095 12.7 633
Llama-3.1-8B-Instruct 22.90 23.44 1.49 2181 21.3 861
+ REFED 43.96121.06 422411550 1.74 1950 35.9;146 670

Table 3: Evaluation results of finetuning REFED on the base and instruct variants of Llama-3.1-8B and Mistral-
7B models. Green subscripts indicate improvements after finetuning. Note that we do not report base model

performance because they are not instruction-tuned.

to the one we use for our models.

We also compare against leading models
from the AlpacaEval 2.0 leaderboard that use
SFT to train 8B-parameter models: Llama-3-
8B-Instruct-Skillmix, which trains Llama-3-8B
on the Instruct-Skillmix dataset (Kaur et al.,
2024), and Infinity-Instruct-7M-Gen-Llama3.1-8B
model, trained on Infinity-Instruct-7M and Infinity-
Instruct-Gen (BAAI, 2024). Additionally, we con-
sider some larger and more powerful models such
as GPT-3.5, Llama-3.1-405B-Instruct (Dubey et al.,
2024) and Claude 3 Opus (Anthropic, 2025).

Results. Our results are presented in Table 2.
The Llama-3.1-8B-Instruct model finetuned on
REFED achieves state-of-the-art performance
among similar sized models trained with SFT,
across both evaluation benchmarks. On AlpacaE-
val 2.0, it achieves a length-controlled win rate of
43.96%. This not only scores higher than our se-
lected baselines, but also outperforms significantly
larger models including LLama-3.1-405B-Instruct
and Claude 3 Opus. On Arena-Hard, we get a win-
rate of 35.9%, outperforming both our baseline
models and established models like GPT-3.5 Turbo.
These results demonstrate that our data synthesis
approach can enable strong model performance on
established benchmarks, highlighting the effective-
ness of REFERENCE-LEVEL FEEDBACK.

4.2.3 Experiment 3: Does REFED Generalize
To Different Model Architectures?

In this section, we evaluate the effectiveness of
REFED across different models by finetuning
both base and instruct variants of Llama-3.1-8B
(Grattafiori et al., 2024) and Mistral-7B (Jiang et al.,
2023). This analysis validates the robustness of
our approach by demonstrating consistent benefits

across different cases.

Results. Our results are presented in Table 3.
Training on REFED yields improvements across
all model variants. In particular, the instruct mod-
els show very strong performance. Llama-3.1-
8B-Instruct-REFED achieves the strongest per-
formance, with a length-controlled win rate of
43.96% on AlpacaEval 2.0 and 35.9% on Arena-
Hard. Mistral-7B-Instruct-REFED shows impres-
sive results, with 41.0% and 25.0% respectively.
The base models also demonstrate notable im-
provements. Llama-3.1-8B-REFED achieves a
length-controlled win rate of 29.63% on AlpacaE-
val 2.0 and 12.7% on Arena-Hard, outperforming
Llama-3.1-8B-Instruct (20.9%) on AlpacaEval 2.
Similarly, Mistral-7B-REFED achieves 16.97% on
AlpacaEval 2.0 and 3.6% on Arena-Hard, getting
close performance to Mistral-7B-Instruct (20.7%).
These results demonstrate that REFED effec-
tively improves instruction-following capabilities
across different models and model variants. The
strong performance gains, particularly in base mod-
els surpassing their instruct variants, highlight
how effective our dataset is in developing LLM
instruction-following abilities. This observation
matches the model-agnostic design of our method.

4.2.4 Experiment 4: Does Filtering Enhance
the Effectiveness?

We explore how different filtering approaches af-
fect model performance by finetuning Llama-3.1-
8B-Instruct on various subsets of filtered data. We
compare three strategies: random sampling, LLM-
judge filtering, and ROUGE-L similarity filtering.

Random Sampling. As our baseline, we ran-
domly sample subsets of size 1K, 2K, 4K, and

43 42.64% i

42141 50% 41.47%

41 40.56%
a0
ot

391 39.16%

38 —&— ROUGE-L

37

—— ;
e LLM-Judge
36].,000 2,000 4,000 8,000
Subset Size

Figure 3: Length Controlled Win-Rate on AlpacaEval
2.0 for Llama-3.1-8B-Instruct finetuned on various sub-
sets of REFED, based on different filtering strategies.

8K from REFED.

LLM-Judge Filtering. We use GPT-40-mini as
a judge to evaluate pairs of initial and refined re-
sponses. We only keep samples where refined re-
sponses are rated higher than initial responses, and
obtain approximately 5K instruction-response pairs.
From these, we sample subsets of size 1K, 2K, and
4K.

ROUGE-L Similarity Filtering. Following
Wang et al. (2023b), we use ROUGE-L similarity
scoring to maximize instruction diversity. Starting
with a randomly selected sample, we iteratively
add candidates where the instruction’s maximum
similarity score with existing instructions is below
a specific threshold. We use thresholds of 0.10,
0.11, 0.12, and 0.145 to get subsets of sizes 1K,
2K, 4K, and 8K respectively.

Analysis. Figure 3 shows the effects of data fil-
tering. The results demonstrate clear benefits of fil-
tering strategies. LLM-Judge filtering proves most
effective, achieving 42.64% performance with just
4K samples — comparable to the full dataset’s per-
formance with less than half the data. ROUGE-L
similarity filtering performs slightly worse, but still
outperforms random sampling, achieving 42.43%
with 8K samples. Although neither filtered dataset
leads to higher results than the full dataset, they
give comparable results while requiring less train-
ing time and computational cost. The results sug-
gest that these filtering strategies successfully iden-
tify high-quality samples, though the slight drop in
performance indicates that filtered-out responses
may still contain valuable training signal.

4.3 Empirical Efficiency Analysis

Our method demonstrates significant efficiency ad-
vantages in both computational and cost require-
ments. Using REFERENCE-LEVEL FEEDBACK,
we collect feedback from 1K reference samples
to synthesize 10K new samples. This means that
we collect feedback only 1K times. In contrast,
using sample-level feedback would require 11K
feedback collections — 1K for instruction synthesis
and 10K for response improvement. The reduction
in feedback collection, combined with the strong
performance metrics, highlights the advantages of
our reference-level approach.

Furthermore, we achieve state-of-the-art results
without requiring the most expensive language
models. While approaches like Kaur et al. (2024)
report costs of $600 to synthesize 4K samples using
GPT-4, our experiments synthesize 10K samples
for less than $20 using GPT-4o0-mini. Having such
a more cost efficient approach, while also achieving
better performance, demonstrates that high-quality
data synthesis is possible with more economical
models.

5 Conclusion

In this work, we introduce REFERENCE-LEVEL
FEEDBACK, a novel framework for enhancing syn-
thetic data quality. Our approach leverages feed-
back collected from high-quality reference samples
to identify and propagate desirable characteristics
through the synthesized data. LLMs finetuned on
our generated dataset, REFED, achieve strong per-
formance on instruction-following benchmarks. By
modeling and incorporating desirable characteris-
tics from carefully curated reference samples, we
demonstrate a powerful and efficient approach for
creating high-quality instruction-tuning datasets.

Our work opens up several promising directions
for future applications. Recent developments in
language models like DeepSeek-R1 (DeepSeek-
Al et al., 2025) and OpenAI’s ol (OpenAl et al.,
2024b) demonstrate that high-quality synthetic data
plays a crucial role in achieving state-of-the-art per-
formance. The feedback introduced in our paper
can be naturally integrated with various existing
data synthesis approaches, such as preference data
creation, to further build upon them. By demon-
strating the effectiveness of REFERENCE-LEVEL
FEEDBACK in this context, this work establishes
a foundation for developing more comprehensive
approaches for data synthesis.

6 Limitations

Reliance on a Stronger LLM. Our framework
relies on a stronger LLM to synthesize data. While
this enables the synthesis of high quality data, re-
moving this dependency could help lead to a more
robust and independent framework, possibly at the
cost of performance degradation. Additionally,
LLM-generated data may amplify existing biases
or include inappropriate content.

Seed Data Quality. The quality of our synthe-
sized data is tied to that of our seed data. We select
concise, high-quality datasets from prior works to
use as the seed data. A more comprehensive ex-
ploration of seed data selection and its impact on
synthetic data remains an important direction for
future work.

Furthermore, our work does not fully address
the scalability our framework. There likely exists
a limit to how much data we can synthesize from
our seed data, until the synthesized data becomes
repetitive and lacks diversity.

LLM-Based Evaluation. Our evaluation relies
on benchmarks that use LLMs as a judge. Although
they correlate highly with human judgments, it is
important to acknowledge that they may still have
limitations, such as biases towards longer responses
or their own outputs.

References
Anthropic. 2025. Claude 3 family.

BAAIL 2024. Infinity instruct.
arXiv:2406. XXXX.

arXiv preprint

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda
Askell, Anna Chen, Nova DasSarma, Dawn Drain,
Stanislav Fort, Deep Ganguli, Tom Henighan,
Nicholas Joseph, Saurav Kadavath, Jackson Kernion,
Tom Conerly, Sheer El-Showk, Nelson Elhage, Zac
Hatfield-Dodds, Danny Hernandez, Tristan Hume,
Scott Johnston, Shauna Kravec, Liane Lovitt, Neel
Nanda, Catherine Olsson, Dario Amodei, Tom
Brown, Jack Clark, Sam McCandlish, Chris Olah,
Ben Mann, and Jared Kaplan. 2022a. Training
a helpful and harmless assistant with reinforce-
ment learning from human feedback. Preprint,
arXiv:2204.05862.

Yuntao Bai, Saurav Kadavath, Sandipan Kundu,
Amanda Askell, Jackson Kernion, Andy Jones, Anna
Chen, Anna Goldie, Azalia Mirhoseini, Cameron
McKinnon, Carol Chen, Catherine Olsson, Christo-
pher Olah, Danny Hernandez, Dawn Drain, Deep
Ganguli, Dustin Li, Eli Tran-Johnson, Ethan Perez,

Jamie Kerr, Jared Mueller, Jeffrey Ladish, Joshua
Landau, Kamal Ndousse, Kamile Lukosuite, Liane
Lovitt, Michael Sellitto, Nelson Elhage, Nicholas
Schiefer, Noemi Mercado, Nova DasSarma, Robert
Lasenby, Robin Larson, Sam Ringer, Scott John-
ston, Shauna Kravec, Sheer El Showk, Stanislav Fort,
Tamera Lanham, Timothy Telleen-Lawton, Tom Con-
erly, Tom Henighan, Tristan Hume, Samuel R. Bow-
man, Zac Hatfield-Dodds, Ben Mann, Dario Amodei,
Nicholas Joseph, Sam McCandlish, Tom Brown, and
Jared Kaplan. 2022b. Constitutional ai: Harmless-
ness from ai feedback. Preprint, arXiv:2212.08073.

Angelica Chen, Jérémy Scheurer, Jon Ander Cam-
pos, Tomasz Korbak, Jun Shern Chan, Samuel R.
Bowman, Kyunghyun Cho, and Ethan Perez. 2024a.
Learning from natural language feedback. Transac-
tions on Machine Learning Research.

Lichang Chen, Shiyang Li, Jun Yan, Hai Wang, Kalpa
Gunaratna, Vikas Yadav, Zheng Tang, Vijay Srini-
vasan, Tianyi Zhou, Heng Huang, and Hongxia Jin.
2024b. Alpagasus: Training a better alpaca with
fewer data. In The Twelfth International Conference
on Learning Representations.

Xiusi Chen, Jyun-Yu Jiang, Wei-Cheng Chang, Cho-Jui
Hsieh, Hsiang-Fu Yu, and Wei Wang. 2024c. Min-
Prompt: Graph-based minimal prompt data augmen-
tation for few-shot question answering. pages 254—
266, Bangkok, Thailand.

Xiusi Chen, Hongzhi Wen, Sreyashi Nag, Chen Luo,
Qingyu Yin, Ruirui Li, Zheng Li, and Wei Wang.
2024d. Iteralign: Iterative constitutional alignment
of large language models. In Proceedings of the 2024
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies (Volume 1: Long Papers),
pages 1423-1433.

DeepSeek-Al, Daya Guo, Dejian Yang, Haowei Zhang,
Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang,
Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou, Zhihong
Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue,
Bingxuan Wang, Bochao Wu, Bei Feng, Chengda Lu,
Chenggang Zhao, Chengqi Deng, Chenyu Zhang,
Chong Ruan, Damai Dai, Deli Chen, Dongjie Ji,
Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo,
Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang,
Han Bao, Hanwei Xu, Haocheng Wang, Honghui
Ding, Huajian Xin, Huazuo Gao, Hui Qu, Hui Li,
Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L.
Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong, Kai
Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai
Yu, Lean Wang, Lecong Zhang, Liang Zhao, Litong
Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan
Zhang, Minghua Zhang, Minghui Tang, Meng Li,
Miaojun Wang, Mingming Li, Ning Tian, Panpan
Huang, Peng Zhang, Qiancheng Wang, Qinyu Chen,
Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan,
Runji Wang, R. J. Chen, R. L. Jin, Ruyi Chen,
Shanghao Lu, Shangyan Zhou, Shanhuang Chen,

https://www.anthropic.com/news/claude-3-family
https://arxiv.org/abs/2204.05862
https://arxiv.org/abs/2204.05862
https://arxiv.org/abs/2204.05862
https://arxiv.org/abs/2204.05862
https://arxiv.org/abs/2204.05862
https://arxiv.org/abs/2212.08073
https://arxiv.org/abs/2212.08073
https://arxiv.org/abs/2212.08073
https://openreview.net/forum?id=xo3hI5MwvU
https://openreview.net/forum?id=FdVXgSJhvz
https://openreview.net/forum?id=FdVXgSJhvz
https://openreview.net/forum?id=FdVXgSJhvz
https://doi.org/10.18653/v1/2024.acl-long.16
https://doi.org/10.18653/v1/2024.acl-long.16
https://doi.org/10.18653/v1/2024.acl-long.16
https://doi.org/10.18653/v1/2024.acl-long.16
https://doi.org/10.18653/v1/2024.acl-long.16

Shengfeng Ye, Shiyu Wang, Shuiping Yu, Shunfeng
Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing
Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun,
T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu,
Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao
Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan
Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin
Liu, Xin Xie, Xingchao Liu, Xinyu Yang, Xinyuan Li,
Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin,
Xiaojin Shen, Xiaosha Chen, Xiaowen Sun, Xiaoxi-
ang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang,
Xinxia Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang
Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng
Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi,
Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang,
Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqgiang Guo,
Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yu-
jia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You,
Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong Xu,
Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu,
Yunxian Ma, Ying Tang, Yukun Zha, Yuting Yan,
Z.Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean
Xu, Zhenda Xie, Zhengyan Zhang, Zhewen Hao,
Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zi-
jia Zhu, Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song,
Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu
Zhang, and Zhen Zhang. 2025. Deepseek-r1: Incen-
tivizing reasoning capability in llms via reinforce-
ment learning. Preprint, arXiv:2501.12948.

Ning Ding, Yulin Chen, Bokai Xu, Yujia Qin,

Shengding Hu, Zhiyuan Liu, Maosong Sun, and
Bowen Zhou. 2023. Enhancing chat language models
by scaling high-quality instructional conversations.
pages 3029-3051, Singapore.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,

Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, Anirudh Goyal, Anthony Hartshorn, Aobo Yang,
Archi Mitra, Archie Sravankumar, Artem Korenev,
Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien
Rodriguez, Austen Gregerson, Ava Spataru, Bap-
tiste Roziere, Bethany Biron, Binh Tang, Bobbie
Chern, Charlotte Caucheteux, Chaya Nayak, Chloe
Bi, Chris Marra, Chris McConnell, Christian Keller,
Christophe Touret, Chunyang Wu, Corinne Wong,
Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Al-
lonsius, Daniel Song, Danielle Pintz, Danny Livshits,
David Esiobu, Dhruv Choudhary, Dhruv Mahajan,
Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes,
Egor Lakomkin, Ehab AlBadawy, Elina Lobanova,
Emily Dinan, Eric Michael Smith, Filip Radenovic,
Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Geor-
gia Lewis Anderson, Graeme Nail, Gregoire Mi-
alon, Guan Pang, Guillem Cucurell, Hailey Nguyen,
Hannah Korevaar, Hu Xu, Hugo Touvron, Iliyan
Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan
Misra, Ivan Evtimov, Jade Copet, Jaewon Lee, Jan
Geffert, Jana Vranes, Jason Park, Jay Mahadeokar,
Jeet Shah, Jelmer van der Linde, Jennifer Billock,
Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi,
Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu,
Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph

10

Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia,
Kalyan Vasuden Alwala, Kartikeya Upasani, Kate
Plawiak, Ke Li, Kenneth Heafield, Kevin Stone,
Khalid El-Arini, Krithika Iyer, Kshitiz Malik, Kuen-
ley Chiu, Kunal Bhalla, Lauren Rantala-Yeary, Lau-
rens van der Maaten, Lawrence Chen, Liang Tan, Liz
Jenkins, Louis Martin, Lovish Madaan, Lubo Malo,
Lukas Blecher, Lukas Landzaat, Luke de Oliveira,
Madeline Muzzi, Mahesh Pasupuleti, Mannat Singh,
Manohar Paluri, Marcin Kardas, Mathew Oldham,
Mathieu Rita, Maya Pavlova, Melanie Kambadur,
Mike Lewis, Min Si, Mitesh Kumar Singh, Mona
Hassan, Naman Goyal, Narjes Torabi, Nikolay Bash-
lykov, Nikolay Bogoychev, Niladri Chatterji, Olivier
Duchenne, Onur Celebi, Patrick Alrassy, Pengchuan
Zhang, Pengwei Li, Petar Vasic, Peter Weng, Pra-
jiwal Bhargava, Pratik Dubal, Praveen Krishnan,
Punit Singh Koura, Puxin Xu, Qing He, Qingxiao
Dong, Ragavan Srinivasan, Raj Ganapathy, Ramon
Calderer, Ricardo Silveira Cabral, Robert Stojnic,
Roberta Raileanu, Rohit Girdhar, Rohit Patel, Ro-
main Sauvestre, Ronnie Polidoro, Roshan Sumbaly,
Ross Taylor, Ruan Silva, Rui Hou, Rui Wang, Saghar
Hosseini, Sahana Chennabasappa, Sanjay Singh,
Sean Bell, Seohyun Sonia Kim, Sergey Edunov,
Shaoliang Nie, Sharan Narang, Sharath Raparthy,
Sheng Shen, Shengye Wan, Shruti Bhosale, Shun
Zhang, Simon Vandenhende, Soumya Batra, Spencer
Whitman, Sten Sootla, Stephane Collot, Suchin Gu-
rurangan, Sydney Borodinsky, Tamar Herman, Tara
Fowler, Tarek Sheasha, Thomas Georgiou, Thomas
Scialom, Tobias Speckbacher, Todor Mihaylov, Tong
Xiao, Ujjwal Karn, Vedanuj Goswami, Vibhor
Gupta, Vignesh Ramanathan, Viktor Kerkez, Vincent
Gonguet, Virginie Do, Vish Vogeti, Vladan Petro-
vic, Weiwei Chu, Wenhan Xiong, Wenyin Fu, Whit-
ney Meers, Xavier Martinet, Xiaodong Wang, Xiao-
qing Ellen Tan, Xinfeng Xie, Xuchao Jia, Xuewei
Wang, Yaelle Goldschlag, Yashesh Gaur, Yasmine
Babaei, Yi Wen, Yiwen Song, Yuchen Zhang, Yue
Li, Yuning Mao, Zacharie Delpierre Coudert, Zheng
Yan, Zhengxing Chen, Zoe Papakipos, Aaditya Singh,
Aaron Grattafiori, Abha Jain, Adam Kelsey, Adam
Shajnfeld, Adithya Gangidi, Adolfo Victoria, Ahuva
Goldstand, Ajay Menon, Ajay Sharma, Alex Boesen-
berg, Alex Vaughan, Alexei Baevski, Allie Feinstein,
Amanda Kallet, Amit Sangani, Anam Yunus, An-
drei Lupu, Andres Alvarado, Andrew Caples, An-
drew Gu, Andrew Ho, Andrew Poulton, Andrew
Ryan, Ankit Ramchandani, Annie Franco, Apara-
jita Saraf, Arkabandhu Chowdhury, Ashley Gabriel,
Ashwin Bharambe, Assaf Eisenman, Azadeh Yaz-
dan, Beau James, Ben Maurer, Benjamin Leonhardi,
Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi
Paranjape, Bing Liu, Bo Wu, Boyu Ni, Braden Han-
cock, Bram Wasti, Brandon Spence, Brani Stojkovic,
Brian Gamido, Britt Montalvo, Carl Parker, Carly
Burton, Catalina Mejia, Changhan Wang, Changkyu
Kim, Chao Zhou, Chester Hu, Ching-Hsiang Chu,
Chris Cai, Chris Tindal, Christoph Feichtenhofer, Da-
mon Civin, Dana Beaty, Daniel Kreymer, Daniel Li,
Danny Wyatt, David Adkins, David Xu, Davide Tes-
tuggine, Delia David, Devi Parikh, Diana Liskovich,
Didem Foss, Dingkang Wang, Duc Le, Dustin Hol-

https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://doi.org/10.18653/v1/2023.emnlp-main.183
https://doi.org/10.18653/v1/2023.emnlp-main.183
https://doi.org/10.18653/v1/2023.emnlp-main.183

land, Edward Dowling, Eissa Jamil, Elaine Mont-
gomery, Eleonora Presani, Emily Hahn, Emily Wood,
Erik Brinkman, Esteban Arcaute, Evan Dunbar, Evan
Smothers, Fei Sun, Felix Kreuk, Feng Tian, Firat
Ozgenel, Francesco Caggioni, Francisco Guzman,
Frank Kanayet, Frank Seide, Gabriela Medina Flo-
rez, Gabriella Schwarz, Gada Badeer, Georgia Swee,
Gil Halpern, Govind Thattai, Grant Herman, Grigory
Sizov, Guangyi, Zhang, Guna Lakshminarayanan,
Hamid Shojanazeri, Han Zou, Hannah Wang, Han-
wen Zha, Haroun Habeeb, Harrison Rudolph, He-
len Suk, Henry Aspegren, Hunter Goldman, Ibrahim
Damlaj, Igor Molybog, Igor Tufanov, Irina-Elena
Veliche, Itai Gat, Jake Weissman, James Geboski,
James Kohli, Japhet Asher, Jean-Baptiste Gaya,
Jeff Marcus, Jeff Tang, Jennifer Chan, Jenny Zhen,
Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong,
Jian Jin, Jingyi Yang, Joe Cummings, Jon Carvill,
Jon Shepard, Jonathan McPhie, Jonathan Torres,
Josh Ginsburg, Junjie Wang, Kai Wu, Kam Hou
U, Karan Saxena, Karthik Prasad, Kartikay Khan-
delwal, Katayoun Zand, Kathy Matosich, Kaushik
Veeraraghavan, Kelly Michelena, Keqgian Li, Kun
Huang, Kunal Chawla, Kushal Lakhotia, Kyle Huang,
Lailin Chen, Lakshya Garg, Lavender A, Leandro
Silva, Lee Bell, Lei Zhang, Liangpeng Guo, Licheng
Yu, Liron Moshkovich, Luca Wehrstedt, Madian
Khabsa, Manav Avalani, Manish Bhatt, Maria Tsim-
poukelli, Martynas Mankus, Matan Hasson, Matthew
Lennie, Matthias Reso, Maxim Groshev, Maxim
Naumov, Maya Lathi, Meghan Keneally, Michael L.
Seltzer, Michal Valko, Michelle Restrepo, Mihir
Patel, Mik Vyatskov, Mikayel Samvelyan, Mike
Clark, Mike Macey, Mike Wang, Miquel Jubert Her-
moso, Mo Metanat, Mohammad Rastegari, Mun-
ish Bansal, Nandhini Santhanam, Natascha Parks,
Natasha White, Navyata Bawa, Nayan Singhal, Nick
Egebo, Nicolas Usunier, Nikolay Pavlovich Laptev,
Ning Dong, Ning Zhang, Norman Cheng, Oleg
Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem
Kalinli, Parkin Kent, Parth Parekh, Paul Saab, Pa-
van Balaji, Pedro Rittner, Philip Bontrager, Pierre
Roux, Piotr Dollar, Polina Zvyagina, Prashant Ratan-
chandani, Pritish Yuvraj, Qian Liang, Rachad Alao,
Rachel Rodriguez, Rafi Ayub, Raghotham Murthy,
Raghu Nayani, Rahul Mitra, Raymond Li, Rebekkah
Hogan, Robin Battey, Rocky Wang, Rohan Mah-
eswari, Russ Howes, Ruty Rinott, Sai Jayesh Bondu,
Samyak Datta, Sara Chugh, Sara Hunt, Sargun
Dhillon, Sasha Sidorov, Satadru Pan, Saurabh Verma,
Seiji Yamamoto, Sharadh Ramaswamy, Shaun Lind-
say, Shaun Lindsay, Sheng Feng, Shenghao Lin,
Shengxin Cindy Zha, Shiva Shankar, Shuqiang
Zhang, Shuqgiang Zhang, Sinong Wang, Sneha Agar-
wal, Soji Sajuyigbe, Soumith Chintala, Stephanie
Max, Stephen Chen, Steve Kehoe, Steve Satterfield,
Sudarshan Govindaprasad, Sumit Gupta, Sungmin
Cho, Sunny Virk, Suraj Subramanian, Sy Choudhury,
Sydney Goldman, Tal Remez, Tamar Glaser, Tamara
Best, Thilo Kohler, Thomas Robinson, Tianhe Li,
Tianjun Zhang, Tim Matthews, Timothy Chou, Tzook
Shaked, Varun Vontimitta, Victoria Ajayi, Victoria
Montanez, Vijai Mohan, Vinay Satish Kumar, Vishal
Mangla, Vitor Albiero, Vlad Ionescu, Vlad Poenaru,

11

Vlad Tiberiu Mihailescu, Vladimir Ivanov, Wei Li,
Wenchen Wang, Wenwen Jiang, Wes Bouaziz, Will
Constable, Xiaocheng Tang, Xiaofang Wang, Xiao-
jian Wu, Xiaolan Wang, Xide Xia, Xilun Wu, Xinbo
Gao, Yanjun Chen, Ye Hu, Ye Jia, Ye Qi, Yenda Li,
Yilin Zhang, Ying Zhang, Yossi Adi, Youngjin Nam,
Yu, Wang, Yuchen Hao, Yundi Qian, Yuzi He, Zach
Rait, Zachary DeVito, Zef Rosnbrick, Zhaoduo Wen,
Zhenyu Yang, and Zhiwei Zhao. 2024. The llama 3
herd of models. Preprint, arXiv:2407.21783.

Yann Dubois, Baldazs Galambosi, Percy Liang, and Tat-

sunori B. Hashimoto. 2024. Length-controlled al-
pacaeval: A simple way to debias automatic evalua-
tors. Preprint, arXiv:2404.04475.

Zhibin Gou, Zhihong Shao, Yeyun Gong, Yelong

Shen, Yujiu Yang, Nan Duan, and Weizhu Chen.
2024. Critic: Large language models can self-
correct with tool-interactive critiquing. Preprint,
arXiv:2305.11738.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,

Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schel-
ten, Alex Vaughan, Amy Yang, Angela Fan, Anirudh
Goyal, Anthony Hartshorn, Aobo Yang, Archi Mi-
tra, Archie Sravankumar, Artem Korenev, Arthur
Hinsvark, Arun Rao, Aston Zhang, Aurelien Ro-
driguez, Austen Gregerson, Ava Spataru, Baptiste
Roziere, Bethany Biron, Binh Tang, Bobbie Chern,
Charlotte Caucheteux, Chaya Nayak, Chloe Bi,
Chris Marra, Chris McConnell, Christian Keller,
Christophe Touret, Chunyang Wu, Corinne Wong,
Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Al-
lonsius, Daniel Song, Danielle Pintz, Danny Livshits,
Danny Wyatt, David Esiobu, Dhruv Choudhary,
Dhruv Mahajan, Diego Garcia-Olano, Diego Perino,
Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy,
Elina Lobanova, Emily Dinan, Eric Michael Smith,
Filip Radenovic, Francisco Guzman, Frank Zhang,
Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis An-
derson, Govind Thattai, Graeme Nail, Gregoire Mi-
alon, Guan Pang, Guillem Cucurell, Hailey Nguyen,
Hannah Korevaar, Hu Xu, Hugo Touvron, Iliyan
Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Is-
han Misra, Ivan Evtimov, Jack Zhang, Jade Copet,
Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park,
Jay Mahadeokar, Jeet Shah, Jelmer van der Linde,
Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu,
Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang,
Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park,
Joseph Rocca, Joshua Johnstun, Joshua Saxe, Jun-
teng Jia, Kalyan Vasuden Alwala, Karthik Prasad,
Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth
Heafield, Kevin Stone, Khalid El-Arini, Krithika Iyer,
Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Kushal
Lakhotia, Lauren Rantala-Yeary, Laurens van der
Maaten, Lawrence Chen, Liang Tan, Liz Jenkins,
Louis Martin, Lovish Madaan, Lubo Malo, Lukas
Blecher, Lukas Landzaat, Luke de Oliveira, Madeline
Muzzi, Mahesh Pasupuleti, Mannat Singh, Manohar
Paluri, Marcin Kardas, Maria Tsimpoukelli, Mathew
Oldham, Mathieu Rita, Maya Pavlova, Melanie Kam-
badur, Mike Lewis, Min Si, Mitesh Kumar Singh,

https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2404.04475
https://arxiv.org/abs/2404.04475
https://arxiv.org/abs/2404.04475
https://arxiv.org/abs/2404.04475
https://arxiv.org/abs/2404.04475
https://arxiv.org/abs/2305.11738
https://arxiv.org/abs/2305.11738
https://arxiv.org/abs/2305.11738

Mona Hassan, Naman Goyal, Narjes Torabi, Niko-
lay Bashlykov, Nikolay Bogoychev, Niladri Chatterji,
Ning Zhang, Olivier Duchenne, Onur Celebi, Patrick
Alrassy, Pengchuan Zhang, Pengwei Li, Petar Va-
sic, Peter Weng, Prajjwal Bhargava, Pratik Dubal,
Praveen Krishnan, Punit Singh Koura, Puxin Xu,
Qing He, Qingxiao Dong, Ragavan Srinivasan, Raj
Ganapathy, Ramon Calderer, Ricardo Silveira Cabral,
Robert Stojnic, Roberta Raileanu, Rohan Maheswari,
Rohit Girdhar, Rohit Patel, Romain Sauvestre, Ron-
nie Polidoro, Roshan Sumbaly, Ross Taylor, Ruan
Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sa-
hana Chennabasappa, Sanjay Singh, Sean Bell, Seo-
hyun Sonia Kim, Sergey Edunov, Shaoliang Nie, Sha-
ran Narang, Sharath Raparthy, Sheng Shen, Shengye
Wan, Shruti Bhosale, Shun Zhang, Simon Van-
denhende, Soumya Batra, Spencer Whitman, Sten
Sootla, Stephane Collot, Suchin Gururangan, Syd-
ney Borodinsky, Tamar Herman, Tara Fowler, Tarek
Sheasha, Thomas Georgiou, Thomas Scialom, Tobias
Speckbacher, Todor Mihaylov, Tong Xiao, Ujjwal
Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh
Ramanathan, Viktor Kerkez, Vincent Gonguet, Vir-
ginie Do, Vish Vogeti, Vitor Albiero, Vladan Petro-
vic, Weiwei Chu, Wenhan Xiong, Wenyin Fu, Whit-
ney Meers, Xavier Martinet, Xiaodong Wang, Xi-
aofang Wang, Xiaoqing Ellen Tan, Xide Xia, Xin-
feng Xie, Xuchao Jia, Xuewei Wang, Yaelle Gold-
schlag, Yashesh Gaur, Yasmine Babaei, Yi Wen,
Yiwen Song, Yuchen Zhang, Yue Li, Yuning Mao,
Zacharie Delpierre Coudert, Zheng Yan, Zhengxing
Chen, Zoe Papakipos, Aaditya Singh, Aayushi Sri-
vastava, Abha Jain, Adam Kelsey, Adam Shajnfeld,
Adithya Gangidi, Adolfo Victoria, Ahuva Goldstand,
Ajay Menon, Ajay Sharma, Alex Boesenberg, Alexei
Baevski, Allie Feinstein, Amanda Kallet, Amit San-
gani, Amos Teo, Anam Yunus, Andrei Lupu, An-
dres Alvarado, Andrew Caples, Andrew Gu, Andrew
Ho, Andrew Poulton, Andrew Ryan, Ankit Ramchan-
dani, Annie Dong, Annie Franco, Anuj Goyal, Apara-
jita Saraf, Arkabandhu Chowdhury, Ashley Gabriel,
Ashwin Bharambe, Assaf Eisenman, Azadeh Yaz-
dan, Beau James, Ben Maurer, Benjamin Leonhardi,
Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi
Paranjape, Bing Liu, Bo Wu, Boyu Ni, Braden Han-
cock, Bram Wasti, Brandon Spence, Brani Stojkovic,
Brian Gamido, Britt Montalvo, Carl Parker, Carly
Burton, Catalina Mejia, Ce Liu, Changhan Wang,
Changkyu Kim, Chao Zhou, Chester Hu, Ching-
Hsiang Chu, Chris Cai, Chris Tindal, Christoph Fe-
ichtenhofer, Cynthia Gao, Damon Civin, Dana Beaty,
Daniel Kreymer, Daniel Li, David Adkins, David
Xu, Davide Testuggine, Delia David, Devi Parikh,
Diana Liskovich, Didem Foss, Dingkang Wang, Duc
Le, Dustin Holland, Edward Dowling, Eissa Jamil,
Elaine Montgomery, Eleonora Presani, Emily Hahn,
Emily Wood, Eric-Tuan Le, Erik Brinkman, Este-
ban Arcaute, Evan Dunbar, Evan Smothers, Fei Sun,
Felix Kreuk, Feng Tian, Filippos Kokkinos, Firat
Ozgenel, Francesco Caggioni, Frank Kanayet, Frank
Seide, Gabriela Medina Florez, Gabriella Schwarz,
Gada Badeer, Georgia Swee, Gil Halpern, Grant
Herman, Grigory Sizov, Guangyi, Zhang, Guna
Lakshminarayanan, Hakan Inan, Hamid Shojanaz-

12

eri, Han Zou, Hannah Wang, Hanwen Zha, Haroun
Habeeb, Harrison Rudolph, Helen Suk, Henry As-
pegren, Hunter Goldman, Hongyuan Zhan, Ibrahim
Damlaj, Igor Molybog, Igor Tufanov, Ilias Leontiadis,
Irina-Elena Veliche, Itai Gat, Jake Weissman, James
Geboski, James Kohli, Janice Lam, Japhet Asher,
Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jen-
nifer Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy
Teboul, Jessica Zhong, Jian Jin, Jingyi Yang, Joe
Cummings, Jon Carvill, Jon Shepard, Jonathan Mc-
Phie, Jonathan Torres, Josh Ginsburg, Junjie Wang,
Kai Wu, Kam Hou U, Karan Saxena, Kartikay Khan-
delwal, Katayoun Zand, Kathy Matosich, Kaushik
Veeraraghavan, Kelly Michelena, Kegian Li, Ki-
ran Jagadeesh, Kun Huang, Kunal Chawla, Kyle
Huang, Lailin Chen, Lakshya Garg, Lavender A,
Leandro Silva, Lee Bell, Lei Zhang, Liangpeng
Guo, Licheng Yu, Liron Moshkovich, Luca Wehrst-
edt, Madian Khabsa, Manav Avalani, Manish Bhatt,
Martynas Mankus, Matan Hasson, Matthew Lennie,
Matthias Reso, Maxim Groshev, Maxim Naumov,
Maya Lathi, Meghan Keneally, Miao Liu, Michael L.
Seltzer, Michal Valko, Michelle Restrepo, Mihir Pa-
tel, Mik Vyatskov, Mikayel Samvelyan, Mike Clark,
Mike Macey, Mike Wang, Miquel Jubert Hermoso,
Mo Metanat, Mohammad Rastegari, Munish Bansal,
Nandhini Santhanam, Natascha Parks, Natasha
White, Navyata Bawa, Nayan Singhal, Nick Egebo,
Nicolas Usunier, Nikhil Mehta, Nikolay Pavlovich
Laptev, Ning Dong, Norman Cheng, Oleg Chernoguz,
Olivia Hart, Omkar Salpekar, Ozlem Kalinli, Parkin
Kent, Parth Parekh, Paul Saab, Pavan Balaji, Pe-
dro Rittner, Philip Bontrager, Pierre Roux, Piotr
Dollar, Polina Zvyagina, Prashant Ratanchandani,
Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel
Rodriguez, Rafi Ayub, Raghotham Murthy, Raghu
Nayani, Rahul Mitra, Rangaprabhu Parthasarathy,
Raymond Li, Rebekkah Hogan, Robin Battey, Rocky
Wang, Russ Howes, Ruty Rinott, Sachin Mehta,
Sachin Siby, Sai Jayesh Bondu, Samyak Datta, Sara
Chugh, Sara Hunt, Sargun Dhillon, Sasha Sidorov,
Satadru Pan, Saurabh Mahajan, Saurabh Verma,
Seiji Yamamoto, Sharadh Ramaswamy, Shaun Lind-
say, Shaun Lindsay, Sheng Feng, Shenghao Lin,
Shengxin Cindy Zha, Shishir Patil, Shiva Shankar,
Shugiang Zhang, Shuqiang Zhang, Sinong Wang,
Sneha Agarwal, Soji Sajuyigbe, Soumith Chintala,
Stephanie Max, Stephen Chen, Steve Kehoe, Steve
Satterfield, Sudarshan Govindaprasad, Sumit Gupta,
Summer Deng, Sungmin Cho, Sunny Virk, Suraj
Subramanian, Sy Choudhury, Sydney Goldman, Tal
Remez, Tamar Glaser, Tamara Best, Thilo Koehler,
Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim
Matthews, Timothy Chou, Tzook Shaked, Varun
Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai
Mohan, Vinay Satish Kumar, Vishal Mangla, Vlad
Tonescu, Vlad Poenaru, Vlad Tiberiu Mihailescu,
Vladimir Ivanov, Wei Li, Wenchen Wang, Wen-
wen Jiang, Wes Bouaziz, Will Constable, Xiaocheng
Tang, Xiaojian Wu, Xiaolan Wang, Xilun Wu, Xinbo
Gao, Yaniv Kleinman, Yanjun Chen, Ye Hu, Ye Jia,
Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi,
Youngjin Nam, Yu, Wang, Yu Zhao, Yuchen Hao,
Yundi Qian, Yunlu Li, Yuzi He, Zach Rait, Zachary

DeVito, Zef Rosnbrick, Zhaoduo Wen, Zhenyu Yang,
Zhiwei Zhao, and Zhiyu Ma. 2024. The llama 3 herd
of models. Preprint, arXiv:2407.21783.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, Lélio Renard Lavaud,
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao,
Thibaut Lavril, Thomas Wang, Timothée Lacroix,
and William El Sayed. 2023. Mistral 7b. Preprint,
arXiv:2310.06825.

Di Jin, Shikib Mehri, Devamanyu Hazarika, Aishwarya
Padmakumar, SUNGIJIN LEE, Yang Liu, and Mahdi
Namazifar. 2023. Data-efficient alignment of large
language models with human feedback through natu-
ral language. In NeurIPS 2023 Workshop on Instruc-
tion Tuning and Instruction Following.

Simran Kaur, Simon Park, Anirudh Goyal, and San-
jeev Arora. 2024. Instruct-skillmix: A powerful

pipeline for llm instruction tuning. arXiv preprint
arXiv:2408.14774.

Haoran Li, Qingxiu Dong, Zhengyang Tang, Chaojun
Wang, Xingxing Zhang, Haoyang Huang, Shaohan
Huang, Xiaolong Huang, Zeqgiang Huang, Dongdong
Zhang, Yuxian Gu, Xin Cheng, Xun Wang, Si-Qing
Chen, Li Dong, Wei Lu, Zhifang Sui, Benyou Wang,
Wai Lam, and Furu Wei. 2024a. Synthetic data (al-
most) from scratch: Generalized instruction tuning
for language models. Preprint, arXiv:2402.13064.

Tianle Li, Wei-Lin Chiang, Evan Frick, Lisa Dunlap,
Tianhao Wu, Banghua Zhu, Joseph E. Gonzalez, and
Ion Stoica. 2024b. From crowdsourced data to high-
quality benchmarks: Arena-hard and benchbuilder
pipeline. Preprint, arXiv:2406.11939.

Tianle Li, Wei-Lin Chiang, Evan Frick, Lisa Dunlap,
Banghua Zhu, Joseph E. Gonzalez, and Ion Stoica.
2024c. From live data to high-quality benchmarks:
The arena-hard pipeline.

Ruibo Liu, Jerry Wei, Fangyu Liu, Chenglei Si, Yanzhe
Zhang, Jinmeng Rao, Steven Zheng, Daiyi Peng,
Diyi Yang, Denny Zhou, and Andrew M. Dai. 2024.
Best practices and lessons learned on synthetic data.
Preprint, arXiv:2404.07503.

Lin Long, Rui Wang, Ruixuan Xiao, Junbo Zhao, Xiao
Ding, Gang Chen, and Haobo Wang. 2024. On
LLMs-driven synthetic data generation, curation, and
evaluation: A survey. pages 11065-11082, Bangkok,
Thailand.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
Shashank Gupta, Bodhisattwa Prasad Majumder,
Katherine Hermann, Sean Welleck, Amir Yazdan-
bakhsh, and Peter Clark. 2023. Self-refine: Itera-
tive refinement with self-feedback. In Advances in
Neural Information Processing Systems, volume 36,
pages 46534-46594. Curran Associates, Inc.

13

OpenAl, :, Aaron Hurst, Adam Lerer, Adam P. Goucher,
Adam Perelman, Aditya Ramesh, Aidan Clark,
AJ Ostrow, Akila Welihinda, Alan Hayes, Alec
Radford, Aleksander Madry, Alex Baker-Whitcomb,
Alex Beutel, Alex Borzunov, Alex Carney, Alex
Chow, Alex Kirillov, Alex Nichol, Alex Paino, Alex
Renzin, Alex Tachard Passos, Alexander Kirillov,
Alexi Christakis, Alexis Conneau, Ali Kamali, Allan
Jabri, Allison Moyer, Allison Tam, Amadou Crookes,
Amin Tootoochian, Amin Tootoonchian, Ananya
Kumar, Andrea Vallone, Andrej Karpathy, Andrew
Braunstein, Andrew Cann, Andrew Codispoti, An-
drew Galu, Andrew Kondrich, Andrew Tulloch, An-
drey Mishchenko, Angela Baek, Angela Jiang, An-
toine Pelisse, Antonia Woodford, Anuj Gosalia, Arka
Dhar, Ashley Pantuliano, Avi Nayak, Avital Oliver,
Barret Zoph, Behrooz Ghorbani, Ben Leimberger,
Ben Rossen, Ben Sokolowsky, Ben Wang, Benjamin
Zweig, Beth Hoover, Blake Samic, Bob McGrew,
Bobby Spero, Bogo Giertler, Bowen Cheng, Brad
Lightcap, Brandon Walkin, Brendan Quinn, Brian
Guarraci, Brian Hsu, Bright Kellogg, Brydon East-
man, Camillo Lugaresi, Carroll Wainwright, Cary
Bassin, Cary Hudson, Casey Chu, Chad Nelson,
Chak Li, Chan Jun Shern, Channing Conger, Char-
lotte Barette, Chelsea Voss, Chen Ding, Cheng Lu,
Chong Zhang, Chris Beaumont, Chris Hallacy, Chris
Koch, Christian Gibson, Christina Kim, Christine
Choi, Christine McLeavey, Christopher Hesse, Clau-
dia Fischer, Clemens Winter, Coley Czarnecki, Colin
Jarvis, Colin Wei, Constantin Koumouzelis, Dane
Sherburn, Daniel Kappler, Daniel Levin, Daniel Levy,
David Carr, David Farhi, David Mely, David Robin-
son, David Sasaki, Denny Jin, Dev Valladares, Dim-
itris Tsipras, Doug Li, Duc Phong Nguyen, Duncan
Findlay, Edede Oiwoh, Edmund Wong, Ehsan As-
dar, Elizabeth Proehl, Elizabeth Yang, Eric Antonow,
Eric Kramer, Eric Peterson, Eric Sigler, Eric Wal-
lace, Eugene Brevdo, Evan Mays, Farzad Khorasani,
Felipe Petroski Such, Filippo Raso, Francis Zhang,
Fred von Lohmann, Freddie Sulit, Gabriel Goh,
Gene Oden, Geoff Salmon, Giulio Starace, Greg
Brockman, Hadi Salman, Haiming Bao, Haitang
Hu, Hannah Wong, Haoyu Wang, Heather Schmidt,
Heather Whitney, Heewoo Jun, Hendrik Kirchner,
Henrique Ponde de Oliveira Pinto, Hongyu Ren,
Huiwen Chang, Hyung Won Chung, Ian Kivlichan,
Ian O’Connell, Ian O’Connell, Ian Osband, Ian Sil-
ber, Ian Sohl, Ibrahim Okuyucu, Ikai Lan, Ilya
Kostrikov, Ilya Sutskever, Ingmar Kanitscheider,
Ishaan Gulrajani, Jacob Coxon, Jacob Menick, Jakub
Pachocki, James Aung, James Betker, James Crooks,
James Lennon, Jamie Kiros, Jan Leike, Jane Park,
Jason Kwon, Jason Phang, Jason Teplitz, Jason
Wei, Jason Wolfe, Jay Chen, Jeff Harris, Jenia Var-
avva, Jessica Gan Lee, Jessica Shieh, Ji Lin, Jiahui
Yu, Jiayi Weng, Jie Tang, Jieqi Yu, Joanne Jang,
Joaquin Quinonero Candela, Joe Beutler, Joe Lan-
ders, Joel Parish, Johannes Heidecke, John Schul-
man, Jonathan Lachman, Jonathan McKay, Jonathan
Uesato, Jonathan Ward, Jong Wook Kim, Joost
Huizinga, Jordan Sitkin, Jos Kraaijeveld, Josh Gross,
Josh Kaplan, Josh Snyder, Joshua Achiam, Joy Jiao,
Joyce Lee, Juntang Zhuang, Justyn Harriman, Kai

https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2310.06825
https://openreview.net/forum?id=IPJqprsrNX
https://openreview.net/forum?id=IPJqprsrNX
https://openreview.net/forum?id=IPJqprsrNX
https://openreview.net/forum?id=IPJqprsrNX
https://openreview.net/forum?id=IPJqprsrNX
https://arxiv.org/abs/2402.13064
https://arxiv.org/abs/2402.13064
https://arxiv.org/abs/2402.13064
https://arxiv.org/abs/2402.13064
https://arxiv.org/abs/2402.13064
https://arxiv.org/abs/2406.11939
https://arxiv.org/abs/2406.11939
https://arxiv.org/abs/2406.11939
https://arxiv.org/abs/2406.11939
https://arxiv.org/abs/2406.11939
https://lmsys.org/blog/2024-04-19-arena-hard/
https://lmsys.org/blog/2024-04-19-arena-hard/
https://lmsys.org/blog/2024-04-19-arena-hard/
https://arxiv.org/abs/2404.07503
https://doi.org/10.18653/v1/2024.findings-acl.658
https://doi.org/10.18653/v1/2024.findings-acl.658
https://doi.org/10.18653/v1/2024.findings-acl.658
https://doi.org/10.18653/v1/2024.findings-acl.658
https://doi.org/10.18653/v1/2024.findings-acl.658
https://proceedings.neurips.cc/paper_files/paper/2023/file/91edff07232fb1b55a505a9e9f6c0ff3-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/91edff07232fb1b55a505a9e9f6c0ff3-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/91edff07232fb1b55a505a9e9f6c0ff3-Paper-Conference.pdf

Fricke, Kai Hayashi, Karan Singhal, Katy Shi, Kavin
Karthik, Kayla Wood, Kendra Rimbach, Kenny Hsu,
Kenny Nguyen, Keren Gu-Lemberg, Kevin Button,
Kevin Liu, Kiel Howe, Krithika Muthukumar, Kyle
Luther, Lama Ahmad, Larry Kai, Lauren Itow, Lau-
ren Workman, Leher Pathak, Leo Chen, Li Jing, Lia
Guy, Liam Fedus, Liang Zhou, Lien Mamitsuka, Lil-
ian Weng, Lindsay McCallum, Lindsey Held, Long
Ouyang, Louis Feuvrier, Lu Zhang, Lukas Kon-
draciuk, Lukasz Kaiser, Luke Hewitt, Luke Metz,
Lyric Doshi, Mada Aflak, Maddie Simens, Madelaine
Boyd, Madeleine Thompson, Marat Dukhan, Mark
Chen, Mark Gray, Mark Hudnall, Marvin Zhang,
Marwan Aljubeh, Mateusz Litwin, Matthew Zeng,
Max Johnson, Maya Shetty, Mayank Gupta, Meghan
Shah, Mehmet Yatbaz, Meng Jia Yang, Mengchao
Zhong, Mia Glaese, Mianna Chen, Michael Jan-
ner, Michael Lampe, Michael Petrov, Michael Wu,
Michele Wang, Michelle Fradin, Michelle Pokrass,
Miguel Castro, Miguel Oom Temudo de Castro,
Mikhail Pavlov, Miles Brundage, Miles Wang, Mi-
nal Khan, Mira Murati, Mo Bavarian, Molly Lin,
Murat Yesildal, Nacho Soto, Natalia Gimelshein, Na-
talie Cone, Natalie Staudacher, Natalie Summers,
Natan LaFontaine, Neil Chowdhury, Nick Ryder,
Nick Stathas, Nick Turley, Nik Tezak, Niko Felix,
Nithanth Kudige, Nitish Keskar, Noah Deutsch, Noel
Bundick, Nora Puckett, Ofir Nachum, Ola Okelola,
Oleg Boiko, Oleg Murk, Oliver Jaffe, Olivia Watkins,
Olivier Godement, Owen Campbell-Moore, Patrick
Chao, Paul McMillan, Pavel Belov, Peng Su, Pe-
ter Bak, Peter Bakkum, Peter Deng, Peter Dolan,
Peter Hoeschele, Peter Welinder, Phil Tillet, Philip
Pronin, Philippe Tillet, Prafulla Dhariwal, Qiming
Yuan, Rachel Dias, Rachel Lim, Rahul Arora, Ra-
jan Troll, Randall Lin, Rapha Gontijo Lopes, Raul
Puri, Reah Miyara, Reimar Leike, Renaud Gaubert,
Reza Zamani, Ricky Wang, Rob Donnelly, Rob
Honsby, Rocky Smith, Rohan Sahai, Rohit Ramchan-
dani, Romain Huet, Rory Carmichael, Rowan Zellers,
Roy Chen, Ruby Chen, Ruslan Nigmatullin, Ryan
Cheu, Saachi Jain, Sam Altman, Sam Schoenholz,
Sam Toizer, Samuel Miserendino, Sandhini Agar-
wal, Sara Culver, Scott Ethersmith, Scott Gray, Sean
Grove, Sean Metzger, Shamez Hermani, Shantanu
Jain, Shengjia Zhao, Sherwin Wu, Shino Jomoto, Shi-
rong Wu, Shuaiqi, Xia, Sonia Phene, Spencer Papay,
Srinivas Narayanan, Steve Coffey, Steve Lee, Stew-
art Hall, Suchir Balaji, Tal Broda, Tal Stramer, Tao
Xu, Tarun Gogineni, Taya Christianson, Ted Sanders,
Tejal Patwardhan, Thomas Cunninghman, Thomas
Degry, Thomas Dimson, Thomas Raoux, Thomas
Shadwell, Tianhao Zheng, Todd Underwood, Todor
Markov, Toki Sherbakov, Tom Rubin, Tom Stasi,
Tomer Kaftan, Tristan Heywood, Troy Peterson, Tyce
Walters, Tyna Eloundou, Valerie Qi, Veit Moeller,
Vinnie Monaco, Vishal Kuo, Vlad Fomenko, Wayne
Chang, Weiyi Zheng, Wenda Zhou, Wesam Manassra,
Will Sheu, Wojciech Zaremba, Yash Patil, Yilei Qian,
Yongjik Kim, Youlong Cheng, Yu Zhang, Yuchen
He, Yuchen Zhang, Yujia Jin, Yunxing Dai, and
Yury Malkov. 2024a. Gpt-4o system card. Preprint,
arXiv:2410.21276.

14

OpenAl, :, Aaron Jaech, Adam Kalai, Adam Lerer,

Adam Richardson, Ahmed El-Kishky, Aiden Low,
Alec Helyar, Aleksander Madry, Alex Beutel, Alex
Carney, Alex Iftimie, Alex Karpenko, Alex Tachard
Passos, Alexander Neitz, Alexander Prokofiev,
Alexander Wei, Allison Tam, Ally Bennett, Ananya
Kumar, Andre Saraiva, Andrea Vallone, Andrew Du-
berstein, Andrew Kondrich, Andrey Mishchenko,
Andy Applebaum, Angela Jiang, Ashvin Nair, Bar-
ret Zoph, Behrooz Ghorbani, Ben Rossen, Benjamin
Sokolowsky, Boaz Barak, Bob McGrew, Borys Mi-
naiev, Botao Hao, Bowen Baker, Brandon Houghton,
Brandon McKinzie, Brydon Eastman, Camillo Lu-
garesi, Cary Bassin, Cary Hudson, Chak Ming Li,
Charles de Bourcy, Chelsea Voss, Chen Shen, Chong
Zhang, Chris Koch, Chris Orsinger, Christopher
Hesse, Claudia Fischer, Clive Chan, Dan Roberts,
Daniel Kappler, Daniel Levy, Daniel Selsam, David
Dohan, David Farhi, David Mely, David Robinson,
Dimitris Tsipras, Doug Li, Dragos Oprica, Eben Free-
man, Eddie Zhang, Edmund Wong, Elizabeth Proehl,
Enoch Cheung, Eric Mitchell, Eric Wallace, Erik
Ritter, Evan Mays, Fan Wang, Felipe Petroski Such,
Filippo Raso, Florencia Leoni, Foivos Tsimpourlas,
Francis Song, Fred von Lohmann, Freddie Sulit,
Geoff Salmon, Giambattista Parascandolo, Gildas
Chabot, Grace Zhao, Greg Brockman, Guillaume
Leclerc, Hadi Salman, Haiming Bao, Hao Sheng,
Hart Andrin, Hessam Bagherinezhad, Hongyu Ren,
Hunter Lightman, Hyung Won Chung, Ian Kivlichan,
Ian O’Connell, Ian Osband, Ignasi Clavera Gilaberte,
Ilge Akkaya, Ilya Kostrikov, Ilya Sutskever, Irina
Kofman, Jakub Pachocki, James Lennon, Jason Wei,
Jean Harb, Jerry Twore, Jiacheng Feng, Jiahui Yu,
Jiayi Weng, Jie Tang, Jieqi Yu, Joaquin Quifionero
Candela, Joe Palermo, Joel Parish, Johannes Hei-
decke, John Hallman, John Rizzo, Jonathan Gordon,
Jonathan Uesato, Jonathan Ward, Joost Huizinga,
Julie Wang, Kai Chen, Kai Xiao, Karan Singhal, Ka-
rina Nguyen, Karl Cobbe, Katy Shi, Kayla Wood,
Kendra Rimbach, Keren Gu-Lemberg, Kevin Liu,
Kevin Lu, Kevin Stone, Kevin Yu, Lama Ahmad,
Lauren Yang, Leo Liu, Leon Maksin, Leyton Ho,
Liam Fedus, Lilian Weng, Linden Li, Lindsay Mc-
Callum, Lindsey Held, Lorenz Kuhn, Lukas Kon-
draciuk, Lukasz Kaiser, Luke Metz, Madelaine Boyd,
Maja Trebacz, Manas Joglekar, Mark Chen, Marko
Tintor, Mason Meyer, Matt Jones, Matt Kaufer,
Max Schwarzer, Meghan Shah, Mehmet Yatbaz,
Melody Y. Guan, Mengyuan Xu, Mengyuan Yan,
Mia Glaese, Mianna Chen, Michael Lampe, Michael
Malek, Michele Wang, Michelle Fradin, Mike Mc-
Clay, Mikhail Pavlov, Miles Wang, Mingxuan Wang,
Mira Murati, Mo Bavarian, Mostafa Rohaninejad,
Nat McAleese, Neil Chowdhury, Neil Chowdhury,
Nick Ryder, Nikolas Tezak, Noam Brown, Ofir
Nachum, Oleg Boiko, Oleg Murk, Olivia Watkins,
Patrick Chao, Paul Ashbourne, Pavel Izmailov, Pe-
ter Zhokhov, Rachel Dias, Rahul Arora, Randall
Lin, Rapha Gontijo Lopes, Raz Gaon, Reah Mi-
yara, Reimar Leike, Renny Hwang, Rhythm Garg,
Robin Brown, Roshan James, Rui Shu, Ryan Cheu,
Ryan Greene, Saachi Jain, Sam Altman, Sam Toizer,
Sam Toyer, Samuel Miserendino, Sandhini Agarwal,

https://arxiv.org/abs/2410.21276

Santiago Hernandez, Sasha Baker, Scott McKinney,
Scottie Yan, Shengjia Zhao, Shengli Hu, Shibani
Santurkar, Shraman Ray Chaudhuri, Shuyuan Zhang,
Siyuan Fu, Spencer Papay, Steph Lin, Suchir Balaji,
Suvansh Sanjeev, Szymon Sidor, Tal Broda, Aidan
Clark, Tao Wang, Taylor Gordon, Ted Sanders, Te-
jal Patwardhan, Thibault Sottiaux, Thomas Degry,
Thomas Dimson, Tianhao Zheng, Timur Garipov,
Tom Stasi, Trapit Bansal, Trevor Creech, Troy Peter-
son, Tyna Eloundou, Valerie Qi, Vineet Kosaraju,
Vinnie Monaco, Vitchyr Pong, VIlad Fomenko,
Weiyi Zheng, Wenda Zhou, Wes McCabe, Wojciech
Zaremba, Yann Dubois, Yinghai Lu, Yining Chen,
Young Cha, Yu Bai, Yuchen He, Yuchen Zhang, Yun-
yun Wang, Zheng Shao, and Zhuohan Li. 2024b.
Openai ol system card. Preprint, arXiv:2412.16720.

OpenAl. 2024. Gpt-4o0 mini: advancing cost-efficient
intelligence.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, John
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder,
Paul F Christiano, Jan Leike, and Ryan Lowe. 2022.
Training language models to follow instructions with
human feedback. In Advances in Neural Information
Processing Systems, volume 35, pages 27730-27744.
Curran Associates, Inc.

Baolin Peng, Chunyuan Li, Pengcheng He, Michel Gal-
ley, and Jianfeng Gao. 2023. Instruction tuning with
gpt-4. Preprint, arXiv:2304.03277.

Avi Singh, John D. Co-Reyes, Rishabh Agarwal,
Ankesh Anand, Piyush Patil, Xavier Garcia, Pe-
ter J. Liu, James Harrison, Jaechoon Lee, Kelvin
Xu, Aaron Parisi, Abhishek Kumar, Alex Alemi,
Alex Rizkowsky, Azade Nova, Ben Adlam, Bernd
Bohnet, Gamaleldin Elsayed, Hanie Sedghi, Igor
Mordatch, Isabelle Simpson, 1zzeddin Gur, Jasper
Snoek, Jeffrey Pennington, Jiri Hron, Kathleen Ke-
nealy, Kevin Swersky, Kshiteej Mahajan, Laura
Culp, Lechao Xiao, Maxwell L. Bileschi, Noah Con-
stant, Roman Novak, Rosanne Liu, Tris Warkentin,
Yundi Qian, Yamini Bansal, Ethan Dyer, Behnam
Neyshabur, Jascha Sohl-Dickstein, and Noah Fiedel.
2024. Beyond human data: Scaling self-training for
problem-solving with language models. Preprint,
arXiv:2312.06585.

Zhiqing Sun, Yikang Shen, Qinhong Zhou, Hongxin
Zhang, Zhenfang Chen, David Cox, Yiming Yang,
and Chuang Gan. 2023. Principle-driven self-
alignment of language models from scratch with
minimal human supervision. In Advances in Neural
Information Processing Systems, volume 36, pages
2511-2565. Curran Associates, Inc.

Zhiqing Sun, Yikang Shen, Qinhong Zhou, Hongxin
Zhang, Zhenfang Chen, David Cox, Yiming Yang,
and Chuang Gan. 2024. Principle-driven self-
alignment of language models from scratch with
minimal human supervision. Advances in Neural
Information Processing Systems, 36.

15

Shuo Tang, Xianghe Pang, Zexi Liu, Bohan Tang,
Rui Ye, Xiaowen Dong, Yanfeng Wang, and Si-
heng Chen. 2024. Synthesizing post-training data
for 1lms through multi-agent simulation. Preprint,
arXiv:2410.14251.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B. Hashimoto. 2023. Stanford alpaca:
An instruction-following llama model. https://
github.com/tatsu-1lab/stanford_alpaca.

Tianlu Wang, Ping Yu, Xiaoqing Ellen Tan, Sean
O’Brien, Ramakanth Pasunuru, Jane Dwivedi-Yu,
Olga Golovneva, Luke Zettlemoyer, Maryam Fazel-
Zarandi, and Asli Celikyilmaz. 2023a. Shepherd:
A critic for language model generation. Preprint,
arXiv:2308.04592.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Al-
isa Liu, Noah A. Smith, Daniel Khashabi, and Han-
naneh Hajishirzi. 2023b. Self-instruct: Aligning lan-
guage models with self-generated instructions. pages
13484-13508, Toronto, Canada.

Yizhong Wang, Swaroop Mishra, Pegah Alipoormo-
labashi, Yeganeh Kordi, Amirreza Mirzaei, Atharva
Naik, Arjun Ashok, Arut Selvan Dhanasekaran,
Anjana Arunkumar, David Stap, Eshaan Pathak,
Giannis Karamanolakis, Haizhi Lai, Ishan Puro-
hit, Ishani Mondal, Jacob Anderson, Kirby Kuznia,
Krima Doshi, Kuntal Kumar Pal, Maitreya Patel,
Mehrad Moradshahi, Mihir Parmar, Mirali Purohit,
Neeraj Varshney, Phani Rohitha Kaza, Pulkit Verma,
Ravsehaj Singh Puri, Rushang Karia, Savan Doshi,
Shailaja Keyur Sampat, Siddhartha Mishra, Sujan
Reddy A, Sumanta Patro, Tanay Dixit, and Xudong
Shen. 2022. Super-Naturallnstructions: Generaliza-
tion via declarative instructions on 1600+ NLP tasks.
In Proceedings of the 2022 Conference on Empiri-
cal Methods in Natural Language Processing, pages
5085-5109, Abu Dhabi, United Arab Emirates. As-
sociation for Computational Linguistics.

Jason Wei, Maarten Bosma, Vincent Y. Zhao, Kelvin
Guu, Adams Wei Yu, Brian Lester, Nan Du, An-
drew M. Dai, and Quoc V. Le. 2022. Finetuned
language models are zero-shot learners. Preprint,
arXiv:2109.01652.

Tianhao Wu, Weizhe Yuan, Olga Golovneva, Jing Xu,
Yuandong Tian, Jiantao Jiao, Jason Weston, and Sain-
bayar Sukhbaatar. 2024. Meta-rewarding language
models: Self-improving alignment with 1lm-as-a-
meta-judge. arXiv preprint arXiv:2407.19594.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng,
Pu Zhao, Jiazhan Feng, Chongyang Tao, and Daxin
Jiang. 2023. Wizardlm: Empowering large language
models to follow complex instructions. Preprint,
arXiv:2304.12244.

Zhangchen Xu, Fengqing Jiang, Luyao Niu, Yun-
tian Deng, Radha Poovendran, Yejin Choi, and
Bill Yuchen Lin. 2024. Magpie: Alignment data

https://arxiv.org/abs/2412.16720
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://arxiv.org/abs/2304.03277
https://arxiv.org/abs/2304.03277
https://arxiv.org/abs/2304.03277
https://arxiv.org/abs/2312.06585
https://arxiv.org/abs/2312.06585
https://arxiv.org/abs/2312.06585
https://proceedings.neurips.cc/paper_files/paper/2023/file/0764db1151b936aca59249e2c1386101-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/0764db1151b936aca59249e2c1386101-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/0764db1151b936aca59249e2c1386101-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/0764db1151b936aca59249e2c1386101-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/0764db1151b936aca59249e2c1386101-Paper-Conference.pdf
https://arxiv.org/abs/2410.14251
https://arxiv.org/abs/2410.14251
https://arxiv.org/abs/2410.14251
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://arxiv.org/abs/2308.04592
https://arxiv.org/abs/2308.04592
https://arxiv.org/abs/2308.04592
https://doi.org/10.18653/v1/2023.acl-long.754
https://doi.org/10.18653/v1/2023.acl-long.754
https://doi.org/10.18653/v1/2023.acl-long.754
https://doi.org/10.18653/v1/2022.emnlp-main.340
https://doi.org/10.18653/v1/2022.emnlp-main.340
https://doi.org/10.18653/v1/2022.emnlp-main.340
https://arxiv.org/abs/2109.01652
https://arxiv.org/abs/2109.01652
https://arxiv.org/abs/2109.01652
https://arxiv.org/abs/2304.12244
https://arxiv.org/abs/2304.12244
https://arxiv.org/abs/2304.12244
https://arxiv.org/abs/2406.08464
https://arxiv.org/abs/2406.08464

synthesis from scratch by prompting aligned llms
with nothing. Preprint, arXiv:2406.08464.

Chunting Zhou, Pengfei Liu, Puxin Xu, Srinivasan Iyer,
Jiao Sun, Yuning Mao, Xuezhe Ma, Avia Efrat, Ping
Yu, LILI YU, Susan Zhang, Gargi Ghosh, Mike
Lewis, Luke Zettlemoyer, and Omer Levy. 2023.
Lima: Less is more for alignment. In Advances in
Neural Information Processing Systems, volume 360,
pages 55006-55021. Curran Associates, Inc.

16

https://arxiv.org/abs/2406.08464
https://arxiv.org/abs/2406.08464
https://arxiv.org/abs/2406.08464
https://proceedings.neurips.cc/paper_files/paper/2023/file/ac662d74829e4407ce1d126477f4a03a-Paper-Conference.pdf

A Examples

This section presents an example of our data synthesis framework using REFERENCE-LEVEL FEEDBACK.
First, we select a reference sample:

Prompt A.1: Reference Sample

Instruction: I have a string representing a unix timestamp (i.e. “1284101485”)
in Python, and I’d like to convert it to a readable date. When I use
time.strftime, I get a TypeError:

»>import time

»>print time.strftime("%B %d %Y", "1284101485")

Traceback (most recent call last):

File "", line 1, in

TypeError: argument must be 9-item sequence, not str

Response: There are two parts here:
e Convert the unix timestamp (“seconds since epoch”) to the local time
e Display the local time in the desired format.

A portable way to get the local time that works even if the local time zone had
a different utc offset in the past and python has no access to the tz database
is to use a pytz timezone:

#!/usr/bin/env python

from datetime import datetime

import tzlocal # $ pip install tzlocal

unix_timestamp = float("1284101485")

local_timezone = tzlocal.get_localzone() # get pytz timezone
local_time = datetime.fromtimestamp(unix_timestamp, local_timezone)

To display it, you could use any time format that is supported by your system
e.g.:

print(local_time.strftime("%Y-%m-%d %H:%M:%S.%f%z (%Z)"))
print(local_time.strftime("%B %d %Y")) # print date in your format

If you do not need a local time, to get a readable UTC time instead:

utc_time = datetime.utcfromtimestamp (unix_timestamp)
print(utc_time.strftime("%Y-%m-%d %H:%M:%S.%f+00:00 (UTC)"))

If you don’t care about the timezone issues that might affect what date is
returned or if python has access to the tz database on your system:

local_time = datetime.fromtimestamp (unix_timestamp)
print(local_time.strftime("%Y-%m-%d %H:%M:%S.%f"))

On Python 3, you could get a timezone-aware datetime using only stdlib (the
UTC offset may be wrong if python has no access to the tz database on your
system e.g., on Windows):

17

#!/usr/bin/env python3

from datetime import datetime, timezone

utc_time = datetime.fromtimestamp (unix_timestamp, timezone.utc)
local_time = utc_time.astimezone()
print(local_time.strftime("%Y-%m-%d %H:%M:%S.%f%z (%Z)"))

Functions from the time module are thin wrappers around the corresponding C
API and therefore they may be less portable than the corresponding datetime
methods otherwise you could use them too:

#!/usr/bin/env python

import time

unix_timestamp = int("”1284101485")

utc_time = time.gmtime(unix_timestamp)

local_time = time.localtime(unix_timestamp)
print(time.strftime("%Y-%m-%d %H:%M:%S", local_time))
print(time.strftime("%Y-%m-%d %H:%M:%S+00:00 (UTC)", utc_time))

Then, we collect REFERENCE-LEVEL FEEDBACK for that reference sample:

Prompt A.2: Reference-Level Feedback

Instruction Subject Feedback: Programming, specifically Python programming
with a focus on date and time manipulation using Unix timestamps.

Instruction Skill Feedback: Understanding of Unix timestamps, Python’s
datetime and time modules, exception handling in Python, formatting dates and
times, knowledge of time zones and portability of code across different systems.

Response Feedback: The reference response is effective in addressing the
instruction for multiple reasons. Firstly, it accurately identifies the issue
with the TypeError during the use of ‘time.strftime‘ and provides the correct
method of converting a unix timestamp into a readable date format using the
‘datetime‘ module, which is more appropriate for this task. The response
recognizes the importance of local time and considers timezone issues, which
adds depth to the explanation.

Additionally, the structure of the response is clear and organized into
distinct sections that guide the user step-by-step through the conversion
process. It provides multiple options (using different libraries and methods)
for handling the conversion, catering to various user needs, which enhances
comprehensiveness.

However, there is room for improvement. 1. #*xClarity**: While the response
provides various methods, it could improve clarity by explicitly stating under
what circumstances each method should be used (e.g., when to use ‘tzlocal‘, when
UTC is sufficient, etc.). 2. *xComprehensiveness**: The response could briefly
explain what a Unix timestamp is for those unfamiliar with it and its relevance
in this context. 3. #**Engagementxx: Incorporating a more conversational tone
or additional commentary about best practices when dealing with date and time
conversions could make the response feel more engaging. 4. **Potential errors*x:
It might be worth noting that ‘pytz‘ needs to be installed and that some users
might run into issues if they don’t set up their environment beforehand. 5.

18

*xCode snippets**: Ensure that code snippets are correctly formatted for clarity,
especially in online platforms.

Overall, the response effectively meets the instruction but could enhance user
understanding and engagement with minor adjustments.

Then, we begin the data synthesis. This process involves generating 10 new instructions for the
instruction subject feedback and 10 for the instruction skill feedback. For each instruction, we generate a
response and improve the response with the reference response feedback.

Below, we show an example of a new instruction that was generated based on the instruction skill
feedback, as well as it’s generated response and response improved with the reference response feedback.

Prompt A.3:

Instruction: I am working with a Python script that reads timestamps in
milliseconds from a file, but when I try to convert them to a readable format
using datetime.utcfromtimestamp, I face a TypeError. My code looks like this:

import datetime

timestamps = [1640995200000, 1641081600000]
for ts in timestamps:
print(datetime.utcfromtimestamp(ts))

Response: The issue you are encountering is due to the fact that
datetime.utcfromtimestamp expects the timestamp to be in seconds, not
milliseconds. Since your timestamps are in milliseconds, you need to convert
them to seconds by dividing each timestamp by 1000 before passing it to
utcfromtimestamp. Here’s how you can modify your code to work correctly:

import datetime

timestamps = [1640995200000, 1641081600000]
for ts in timestamps:

Convert milliseconds to seconds

seconds = ts / 1000

Get the UTC datetime from the seconds
print(datetime. utcfromtimestamp(seconds))

In this code:
* We divide each timestamp by 1000 to convert from milliseconds to seconds.
e Then, we call datetime.utcfromtimestamp with the converted value.

When you run this modified code, you should see the output in a readable format
without encountering a TypeError:

2022-01-01 00:00:00
2022-01-02 00:00:00

This output represents the UTC datetime for January 1, 2022, and January 2,
2022, respectively. If you need to format the output differently, you can also
use strftime method to customize the output format. For example:

19

for ts in timestamps:

seconds = ts / 1000

utc_time = datetime.utcfromtimestamp(seconds)
formatted_time = utc_time.strftime(’ %Y-%m-%d %H:%M:%S’)
print(formatted_time)

Improved Response: The issue you are facing with TypeError is due to the fact
that the datetime.utcfromtimestamp function expects timestamps in seconds, not
milliseconds. A Unix timestamp represents the number of seconds that have
elapsed since January 1, 1970 (known as the Unix Epoch). In your case, the
timestamps are in milliseconds, so we need to convert them to seconds by
dividing each timestamp by 1000 before passing it to utcfromtimestamp. Here’s
how you can adjust your code to work correctly:

import datetime

timestamps = [1640995200000, 1641081600000]
for ts in timestamps:

Convert milliseconds to seconds

seconds = ts / 1000

Get the UTC datetime from the seconds
print(datetime. utcfromtimestamp(seconds))

In this modified code:
e Each timestamp is divided by 1000 to convert from milliseconds to seconds.
e Then, we use datetime.utcfromtimestamp to get the UTC time.

When you run this code, you should see the output in a readable format without
encountering any TypeError:

2022-01-01 00:00:00
2022-01-02 00:00:00

This output represents the UTC datetime for January 1, 2022, and January 2,
2022, respectively. If you require the date in a specific format, you can
customize it using the strftime method. For instance:

for ts in timestamps:

seconds = ts / 1000

utc_time = datetime.utcfromtimestamp(seconds)
formatted_time = utc_time.strftime(’ %Y-%m-%d %H:%M:%S’)
print(formatted_time)

Keep in mind that if you’re working across different time zones and need to
account for local time, you may want to explore libraries like pytz. Just
remember that you will need to install it first and ensure your environment is
set up correctly. Handling date and time conversions can often be tricky, so
it’s good practice to decide upfront whether you need UTC or local times based
on the context of your application.

After considering the relevant aspects from the reference response feedback, the improved response

20

enhances understanding and engagement. Some changes include: adding an explanation of unix times-
tamps, explaining when to use UTC and when to use local time, adopting a more conversational tone, and
including details of how to setup the environment.

B Prompt Templates

This section presents the prompt templates we use throughout our pipeline.

B.1 Prompts Used For Feedback Collection

Prompt B.1: Reference-Level Instruction Feedback

Task

Analyze the following instruction to extract key features that make it
effective for instruction tuning. This analysis will help create high-quality
instruction-response pairs for training language models to better follow
instructions.

Context

The analysis will be used to create training data for instruction tuning
language models. Focus on qualities that help language models learn to:

- Better understand user intentions

- Recognize instruction patterns

- Generate appropriate responses

Input

{{ "instruction"”: {instruction},

"reference_response”: {reference_response},

1}

Output Format

{{ "subject_areas"”: str, # This should be a description of the relevant subject
areas and domains the instruction covers "relevant_skills"”: str # This should
be a description of the relevant skills required to provide a good response to
the instruction }}

Analysis Guidelines

- Consider what makes this instruction clear and actionable
- Identify all relevant domains and skills

- Note structural elements that enhance instruction clarity

Output only a JSON object, in the format specified

Prompt B.2: Response Feedback

Task

Analyze the instruction-response pair and provide detailed feedback on how
well it addresses the instruction. The feedback should:

- Highlight the specific qualities that make the response effective

- Provide actionable feedback for improvement

Input
{{ "instruction”: {instruction},
"reference_response”: {reference_response},

21

13

Evaluation Criteria

Content Quality

- Accuracy and factual correctness
- Quality and depth of coverage

Communication

- Clarity and comprehensiveness

- Logical flow, organization, and structure
- Appropriate quality and depth

- Engagement and tone

Instruction Alignment

- How will it addresses the instruction
- Appropriate scope and focus

- Match with implied user needs

Output Format
{{ "response_feedback” : str # Feedback describing strengths of the response

and how it can be improved }}

Output only a JSON object, in the format specified.

B.2 Prompts Used For Data Synthesis

Prompt B.3: Instruction Synthesis

Task

Generate 10 new instructions based on the provided instruction feature and
sample. Each instruction should:

- Be of similar complexity and length to the sample instruction

- Be practical and reasonable to answer

- Be diverse and high-quality

Sample Instruction:
{instruction}

Instruction Features:
{feature?}

Output Format
{{ "instructions"”: list # List of 10 distinct instructions. Each instruction
should be a single string. }}

Output only a JSON object, in the format specified.

Prompt B.4: Response Synthesis

Task
I will provide an instruction. Generate a high-quality, helpful response to
the instruction. The response should demonstrate expertise, clear reasoning,

22

and natural language use.

Response Requirements

- Directly address all aspects of the instruction

- Response should demonstrate clear reasoning and expertise
- Use clear, natural language

- Include examples or evidence when relevant

- Show step-by-step reasoning where appropriate

- Maintain appropriate length and detail level

- Use proper formatting (lists, paragraphs) as needed

Here is an example of a response to an instruction:
Sample Input Instruction: {sample_instruction}

Sample Response:

{reference_response}

Output Format

{{ "response”: "The complete response text here" }}
Input

{{ "instruction”: {instruction}, }}

Generate a properly formatted JSON response, as specified by the Output Format,
that addresses this instruction.

Prompt B.5: Response Refinement with Reference-Level Feedback

Task

Given an instruction-response pair and feedback, generate an improved version
of the response by applying the feedback. The feedback was given for a similar
but different instruction-response pair. Not all aspects of the feedback may be
directly applicable, so make sure to only apply relevant aspects of the feedback.

Input
{{ "instruction”: {instruction}, "original_response”: {response}, "feedback":

{response_feedback} }}

Quality Assessment Process
1. Analyze Original Response
- Core strengths and effective elements
- Structure and organization
- Depth and comprehensiveness
- Alignment with instruction

2. Evaluate Feedback

- Identify feedback points that are relevant to improving this response, and
ignore points that are not relevant

- Identify actionable improvement suggestions

- Assess potential impact of each change

- Check alignment with original instruction

- Validate that suggested changes maintain or enhance quality

23

3. Improvement Strategy

- Prioritize changes with highest impact

- Preserve effective elements of the original response

- Ensure feedback applied enhance the response and do not remove valuable

elements

Output Format

{{ "analysis": {{

"original_strengths"”: ["list of key effective elements to preserve”],
"improvement_opportunities”: ["list of specific areas that will benefit from
enhancement”], "relevant_feedback”: ["list of feedback points that are relevant
and beneficial”] }}, "implementation_strategy”: {{

"planned_changes"”: ["identify what feedback will be applied”], "rationale”:
"explain how this feedback will improve the original response” }},
"improved_response”: "The revised and improved response” }}

Output only a JSON object, in the format specified.

Prompt B.6: Response Refinement with Sample-Level Feedback

Task
Given an instruction-response pair and feedback, generate an improved version

of the response by applying the feedback.

Input
{{ "instruction”: {instruction}, "original_response”: {response}, "feedback":

{self_reflection} }}

Quality Assessment Process
1. Analyze Original Response
- Core strengths and effective elements
- Structure and organization
- Depth and comprehensiveness
- Alignment with instruction

2. Evaluate Feedback

- Identify actionable improvement suggestions

- Assess potential impact of each change

- Check alignment with original instruction

- Validate that suggested changes maintain or enhance quality

3. Improvement Strategy

- Prioritize changes with highest impact

- Preserve effective elements of the original response

- Ensure feedback applied enhance the response and do not remove valuable

elements

Output Format

{{ "analysis": {{
"original_strengths"”: ["list of key effective elements to preserve”],

24

"improvement_opportunities”: ["list of specific areas that will benefit from
enhancement”] }3}, "implementation_strategy”: {{

"planned_changes"”: ["identify what feedback will be applied”], "rationale”:
"explain how this feedback will improve the original response” }3},
"improved_response”: "The revised and improved response” }}

Output only a JSON object, in the format specified.

C License

Our use of existing artifact(s) is consistent with their intended use. The LIMA dataset follows the CC
BY-NC-SA license, or a stricter license if the source data follows the same.

25

	Introduction
	Related Work
	Method
	Feedback Collection
	Data Synthesis
	Theoretical Efficiency Analysis

	Experiments
	Experimental Setup
	Experimental Results
	Experiment 1: How Effective is Reference-Level Feedback for Data Synthesis?
	Experiment 2: How Does Our Method Compare Against Other Baselines?
	Experiment 3: Does REFED Generalize To Different Model Architectures?
	Experiment 4: Does Filtering Enhance the Effectiveness?

	Empirical Efficiency Analysis

	Conclusion
	Limitations
	Examples
	Prompt Templates
	Prompts Used For Feedback Collection
	Prompts Used For Data Synthesis

	License

