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Abstract

LLMs demonstrate remarkable capabilities
in following natural language instructions,
largely due to instruction-tuning on high-
quality datasets. While synthetic data gener-
ation has emerged as a scalable approach for
creating such datasets, maintaining consistent
quality standards remains challenging. Recent
approaches incorporate feedback to improve
data quality, but typically operate at the sam-
ple level, generating and applying feedback for
each response individually. In this work, we
propose REFERENCE-LEVEL FEEDBACK, a
novel methodology that instead collects feed-
back based on high-quality reference samples
from carefully curated seed data. We use this
feedback to capture rich signals of desirable
characteristics and propagate it throughout the
data synthesis process. We present REFED, a
dataset of 10K instruction-response pairs syn-
thesized using such feedback. We demonstrate
the effectiveness of our approach by show-
ing that Llama-3.1-8B-Instruct finetuned on
REFED achieves state-of-the-art performance
among similar-sized SFT-based models on Al-
pacaEval 2.0 and strong results on Arena-Hard.
Through extensive experiments, we show that
our approach consistently outperforms tradi-
tional sample-level feedback methods with sig-
nificantly fewer feedback collections and im-
proves performance across different model ar-
chitectures.

1 Introduction

Large Language Models (LLMs) demonstrate re-
markable capabilities in following natural language
instructions and performing real-world tasks (Ope-
nAl et al., 2024b; Dubey et al., 2024). This can
be largely attributed to instruction-tuning, which
refers to supervised finetuning (SFT) on instruction-
response pairs (Wei et al., 2022; Bai et al., 2022a;
Ouyang et al., 2022). Recent advancements in
instruction-tuning emphasize the importance of
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Figure 1: Comparison of feedback approaches for data
synthesis. Left: Traditional sample-level feedback gen-
erates and applies feedback individually for each sample.
Right: Our REFERENCE-LEVEL FEEDBACK approach
collects feedback once from a high-quality reference
sample and applies it to synthesize and improve multi-
ple new samples.

high-quality datasets in enhancing model perfor-
mance (Chen et al., 2024b; Zhou et al., 2023).

Traditionally, high-quality instruction-tuning
datasets are created by repurposing existing
datasets or using human annotators (Wei et al.,
2022; Wang et al., 2022; Ouyang et al., 2022; Zhou
et al., 2023; Chen et al., 2024c). However, these
methods present challenges that prevent the cre-
ation of large-scale datasets, such as data scarcity
and the considerable cost and time required for
human annotation (Liu et al., 2024; Long et al.,
2024; Singh et al., 2024). The use of synthetic data
for the creation of instruction-tuning datasets has
emerged as a reliable alternative that overcomes
such challenges (Wang et al., 2023b; Taori et al.,
2023; Xu et al., 2023; Peng et al., 2023).

To further improve the quality of the synthe-
sized data, recent approaches incorporate natural
language feedback (Chen et al., 2024d,a; Sun et al.,



2024; Bai et al., 2022b). In these approaches, an
LLM generates a response to an existing instruc-
tion, then collects feedback on their response either
through self-reflection, from a stronger LLM or a
human annotator. This resulting feedback is pro-
vided to the LLLM to refine its initial response. Such
uses of feedback has proven effective in improv-
ing LLM performance on alignment benchmarks
as well as reinforcing specific principles such as
helpfulness and truthfulness (Chen et al., 2024a;
Sun et al., 2024; Bai et al., 2022b). The current
feedback-driven approaches operate at the sample-
level, which means that feedback is generated for
and applied to each response individually.

Rather than collecting sample-level feedback,
we propose REFERENCE-LEVEL FEEDBACK, a
novel approach that uses feedback collected from
the high-quality reference samples in a seed dataset,
as shown in Figure 1. Many data synthesis ap-
proaches carefully curate reference samples to use
as seed data, which are used as in-context examples
for synthesis (Wang et al., 2023b; Taori et al., 2023).
We extend this and collect feedback based on these
reference samples, since they serve as exemplars
for training data. These samples are of higher qual-
ity than model generated samples, so the captured
feedback provides a richer signal towards the de-
sirable characteristics (i.e. clarity, relevance) for a
data sample.

Our framework is presented in Figure 2. For
each reference sample, we identify the desirable
characteristics of both the instruction and response
components and use it to create instruction and
response feedback, respectively. The instruction-
specific feedback is used to guide the synthesis of
new instructions, and response-specific feedback is
used to refine the corresponding responses. Since
synthesized instructions share key characteristics
of their reference counterparts, response-specific
feedback remains relevant and is used to improve
the quality of synthesized responses. This frame-
work enables us to systematically propagate the
desirable qualities of reference samples to newly
generated samples, establishing overall higher qual-
ity standards for data synthesis.

We demonstrate the effectiveness of our
approach through REference-Level Feedback
Enhanced Data (REFED), a dataset synthesized us-
ing our framework. Models fine-tuned on REFED
achieve state-of-the-art performance on instruction-
following benchmarks AlpacaEval 2.0 (Dubois
et al., 2024) and Arena-Hard (Li et al., 2024c).

Through comprehensive experiments and analyses,
we demonstrate that using REFERENCE-LEVEL
FEEDBACK is more effective for synthetic data
generation compared to existing approaches.

The main contributions of this work are !:

* We introduce REFERENCE-LEVEL FEED-
BACK for data synthesis, a novel method that
leverages feedback collected from reference
samples to capture and propagate desirable
characteristics to newly synthesized data. Us-
ing our framework, and the LIMA (Zhou et al.,
2023) training dataset as seed data, we syn-
thesize REFED, a dataset of 10K instruction-
response pairs.

* We demonstrate the effectiveness of our ap-
proach by presenting Llama-3.1-8B-Instruct-
REFED, a Llama-3.1-8B-Instruct model fine-
tuned on REFED. The resulting model
achieves state-of-the-art performance among
similarly sized models trained only with SFT
on the AlpacaEval 2.0 leaderboard (Dubois
et al., 2024), with a 21.06% improvement
in length-controlled win rate. It also shows
strong performance on Arena-Hard, outper-
forming larger models like GPT-3.5-Turbo (Li
et al., 2024c¢).

* Through comprehensive experiments, we
demonstrate that our approach: (1) out-
performs models trained on other synthetic
instruction-tuning datasets, (2) consistently
improves base and instruct variants of differ-
ent model architectures, and (3) provides more
effective quality improvements compared to
traditional sample-level feedback approaches,
while also being more efficient.

2 Related Work

Synthetic Data for Instruction Tuning. Data
synthesis has emerged as an effective and scalable
approach to creating instruction-tuning datasets.
One line of approaches use instruction-response
pairs from a seed dataset as in-context examples
to guide synthesis (Wang et al., 2023b; Taori et al.,
2023; Peng et al., 2023). While Wang et al. (2023b)
use models to self-generate their training data, sub-
sequent works leverage more capable proprietary
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models to generate higher quality data (Taori et al.,
2023; Peng et al., 2023).

Other approaches have explored alternative syn-
thesis strategies. There are works that use struc-
tured guidance through manually curated tax-
onomies or LLM-generated skill sets (Li et al.,
2024a; Kaur et al., 2024). Xu et al. (2024) uses
pre-query templates to sample instructions from
aligned LLMs and generate instructions that reflect
the LLM’s existing knowledge.

Many works have explored methods for enhanc-
ing the quality of synthesized data. Xu et al. (2023)
proposes Evol-Instruct, which generates increas-
ingly complex versions of existing instructions.
Other approaches include using multi-agent simu-
lation (Tang et al., 2024) or incorporating natural
language feedback (Bai et al., 2022b; Chen et al.,
2024a; Sun et al., 2023).

Natural Language Feedback. Natural language
serves as a rich medium for providing feedback to
LLMs, effective in conveying detailed and nuanced
information. Recent work has demonstrated the
effectiveness of using LLMs to generate this feed-
back. Madaan et al. (2023) introduce Self-Refine,
which has LLMs generate feedback and refine their
own responses. Following this, several works have
shown that using various feedback methods and
fine-tuned critic models can yield further improve-
ments (Jin et al., 2023; Wang et al., 2023a; Gou
et al., 2024; Wu et al., 2024).

Another application of feedback is at the dataset
level, focusing on creating higher-quality training
data. Constitutional Al (Bai et al., 2022b) generates
self-critiques and revisions to create training data
aligned with specific principles. In a similar man-
ner, Self-Align (Sun et al., 2023) uses natural lan-
guage descriptions of desirable qualities to guide
LLMs towards producing more aligned outputs,
IterAlign (Chen et al., 2024d) uses an iterative pro-
cess to discover constitutions and self-correct, and
Chen et al. (2024a) demonstrate the effectiveness
of feedback-based refinement in code generation
tasks.

In order to more effectively incorporate feed-
back for data synthesis, we introduce REFERENCE-
LEVEL FEEDBACK. It fundamentally differs from
existing feedback-based methods in three key as-
pects. First, while previous work collects feedback
at the sample-level, we collect feedback from high-
quality reference samples in the seed data. This
enables us to identify and propagate desirable qual-

ities from reference samples and establish higher
quality standards for the data synthesis.

Secondly, our approach more effectively lever-
ages seed datasets. Rather than just using seed data
samples as in-context examples for synthesizing
similar samples, we systematically analyze and cap-
ture the specific qualities that make the reference
sample effective.

Lastly, we expand the role of feedback beyond re-
sponse refinement and guide the entire data synthe-
sis process: our method uses feedback to synthesize
new instructions and to refine the corresponding
responses.

3 Method

In this section, we present our data synthesis
pipeline that leverages REFERENCE-LEVEL FEED-
BACK to generate high-quality instruction-response
pairs. An overview of the pipeline is presented in
Figure 2, and the steps are detailed in the following
subsections. Complete examples for each step can
be found in Appendix A, and the prompts used for
each section can be found in Appendix B.

3.1 Feedback Collection

Our pipeline begins with a seed dataset — a small
collection of carefully curated instruction-response
pairs that serve as exemplars for synthesized data
samples. It can be either manually crafted by hu-
man annotators or automatically selected using
quality-based criteria. These reference samples
are high-quality and exhibit desirable characteris-
tics such as clarity and relevance, which we aim to
replicate in our synthetic data. For REFERENCE-
LEVEL FEEDBACK, we systematically identify and
capture such qualities through a framework that
identifies the strength of each sample, as well as
potential areas for improvement.

Unlike traditional approaches that collect feed-
back on generated responses at the sample-level,
our method identifies the qualities that make ref-
erence samples high-quality and uses it for feed-
back. This feedback captures a richer signal than
feedback collected at the sample-level, establishing
higher quality standards for synthesis and provid-
ing more effective guidance for generating training
data that exhibits similar properties to the reference
samples.

For each reference sample in the seed dataset,
we collect REFERENCE-LEVEL FEEDBACK from
both the instruction and the response:
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Figure 2: An overview of our data synthesis pipeline. Starting from our seed data, we select a reference sample
and collect REFERENCE-LEVEL FEEDBACK on both the instruction and response. Instruction feedback is used to
synthesize new instructions. We generate their corresponding responses, and then improve it using the response

feedback.

Instruction Feedback. To collect feedback
from a reference instruction and capture essential
features that make it effective for training, we ana-
lyze key attributes (e.g., clarity and actionability).
We also ensure comprehensive coverage along a
wide breadth by collecting feedback along two di-
mensions: relevant subject areas (e.g. cellular biol-
ogy, csv file manipulation, legislative processes)
and relevant skills necessary to respond to the
instruction (e.g. understanding of specific tools,
knowledge of processes, analysis). This enables us
to systematically identify desirable characteristics
of instructions while maximizing the breadth of
instruction types.

Response Feedback. When collecting feedback
from a reference response, we identify key qualities
that make it an effective response to the instruction.
We evaluate along multiple critical dimensions, in-
cluding factual accuracy, relevance to the instruc-
tion, and comprehensiveness. This feedback cap-
tures both the strengths of the reference response
and specific areas where it can be improved upon.

3.2 Data Synthesis

Now, we use the collected REFERENCE-LEVEL
FEEDBACK from the previous stage to synthesize
new data samples, while maintaining the quality
standards established by our reference data. For
each reference sample and its corresponding feed-
back, we employ a two-phase synthesis process, as
illustrated in Figure 2:

1. Instruction Synthesis. We provide an LLM
the reference instruction as an example and
the instruction feedback as guidelines to syn-
thesize new instructions that maintain the qual-
ities specified in the feedback. As depicted in
Step 2 of Figure 2, we synthesize 10 new in-
structions for subject-based feedback, which
produces instructions that align with the sub-
ject areas of the reference response. We also
synthesize 10 new instructions for skill-based
feedback, which produces instructions that
align with the skills needed to respond to the
reference instruction.

2. Response Synthesis and Refinement. For
each synthesized instruction, we first generate
an initial response. We then enhance this re-
sponse using the reference response feedback,
instructing the language model to analyze the
feedback and incorporate the relevant aspects.
This process is shown in Step 3 of Figure 2.

Note on relevance of response feedback.
Although the response feedback was orig-
inally collected for the reference response,
many aspects of it can still remain applicable
because of the shared characteristics between
the reference and synthesized instructions. We
acknowledge that not all feedback elements
may transfer, and to account for this, we ex-
plicitly instruct the model to selectively apply



only the relevant aspects of the feedback and
ignore the irrelevant aspects. An example of
this can be found in A.

This synthesis process enables us to synthesize
new data, while systematically propagating the
high-quality characteristics of reference samples.

3.3 Theoretical Efficiency Analysis

Our presented pipeline for data synthesis with
REFERENCE-LEVEL FEEDBACK is significantly
more efficient than using traditional sample-level
feedback methods, specifically in the frequency
of feedback collection. While sample-level ap-
proaches require feedback for every synthesized
sample, our method only requires feedback once
for every reference sample. This translates to a
reduction from O(n) feedback collections, where
n represents the number of synthesized samples,
to O(1). However, it is also important to note that
this efficiency gain comes with an initial fixed cost
of collecting and curating seed data.

4 Experiments

4.1 Experimental Setup

Data Synthesis. We use the LIMA (Zhou et al.,
2023) training dataset as our seed dataset, which
comprises of one thousand carefully curated
instruction-response pairs. The samples were either
manually written or selected from community fo-
rums, and were selected based on quality as well as
diversity. This dataset was chosen because it is con-
cise enough to serve as a seed dataset, while being
well-designed and has demonstrated effectiveness
for instruction tuning (Zhou et al., 2023).

In our experiments, we use GPT-40 mini (Ope-
nAl, 2024) with our data synthesis framework to
create REFED, an instruction tuning dataset with
10K data samples.

Training Setup. We finetune the base and in-
struct variants of Llama-3.1-8B (Grattafiori et al.,
2024) and Mistral-7B (Jiang et al., 2023) on
REFED. We use a learning rate of 1 x 1075 for
instruct variants, and 2 x 10~° for base variants.
All other hyperparameters remain consistent across
models: linear warmup ratio of 0.03, cosine decay,
batch size of 128, and maximum sequence length of
2048. The models are trained for 15 epochs, with
checkpoint selection based on length-controlled
win-rate (Dubois et al., 2024) on a held-out vali-
dation set of 100 synthesized instruction-response

pairs that were synthesized with GPT-40 (OpenAl
et al., 2024a).

When training on larger datasets like Evol In-
struct (Xu et al., 2023) and UltraChat (Ding et al.,
2023), we follow prior works and modify our train-
ing setup as follows: 100 warmup steps, batch size
of 32, and train for 2 epochs (Xu et al., 2024).

Evaluation. To evaluate our model’s instruction-
following abilities, we use two benchmarks: Al-
pacaEval 2.0 (Dubois et al., 2024) and Arena-Hard
(Li et al., 2024c). These benchmarks are auto-
matic evaluators of language models’ instruction-
following abilities and have demonstrated the high-
est correlations with human preferences from Chat-
bot Arena (Li et al., 2024b; Dubois et al., 2024).

Both benchmarks compute win rates by using
a powerful LLM as a judge to compare model re-
sponses against established responses from a refer-
ence model. To further improve correlation with hu-
man preferences, AlpacaEval 2.0 additionally com-
putes a length-controlled win rate that mitigates
biases towards longer responses by comparing re-
sponses of similar length (Dubois et al., 2024).

In our experiments, we follow standard evalu-
ation protocols and use GPT-4-Turbo (1106) as a
judge. For AlpacaEval 2.0, we use GPT-4-Turbo
(1106) as the reference model, and GPT-4-Turbo
(0314) for the reference model in Arena-Hard.

4.2 Experimental Results

4.2.1 Experiment 1: How Effective is
REFERENCE-LEVEL FEEDBACK for
Data Synthesis?

The first set of experiments evaluate the effec-
tiveness of REFERENCE-LEVEL FEEDBACK for
data synthesis by comparing it against traditional
sample-level feedback, and also systematically ana-
lyzing different components in our framework. For
each approach, we synthesize datasets with 10K
samples, finetune Llama-3.1-8B-Instruct on that
data, then evaluate.

We conduct an ablation study by progres-
sively introducing the different components of the
reference-level feedback in our framework, instruc-
tion and response feedback. Starting with a base-
line of no feedback, we finetune on just our initial
seed dataset. Next, we train on a dataset with 10K
samples that was created by incorporating instruc-
tion feedback from REFERENCE-LEVEL FEED-
BACK and generate the corresponding response.
Lastly, we evaluate our complete approach by syn-



AlpacaEval 2 Arena-Hard
Feedback T
cedback Lype LC(%)  WR(%) SE Len. WR(%) Tok.
No Feedback 32.45¢9_55 32.98¢9_54 1.65 2106 29'2T7-5’ 873
REF-LEVEL Instruction Feedback 38.99»“(54()9 35.3471149() 1.68 1926 298T85 634
REF-LEVEL Instruction + Sample-Level Response Feedback 42.92190.02 41.74418.30 1.73 1959 30.849.5 642
REF-LEVEL Instruction + Response Feedback 43-96T21.(J6 42-247‘18.8[] 1.74 1950 35-9T14.(i 670

Table 1: Analysis of the different components of REFERENCE-LEVEL FEEDBACK for data synthesis. We evaluate
the impact of the instruction and response feedback, and also compare against traditional sample-level feedback for
response improvement, while using reference samples from LIMA (Zhou et al., 2023). Results show performance
after finetuning Llama-3.1-8B-Instruct on each generated dataset. Green subscripts indicate improvements after
fine-tuning. Metrics shown are: Length-Controlled Win Rate (LC), Win Rate (WR), Standard Error (SE), Average

Length (Len.), and Average # Tokens (Tok.).

AlpacaEval 2 Arena-Hard
Model # 1

ode Samples o) WR (%) SE Len. WR (%) Tok.
Llama-3.1-8B-Instruct - 2290 2344 149 2181 213 861
+ Alpaca 52K 10.80 4.60 0.72 530 6.6 321

+ Evol Instruct 143K 13.65 6.77 0.88 949 7.0 532

+ UltraChat 208K 13.57 6.52 086 853 7.8 500

+ Instruct-SkillMix-SDA 4K 43.31 3843  1.71 1658 252 466
Infinity-Instruct-7M-Gen-Llama3.1-8B M 31.62 25.78 1.54 1588  33.1 716
Llama-3-8B-Instruct-SkillMix 4K 38.63 4298 1.75 4058 12.8 1790
Gpt-3.5-turbo-0613 - 22.35 14.10 1.04 1331 24.8 401
Llama-3.1-405B-Instruct - 39.26 39.11 143 1988  69.3 658
Claude 3 Opus (02/29) - 40.51 29.11 139 1388 60.4 541
Llama-3.1-8B-Instruct-REFED 10K 4396 4224 1.74 1950 359 670

Table 2: Evaluation results of Llama-3.1-8B-Instruct finetuned on REFED against selected baselines (detailed in
Section 4.2.2). Top shows results from finetuning on various synthetic datasets. Middle shows the performance of
leading models from AlpacaEval 2.0 leaderboard. Bottom shows our model trained on REFED. Results demonstrate
that our model outperforms these baselines across both evaluation benchmarks.

thesizing a dataset that also incorporates the re-
sponse feedback to improve the generated response
(REFED).

Additionally, we compare against sample-level
feedback, where feedback is generated and applied
individually for each response. Here, the synthesis
pipeline remains consistent, with minimal prompt
modifications to accommodate different feedback
types. With this, we can effectively isolate the
impact of different feedback strategies on response
quality.

Results. The results in Table 1 demonstrate im-
provements in performance as each component of
our framework is introduced. On both benchmarks,
we see a clear improvement as we introduce us-
ing instruction feedback, and response feedback to
synthesize data.

On AlpacaEval 2.0, using the complete
REFERENCE-LEVEL FEEDBACK for data synthe-
sis achieves a length-controlled win rate of 43.96%
and win rate of 42.25%, showing that it is supe-

rior to sample-level feedback (LC: 42.92%, WR:
41.74%). Results on Arena-Hard are similar, where
it achieves a win rate of 35.9%, substantially out-
performing sample-level feedback (WR: 30.8%).

The consistent performance gains across both
benchmarks demonstrate that REFERENCE-LEVEL
FEEDBACK is more effective for improving re-
sponses and generating high-quality data compared
to alternative feedback types.

4.2.2 Experiment 2: How Does Our Method
Compare Against Other Baselines?

We evaluate the performance of our synthetic data
by comparing a Llama-3.1-8B-Instruct model fine-
tuned on our dataset against several baselines.

Baselines. For the first set of baselines, we fine-
tune Llama-3.1-8B-Instruct on various well-known
synthetic datasets: Alpaca (Taori et al., 2023), Evol
Instruct (Xu et al., 2023), UltraChat 200K (Ding
et al., 2023), and Instruct-Skillmix-SDA (Kaur
et al., 2024). We use an identical training setup



AlpacaEval 2 Arena-Hard
Model

LC (%) WR (%) SE Len. WR (%) Tok.

Mistral-7B-v0.3 - - - - - -
+ REFED 16.97 17.70 1.34 2070 3.6 669
Mistral-7B-Instruct-v0.3 20.61 16.69 1.11 1581 12.6 541
+ REFED 41.10420.49 40.55423.86 1.73 2069 25.01412.4 648

Llama-3.1-8B - - - - - -
+ REFED 29.63 30.10 1.62 2095 12.7 633
Llama-3.1-8B-Instruct 22.90 23.44 1.49 2181 21.3 861
+ REFED 43.96121.06 422411550 1.74 1950 35.9;146 670

Table 3: Evaluation results of finetuning REFED on the base and instruct variants of Llama-3.1-8B and Mistral-
7B models. Green subscripts indicate improvements after finetuning. Note that we do not report base model

performance because they are not instruction-tuned.

to the one we use for our models.

We also compare against leading models
from the AlpacaEval 2.0 leaderboard that use
SFT to train 8B-parameter models: Llama-3-
8B-Instruct-Skillmix, which trains Llama-3-8B
on the Instruct-Skillmix dataset (Kaur et al.,
2024), and Infinity-Instruct-7M-Gen-Llama3.1-8B
model, trained on Infinity-Instruct-7M and Infinity-
Instruct-Gen (BAAI, 2024). Additionally, we con-
sider some larger and more powerful models such
as GPT-3.5, Llama-3.1-405B-Instruct (Dubey et al.,
2024) and Claude 3 Opus (Anthropic, 2025).

Results. Our results are presented in Table 2.
The Llama-3.1-8B-Instruct model finetuned on
REFED achieves state-of-the-art performance
among similar sized models trained with SFT,
across both evaluation benchmarks. On AlpacaE-
val 2.0, it achieves a length-controlled win rate of
43.96%. This not only scores higher than our se-
lected baselines, but also outperforms significantly
larger models including LLama-3.1-405B-Instruct
and Claude 3 Opus. On Arena-Hard, we get a win-
rate of 35.9%, outperforming both our baseline
models and established models like GPT-3.5 Turbo.
These results demonstrate that our data synthesis
approach can enable strong model performance on
established benchmarks, highlighting the effective-
ness of REFERENCE-LEVEL FEEDBACK.

4.2.3 Experiment 3: Does REFED Generalize
To Different Model Architectures?

In this section, we evaluate the effectiveness of
REFED across different models by finetuning
both base and instruct variants of Llama-3.1-8B
(Grattafiori et al., 2024) and Mistral-7B (Jiang et al.,
2023). This analysis validates the robustness of
our approach by demonstrating consistent benefits

across different cases.

Results. Our results are presented in Table 3.
Training on REFED yields improvements across
all model variants. In particular, the instruct mod-
els show very strong performance. Llama-3.1-
8B-Instruct-REFED achieves the strongest per-
formance, with a length-controlled win rate of
43.96% on AlpacaEval 2.0 and 35.9% on Arena-
Hard. Mistral-7B-Instruct-REFED shows impres-
sive results, with 41.0% and 25.0% respectively.
The base models also demonstrate notable im-
provements. Llama-3.1-8B-REFED achieves a
length-controlled win rate of 29.63% on AlpacaE-
val 2.0 and 12.7% on Arena-Hard, outperforming
Llama-3.1-8B-Instruct (20.9%) on AlpacaEval 2.
Similarly, Mistral-7B-REFED achieves 16.97% on
AlpacaEval 2.0 and 3.6% on Arena-Hard, getting
close performance to Mistral-7B-Instruct (20.7%).
These results demonstrate that REFED effec-
tively improves instruction-following capabilities
across different models and model variants. The
strong performance gains, particularly in base mod-
els surpassing their instruct variants, highlight
how effective our dataset is in developing LLM
instruction-following abilities. This observation
matches the model-agnostic design of our method.

4.2.4 Experiment 4: Does Filtering Enhance
the Effectiveness?

We explore how different filtering approaches af-
fect model performance by finetuning Llama-3.1-
8B-Instruct on various subsets of filtered data. We
compare three strategies: random sampling, LLM-
judge filtering, and ROUGE-L similarity filtering.

Random Sampling. As our baseline, we ran-
domly sample subsets of size 1K, 2K, 4K, and



43 42.64% i

42141 50% 41.47%

41 40.56%
a0
ot

391 39.16%

38 —&— ROUGE-L

37

—— ;
e LLM-Judge
36].,000 2,000 4,000 8,000
Subset Size

Figure 3: Length Controlled Win-Rate on AlpacaEval
2.0 for Llama-3.1-8B-Instruct finetuned on various sub-
sets of REFED, based on different filtering strategies.

8K from REFED.

LLM-Judge Filtering. We use GPT-40-mini as
a judge to evaluate pairs of initial and refined re-
sponses. We only keep samples where refined re-
sponses are rated higher than initial responses, and
obtain approximately 5K instruction-response pairs.
From these, we sample subsets of size 1K, 2K, and
4K.

ROUGE-L Similarity Filtering. Following
Wang et al. (2023b), we use ROUGE-L similarity
scoring to maximize instruction diversity. Starting
with a randomly selected sample, we iteratively
add candidates where the instruction’s maximum
similarity score with existing instructions is below
a specific threshold. We use thresholds of 0.10,
0.11, 0.12, and 0.145 to get subsets of sizes 1K,
2K, 4K, and 8K respectively.

Analysis. Figure 3 shows the effects of data fil-
tering. The results demonstrate clear benefits of fil-
tering strategies. LLM-Judge filtering proves most
effective, achieving 42.64% performance with just
4K samples — comparable to the full dataset’s per-
formance with less than half the data. ROUGE-L
similarity filtering performs slightly worse, but still
outperforms random sampling, achieving 42.43%
with 8K samples. Although neither filtered dataset
leads to higher results than the full dataset, they
give comparable results while requiring less train-
ing time and computational cost. The results sug-
gest that these filtering strategies successfully iden-
tify high-quality samples, though the slight drop in
performance indicates that filtered-out responses
may still contain valuable training signal.

4.3 Empirical Efficiency Analysis

Our method demonstrates significant efficiency ad-
vantages in both computational and cost require-
ments. Using REFERENCE-LEVEL FEEDBACK,
we collect feedback from 1K reference samples
to synthesize 10K new samples. This means that
we collect feedback only 1K times. In contrast,
using sample-level feedback would require 11K
feedback collections — 1K for instruction synthesis
and 10K for response improvement. The reduction
in feedback collection, combined with the strong
performance metrics, highlights the advantages of
our reference-level approach.

Furthermore, we achieve state-of-the-art results
without requiring the most expensive language
models. While approaches like Kaur et al. (2024)
report costs of $600 to synthesize 4K samples using
GPT-4, our experiments synthesize 10K samples
for less than $20 using GPT-4o0-mini. Having such
a more cost efficient approach, while also achieving
better performance, demonstrates that high-quality
data synthesis is possible with more economical
models.

5 Conclusion

In this work, we introduce REFERENCE-LEVEL
FEEDBACK, a novel framework for enhancing syn-
thetic data quality. Our approach leverages feed-
back collected from high-quality reference samples
to identify and propagate desirable characteristics
through the synthesized data. LLMs finetuned on
our generated dataset, REFED, achieve strong per-
formance on instruction-following benchmarks. By
modeling and incorporating desirable characteris-
tics from carefully curated reference samples, we
demonstrate a powerful and efficient approach for
creating high-quality instruction-tuning datasets.

Our work opens up several promising directions
for future applications. Recent developments in
language models like DeepSeek-R1 (DeepSeek-
Al et al., 2025) and OpenAI’s ol (OpenAl et al.,
2024b) demonstrate that high-quality synthetic data
plays a crucial role in achieving state-of-the-art per-
formance. The feedback introduced in our paper
can be naturally integrated with various existing
data synthesis approaches, such as preference data
creation, to further build upon them. By demon-
strating the effectiveness of REFERENCE-LEVEL
FEEDBACK in this context, this work establishes
a foundation for developing more comprehensive
approaches for data synthesis.



6 Limitations

Reliance on a Stronger LLM. Our framework
relies on a stronger LLM to synthesize data. While
this enables the synthesis of high quality data, re-
moving this dependency could help lead to a more
robust and independent framework, possibly at the
cost of performance degradation. Additionally,
LLM-generated data may amplify existing biases
or include inappropriate content.

Seed Data Quality. The quality of our synthe-
sized data is tied to that of our seed data. We select
concise, high-quality datasets from prior works to
use as the seed data. A more comprehensive ex-
ploration of seed data selection and its impact on
synthetic data remains an important direction for
future work.

Furthermore, our work does not fully address
the scalability our framework. There likely exists
a limit to how much data we can synthesize from
our seed data, until the synthesized data becomes
repetitive and lacks diversity.

LLM-Based Evaluation. Our evaluation relies
on benchmarks that use LLMs as a judge. Although
they correlate highly with human judgments, it is
important to acknowledge that they may still have
limitations, such as biases towards longer responses
or their own outputs.
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A Examples

This section presents an example of our data synthesis framework using REFERENCE-LEVEL FEEDBACK.
First, we select a reference sample:

Prompt A.1: Reference Sample

Instruction: I have a string representing a unix timestamp (i.e. “1284101485”)
in Python, and I’d like to convert it to a readable date. When I use
time.strftime, I get a TypeError:

»>import time

»>print time.strftime("%B %d %Y", "1284101485")

Traceback (most recent call last):

File "", line 1, in

TypeError: argument must be 9-item sequence, not str

Response: There are two parts here:
e Convert the unix timestamp (“seconds since epoch”) to the local time
e Display the local time in the desired format.

A portable way to get the local time that works even if the local time zone had
a different utc offset in the past and python has no access to the tz database
is to use a pytz timezone:

#!/usr/bin/env python

from datetime import datetime

import tzlocal # $ pip install tzlocal

unix_timestamp = float("1284101485")

local_timezone = tzlocal.get_localzone() # get pytz timezone
local_time = datetime.fromtimestamp(unix_timestamp, local_timezone)

To display it, you could use any time format that is supported by your system
e.g.:

print(local_time.strftime("%Y-%m-%d %H:%M:%S.%f%z (%Z)"))
print(local_time.strftime("%B %d %Y")) # print date in your format

If you do not need a local time, to get a readable UTC time instead:

utc_time = datetime.utcfromtimestamp (unix_timestamp)
print(utc_time.strftime("%Y-%m-%d %H:%M:%S.%f+00:00 (UTC)"))

If you don’t care about the timezone issues that might affect what date is
returned or if python has access to the tz database on your system:

local_time = datetime.fromtimestamp (unix_timestamp)
print(local_time.strftime("%Y-%m-%d %H:%M:%S.%f"))

On Python 3, you could get a timezone-aware datetime using only stdlib (the
UTC offset may be wrong if python has no access to the tz database on your
system e.g., on Windows):
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#!/usr/bin/env python3

from datetime import datetime, timezone

utc_time = datetime.fromtimestamp (unix_timestamp, timezone.utc)
local_time = utc_time.astimezone()
print(local_time.strftime("%Y-%m-%d %H:%M:%S.%f%z (%Z)"))

Functions from the time module are thin wrappers around the corresponding C
API and therefore they may be less portable than the corresponding datetime
methods otherwise you could use them too:

#!/usr/bin/env python

import time

unix_timestamp = int("”1284101485")

utc_time = time.gmtime(unix_timestamp)

local_time = time.localtime(unix_timestamp)
print(time.strftime("%Y-%m-%d %H:%M:%S", local_time))
print(time.strftime("%Y-%m-%d %H:%M:%S+00:00 (UTC)", utc_time))

Then, we collect REFERENCE-LEVEL FEEDBACK for that reference sample:

Prompt A.2: Reference-Level Feedback

Instruction Subject Feedback: Programming, specifically Python programming
with a focus on date and time manipulation using Unix timestamps.

Instruction Skill Feedback: Understanding of Unix timestamps, Python’s
datetime and time modules, exception handling in Python, formatting dates and
times, knowledge of time zones and portability of code across different systems.

Response Feedback: The reference response is effective in addressing the
instruction for multiple reasons. Firstly, it accurately identifies the issue
with the TypeError during the use of ‘time.strftime‘ and provides the correct
method of converting a unix timestamp into a readable date format using the
‘datetime‘ module, which is more appropriate for this task. The response
recognizes the importance of local time and considers timezone issues, which
adds depth to the explanation.

Additionally, the structure of the response is clear and organized into
distinct sections that guide the user step-by-step through the conversion
process. It provides multiple options (using different libraries and methods)
for handling the conversion, catering to various user needs, which enhances
comprehensiveness.

However, there is room for improvement. 1. #*xClarity**: While the response
provides various methods, it could improve clarity by explicitly stating under
what circumstances each method should be used (e.g., when to use ‘tzlocal‘, when
UTC is sufficient, etc.). 2. *xComprehensiveness**: The response could briefly
explain what a Unix timestamp is for those unfamiliar with it and its relevance
in this context. 3. #**Engagementxx: Incorporating a more conversational tone
or additional commentary about best practices when dealing with date and time
conversions could make the response feel more engaging. 4. **Potential errors*x:
It might be worth noting that ‘pytz‘ needs to be installed and that some users
might run into issues if they don’t set up their environment beforehand. 5.
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*xCode snippets**: Ensure that code snippets are correctly formatted for clarity,
especially in online platforms.

Overall, the response effectively meets the instruction but could enhance user
understanding and engagement with minor adjustments.

Then, we begin the data synthesis. This process involves generating 10 new instructions for the
instruction subject feedback and 10 for the instruction skill feedback. For each instruction, we generate a
response and improve the response with the reference response feedback.

Below, we show an example of a new instruction that was generated based on the instruction skill
feedback, as well as it’s generated response and response improved with the reference response feedback.

Prompt A.3:

Instruction: I am working with a Python script that reads timestamps in
milliseconds from a file, but when I try to convert them to a readable format
using datetime.utcfromtimestamp, I face a TypeError. My code looks like this:

import datetime

timestamps = [1640995200000, 1641081600000]
for ts in timestamps:
print(datetime.utcfromtimestamp(ts))

Response: The issue you are encountering is due to the fact that
datetime.utcfromtimestamp expects the timestamp to be in seconds, not
milliseconds. Since your timestamps are in milliseconds, you need to convert
them to seconds by dividing each timestamp by 1000 before passing it to
utcfromtimestamp. Here’s how you can modify your code to work correctly:

import datetime

timestamps = [1640995200000, 1641081600000]
for ts in timestamps:

# Convert milliseconds to seconds

seconds = ts / 1000

# Get the UTC datetime from the seconds
print(datetime. utcfromtimestamp(seconds))

In this code:
* We divide each timestamp by 1000 to convert from milliseconds to seconds.
e Then, we call datetime.utcfromtimestamp with the converted value.

When you run this modified code, you should see the output in a readable format
without encountering a TypeError:

2022-01-01 00:00:00
2022-01-02 00:00:00

This output represents the UTC datetime for January 1, 2022, and January 2,
2022, respectively. If you need to format the output differently, you can also
use strftime method to customize the output format. For example:
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for ts in timestamps:

seconds = ts / 1000

utc_time = datetime.utcfromtimestamp(seconds)
formatted_time = utc_time.strftime(’ %Y-%m-%d %H:%M:%S’)
print(formatted_time)

Improved Response: The issue you are facing with TypeError is due to the fact
that the datetime.utcfromtimestamp function expects timestamps in seconds, not
milliseconds. A Unix timestamp represents the number of seconds that have
elapsed since January 1, 1970 (known as the Unix Epoch). In your case, the
timestamps are in milliseconds, so we need to convert them to seconds by
dividing each timestamp by 1000 before passing it to utcfromtimestamp. Here’s
how you can adjust your code to work correctly:

import datetime

timestamps = [1640995200000, 1641081600000]
for ts in timestamps:

# Convert milliseconds to seconds

seconds = ts / 1000

# Get the UTC datetime from the seconds
print(datetime. utcfromtimestamp(seconds))

In this modified code:
e Each timestamp is divided by 1000 to convert from milliseconds to seconds.
e Then, we use datetime.utcfromtimestamp to get the UTC time.

When you run this code, you should see the output in a readable format without
encountering any TypeError:

2022-01-01 00:00:00
2022-01-02 00:00:00

This output represents the UTC datetime for January 1, 2022, and January 2,
2022, respectively. If you require the date in a specific format, you can
customize it using the strftime method. For instance:

for ts in timestamps:

seconds = ts / 1000

utc_time = datetime.utcfromtimestamp(seconds)
formatted_time = utc_time.strftime(’ %Y-%m-%d %H:%M:%S’)
print(formatted_time)

Keep in mind that if you’re working across different time zones and need to
account for local time, you may want to explore libraries like pytz. Just
remember that you will need to install it first and ensure your environment is
set up correctly. Handling date and time conversions can often be tricky, so
it’s good practice to decide upfront whether you need UTC or local times based
on the context of your application.

After considering the relevant aspects from the reference response feedback, the improved response
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enhances understanding and engagement. Some changes include: adding an explanation of unix times-
tamps, explaining when to use UTC and when to use local time, adopting a more conversational tone, and
including details of how to setup the environment.

B Prompt Templates

This section presents the prompt templates we use throughout our pipeline.

B.1 Prompts Used For Feedback Collection

Prompt B.1: Reference-Level Instruction Feedback

# Task

Analyze the following instruction to extract key features that make it
effective for instruction tuning. This analysis will help create high-quality
instruction-response pairs for training language models to better follow
instructions.

# Context

The analysis will be used to create training data for instruction tuning
language models. Focus on qualities that help language models learn to:

- Better understand user intentions

- Recognize instruction patterns

- Generate appropriate responses

# Input

{{ "instruction"”: {instruction},

"reference_response”: {reference_response},

1}

# Output Format

{{ "subject_areas"”: str, # This should be a description of the relevant subject
areas and domains the instruction covers "relevant_skills"”: str # This should
be a description of the relevant skills required to provide a good response to
the instruction }}

# Analysis Guidelines

- Consider what makes this instruction clear and actionable
- Identify all relevant domains and skills

- Note structural elements that enhance instruction clarity

Output only a JSON object, in the format specified

Prompt B.2: Response Feedback

# Task

Analyze the instruction-response pair and provide detailed feedback on how
well it addresses the instruction. The feedback should:

- Highlight the specific qualities that make the response effective

- Provide actionable feedback for improvement

# Input
{{ "instruction”: {instruction},
"reference_response”: {reference_response},
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# Evaluation Criteria

## Content Quality

- Accuracy and factual correctness
- Quality and depth of coverage

## Communication

- Clarity and comprehensiveness

- Logical flow, organization, and structure
- Appropriate quality and depth

- Engagement and tone

## Instruction Alignment

- How will it addresses the instruction
- Appropriate scope and focus

- Match with implied user needs

# Output Format
{{ "response_feedback” : str # Feedback describing strengths of the response

and how it can be improved }}

Output only a JSON object, in the format specified.

B.2 Prompts Used For Data Synthesis

Prompt B.3: Instruction Synthesis

# Task

Generate 10 new instructions based on the provided instruction feature and
sample. Each instruction should:

- Be of similar complexity and length to the sample instruction

- Be practical and reasonable to answer

- Be diverse and high-quality

# Sample Instruction:
{instruction}

# Instruction Features:
{feature?}

# Output Format
{{ "instructions"”: list # List of 10 distinct instructions. Each instruction
should be a single string. }}

Output only a JSON object, in the format specified.

Prompt B.4: Response Synthesis

# Task
I will provide an instruction. Generate a high-quality, helpful response to
the instruction. The response should demonstrate expertise, clear reasoning,
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and natural language use.

# Response Requirements

- Directly address all aspects of the instruction

- Response should demonstrate clear reasoning and expertise
- Use clear, natural language

- Include examples or evidence when relevant

- Show step-by-step reasoning where appropriate

- Maintain appropriate length and detail level

- Use proper formatting (lists, paragraphs) as needed

Here is an example of a response to an instruction:
# Sample Input Instruction: {sample_instruction}

# Sample Response:

{reference_response}

# Output Format

{{ "response”: "The complete response text here" }}
# Input

{{ "instruction”: {instruction}, }}

Generate a properly formatted JSON response, as specified by the Output Format,
that addresses this instruction.

Prompt B.5: Response Refinement with Reference-Level Feedback

# Task

Given an instruction-response pair and feedback, generate an improved version
of the response by applying the feedback. The feedback was given for a similar
but different instruction-response pair. Not all aspects of the feedback may be
directly applicable, so make sure to only apply relevant aspects of the feedback.

# Input
{{ "instruction”: {instruction}, "original_response”: {response}, "feedback":

{response_feedback} }}

# Quality Assessment Process
1. Analyze Original Response
- Core strengths and effective elements
- Structure and organization
- Depth and comprehensiveness
- Alignment with instruction

2. Evaluate Feedback

- Identify feedback points that are relevant to improving this response, and
ignore points that are not relevant

- Identify actionable improvement suggestions

- Assess potential impact of each change

- Check alignment with original instruction

- Validate that suggested changes maintain or enhance quality
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3. Improvement Strategy

- Prioritize changes with highest impact

- Preserve effective elements of the original response

- Ensure feedback applied enhance the response and do not remove valuable

elements

# Output Format

{{ "analysis": {{

"original_strengths"”: ["list of key effective elements to preserve”],
"improvement_opportunities”: ["list of specific areas that will benefit from
enhancement”], "relevant_feedback”: ["list of feedback points that are relevant
and beneficial”] }}, "implementation_strategy”: {{

"planned_changes"”: ["identify what feedback will be applied”], "rationale”:
"explain how this feedback will improve the original response” }},
"improved_response”: "The revised and improved response” }}

Output only a JSON object, in the format specified.

Prompt B.6: Response Refinement with Sample-Level Feedback

# Task
Given an instruction-response pair and feedback, generate an improved version

of the response by applying the feedback.

# Input
{{ "instruction”: {instruction}, "original_response”: {response}, "feedback":

{self_reflection} }}

# Quality Assessment Process
1. Analyze Original Response
- Core strengths and effective elements
- Structure and organization
- Depth and comprehensiveness
- Alignment with instruction

2. Evaluate Feedback

- Identify actionable improvement suggestions

- Assess potential impact of each change

- Check alignment with original instruction

- Validate that suggested changes maintain or enhance quality

3. Improvement Strategy

- Prioritize changes with highest impact

- Preserve effective elements of the original response

- Ensure feedback applied enhance the response and do not remove valuable

elements

# Output Format

{{ "analysis": {{
"original_strengths"”: ["list of key effective elements to preserve”],
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"improvement_opportunities”: ["list of specific areas that will benefit from
enhancement”] }3}, "implementation_strategy”: {{

"planned_changes"”: ["identify what feedback will be applied”], "rationale”:
"explain how this feedback will improve the original response” }3},
"improved_response”: "The revised and improved response” }}

Output only a JSON object, in the format specified.

C License

Our use of existing artifact(s) is consistent with their intended use. The LIMA dataset follows the CC
BY-NC-SA license, or a stricter license if the source data follows the same.
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