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ABSTRACT

Traditional saliency map methods, popularized in computer vision, highlight indi-
vidual points (pixels) of the input that contribute the most to the model’s output.
However, in time-series they offer limited insights as semantically meaningful
features are often found in other domains. We introduce Cross-domain Integrated
Gradients, a generalization of Integrated Gradients. Our method enables feature
attributions on any domain that can be formulated as an invertible, differentiable
transformation of the time domain. Crucially, our derivation extends the original In-
tegrated Gradients into the complex domain, enabling frequency-based attributions.
We provide the necessary theoretical guarantees, namely, path independence and
completeness. Our approach reveals interpretable, problem-specific attributions
that time-domain methods cannot capture, on three real-world tasks: wearable
sensor heart rate extraction, electroencephalography-based seizure detection, and
zero-shot time-series forecasting. We release an open-source Tensorflow/PyTorch
library to enable plug-and-play cross-domain explainability for time-series models.
These results demonstrate the ability of cross-domain integrated gradients to pro-
vide semantically meaningful insights into time series models that are impossible
with traditional time-domain saliency.

1 INTRODUCTION

Saliency maps are visual tools to explain deep learning models. Popularized in computer vision, they
highlight input points that contribute the most to the model’s output. For images, the original input
domain, pixels, aligns naturally with human perception, since neighboring pixels form coherent ob-
jects that are understood by human vision. This makes pixel-level saliency intuitive and semantically
meaningful. Similarly, in natural language processing, word-level attributions can be informative, as
words inherently bear semantic meaning.

In contrast, in time series, this intuition breaks down. In the time domain, groups of temporally
adjacent points - the equivalent of the pixel - do not necessarily form intuitive concepts. Rather, such
concepts are found in intricate interactions between points, linking them to higher-level abstractions
such as oscillating frequency patterns or statistically independent formations. As a consequence,
highlighting individual time points does not provide meaningful insight into the behavior of the
model.

Signal processing practice has long faced this challenge, where signal interpretation generally relies
on the decomposition of the original signal into structured components. Through transformations, the
original time domain is mapped to the component domain, capturing the higher-level interaction, and
linking the input to semantically meaningful concepts. The choice of decomposition and component
domain depends on the nature of the signals and the task. For example, the Fourier transform
decomposes the original signal into sinusoid oscillations, while the Independent Component Analysis
(ICA) decomposes the signal into statistically independent components. Such transformations map
the time signals into structured, semantically rich domains, providing more intuitive interpretations
of the signal’s contents.

Building on this insight, we argue that visual explanations of time-series models should be expressed
in interpretable domains, even when the model processes time points. We empirically demonstrate
that the explainability power of available saliency-based methods is limited in the time domain.
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This motivates the need for saliency map tools that can visualize feature importance across multiple
domains.

To address this, we develop Cross-domain Integrated Gradients, a novel method to visualize feature
importance across multiple domains. Based on the principles of IG Sundararajan et al. (2017), we
derive the formulas, axioms, and proofs required to apply IG across domains. We validate our method
following the exact same steps as IG Sundararajan et al. (2017). We show that cross-domain IG
maintains the Completeness property, hence satisfying Sensitivity and Implementation Invariance. We
apply our method to real-world time-series models and applications, demonstrating that descriptive
domains can be very powerful in understanding model behavior.

In this work, we introduce the following novel contributions:

• We propose a generalization of the Integrated Gradients that enables cross-domain explain-
ability for any invertible transformation, including non-linear ones.

• We derive a generalization of the Integrated Gradients for real-valued functions with a
complex domain, enabling the generation of frequency-domain saliency maps.

• We demonstrate how different domains allow for a better understanding of model behavior
on time-series data.

• We release an open-source Python library, compatible with tensorflow and pytorch,
for cross-domain time series explainability. The code for reproducing the results of this
paper, along with the library, is available in the supplemental material. Upon acceptance, we
will also include the corresponding open-source Github links.

2 RELATED WORKS

Saliency map interpretation. Saliency maps as a means of interpreting the behavior of the model
have been popularized in computer vision. These methods generate an output mapping each individual
input pixel to a significance score. Several methods have been proposed for this mapping. Activation-
based methods, such as GradCAM Selvaraju et al. (2017) and later variations Chattopadhay et al.
(2018), generate saliency based on deep layer activations. Gradient-based methods such as Integrated
Gradients (IG) Sundararajan et al. (2017); Kapishnikov et al. (2021) generate significance scores
by using the model’s output gradients with respect to its inputs. Similarly, Layer-wise Relevance
Propagation (LRP) methods Bach et al. (2015) propose rules to propagate the model output backwards
by splitting the overall output among individual input features.

Time domain explainability. Saliency map methods have been applied to time series applications,
either by direct application of computer vision-derived methods Jahmunah et al. (2022); Tao et al.
(2024) or by developing dedicated time series saliency approaches Queen et al. (2023); Liu et al.
(2024). To streamline comparisons between time-domain interpretability, Ismail et al. (2020) proposed
an extensive synthetic, multi-channel benchmark. In all cases, these approaches focus on identifying
significant regions of the time-domain input which contribute the most to the model’s output. Such
regions of interest are events that trigger the model’s output.

Cross domain interpretability. The current time domain saliency methods have limitations, as
highlighted time points do not always explain the underlying mechanisms Theissler et al. (2022).
Furthermore, Chung et al. (2024) demonstrate that such methods are not robust to frequency perturba-
tions. These limitations diminish the explanatory power of the generated saliency map. To address
this issue, they proposed a perturbation method in the time-frequency domain, attributing the model
output to time-frequency components. However, frequency perturbations can strongly affect model
performance and, therefore, explainability due to out-of-distribution effects Sundararajan et al. (2017).
Similarly, Vielhaben et al. Vielhaben et al. (2024) proposed the virtual inspection layer placed after
the model input to transform the saliency map of the time domain to the frequency and time frequency
domains, proposing dedicated relevance propagation rules for the frequency transform.

Saliency map evaluation. Evaluating saliency maps is not a trivial task. A major challenge lies in
disentangling saliency map errors from model errors Kim et al. (2021); Akhavan Rahnama (2023),
complicating validation by comparison with ground truth saliency. Sundararajan et al. (2017) propose
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solving this by relying on a set of desirable axioms, bypassing necessity for empirical evaluations.
Validation based on insert / deletion is another approach Hama et al. (2023); Ismail et al. (2020).
These methods empirically evaluate the effect of removing/retaining the most important input features,
reinforcing trust in the saliency map method under examination.

Despite progress in time-series saliency, existing methods (i) operate solely in the time domain,
(ii) rely on perturbation-based attributions only in the frequency domain, or (iii) require transfor-
m-specific hand-crafted relevance-propagation rules valid only in the frequency domain. In contrast,
our work provides a principled generalization of Integrated Gradients that supports any invertible,
differentiable transform, including complex-valued domains, while preserving axiomatic properties
and enabling semantically meaningful attributions across diverse time series applications.

3 PRELIMINARIES

3.1 PROBLEM STATEMENT AND MOTIVATION

We consider a function f : Ds → R representing a deep learning model. The input x ∈ Ds is
constructed from a continuous-time signal x(t) ∈ R after discretizing it at a sampling frequency
fs [Hz] and considering a window of length L seconds: x = [x0, ..., xn−1], n = fs ·L. Now consider
a transform T : DS → DT that maps the original time domain to a semantically rich explanation
target domain DT . Our task is to construct an informative saliency map that assigns a significance
score to each characteristic zi = T (x)i in the explanation domain.

Saliency maps developed in computer vision applications, and in particular IG, provide explanations
in the same domain as the model’s input, that is, DT = DS . Applying these methods to time-series
models results in maps expressed in the time domain.

Proposition 1. The time domain is not always informative in explaining f .

We motivate Proposition 1 through a synthetic example. We provide additional real-world examples
in Section 5 after formally defining our method.

3.2 TIME DOMAIN EXPLANATION LIMITATIONS

Consider that the input x is sampled from signals x(t) = cos(2πξt+ ϕ). In this setup, there are two
classes of samples depending on the oscillating frequency ξ:

y =

{
1, ξ ∼ N (1.0, 0.5)

2, ξ ∼ N (4.0, 0.5)
(1)

We design a classifier f to distinguish between these two classes. We opt to manually construct f so
that we have full mechanistic understanding of its inner workings. We choose a CNN architecture
composed of a single convolutional layer with two channels followed by a ReLU activation and global
average pooling f(x) = AvgPool (ReLU(w ∗ x)). The kernel of the first channel is a low-pass
filter (cutoff at 2.5Hz), while the second channel kernel is a high-pass filter with the same cutoff (see
Figure 1).

Ideally, the model should be fully explained by describing its inner mechanism. In this particular
scenario, we have designed f for this purpose, and hence a formal detailed explanation is available.

Mechanistic Interpretation 1. Convolutional channel i allows only frequencies of class i to pass
through the output; otherwise, the channel’s output is almost zero, not activating. The ReLU and
Average Pooling mechanism extract the amplitude of the signal Kechris et al. (2024a). Hence, the
channel i of the model output is only active when samples from class i are processed, leading to the
correct classification of the input.

That depth in model understanding is not easily available in larger models, which have been learned
from samples. Hence, saliency maps are often used as a proxy. We provide IG explanations of the
model f for samples from both classes expressed in the time and frequency domains (Figure 1).
Although time points are periodically highlighted as more important, it is not exactly clear how this
input tilts the model towards producing its output.
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Figure 1: Mechanistic interpretation along with Time and Frequency domain saliency maps. (a)
Distributions of the main frequency, ξ, for classes one and two. For producing the saliency maps,
we sample one input for each class (vertical dashed lines). (b) The sampled inputs presented in the
time and (c) frequency domains. (d) Illustration of the Mechanistic Interpretation1. We plot the
frequency response for the first and second channels of the CNN. The sample distributions (a) are
also overlayed. (e) Saliency maps expressed in the time and (f) frequency domains.

In contrast, a saliency map expressed in the frequency domain, which we introduce in Section 4,
highlights the frequency components that contribute to the final output: for the samples of class one,
only the 1 Hz component contributes to the model’s output, and accordingly, for class two, the 4 Hz
component. Here, this saliency map is much more interpretable. It provides useful information and
better aligns with the mechanistic understanding (Mechanistic Interpretation 1) of this model. In
Section 4, we show analytically that the frequency-expressed IG, for the data distribution and model
of this example, is directly linked to its mechanistic explanation.

3.3 INTEGRATED GRADIENTS

To explain the output of a model f on an input x with a baseline x̂ ∈ Rn, IG generates a saliency
map as Sundararajan et al. (2017):

IGi(x) = (xi − x̂i)

∫ 1

0

∂f

∂xi

∣∣∣∣
x′+t·(x−x̂)

dt (2)

with each element IGi(x) of the map corresponding to the significance of the input feature xi:
saliency is expressed in the same domain as the input. The IG definition relies on two key points
from the theory of integrals over differential forms: the line integral definition and Stokes’ theorem.

Line integral definition. The IG can be derived from the definition of the integral of the differential
form df along the line γ(t) = x̂+ t(x− x̂):

∫
γ

df =

∫
γ∗df =

∫ 1

0

N∑
i=0

∂f

∂xi
γ′
i(t)dt =

N∑
i=0

∫ 1

0

∂f

∂xi
γ′
i(t)dt =

N∑
i=0

(xi − x̂i)

∫ 1

0

∂f

∂xi
dt (3)

where γ∗df is the pullback of df by γ: γ∗df =
∑N

i=0
∂f
∂xi

γ′
i(t)dt Do Carmo (1998). Each individual

element of the IG map IGi(x) corresponds to each element of the last sum of eq. 3.

Stoke’s Theorem. The Completeness axiom of the IG Sundararajan et al. (2017): f(x)− f(x̂) =∑
IGi is a consequence of the Stokes’ Theorem for the case of integral of 1-form:

∫
γ
df =

∫
∂γ

f =

f(x)− f(x̂), which guarantees path independence: the value of the integral is only dependent on the
first and last points of the path, not the path itself.
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3.4 SALIENCY MAPS EVALUATIONS

Saliency map evaluation is challenging (Section 2), therefore we adopt a broad, complementary
validation protocol that triangulates evidence from theory, controlled experiments, qualitative sanity
checks, and dataset-level stress tests:

1. Axiomatic soundness. We show that Cross-domain IG maintains the Completeness property,
hence satisfying Sensitivity and Implementation Invariance Sundararajan et al. (2017).

2. Mechanistic alignment. Based on the example in Section 3.2, we theoretically show that
cross-domain IG can align with the model’s internal mechanisms - when the target domain
is appropriate (Section 4.2).

3. Qualitative applications. We show representative examples, Section 5, demonstrating the
full Cross-Domain IG workflow and how it can uncover data/model insights.

4. Quantitative sufficiency/necessity. We run insertion-deletion tests on real-world time-series
datasets.

4 METHODS

In this section, we define Cross-Domain IG (Section 4.1), and derive it based on the IG principles from
Section 3.3. We then analyse it in the complex frequency domain using a simple yet representative
convolutional network, highlighting its relation to the network’s properties (Section 4.2). This
analysis also provides theoretical grounding for the connection between frequency-domain IG and the
Mechanistic Interpretation discussed in Section 3.2. Finally, we detail our method’s implementation.

4.1 CROSS-DOMAIN IG DERIVATION

Let f : Ds → R a deep neural network, operating on a domain Ds ⊆ Rn. Also, denote x, x̂ ∈ Ds

the input and baseline samples, respectively, as defined by the IG method. We introduce an invertible,
differentiable transformation T : DS → DT and its inverse T−1, also differentiable, with z = T (x)
and x = T−1(z) and DT ⊆ Cm. The cross-domain IG generates the saliency map for f , attributing
the difference f(x)− f(x̂) to the features z, expressed in DT . To define Cross-domain Integrated
Gradients, we consider the path integral of model gradients over the transformed feature space:

Definition 4.1 (Cross-domain Integrated Gradients). Given a model f : Ds → R, a transform
T : DS → DT and its inverse T−1, input and baseline samples x, x̂ ∈ Ds and γ(t) the line from
z = T (x) to ẑ = T (x̂) the Cross-Domain IG is defined as:

IGDT
i (z) = 2

∫ 1

0

Re

{
∂(f ◦ T−1)

∂zi

∣∣∣∣
γ(t)

· (zi − ẑi)

}
dt (4)

Note that the original IG, eq. 2, and IGDT explain the exact same functionality since f(x) and
(f ◦ T−1)(z) are equivalent. However, their output saliency maps are expressed in different domains.
We now derive Definition 4.1 from first principles of the original IG method, Section 3.3.

Derivation sketch. The original IG is only defined for real inputs. To enable complex-valued
transformations, such as the Fourier transform, we extend IG for real-valued functions g with complex
inputs z, referred to as Complex IG. Our derivation builds on the two key points in Section 3.1:

1. Line integral definition. We begin our derivation by defining a function u that is equivalent
to g(z). Just like in the case of real inputs, eq. 2, we elaborate on the line integral

∫
γ
du.

The end goal is to end up with a sum of integrals
∑

i

∫
...dt similar to eq. 3. In the final

step, each IG element is defined as the corresponding integral term of the final sum,
∫
...dt.

2. Stokes’ Theorem. We define u and derive complex IG to ensure path independence and
satisfy the Completeness axiom, which may fail for functions of several complex variables
Lebl (2019). To this end, we first state and prove Lemma 4.1 as an intermediate result.
Using Lemma 4.1, we then derive Definition 4.1 using Wirtinger calculus.
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Lemma 4.1. Let g : Cn → R, z = p + jq, with p, q ∈ RN , γ(t) = ẑ + t(z − ẑ), t ∈ [0, 1] the
line from the baseline point ẑ to the input point z and n(t) = Re{γ(t)} and m(t) = Im{γ(t)},
n(t),m(t) ∈ Rn. Then the IG of g in z is given by:

IGCn

i (z) =

∫ 1

0

(
∂g

∂pi
n′
i(t) +

∂g

∂qi
m′

i(t)

)
dt (5)

A detailed proof of Lemma 4.1 can be found in Appendix B. From Lemma 4.1, and considering
g(z) = f

(
T−1(z)

)
and the complex differential form Range (1998) dg = ∂g+ ∂g we can write the

complex integrated gradient definition as:

IGCn

i = 2

∫ 1

0

Re

{
∂g

∂zi
γ′
i(t)

}
dt (6)

The complete derivation can be found in Appendix C. Notice that Cross-domain IG maintains the
Completeness property since

∫
γ
du = u(a(1)) − u(a(0)) = g(z) − g(ẑ) = f(x) − f(x̂), where

u : R2n → R s.t. g(p+ jq) = u([p, q]) and a = [n,m].
Remark 1. Although definition 4.1 defines a linear path of integration, in our derivation, eq. 6,
the path of integration is a general curve γ(t). This enables incorporating into cross-domain IG
alternative integration paths/methods to reduce sensitivity to noise Yang et al. (2023); Kapishnikov
et al. (2021).

Cross-Domain IG for real-valued inputs. If g processes real-valued inputs, then eq. 6 is equivalent
to eq. 2: since g(z) = g(p+ j0), ∂g/∂q = 0, ∂g/∂z = (1/2)∂g/∂p. Thus, if DT ⊆ Rn the cross-
domain IG can equivalently be expressed as IGDT

i (z) = (zi − ẑi)
∫ ∂(f◦T−1)

∂zi
dt.

Remark 2. In IG Sundararajan et al. (2017), the baseline x̂ is defined as the point without information
about the original model inference. The authors argued that most deep networks admit such a neutral
input. For cross-domain IG, if x̂ exists, and T is invertible, then ẑ is trivially defined. Crucially,
cross-domain IG enables baselines that were not easily defined, e.g., filtering specific components
from x to form ẑ.

4.2 COMPLEX IG ON A SIMPLE MODEL

Adebayo et al. (2018) analytically study a minimal single-layer convolutional network, demonstrating
that IG can collapse into an edge detector, producing misleading saliency maps. Although this
exposes a failure mode of the IG in the input domain, we show that Complex-IG faithfully reflects
the inner mechanisms of a simple convolutional network in the frequency domain. In direct parallel,
we derive a closed-form link between the complex IG saliency map of a CNN and the frequency
response of its filters. Building on the example in Section 3.2, we work on a simple CNN and prove
that Complex-IG highlights each filter’s gain at its corresponding input frequency.

Let f be a convolutional neural network composed of a single convolutional layer (1 channel)
followed by a ReLU operation and Global Average Pooling: f(x) = AvgPool (ReLU(w ∗ x)). We
begin with the case in which f processes windows sampled from single-component sinusoidal signals
x(t) = aj · cos(2πξjt+ ϕ), aj > 0. Then, the output f(x) is Kechris et al. (2024a): f(x) = ajbj

π ,
with bi the amplification of the filter w at frequency ξiHz: bi = ∥

∑
n wne

−2πξin∥. We employ the
Complex IG method on f with baseline input x̂ = 0, f(0) = 0. This yields IGCn

i = 0, ∀i ̸= j and∑
i IG

Cn

i = f(x)− f(x̂).Thus,

IGCn

j = f(x) =
ajbj
π

(7)

This links IGCn

j to the output frequency content ajbj and, by extension, to the convolutional filter’s
frequency response. An example for the model of Section 3.2 is presented in Figure 5 (Appendix E).

4.3 IMPLEMENTATION

Autograd (pytorch / tensorflow) allows for automatic differentiation with complex variables using
Wirtinger calculus Kreutz-Delgado (2009). Thus, the complex IG can be directly approximated

6
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by autograd, using Definition 4.1 or Lemma 4.1, with the detail that Autograd (in both libraries)
calculates the conjugate of the complex partial derivative. For the integral calculation, we use a
summation approximation similar to Sundararajan et al. (2017). The algorithms for estimating
cross-domain IG for the case of DT ⊆ Rn and the two implementations on DT ⊆ Cn (Lemma 4.1
and Definition 4.1) are presented in Algorithms 1 and 2, 3 in the appendix, respectively.

Remark 3. The numerical approximation of the integral in Definition 4.1 requires multiple differenti-
ations, which increases computational overhead. Although the original IG also suffers from similar
overhead, our method requires an additional step due to the inverse transform step (see line 9 in
Algorithm 3 in the Appendix).

5 APPLICATIONS

We deploy cross-domain IG in a range of time series applications and models. We selected applications
on all three main time-series tasks: regression (section 5.1), classification (section 5.2) and forecasting
(Section 5.3). In all three cases, the models are trained to infer on inputs in the time domain. For each
application, first, we study the properties of the input signal from a signal processing perspective. We
then define an interpretability task: what do we want to learn about our model’s behavior through a
saliency map? Based on this domain knowledge and interpretability task, we select an appropriate
explanation space yielding semantically meaningful saliency maps. We conclude each example with
a remark on actionable insights based on cross-domain attributions. Time-Domain IG attributions of
these examples can be found in the Appendix G, and additional examples in Appendix H. We also
perform feature insertion/deletion evaluation in Appendix F.

5.1 HEART RATE EXTRACTION FROM PHYSIOLOGICAL SIGNALS

We use the KID-PPG Kechris et al. (2024b), a deep convolutional model with attention, to extract
heart rate (HR) from photoplethysmography (PPG) signals collected from a wrist-worn wearable
device. We use signals from the PPGDalia dataset Reiss et al. (2019). For a time window small
enough for the HR frequency, ξhr, to be considered constant, a clean PPG signal can be modeled
as Kechris et al. (2024b):x(t) = a1cos(2π · ξhr · t+ ϕ) + a2cos(2 · π(2ξhr) · t+ ϕ), with a1 > a2.
However, external signals are also usually present in PPG recordings Reiss et al. (2019); Kechris et al.
(2024b). These interferences are not created by the heart and are preventing the model from making
accurate HR inferences.

Remark 4. KID-PPG processes PPG signals that contain both heart-related components and
external inference. A trustworthy model should base the inferred hear-rate on heart-related signals
only, filtering out all other sources of noise.

Interpretability task. Given a PPG sample and KID-PPG’s HR inference, determine whether the
model is focusing on heart-related information or external interference.

Problem-specific transformation. Since our understanding of this application is mostly frequency-
based, we have selected the frequency domain using the Fourier transform as the explanation target
domain. Hence, the frequency-domain IG highlights individual frequencies as important to the
final model inference. This allows us to investigate whether the HR inference is produced from
components related to the heart or external interference.

An illustration of two PPG inputs and the corresponding frequency-domain IGs are presented in
Figure 2. The frequency IG identifies samples in which the model infers heart rate from external
interference, thus limiting the reliability of the model’s output.

Remark 5. Frequency-domain IG highlights whether KID-PPG inference is trustworthy (based on
heart oscillations) or spurious (based on motion-induced artifacts).

5.2 ELECTROENCEPHALOGRAPHY-BASED EPILEPTIC SEIZURE DETECTION

We use the zhu-transformer Zhu and Wang (2023) which performs seizure detection on scalp-
electroencephalography (EEG). We analyze a recording from the Physionet Siena Scalp EEG Database

7
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Figure 2: Frequency-domain IG on heart rate inference model. The PPG signal includes
components from the heart rate and other components attributed to external interference (→), e.g.
motion. Left: Sample with a small inference error 0.93 beats-per-minute (BPM). The IG highlights
the two heart components located at hr and 2 · hr (second harmonic), with more weight given to
the actual heart rate frequency. Right: PPG sample with high inference error (26.78 BPM). IG
coefficients highlight frequency components which are not related to the heart.

v1.0.0 Detti (2020); Detti et al. (2020); Goldberger et al. (2000). In EEG a single channel captures the
electrical activity of multiple sources: e.g., epileptic activity, muscle interference, or electrical noise.
Remark 6. A seizure classification model processes the aggregated activity of all sources in the
EEG. The model should isolate only the epileptic activity, filtering all others, to reach a trustworthy
inference.

Interpretability task. Given an EEG recording and the corresponding zhu-transformer
seizure classification, we want to identify the sources on which the model based its inference.

Problem-specific transformation. We chose Independent Component Analysis Lee and Lee (1998)
(ICA) as our transform of choice. ICA isolates the activity of each individual source to a source-
specific channel (Independent Component), assuming statistical independence between the sources.
This allows the ICA-domain IG to produce attributions for each individual isolated source, therefore
providing insights on our interpretability task (Figure 3).
Remark 7. ICA-IG highlights whether zhu-transformer inference is based on known compo-
nents of epileptic seizure activity or other components irrelevant to the seizure - further reinforcing
trust in the model decision.

5.3 FOUNDATION MODEL TIME SERIES FORECASTING

We use TimesFM Das et al. (2024) time-series foundation model to explain forecasting outputs. We
perform zero-shot forecasting, without any fine-tuning, on a time series with exponential trend and
seasonal components (Figure 4).
Remark 8. A time-series forecasting model should model equally successfully both the trend and the
season to reach a low-error long-horizon forecast.

Interpretability task. Given a time-series input and the TimesFM forecast, determine if the trend
or the season is more difficult to model in the long-horizon forecast setting.

Task-specific transform. To isolate the relevant concepts we chose Seasonal-Trend decomposition
using LOESS (STL) Cleveland et al. (1990) to decompose the input time series into trend and
seasonality components.

This attribution domain allows us to study the model’s behavior for long-term forecasting horizons
where the forecast error increases: the model underestimates the overall trend, while the seasonal
component estimation presents a smaller error.
Remark 9. Seasonal-Trend IG reveals that TimesFM underweights the trend, degrading long-horizon
forecasts. This offers concrete insights to improve model behaviour.

8
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0 5 10 15 20 25 -0.1 0.4
Time (s) ICA IG

Figure 3: ICA-domain IG on seizure detection model. The ICA components are sorted from the
component with the highest IG significance (top) to the lowest (bottom). Left: 19 output channels
calculated from ICA on the original EEG channels. The first channel contains the majority of the
epileptic activity, which is visible as an evolving pattern of spike-and-wave discharges at ∼ 4.5 Hz.
Some epileptic activity can also be found in the second channel. Significant muscle artifacts are
isolated in the 9th-19th channels between 4 and 10 seconds. Right: IG saliency map calculated
on the channel components. The map identifies the first channel as the most significant channel in
detecting this sample as epileptic. Some significance, although much less, is also given to the next
four channels. The channels corresponding to interference components do not get any significance in
the output of the classifier. The last channel tends to tilt the classifier towards a non-epileptic output.

Forecast Forecast

Figure 4: Seasonal-Trend IG on time series foundation model. Left: Input time series decomposed
via STL into trend and seasonality. Right: Zero-shot forecasting using TimesFM with Seasonal-
Trend IG. For a small horizon, one step ahead prediction (first circle), TimesFM forecasts accurately.
Of output, 7.5 units are attributed to trend (⇕), aligning with ground truth (dashed orange) and
similarly −1.96 units to seasonality (⇕). For a longer horizon (second circle) the forecast absolute
error rises from 0.2 to 2.14. Most of it stems from the model’s underestimation of the trend (21%
relative error), while the seasonal effect is correctly captured by the model (5.1% relative error).

6 CONCLUSIONS

We introduced a novel generalization of the Integrated Gradients method, which enables saliency map
generation in any invertible differentiable transform domain, including complex spaces. As transforms
capture high-level interactions between input points, our methods enhance model explainability,
especially in time-series data where individual time-point features are often uninformative. We
demonstrated versatility of Cross-domain Integrated Gradients, applying it on a diverse set of time-
series tasks, model architectures and explanation target domains. Fields where time signals are
extensively used, such as healthcare, finance and environmental monitoring, could benefit from
domain-specific saliency maps. In particular, with the recent rise of time-series foundation models,
our method provides a strong investigation tool for inspecting model behavior. We release an
open-source library to enable broader adoption of cross-domain time-series explainability.

9
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7 ETHICAL STATEMENT

Risks may arise if the selected explanation target domain is not appropriate or saliency maps are
over-interpreted. It is important to note that the saliency map provides only feature significance scores.
Interpreting these scores requires domain expertise. We encourage a holistic interpretation approach
to integrating domain knowledge with cross-domain saliency maps. We also caution that this method
alone cannot function as a definitive proof of the behavior of the model. Responsible usage of the
method should take into consideration model, data and transformation limitations, especially in
high-stakes settings, such as in healthcare. We elaborate on the limitations of our method in Appendix
K
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A CROSS-DOMAIN IG ALGORITHMS

Algorithm 1 Real Target Domain IG

Input: f(·), x, x̂, niter

Output: IG
1: i← 1
2: sum← 0
3: tape← tensorflow.GradientTape()
4: X ′ ← T (x̂)
5: for i ≤ niter do
6: z ← T (x)
7: z ← ẑ + (z − ẑ) · i/niter

8: tape.watch(z)
9: xrec ← T−1(z)

10: y ← f(xrec)
11: dy ← tape.gradient(y, z)
12: sum← sum+ dy
13: i← i+ 1
14: end for
15: sum← sum/niter

16: IG = (z − ẑ) · sum

Algorithm 2 Complex Target Domain IG

Input: f(·), x, x̂, niter

Output: IG
1: i← 1
2: sum_real← 0
3: sum_imag ← 0
4: tape_real← tensorflow.GradientTape()
5: tape_imag ← tensorflow.GradientTape()
6: ẑ ← T (x̂)
7: for i ≤ niter do
8: X ← T (x)
9: z ← ẑ + (z − ẑ) · i/niter

10: re_z ← Re{z}
11: im_z ← Im{z}
12: tape_real.watch(re_z)
13: tape_imag.watch(im_z)
14: ẑ ← re_z + j · im_z
15: xrec ← T−1(ẑ)
16: y ← f(xrec)

17: re_dy ← tape_real.gradient(y, re_z) ▷ Calculate ∂g
∂pi

18: im_dy ← tape_imag.gradient(y, im_z) ▷ Calculate ∂g
∂qi

19: sum_real← sum_real + re_dy
20: sum_imag ← sum_imag + im_dy
21: i← i+ 1
22: end for
23: sum_real← sum_real/niter

24: sum_imag ← sum_imag/niter

25: IG = Re{z − ẑ} · sum_real + Im{z − ẑ} · sum_imag
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Algorithm 3 Complex Target Domain IG with complex differential

Input: f(·), x, x̂, niter

Output: IG
1: i← 1
2: sum← 0
3: tape← tensorflow.GradientTape()
4: ẑ ← T (x̂)
5: for i ≤ niter do
6: z ← T (z)
7: z ← ẑ + (z − ẑ) · i/niter

8: tape.watch(z)
9: xrec ← T−1(z)

10: y ← f(xrec)
11: dy ← tape.gradient(y,X)
12: sum← sum+ dy
13: i← i+ 1
14: end for
15: sum← sum/niter

16: IG = 2Re{(z − ẑ) · sum}

B PROOF OF LEMMA 4.1

Lemma. Let g : Cn → R, z = p + jq, with p, q ∈ RN , γ(t) = ẑ + t(z − ẑ), t ∈ [0, 1] the
line from the baseline point ẑ to the input point z and n(t) = Re{γ(t)} and m(t) = Im{γ(t)},
n(t),m(t) ∈ Rn. Then the IG of g in z is given by:

IGCn

i (z) =

∫ 1

0

(
∂g

∂pi
n′
i(t) +

∂g

∂qi
m′

i(t)

)
dt (8)

Proof. Let u : R2n → R such that g(z) = u(w),∀z = p+ jq,w = [p, q]. For the differential form
of u:

du :=

2N∑
i=0

∂u

∂wi
dwi (9)

Similarly to the g(z)–u(w) equivalence, we consider the equivalence between γ(t) and a(t) =
[n(t),m(t)] ∈ R2n. Then the pullback of du by a is :

a∗du :=

2N∑
i=0

∂u

∂wi
a′i(t)dt (10)

Denoting with a′i the i-th element of da/dt. The line integral of u along the line defined by a is:∫
γ

du =

∫
γ

a∗du =

∫ 1

0

2N∑
i=0

∂u

∂wi
a′i(t)dt =

2N∑
i=0

∫ 1

0

∂u

∂wi
a′i(t)dt (11)

Due to the equivalence between w and p, q and u and g the latter sum can be formulated as :∫
γ

du =

N∑
i=0

(∫ 1

0

∂g

∂pi
n′
i(t)dt+

∫ 1

0

∂g

∂qi
m′

i(t)dt

)
=

N∑
i=0

∫ 1

0

(
∂g

∂pi
n′
i(t) +

∂g

∂qi
m′

i(t)

)
dt (12)

which concludes the derivation.

C DERIVATION OF DEFINITION 4.1

From Lemma 4.1 we conclude to Definition 4.1 by considering g(z) = f
(
T−1(z)

)
and the complex

differential form Range (1998):
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dg = ∂g + ∂g (13)
with ∂g =

∑
∂g/∂zidzi, ∂g =

∑
∂f/∂zidzi. The complex partial derivatives are defined as Range

(1998) ∂/∂zi = 1/2(∂/∂p − j∂/∂q) and ∂/∂zi = 1/2(∂/∂p + j∂/∂q). Then the pullback of dg
by γ is :

γ∗dg =
∑ ∂g

∂zi
γ′
i(t)dt+

∑ ∂g

∂zi
γ′
i(t)dt (14)

Since g ∈ R, ∂g/∂z = (∂g/∂z), thus:

γ∗dg = 2Re

{∑ ∂g

∂zi
γ′
i(t)dt

}
(15)

Expanding the product into its real and imaginary parts produces the same form as eq. 12:

γ∗dg = 2Re

{∑ 1

2

(
∂g

∂pi
− j

∂g

∂qi

)
(n′

i + jm′
i(t)) dt

}
=

∑(
∂g

∂pi
n′
i(t) +

∂g

∂qi
m′

i(t)

)
(16)

Thus, the complex integrated gradient definition can be rewritten as:

IGCn

i = 2

∫ 1

0

Re

{
∂g

∂zi
γ′
i(t)

}
dt (17)

D RELATION TO VIRTUAL INSPECTION LAYERS

We demonstrate here the equivalence between eq. 6 and the Virtual Inspection Layer Vielhaben et al.
(2024) for the case of the Discrete Fourier Transform (DFT) domain saliency maps.

Denote the DFT transform z = Tx with :

T−1
nk =

1√
N

e2πkn/N (18)

Thus from eq.6

IGDFT
k = 2

∫ 1

0

Re

{
N−1∑
n=0

∂f

∂xn
T−1
nk (zk − ẑk)

}
dt =

N−1∑
n=0

Re
{
T−1
nk (zk − ẑk)

}
2

∫ 1

0

∂f

∂xn
dt

= 2

N−1∑
n=0

Re
{
T−1
nk (zk − ẑk)

} IGn

xn − x̂n

Denoting (zk − ẑk) = rke
jϕk then

Re
{
T−1
nk (zk − ẑk)

}
=

rn√
N

cos

(
2πkn

N
+ ϕk

)
(19)

And finally,

Rk = 2rk
∑

cos

(
2πkn

N
+ ϕk

)
Rn

xn − x̂n
(20)

Which is equivalent to the method of Vielhaben et al. (2024).

E RELATIONSHIP BETWEEN FREQUENCY-DOMAIN IG AND FREQUENCY
RESPONSE

We probe the two convolutional channels of section 3.2 with sinusoid signals at varying frequencies,
ξi:

xi(t) = cos(2πξit+ ϕ) (21)
For each input we perform frequency-domain IG which yields a saliency map described by eq. 7. We
aggregate all produced IGs and compare them to each filter’s frequency response:

bi = ∥
∑
n

wne
−2πξin∥ (22)

The results are presented in Figure 5.
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Figure 5: Frequency response (blue - orange) and frequency integrated gradients (black) for the two
channels of the model of Section 3.2. We probe the model, performing frequency IG on samples with
varying base frequencies.

F FEATURE-LEVEL INSERTION-DELETION

We perform insertion-deletion evaluation tests on the three examples presented in Section 5. Our
evaluation indicates that component-level attributions provide more faithful and concentrated evidence
for the models’ predictions than time-domain attributions: adding top-rated component features
rapidly reconstructs the output, while removing them destroys it.

F.1 HEART RATE EXTRACTION FROM PHYSIOLOGICAL SIGNALS

We follow the following procedure:

1. Select k% features, either in time or in frequency domain. For the frequency and time do-
main IG we select the k components with the highest IG score. For the random intervention,
we randomly sample k% unique frequency bins.

2. Insert/delete k components to generate modified samples xmod.

3. Infer heart rate with xmod input.

4. Compare f(xmod) with the original heart rate inference before any interventions f(x).

An example of inference after inserting/deleting input features is presented in Figure 6. We plot the
heart rate inference throughout the entire 2-hour session of subject 15 from the PPG-Dalia dataset.
The results for the entire PPGDalia dataset are summarised in Table 1.

Top k%-features 3.125 % 25% 50%
Deletion ↑

Frequency IG 66.39 133.56 127.13
Time IG 10.13 50.86 104.84
Random 8.53 37.03 68.34

Insertion ↓
Frequency IG 37.98 20.08 9.86

Time IG 94.58 57.27 58.61
Random 123.71 100.39 66.67

Table 1: Insertion-deletion evaluation dropping the k% most important features. Deletion/Insertion
distance (expressed in Beats per Minute- BPM) from the original HR inference averaged across 15
subjects of PPGDalia.

F.2 ELECTROENCEPHALOGRAPHY-BASED EPILEPTIC SEIZURE DETECTION

We used the Physionet Siena Scalp EEG Database v1.0.0 Detti (2020); Detti et al. (2020); Goldberger
et al. (2000). For each subjects’ sessions we retrieved the first sample that is detected as seizure
by the zhu-transformer. For each sample, we generated ICA-domain IG saliency maps and
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Figure 6: Example of heart rate inference after deleting features. We plot the entire session of
subject 15 from PPGDalia. For each insertion/deletion we retain/delete 3.125% of the input features.
For the Fourier and time IG these are the frequency bins and time-points with the highest assigned IG
score. In the random case we randomly drop 3.125% of the frequency bins. We plot the original
HR inference over the duration of the session and the model’s output after modifying the input
accordingly.

performed insertion/deletion with the most important IC. We kept track of the change in the seizure
classification probability, ∆p = p(xmod)− p(x), as we:

1. Delete the most important component and perform inference,

2. Maintain the most important component, delete the rest of the components and perform
seizure classification.

We compared these results with randomly choosing an IC component and performing the same
insertion/deletion evaluation.

ICA IG Random
Deletion ∆p ↑ 0.1776 0.0083
Insertion ∆p ↓ 0.0696 0.4396

Table 2: Insertion-deletion evaluation on the seizure detection model.

G EXAMPLE TIME-DOMAIN ATTRIBUTIONS

Figures 7, 8 and 9 present the time-domain attributions from the examples of Section 5. In all three
cases interpreting the time-domain saliency maps is difficult and of limited utility.

Heart rate inference. Time-domain IG highlights individual time-points of the PPG input. However,
it is difficult to assess:

1. Does an individual time-point contribute to the heart or interference components? In the
time-domain both the effect of heart and interference are mixed, and each time-point contains
information from both of these components. In contrast, in images when there is component
(object) overlap, one component blocks the other and a single pixel carries single-component
information.

2. Which time-points should be the most important/influential? From domain knowledge we
know that oscillations around the ground truth heart rate should be the ones affecting the
model’s output. However, we do not have any such insights in the time domain and the
component overlap further complicates oscillation indification in time.

Consequently these saliency maps do not allow us to answer to the interpretability task of Section 5.1.

Seizure detection. Similarly to the heart rate example, here it is not easy to visually identify the
seizure-related oscillations in the time-domain saliency map.
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Time series forecasting. The time-domain IG highlights mostly the last input time-points.

Figure 7: Time-domain IG for HR inference. We present the same two inputs as in Figure 2. For
each time point in the input we assign a significance value. Top: Raw time-domain input which is
processed by the model. Bottom: IG saliency map expressed in the original time domain.

Figure 8: Time-domain IG for seizure classification. For each time point on each channel we assign
a significance value.

H ADDITIONAL EXAMPLES

We present additional Cross-domain IG examples in Figures 10, 11 and 12.

I EEG AND ICA

The raw EEG input is presented in Figure 13.

The implementation of the zhu-transformer we used can be found here https://github.
com/esl-epfl/zhu_2023.

The application of ICA in EEG signals is based on the general assumption that the EEG data matrix
X ∈ RN×M is a linear mixture of different sources (activities) S ∈ RN×M with a mixing matrix
A ∈ RN×N such that X = AS, where N is both the number of sources and EEG channels, and

18
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Time (seconds) - Input

Figure 9: Time-domain IG for time-series forecasting. We plot the raw time-domain input along
with the IG importance for each time-point in the input.

M is the number of samples in the dataset. Sources are assumed to be statistically independent and
stationary. These assumptions can be leveraged to compute an inverse unmixing matrix W = A−1(∈
RN×N ), such that S = WX . Finding W is an ill-posed problem without an analytical solution
which can be estimated by means of different ICA algorithms Hyvärinen et al. (2001); Klug and
Gramann (2021). ICA is used in EEG to decompose the signal into independent components that
separate the signal of interest from various sources of artifacts Winkler et al. (2011). In this work, for
ICA we selected the FastICA algorithm implemented in sklearn (max_iter = 3 · 104, tol =
1 · 10−8).

The independent channels estimated using ICA are presented in Figure 14.

J GENERATED TIME SERIES FOR TIMESFM FORECASTING

We generate a synthetic time series signal, x(t), composed of an exponential trend, xtrend(t), and a
seasonal component, xseasonal(t):

xtrend(t) = e
t
α

xseasonal(t) = sin(2π · ξ · t+ ϕ) + sin(2π · 2ξ · t+ ϕ)

x(t) = xtrend(t) + xseasonal(t)

For the example in Section 5.3 α = 4, ξ = 2Hz. For the samples presented in Appendix H they
were randomly sampled from α ∼ U(4.0, 7.0) and ξ ∼ U(3.0, 8.0)[Hz]. A window of 512 time
points, starting at t = 0, are given as input to TimesFM which generates forecasts up to 128 time
points in the future from t = 512. The input time series and STL decomposition are presented in
more detail in Figure 15.

K LIMITATIONS

Our method requires an invertible, differentiable transform and a carefully selected baseline point.
Consequently, we excluded non-invertible transforms, and further investigation is needed for
approximate-invertible cases. Baseline selection also plays a role in the final saliency map. We
focused on the zero-signal as the baseline point - future work should include an extensive inves-
tigation into the effects of the baseline selection. The current implementation also focuses on a
linear integration path, reflecting the original IG. However, other non-linear paths, e.g., Guided IG
Kapishnikov et al. (2021), should be explored. Finally, multiple transforms can be combined to
provide a multi-faceted saliency map, such as ICA combined with frequency domains - and automatic
transform selection could help streamline the process. We leave ensemble domains and automatic
domain selection as future work.
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Figure 10: Frequency-domain IG for heart rate inference model.

L EXPERIMENTS COMPUTE RESOURCES

All experiments were run on an NVIDIA Tesla V100 with 32GB memory.

M USE OF LLMS

We used a large language model (LLM) solely for light copy-editing (grammar and wording).
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Figure 11: ICA-domain IG for seizure detection model. Similarly to the example presented in
Section 5.2, the first channel contains the majority of the seizure components. IC channels that
contain mostly interference are assigned a very small IG score.

Figure 12: Seasonal-Trend IG for TimesFM forecasts. We generate synthetic samples by sampling
them as described in Appendix J.
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Figure 15: Input time series for forecasting and successful STL decomposition. Left: time series
with a trend and a seasonal component. Center: The decomposed trend component and ground
truth trend (white dashed line). Right: The decomposed seasonal component and ground truth
seasonality (white dashed line).
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