
DISCOVER: Automated Curricula for Sparse-Reward Reinforcement Learning

Leander Diaz-Bone^{*,1} Marco Bagatella^{*,1,2} Jonas Hübotter^{*,1} Andreas Krause¹

¹ETH Zürich, Switzerland ²Max Planck Institute for Intelligent Systems, Germany

Abstract

Sparse-reward reinforcement learning (RL) can model a wide range of highly complex tasks. Solving sparse-reward tasks is RL’s core premise—requiring efficient exploration coupled with long-horizon credit assignment—and overcoming these challenges is key for building self-improving agents with superhuman ability. Prior work commonly explores with the objective of solving *many* sparse-reward tasks, making exploration of *individual* high-dimensional, long-horizon tasks intractable. We argue that solving such challenging tasks requires solving simpler tasks that are *relevant* to the target task, i.e., whose achievement will teach the agent skills required for solving the target task. We demonstrate that this sense of direction, necessary for effective exploration, can be extracted from existing RL algorithms, without leveraging any prior information. To this end, we propose a method for *directed sparse-reward goal-conditioned very long-horizon RL* (DISCOVER), which selects exploratory goals in the direction of the target task. We connect DISCOVER to principled exploration in bandits, formally bounding the time until the target task becomes achievable in terms of the agent’s initial distance to the target, but independent of the volume of the space of all tasks. We then perform a thorough evaluation in high-dimensional environments. We find that the directed goal selection of DISCOVER solves exploration problems that are beyond the reach of prior state-of-the-art exploration methods in RL.

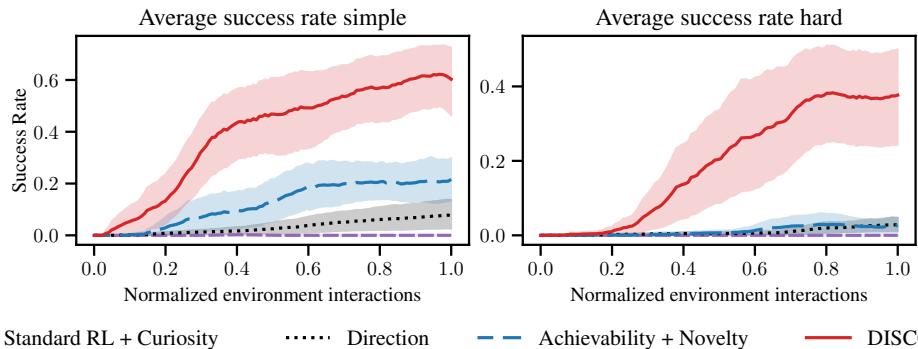


Figure 1: Given a hard task, we compare agents learning to solve this target task by learning from the experience on simpler exploratory tasks. DISCOVER uses a bootstrapped sense of direction to design a curriculum of achievable and novel exploratory tasks that are relevant to the target task. In this way, the agent bootstraps to solve much harder tasks than if using other methods for selecting exploratory tasks, such as considering only direction or only achievability and novelty. State-of-the-art standard RL algorithms using intrinsic curiosity for exploration fail to achieve our target tasks at all.

^{*}Equal contribution. Correspondence to Leander Diaz-Bone <ldiazbone@ethz.ch>.

1 Introduction

Reinforcement learning (RL) provides a general framework in which agents have to learn complex tasks by interacting with their environment to maximize rewards [75]. Although RL has led to breakthroughs in many domains such as Atari games [45], board games [e.g., 66], and reasoning [26], sparse-reward problems, in which a reward is only observed once the task is completed, remain very challenging [38, 80]. These sparse-reward tasks are hard to solve as the agent needs to gain a deep understanding of the environment without ever observing a reward. As such, and since they are naturally defined without any human supervision, solving sparse-reward tasks is one of the core premises of RL. We focus on the setting where the agent is given a *single* sparse-reward problem to solve. In sparse-reward RL, traditional methods from RL fail as they need to randomly observe the reward signal to make progress, which becomes exceedingly unlikely in long-horizon tasks [e.g., 49, 87].

One technique for overcoming this challenge is to frame sparse-reward tasks as multi-goal problems, which enables the agent to learn about harder goals by generalizing from already learned simpler goals [63, 5]. In this framework, a goal needs to be specified for the policy in each episode. This goal selection step plays a crucial role in guiding the exploration of the agent [53]. Choosing a goal essentially presents its own exploration-exploitation dilemma at a higher level of abstraction: should the agent try to pursue its final goal or rather aim to reach novel, but achievable intermediate goals, expanding its horizon of expertise? Previously introduced goal selection strategies have focused largely on either exploration [e.g., 53] or exploitation [5].

In this work, we argue that goal selection should naturally address this trade-off, considering both the *novelty* of commanded goals, and thus their exploration potential, as well as their *relevance* to the final objective, while considering their *achievability*. We propose DISCOVER, a method for effectively balancing *achievability*, *relevance*, and *novelty* during goal selection. We find that these quantities can be estimated by commonly used critic networks in standard deep RL algorithms. We learn an ensemble of critics to estimate the agent’s uncertainty about the direction of the final task. Intuitively, DISCOVER leverages these value estimates to determine which intermediate goals are most useful towards learning to solve the final task. We find that **DISCOVER enables RL agents to solve substantially more challenging tasks than previous exploration strategies in RL**.

We further provide a formal analysis of DISCOVER, showing that it is closely linked to upper confidence bound (UCB) sampling [68], a method for balancing exploration and exploitation in sequential decision-making. We use this connection to prove bounds on the number of episodes until the final task becomes achievable. Unlike bounds in prior work, our bound for DISCOVER is independent of the volume of the space of all goals and depends linearly on the “shortest distance” between the agent’s initial state and the state at which the final task is achieved. We follow this formal discussion by an extensive evaluation of DISCOVER in three complex sparse-reward environments, ranging from loco-navigation to manipulation. We observe significant improvements in sample efficiency compared to previous state-of-the-art exploration strategies in RL.

Our contributions are:

1. We propose DISCOVER, a novel goal selection strategy for solving hard tasks. By leveraging its connections to UCB, we theoretically analyze the time until the final task becomes achievable.
2. We evaluate the empirical performance of DISCOVER on various complex control tasks and show substantially improved performance compared to state-of-the-art goal selection strategies.
3. We perform a range of ablation studies, including on the utilization of prior knowledge and on the importance of balancing achievability, novelty, and relevance in goal selection.

2 Related Work

Exploration in RL Exploration has been a central challenge in reinforcement learning since its inception. Uninformed exploration strategies, such as ϵ -greedy [44] or uncorrelated noise injection [24], are crucial to the success of most practical algorithms. Further improvements can be obtained by leveraging temporally extended strategies [19], or informed criteria, such as curiosity [52, 27, 61, 70, 71], diversity [21], count-based strategies [77, 10], or unsupervised environment design [82, 17]. These strategies are normally applied without any extrinsic signal [43, 61, 70, 51], or in linear combination with a specific reward signal as defined by the MDP [10, 71]; in the latter

case, balancing the two terms is often complex. This work focuses instead on a setting in which exploration is instead achieved by attempting to solve different goals than the target goal, i.e., through exploitation with respect to a different reward, as specified in the next paragraph.

Finding solvable subgoals for exploration Solving *many* sparse-reward problems with RL has often been formalized as goal-conditioned [22, 58] or goal-reaching [83] RL, where we jointly learn a policy for all tasks. A key contribution can be traced back to Schaul et al. [63], which introduces *universal* value function estimators, capable of estimating returns for multiple goals. To learn these functions efficiently, Andrychowicz et al. [5] proposes a goal relabeling scheme to provide signal for goals that are achieved in hindsight. Further works have explored emerging properties of goal-conditioned value functions, introducing contrastive [22, 9] or quasimetric [83, 18, 3] approaches. Interestingly, goal-conditioned approaches enable the design of nuanced exploration strategies, as the policy can be controlled through its goal-conditioning [56, 85, 53, 23, 69, 86, 35, 43, 55]. These methods strategically select a goal from the previously achieved goals. After the goal is achieved, the methods enter a pure exploration phase, in line with the successful exploration strategy proposed by Ecoffet et al. [20]. However, previous methods are generally not directed towards a particular target goal, with some exceptions relying on strong assumptions on the distance metric [57], or on additional costly components such as generative [40, 62] or discriminative [12, 11] models. In contrast, DISCOVER introduces a notion of relevance during exploration, which is fully bootstrapped from the agent’s own estimates and experience, leading to deep exploration. We further discuss the connection of DISCOVER to other work such as self-play in Appendix A.

Test-time training We consider the setting where the agent’s objective is to solve a single, challenging target task provided at “test-time”, potentially starting from a pre-trained prior. This is a form of test-time training (TTT) [73], where an agent is trained specifically for the target task at test-time. TTT on (self-)supervised signals over few gradient updates has shown success in domains such as control [32], language modeling [33, 36, 74, 8], abstract reasoning [4], and video generation [15]. More recently, test-time reinforcement learning (TTRL) [88] has used RL to iteratively self-improve an agent’s policy for initially unsolvable tasks, using its own experience on simpler tasks. To our knowledge, DISCOVER is the first method demonstrating effective TTRL with extensive self-supervised exploration (millions of steps), thereby enabling agents to solve highly difficult tasks.

3 Problem Setting

We consider the sparse-reward reinforcement learning setting and adopt the goal-conditioned formulation [75, 63], formally described by a multi-goal Markov decision process $\mathcal{M} = (\mathcal{S}, \mathcal{A}, p, \mu_0, \mathcal{G}, g^*)$. Here \mathcal{S} , \mathcal{A} , and $\mathcal{G} \subseteq \mathcal{S}$ denote the set of states, actions, and goals, respectively. Additionally, $p : \mathcal{S} \times \mathcal{A} \rightarrow \Delta(\mathcal{S})$ are the transition probabilities and μ_0 is the initial state distribution. In the following, we denote by s_0 a random initial state sampled from μ_0 . The target goal, denoted by g^* , is the only goal we evaluate on and therefore aim to learn. The sparse goal-conditioned reward is implicitly defined as $r(s, a; g) = -\mathbb{1}\{s \notin \mathcal{S}_g\}$ [54], where $\mathcal{S}_g \subseteq \mathcal{S}$ is the subset of the states, for which the goal g is achieved. We consider the general case, where this subset is defined as $\mathcal{S}_g = \{s \in \mathcal{S} \mid d(s, g) \leq \epsilon\}$. Here, d defines a standard distance metric, possibly only considering some parts of the state, such as position. A goal is considered achieved during training if we have previously observed a non-negative reward for this goal. We keep track of the set of achieved goals \mathcal{G}_{ach} , which contains all previously achieved goals (initially $\mathcal{G}_{\text{ach}} = \{s_0\}$). In practice, this is implemented by maintaining a replay buffer of observed states. We consider a fixed episode length H , with the episode terminating once the target goal is reached. The objective of the agent is to learn a goal-conditioned policy $\pi : \mathcal{S} \times \mathcal{G} \rightarrow \Delta(\mathcal{A})$ that maximizes its value function $V^\pi(s_0, g^*)$,

$$V^\pi(s, g) = \mathbb{E}_\pi \left[-\sum_{t=0}^{H-1} \mathbb{1}\{s_t \notin \mathcal{S}_g \forall t' \leq t\} \right]. \quad (1)$$

We denote the optimal policy by $\pi^* : \mathcal{S} \rightarrow \Delta(\mathcal{A})$ and use $\pi_g : \mathcal{S} \rightarrow \Delta(\mathcal{A})$ to denote the policy conditioned on g .

3.1 Goal Selection for Sparse-Reward RL

The standard non-goal-conditioned online RL loop collects data according to the current policy, often with noise injection [19]. In the goal-conditioned framework, the agent can additionally control

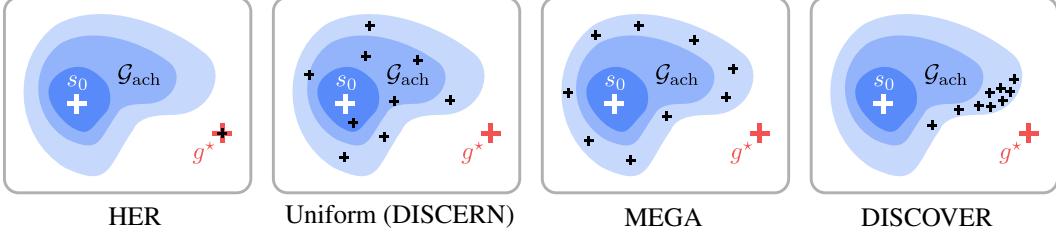


Figure 2: Illustration of the goal selection of DISCOVER compared to prior goal selection strategies. The white cross represents the initial state of the agent, the red cross represents the target goal. The blue shaded area symbolizes the set of achieved goals \mathcal{G}_{ach} . A lighter blue corresponds to harder to reach goals. Finally, the black crosses represent the kinds of goals selected by each strategy.

the goal-conditioning of the policy, i.e., it may pursue arbitrary goals for data collection. We adopt the framework of Pitis et al. [53], and summarize its main steps in Algorithm 1. In each episode, `SelectGoal` commands a goal g_t to the agent, based on prior experience, the current state of the agent and the final target goal g^* . We then roll out the policy conditioned on g_t until g_t is achieved. After achieving the goal g_t , the agent enters a random exploration phase, during which it selects actions uniformly at random until the end of the episode. We add the resulting trajectory to the replay buffer. Finally, we update the agent’s parameters θ using an off-policy RL algorithm, by sampling from the replay buffer and relabeling goals, as proposed by Andrychowicz et al. [5]. The focus of this work is `SelectGoal`, which designs the agent’s curriculum. Next, we introduce DISCOVER, which selects a curriculum specifically targeted to g^* .

Algorithm 1 Goal-conditioned Reinforcement Learning

```

1: Initialize: replay buffer:  $\mathcal{B}_0 \leftarrow \emptyset$ , actor-critic parameters:  $\theta_0$ 
2: for  $t = 1, 2, \dots$  do
3:    $g_t \leftarrow \text{SelectGoal}(\mathcal{B}_{t-1}, \theta_{t-1}, g^*)$  ▷ select goal  $g_t$  for episode
4:    $\mathcal{B}_t \leftarrow \mathcal{B}_{t-1} \cup \{\text{Rollout}(\pi_{\theta_{t-1}}, g_t)\}$  ▷ add trajectory to replay buffer
5:    $\theta_t \leftarrow \text{Update}(\text{RelabelGoals}(\text{Sample}(\mathcal{B}_t)), \theta_{t-1})$  ▷ using off-policy RL (e.g., TD3 [24])

```

4 DISCOVER

We introduce DISCOVER, a method for solving hard tasks that require deep exploration. We focus on the problem of finding intermediate, solvable goals that the agent should attempt to acquire skills, eventually enabling it to achieve the target goal. We begin by presenting an intuitive explanation of the DISCOVER objective, followed by a discussion of its tight connection to the exploration-exploitation dilemma. We argue that, to efficiently learn to solve hard tasks, an agent must adhere to the following three fundamental principles:

$$\text{Goal utility} = \text{Achievability} + \text{Novelty} + \text{Relevance} \quad (2)$$

Each of these principles is necessary to efficiently learn to solve a hard task. First, **achievability** ensures that a task is not “too hard” for the agent to ever achieve it, hence, representing meaningful experience. Second, **novelty** ensures that a task is not “too easy”, such that the agent’s new experience on this task is a useful learning signal to increase the policy’s capabilities. Finally, **relevance** ensures that experience on a task is useful for eventually solving the target task (cf. Figure 2). Prior methods [e.g., 53] have successfully combined achievability and novelty, but are aiming to achieve all possible tasks.

After providing an intuitive discussion of the principles relevant to efficiently learning hard tasks, the question remains: how can they be quantified in practice? We propose the DISCOVER objective, which quantifies each of the discussed principles via the value estimate under the current policy. In each exploration episode, we select a goal from the achieved ones (\mathcal{G}_{ach}) according to

$$g_t = \arg \max_{g \in \mathcal{G}_{\text{ach}}} \alpha_t \left[\underbrace{V(s_0, g)}_{\text{Achievability}} + \beta_t \underbrace{\sigma(s_0, g)}_{\text{Novelty}} \right] + (1 - \alpha_t) \left[\underbrace{V(g, g^*)}_{\text{Relevance}} + \beta_t \sigma(g, g^*) \right] \quad (3)$$

where α_t and β_t are schedulable coefficients, V is the mean of an ensemble of the optimal value function defined in Equation 1, and σ^2 its variance.² A high value $V(s_0, g)$ indicates that the policy can reach the goal g from the starting state s_0 , therefore promoting **achievability**. In contrast, a large uncertainty $\sigma(s_0, g)$ indicates that the agent is not reliably reaching the goal g . Hence, attempting such goals prioritizes **novel** experiences. Finally, a high value $V(g, g^*)$ indicates that g is “closely related” to the target goal g^* . The **relevance** term of DISCOVER prioritizes goals that *might* be closely related to the target goal, either since they already have a high value $V(g, g^*)$ or because the agent is still uncertain about this value. The relevance term can also be viewed as directing the goal selection towards the final target g^* . Note that while we focus on a single target g^* , DISCOVER is easily extended to distributions over targets by maximizing Equation (3) in expectation.

We emphasize that all terms in Equation (3) are estimated by the critic and do not rely on any prior information. In particular, the relevance estimates are entirely bootstrapped from the agent’s current knowledge. While the above gives an intuitive introduction, DISCOVER can be interpreted as an agent seeking to maximize the likelihood of reaching the target goal g^* , as we describe in Appendix B.

4.1 Automatic Online Parameter Adaptation

Prior work has explored adapting the parameters online to meet predefined metrics, such as the entropy of the policy [28, 71]. In the same spirit, we propose a simple online parameter adaptation strategy that adjusts α_t and β_t to maintain a fixed target goal achievement rate p^* , similarly to the cutoff strategy proposed in Pitis et al. [53]. This approach aligns with the previously discussed intuition, as it ensures that the agent neither selects goals that are “too easy” nor ones that are “too hard”. We find that it is sufficient to linearly increase α_t when the agent achieved too few of its previously selected goals, and linearly decrease α_t , when the agent achieved too many, while setting $\beta_t = 1$:

$$\alpha_{t+1} = \Pi_{[0,1]}(\alpha_t + \eta(p_t - p^*)). \quad (4)$$

Here, p_t denotes the average goal achievement rate over the last k_{adapt} episodes, $\Pi_{[a,b]}$ clips the output value to the interval $[a, b]$, and $\eta > 0$ is the adaptation step size, which we set to 0.01. We ablate the effects of our adaptation strategy in Figure 10 in the appendix, and find that the optimal target goal achievement rate p^* is approximately 50%, consistent with findings in prior work [53].

4.2 Connection to the Exploration-Exploitation Dilemma

Balancing exploration and exploitation is key when proposing tasks such that the resulting experience is valuable toward solving the target task. DISCOVER balances exploration and exploitation in two ways. First, in its estimate of $V(s_0, g)$, which leads to a trade-off between selecting achievable and novel goals. Second, in its estimate of $V(g, g^*)$, where exploitation leads to directing goal selection toward the target goal while exploration prevents the agent from overfitting to an overconfident estimate of direction.

Theoretical guarantee for DISCOVER To illustrate the underlying exploration-exploitation trade-off, we consider a simplified setting and use the link between DISCOVER and UCB to prove rates for the number of episodes until the DISCOVER agent can achieve the target goal. We make the following simplifying regularity assumptions, analogously to the linear bandit setting [see, e.g., 2, 13]:

Informal Assumption 4.1 (formalized in Assumptions C.1 to C.5).

1. *Optimal value functions are linear in latent features:* Among the set of achievable³ goals g , the value functions $V^*(s_0, g)$ and $V^*(g, g^*)$ are linear in a known d -dimensional feature space. Note that the above only needs to hold for currently achievable goals.
2. *Noisy feedback:* In episode t , selecting any achievable g_t , the agent receives noisy feedback of the optimal value functions, with the noise being conditionally sub-Gaussian.
3. *Goal space contains optimal paths:* For any goal g , the optimal path from g to the target goal g^* is contained in the goal space \mathcal{G} .⁴
4. *Goal achievability:* Based on our previous observation that α controls the rate of goal-achieval, we let the probability of achieving any *achievable* goal g be at least α . Any goal g is considered

²See Appendix E.1.

³The set of *achievable* goals is defined in Assumption 4.

⁴That is, \mathcal{G} is g^* -geodesically convex under the forward quasimetric induced by the optimal value function.

achievable in episode t if the agent previously achieved a goal $g_{t'}$ ($t' < t$) which is within distance $(1 - \alpha)\kappa$ of g (under the optimal value function). Here, $\kappa > 0$ is a rate of expansion.

Assumptions 1 and 2 are standard in the literature on linear bandits. Note, however, that in our setting this feedback model implicitly assumes feedback on $V^*(g_t, g^*)$, which can be thought of as a generalization condition: If the agent cannot generalize from its experience from s_0 to g about the relation of g and g^* , then it may never reach the target goal g^* . Another implicit consequence of the linearity assumption is that the bias and non-stationarity of the value function estimates is controlled, which is not commonly the case when learning value functions with neural networks via bootstrapping. Assumption 3 is a continuity assumption on the goal space, which is satisfied in many practical settings. Finally, Assumption 4 leads to a trade-off in choosing α : A small α leads to a larger set of achievable goals, but at a lower goal-achievability rate. In contrast, a large α leads to a more conservative set of achievable goals, but at a higher goal-achievability rate. This trade-off matches the empirical effect of α (cf. Figure 10 in the appendix). The parameter κ controls the rate of expansion of the set of achievable goals.

In the above setting, we bound the number of episodes until DISCOVER reaches the target goal g^* :

Informal Theorem 4.2 (formalized in Theorem C.9). *Fix any confidence $\delta \in (0, 1)$ and any $\alpha \in (0, \frac{1}{2})$. Let the above assumptions hold. We denote by $D = -V^*(s_0, g^*)$ the distance from the initial state s_0 to the target goal g^* under the optimal policy. Then, with probability $1 - \delta$, selecting goals g_t with DISCOVER (with $\alpha_t = \alpha$ and β_t chosen appropriately), the number of episodes N until the target goal g^* is achievable by the agent is bounded by*

$$N \leq \tilde{O}\left(\frac{Dd^2}{\alpha(1-2\alpha)^2(1-\alpha)^3\kappa^3}\right) = \tilde{O}\left(\frac{Dd^2}{\kappa^3}\right).$$

This theorem shows that DISCOVER efficiently learns to solve hard, initially unachievable tasks. With a larger dimensionality d of the feature space, the learning task becomes harder, which is reflected in the bound. Similarly, the larger the distance D from the initial state to the target goal, the longer it takes to reach the target goal. In contrast, the larger the rate of expansion κ , the faster the agent reaches the target goal, since the set of achievable goals expands faster. Finally, the bound suggests choosing $\alpha \approx 0.1$ (cf. Figure 7 in the appendix) which roughly matches the average α chosen in experiments by our adaptation strategy (cf. Figure 11 in the appendix).

Despite our simplifying assumptions, achieving the target goal g^* remains non-trivial. The agent must trade off learning the value function against exploiting the direction this value suggests toward g^* . Overconfidence in the value estimate may lead the agent to diverge and never reach g^* . On the other hand, if the agent is too conservative in its value estimate (or does not use the value estimate for direction at all), it may never reach the target goal within a reasonable time. To see why guidance matters, imagine an m -dimensional goal space that is a ball of radius R . Covering that ball with hypercubes of side ϵ requires on the order of $(R/\epsilon)^m$ cells, exponential in m . This back-of-the-envelope calculation indicates that to achieve hard goals in a high-dimensional goal space, undirected exploration is insufficient, and the agent must balance exploration and exploitation. In doing so, DISCOVER avoids this curse of dimensionality and exploits the learned value to stay close to a nearly one-dimensional corridor from s_0 to g^* . For this reason, the bound in Informal Theorem 4.2 depends *solely* on the (1-dim) distance D and *not* on the total volume of the goal space \mathcal{G} . Bounds of previous work [78] depend on the total volume of \mathcal{G} , and quickly become vacuous in high-dimensional problems.

5 Results

We evaluate the empirical performance of DISCOVER across three complex, sparse-reward, long-horizon control tasks, highlighting five main insights. Unless mentioned otherwise, we employ the TD3 [24] actor-critic algorithm for training all agents. While our evaluation focuses on model-free methods, the goal-based directed exploration of DISCOVER can also be used with model-based backbones such as Dreamer [29, 30, 31]. For all experiments, we report the mean performance across 10 seeds along with its standard error. Additional implementation details, hyperparameter choices and experimental results are reported in Appendices D, E and E.3, respectively. The code is available at <https://github.com/LeanderDiazBone/discover>.

Environments For our experiments, we use the JaxGCRL library [9] to assess performance on challenging, high-dimensional navigation and manipulation tasks. Specifically, we evaluate on

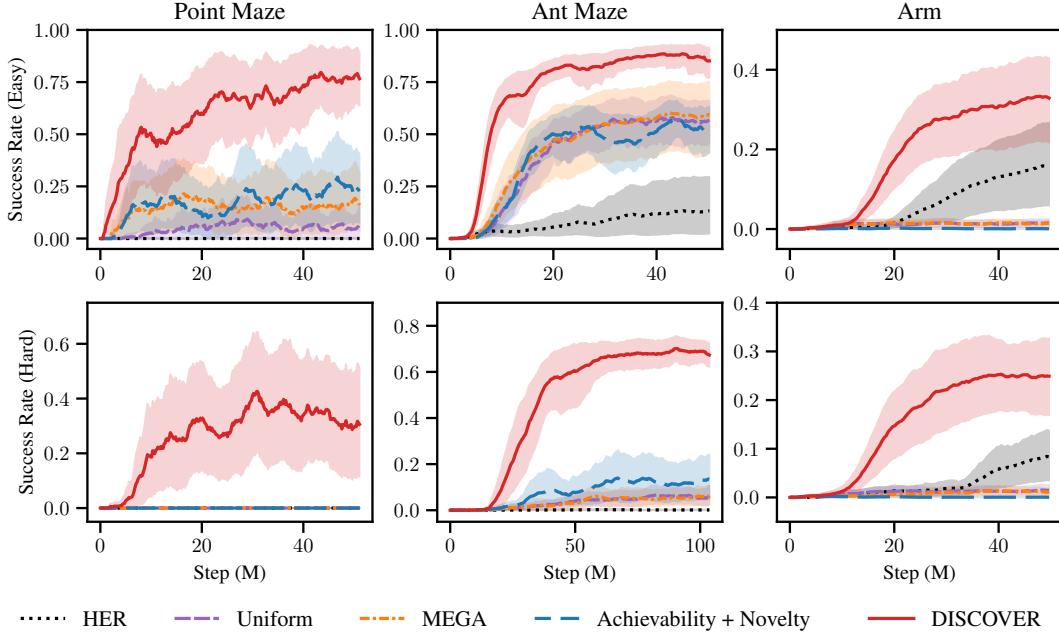


Figure 3: Comparison of the success rates on the target task over the course of training in the pointmaze, antmaze & arm environments. We compare DISCOVER to other strategies for goal selection. We consider two difficulty levels for each environment. We find that the DISCOVER agents learn to solve difficult target tasks significantly faster than the baselines.

the antmaze environment, where a simulated quadruped with a 27-dimensional state space and an 8-dimensional action space must learn to navigate through a maze to reach a target location. For manipulation, we consider the arm environment, which features a 23-dimensional state and a 5-dimensional action space. In this task, a robotic arm must move a cube to a specified target location, potentially while avoiding obstacles. Additionally, we evaluate on randomly generated pointmazes of varying dimensionality, to assess the capabilities of different goal selection strategies to explore high-dimensional goal spaces efficiently. We construct these n -dimensional pointmazes by randomly generating paths in the n -dimensional hypercube until the target location was reached sufficiently often from the starting location. For all environments, we consider both a simple and a hard configuration, where the latter is characterized by longer horizons, more complex obstacles, or higher-dimensional goal spaces.

Goal selection baselines We compare DISCOVER with the following baselines.

1. Hindsight Experience Replay (HER): The HER goal selection strategy [5] always selects goals from the target goal distribution. Since we consider a single fixed target goal, the goal at time t is set as $g_t = g^*$.
2. DISCERN (uniform): The uniform goal selection strategy [85] samples goals uniformly from the support of the achieved goal distribution, i.e., $g_t \sim \text{Unif}(\text{supp}(p_{\text{ach}}))$. The achieved goal distribution p_{ach} is modeled using a kernel density estimator based on randomly sampled previously achieved goals.
3. Maximum Entropy Gain Achievement (MEGA): The MEGA goal selection strategy [53] selects goals with the lowest likelihood from the set of achievable goals, i.e., $g_t = \arg \min_{g \in \mathcal{G}_{\text{ach}}} p_{\text{ach}}(g)$. In contrast to DISCOVER, MEGA additionally defines a goal g as achievable if its value function $V(s_0, g)$ exceeds a threshold, which is adapted dynamically based on the goal achievement rate over recent episodes.
4. Achievability + Novelty: This baseline corresponds to the undirected components of DISCOVER, i.e., $g_t = \arg \max_{g \in \mathcal{G}_{\text{ach}}} V(s_0, g) + \beta_t \sigma(s_0, g)$.

Insight 1: DISCOVER outperforms state-of-the-art goal selection strategies in complex control environments. As shown in Figure 3, DISCOVER consistently outperforms all baseline goal selection strategies across the evaluated environments. The performance gains are particularly

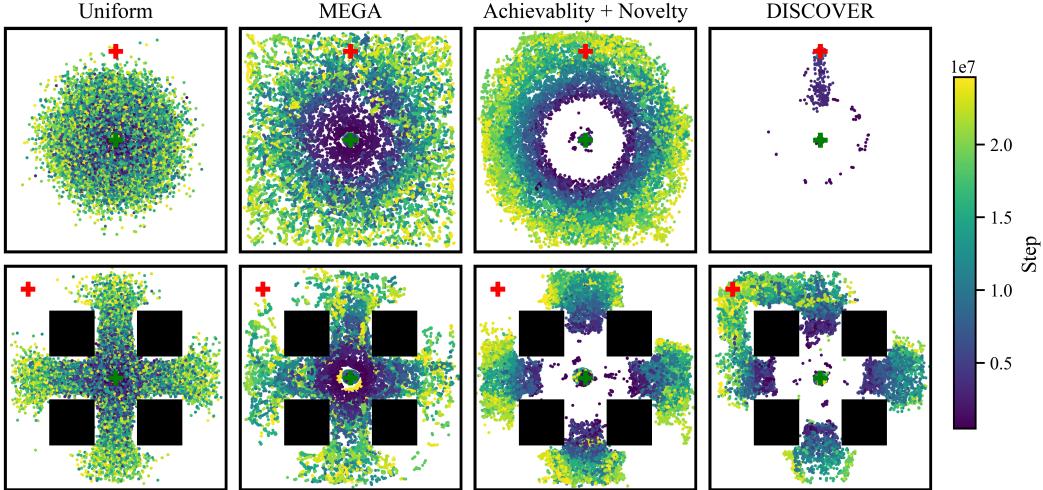


Figure 4: Visualization of the selected goals of different goal selection strategies during the first 25M steps on the antmaze environment, colored by time step. DISCOVER balances exploring the environment with exploiting the agent’s sense of direction to select goals relevant to the target task.

notable in the more challenging variants of each task, where emphasizing *relevance* proves critical for learning optimal policies. Interestingly, in the arm environment, HER performs better than some undirected goal selection strategies. We attribute this to the unconstrained nature of the goal space in the arm environment, which leads undirected methods to explore irrelevant regions that do not contribute to learning about the target goal.

Insight 2: Undirected goal selection is insufficient for high-dimensional search spaces. We next evaluate the performance of goal selection strategies on pointmaze navigation tasks of varying dimensionality. Table 1 demonstrates that the undirected goal selection strategies are eventually successful in two dimensions, but consistently fail in dimension larger than three. In contrast, DISCOVER, by focusing on the most relevant directions, successfully solves mazes in up to six dimensions. The substantial difference in empirical performance can be explained by the size of the search space explored by each method. For undirected methods, this space grows exponentially with dimension, while DISCOVER mitigates this challenge by only selecting goals that likely to lead to the final objective, thereby dramatically reducing the effective search space. While the performance gap is most pronounced in complex, high-dimensional tasks, we demonstrate that DISCOVER also improves performance in standard sparse-reward environments.

Insight 3: DISCOVER improves performance by selecting relevant goals towards reaching the target, while exploring sufficiently. We visualize the goal selection behavior of DISCOVER and the baseline strategies in the antmaze environment in Figure 4. While all baseline methods perform undirected goal selection, exploring the entire state space, DISCOVER, after an initial exploration phase, quickly identifies the correct direction and subsequently focuses its goal selection on the relevant region. These plots explain the improved performance, as DISCOVER can select (and achieve) goals at the target much earlier than the other strategies. We provide a detailed evaluation of how the different components of DISCOVER influence goal selection in Appendix D (cf. Figure 14).

Dimension	2	3	4	5	6
HER	∞	∞	∞	∞	∞
MEGA	4.8	∞	∞	∞	∞
Ach. + Nov.	5.2	∞	∞	∞	∞
DISCOVER	2.9	3.1	7.4	5.4	18.7

Table 1: Comparison of the required number of steps (M) for reaching 10% target goal achievement in pointmazes of varying dimension. ∞ denotes no achievement of 10% success rate before termination after 50M steps. DISCOVER scales to large mazes due to its awareness of direction and uncertainty.

Insight 4: DISCOVER can leverage prior knowledge to further accelerate exploration.

In many scenarios, prior information about the environment is available, for example through pre-training on a related environment. To evaluate whether DISCOVER can leverage prior knowledge for exploration, we integrate prior information on *relevance* by substituting the prior for $V(g, g^*)$ in Equation (3). We evaluate two kinds of priors: (1) a hand-designed prior, leveraging human knowledge akin to reward shaping, and (2) a pre-trained prior from a similar environment. We use the antmaze (hard) environment, picking as a natural hand-designed prior the L_2 -distance to the target goal g^* (ignoring obstacles), and as the pre-trained prior a value function learned on a pointmaze with the same layout. We find in Figure 5 that DISCOVER with a prior can explore marginally faster than bootstrapping value estimates from scratch. In particular, in the maze with obstacles, using the pre-trained prior accelerates exploration, since the agent explores only in the direction of the target (cf. Figure 13 in the appendix). We expect that this benefit of priors increases in even harder tasks, since DISCOVER explores only the difficult and novel aspects of the target task.

Insight 5: Subgoal selection enables deep exploration.

Finally, we evaluate the importance of goal-conditioning for solving sparse-reward tasks. To this end, we compare DISCOVER to methods for exploration in RL that do not explicitly select exploratory intermediate goals [24, 27, 48]. This includes state-of-the-art approaches based on curiosity and reward shaping [10, 71]. We show in Figure 6 that even in the simpler environments, these standard methods are unable to solve the task. In Figure 15 of the appendix, we visualize the states visited by the non-goal-conditioned baselines. While methods leveraging curiosity to shape the reward explore faster than others, none of them reaches the target task within our maximum number of episodes. This highlights that in long-horizon, sparse-reward settings, directed goal selection can facilitate deep exploration, which is essential for solving complex tasks.

6 Conclusion

In this work, we introduce DISCOVER, a goal selection method for solving challenging tasks by balancing *novelty*, *achievability*, and *relevance*. DISCOVER is closely related to principled methods for balancing exploration and exploitation, and we theoretically show that it efficiently reaches the target goal in a simplified linear bandit setting. We further empirically evaluate DISCOVER on various complex control tasks and find that it consistently outperforms prior state-of-the-art exploration strategies in RL in solving difficult, sparse-reward tasks.

A limitation of DISCOVER is that it relies on bootstrapped estimates of the value function, which depend on the ability of the value network to generalize. Additionally, our method incurs overhead by training an ensemble of critics for uncertainty estimation, potentially limiting its direct applicability to implementations involving large critic networks such as in language domains. We believe that exploring alternative means of efficient uncertainty estimation for DISCOVER is an exciting direction for future work. Furthermore, we hypothesize that directed exploration is especially advantageous in high-dimensional and complex goal spaces, as demonstrated for the pointmaze with variable dimensions. Therefore, particularly interesting is the application of DISCOVER to problems with highly complex goal spaces, such as in mathematics or programming with large language model priors. Finally, our work also highlights important directions for future research, including enabling the generation (rather than selection) of goals, extending DISCOVER to hierarchical planning, and reusing experience from one target task for future tasks.

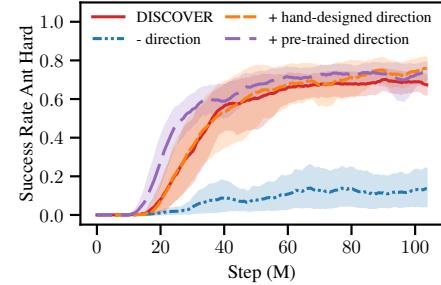


Figure 5: Comparison of using different strategies to determine direction, which replace the $V(g, g^*)$ term in the DISCOVER objective. Hand-designed direction: $\|g - g^*\|_2$; pre-trained direction: critic from training in a pointmaze environment with the same maze layout.

In particular, in the maze with obstacles, using the pre-trained prior accelerates exploration, since the agent explores only in the direction of the target (cf. Figure 13 in the appendix). We expect that this benefit of priors increases in even harder tasks, since DISCOVER explores only the difficult and novel aspects of the target task.

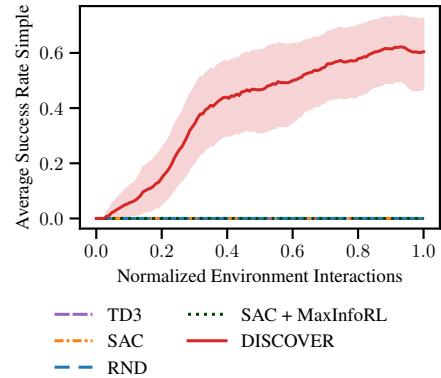


Figure 6: State-of-the-art RL algorithms fail to achieve the target tasks even in their “simple” configuration.

Acknowledgments

We would like to thank Bhavya Sukhija, Yarden As, and Nico Görtler for feedback on early versions of the paper. Marco Bagatella is supported by the Max Planck ETH Center for Learning Systems. This project was supported in part by the European Research Council (ERC) under the European Union’s Horizon 2020 research and Innovation Program Grant agreement no. 815943, and the Swiss National Science Foundation under NCCR Automation, grant agreement 51NF40 180545.

References

- [1] Yasin Abbasi-Yadkori. *Online learning for linearly parametrized control problems*. PhD thesis, University of Alberta, 2013.
- [2] Yasin Abbasi-Yadkori, Dávid Pál, and Csaba Szepesvári. Improved algorithms for linear stochastic bandits. In *NeurIPS*, 2011.
- [3] Siddhant Agarwal, Ishan Durugkar, Peter Stone, and Amy Zhang. f-policy gradients: A general framework for goal-conditioned rl using f-divergences. In *NeurIPS*, 2023.
- [4] Ekin Akyürek, Mehul Damani, Adam Zweiger, Linlu Qiu, Han Guo, Jyothish Pari, Yoon Kim, and Jacob Andreas. The surprising effectiveness of test-time training for few-shot learning. *arXiv preprint arXiv:2411.07279*, 2024.
- [5] Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob McGrew, Josh Tobin, Pieter Abbeel, and Wojciech Zaremba. Hindsight experience replay. In *NeurIPS*, 2017.
- [6] Marco Bagatella, Jonas Hübotter, Georg Martius, and Andreas Krause. Active fine-tuning of multi-task policies. In *ICML*, 2025.
- [7] Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemysław Dębiak, Christy Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, et al. Dota 2 with large scale deep reinforcement learning. *arXiv preprint arXiv:1912.06680*, 2019.
- [8] Ryo Bertolissi, Jonas Hübotter, Ido Hakimi, and Andreas Krause. Local mixtures of experts: Essentially free test-time training via model merging. *arXiv preprint arXiv:2505.14136*, 2025.
- [9] Michał Bortkiewicz, Władysław Pałucki, Vivek Myers, Tadeusz Dziarmaga, Tomasz Arczewski, Łukasz Kuciński, and Benjamin Eysenbach. Accelerating goal-conditioned rl algorithms and research. In *ICLR*, 2025.
- [10] Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random network distillation. In *ICLR*, 2019.
- [11] Daesol Cho, Seungjae Lee, and H Jin Kim. Diversify & conquer: Outcome-directed curriculum rl via out-of-distribution disagreement. In *NeurIPS*, 2023.
- [12] Daesol Cho, Seungjae Lee, and H Jin Kim. Outcome-directed reinforcement learning by uncertainty & temporal distance-aware curriculum goal generation. In *ICLR*, 2023.
- [13] Sayak Ray Chowdhury and Aditya Gopalan. On kernelized multi-armed bandits. In *ICML*, 2017.
- [14] Sebastian Curi, Felix Berkenkamp, and Andreas Krause. Efficient model-based reinforcement learning through optimistic policy search and planning. In *NeurIPS*, 2020.
- [15] Karan Dalal, Daniel Koceja, Gashon Hussein, Jiarui Xu, Yue Zhao, Youjin Song, Shihao Han, Ka Chun Cheung, Jan Kautz, Carlos Guestrin, et al. One-minute video generation with test-time training. *arXiv preprint arXiv:2504.05298*, 2025.
- [16] Peter Dayan and Geoffrey E Hinton. Feudal reinforcement learning. In *NeurIPS*, 1992.

- [17] Michael Dennis, Natasha Jaques, Eugene Vinitsky, Alexandre Bayen, Stuart Russell, Andrew Critch, and Sergey Levine. Emergent complexity and zero-shot transfer via unsupervised environment design. In *NeurIPS*, 2020.
- [18] Ishan Durugkar, Mauricio Tec, Scott Niekum, and Peter Stone. Adversarial intrinsic motivation for reinforcement learning. In *NeurIPS*, 2021.
- [19] Onno Eberhard, Jakob Hollenstein, Cristina Pinneri, and Georg Martius. Pink noise is all you need: Colored noise exploration in deep reinforcement learning. In *ICLR*, 2023.
- [20] Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O. Stanley, and Jeff Clune. First return, then explore. *Nature*, 590(7847), 2021.
- [21] Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diversity is all you need: Learning skills without a reward function. In *ICLR*, 2019.
- [22] Benjamin Eysenbach, Tianjun Zhang, Ruslan Salakhutdinov, and Sergey Levine. Contrastive learning as goal-conditioned reinforcement learning. In *NeurIPS*, 2022.
- [23] Carlos Florensa, David Held, Xinyang Geng, and Pieter Abbeel. Automatic goal generation for reinforcement learning agents. In *ICML*, 2018.
- [24] Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function approximation error in actor-critic methods. In *ICML*, 2018.
- [25] Jonas Gehring, Gabriel Synnaeve, Andreas Krause, and Nicolas Usunier. Hierarchical skills for efficient exploration. In *NeurIPS*, 2021.
- [26] Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.
- [27] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor. In *ICML*, 2018.
- [28] Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. Soft actor-critic algorithms and applications. *arXiv preprint arXiv:1812.05905*, 2018.
- [29] Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control: Learning behaviors by latent imagination. In *ICLR*, 2020.
- [30] Danijar Hafner, Timothy Lillicrap, Mohammad Norouzi, and Jimmy Ba. Mastering atari with discrete world models. In *ICLR*, 2021.
- [31] Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse control tasks through world models. *Nature*, 2025.
- [32] Nicklas Hansen, Rishabh Jangir, Yu Sun, Guillem Alenyà, Pieter Abbeel, Alexei A Efros, Lerrel Pinto, and Xiaolong Wang. Self-supervised policy adaptation during deployment. In *ICLR*, 2021.
- [33] Moritz Hardt and Yu Sun. Test-time training on nearest neighbors for large language models. In *ICLR*, 2024.
- [34] Philipp Hennig and Christian J Schuler. Entropy search for information-efficient global optimization. *JMLR*, 2012.
- [35] Edward S. Hu, Richard Chang, Oleh Rybkin, and Dinesh Jayaraman. Planning goals for exploration. In *ICLR*, 2023.
- [36] Jonas Hübotter, Sascha Bongni, Ido Hakimi, and Andreas Krause. Efficiently learning at test-time: Active fine-tuning of llms. In *ICLR*, 2025.

- [37] Jonas Hübotter, Bhavya Sukhija, Lenart Treven, Yarden As, and Andreas Krause. Transductive active learning: Theory and applications. In *NeurIPS*, 2024.
- [38] Paweł Ladosz, Lilian Weng, Minwoo Kim, and Hyondong Oh. Exploration in deep reinforcement learning: A survey. *Information Fusion*, 85, 2022.
- [39] Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive uncertainty estimation using deep ensembles. In *NeurIPS*, 2017.
- [40] Seungjae Lee, Daesol Cho, Jonghae Park, and H Jin Kim. Cqm: Curriculum reinforcement learning with a quantized world model. In *NeurIPS*, 2023.
- [41] Xuefeng Li, Haoyang Zou, and Pengfei Liu. Limr: Less is more for rl scaling. *arXiv preprint arXiv:2502.11886*, 2025.
- [42] David JC MacKay. Information-based objective functions for active data selection. *Neural computation*, 4(4), 1992.
- [43] Russell Mendonca, Oleh Rybkin, Kostas Daniilidis, Danijar Hafner, and Deepak Pathak. Discovering and achieving goals via world models. In *NeurIPS*, 2021.
- [44] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. *arXiv preprint arXiv:1312.5602*, 2013.
- [45] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis. Human-level control through deep reinforcement learning. *Nature*, 518(7540), 2015.
- [46] Ofir Nachum, Shixiang Shane Gu, Honglak Lee, and Sergey Levine. Data-efficient hierarchical reinforcement learning. In *NeurIPS*, 2018.
- [47] Soroush Nasiriany, Vitchyr H. Pong, Ashvin Nair, Alexander Khazatsky, Glen Berseth, and Sergey Levine. Disco rl: Distribution-conditioned reinforcement learning for general-purpose policies. In *ICRA*, 2021.
- [48] Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. Deep exploration via bootstrapped dqn. In *NeurIPS*, 2016.
- [49] Ian Osband, Benjamin Van Roy, and Zheng Wen. Generalization and exploration via randomized value functions. In *ICML*, 2016.
- [50] Ian Osband, Zheng Wen, Seyed Mohammad Asghari, Vikrant Dwaracherla, Morteza Ibrahimi, Xiuyuan Lu, and Benjamin Van Roy. Epistemic neural networks. In *NeurIPS*, 2023.
- [51] Seohong Park, Oleh Rybkin, and Sergey Levine. Metra: Scalable unsupervised rl with metric-aware abstraction. In *ICLR*, 2024.
- [52] Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration by self-supervised prediction. In *ICML*, 2017.
- [53] Silviu Pitis, Harris Chan, Stephen Zhao, Bradly Stadie, and Jimmy Ba. Maximum entropy gain exploration for long horizon multi-goal reinforcement learning. In *ICML*, 2020.
- [54] Matthias Plappert, Marcin Andrychowicz, Alex Ray, Bob McGrew, Bowen Baker, Glenn Powell, Jonas Schneider, Josh Tobin, Maciek Chociej, Peter Welinder, et al. Multi-goal reinforcement learning: Challenging robotics environments and request for research. *arXiv preprint arXiv:1802.09464*, 2018.
- [55] Gabriel Poesia, David Broman, Nick Haber, and Noah Goodman. Learning formal mathematics from intrinsic motivation. In *NeurIPS*, 2024.

- [56] Vitchyr H. Pong, Murtaza Dalal, Steven Lin, Ashvin Nair, Shikhar Bahl, and Sergey Levine. Skew-fit: State-covering self-supervised reinforcement learning. In *ICML*, 2020.
- [57] Zhizhou Ren, Kefan Dong, Yuan Zhou, Qiang Liu, and Jian Peng. Exploration via hindsight goal generation. In *NeurIPS*, 2019.
- [58] Martin Riedmiller, Roland Hafner, Thomas Lampe, Michael Neunert, Jonas Degrave, Tom Wiele, Vlad Mnih, Nicolas Heess, and Jost Tobias Springenberg. Learning by playing solving sparse reward tasks from scratch. In *ICML*, 2018.
- [59] Daniel Russo and Benjamin Van Roy. Learning to optimize via information-directed sampling. In *NeurIPS*, 2014.
- [60] Daniel J Russo, Benjamin Van Roy, Abbas Kazerouni, Ian Osband, Zheng Wen, et al. A tutorial on thompson sampling. *Foundations and Trends® in Machine Learning*, 11(1), 2018.
- [61] Cansu Sancaktar, Sebastian Blaes, and Georg Martius. Curious exploration via structured world models yields zero-shot object manipulation. In *NeurIPS*, 2022.
- [62] Erdi Sayar, Giovanni Iacca, Ozgur S Oguz, and Alois Knoll. Diffusion-based curriculum reinforcement learning. In *NeurIPS*, 2024.
- [63] Tom Schaul, Daniel Horgan, Karol Gregor, and David Silver. Universal value function approximators. In *ICML*, 2015.
- [64] Jürgen Schmidhuber. Learning to generate sub-goals for action sequences. In *Artificial neural networks*, 1991.
- [65] Jürgen Schmidhuber. Powerplay: Training an increasingly general problem solver by continually searching for the simplest still unsolvable problem. *Frontiers in psychology*, 4, 2013.
- [66] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, Sander Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the game of go with deep neural networks and tree search. *Nature*, 529(7587), 2016.
- [67] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. Mastering chess and shogi by self-play with a general reinforcement learning algorithm. *arXiv preprint arXiv:1712.01815*, 2017.
- [68] Niranjan Srinivas, Andreas Krause, Sham M Kakade, and Matthias Seeger. Gaussian process optimization in the bandit setting: No regret and experimental design. In *ICML*, 2010.
- [69] Sainbayar Sukhbaatar, Zeming Lin, Ilya Kostrikov, Gabriel Synnaeve, Arthur Szlam, and Rob Fergus. Intrinsic motivation and automatic curricula via asymmetric self-play. In *ICLR*, 2018.
- [70] Bhavya Sukhija, Lenart Treven, Cansu Sancaktar, Sebastian Blaes, Stelian Coros, and Andreas Krause. Optimistic active exploration of dynamical systems. In *NeurIPS*, 2023.
- [71] Bhavya Sukhija, Stelian Coros, Andreas Krause, Pieter Abbeel, and Carmelo Sferrazza. Maxinforl: Boosting exploration in reinforcement learning through information gain maximization. In *ICLR*, 2025.
- [72] Bhavya Sukhija, Lenart Treven, Carmelo Sferrazza, Florian Dorfler, Pieter Abbeel, and Andreas Krause. Optimism via intrinsic rewards: Scalable and principled exploration for model-based reinforcement learning. In *ICLR 2025 Robot Learning Workshop: Towards Robots with Human-Level Abilities*, 2025.
- [73] Yu Sun, Xiaolong Wang, Zhuang Liu, John Miller, Alexei Efros, and Moritz Hardt. Test-time training with self-supervision for generalization under distribution shifts. In *ICML*, 2020.

- [74] Yu Sun, Xinhao Li, Karan Dalal, Jiarui Xu, Arjun Vikram, Genghan Zhang, Yann Dubois, Xinlei Chen, Xiaolong Wang, Sanmi Koyejo, et al. Learning to (learn at test time): Rnns with expressive hidden states. *arXiv preprint arXiv:2407.04620*, 2024.
- [75] Richard S. Sutton and Andrew G. Barto. *Reinforcement Learning: An Introduction*. The MIT Press, second edition, 2018.
- [76] Richard S. Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps: A framework for temporal abstraction in reinforcement learning. *Artificial Intelligence*, 112(1), 1999.
- [77] Haoran Tang, Rein Houthooft, Davis Foote, Adam Stooke, OpenAI Xi Chen, Yan Duan, John Schulman, Filip DeTurck, and Pieter Abbeel. # exploration: A study of count-based exploration for deep reinforcement learning. In *NeurIPS*, 2017.
- [78] Jean Tarbouriech, Omar Darwiche Domingues, Pierre Menard, Matteo Pirotta, Michal Valko, and Alessandro Lazaric. Adaptive multi-goal exploration. In *AISTATS*, 2022.
- [79] Gerald Tesauro. Td-gammon, a self-teaching backgammon program, achieves master-level play. *Neural computation*, 6(2), 1994.
- [80] Alexander Trott, Stephan Zheng, Caiming Xiong, and Richard Socher. Keeping your distance: Solving sparse reward tasks using self-balancing shaped rewards. In *NeurIPS*, 2019.
- [81] Hado van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-learning. In *AAAI*, 2016.
- [82] Rui Wang, Joel Lehman, Jeff Clune, and Kenneth O Stanley. Paired open-ended trailblazer (poet): Endlessly generating increasingly complex and diverse learning environments and their solutions. *arXiv preprint arXiv:1901.01753*, 2019.
- [83] Tongzhou Wang, Antonio Torralba, Phillip Isola, and Amy Zhang. Optimal goal-reaching reinforcement learning via quasimetric learning. In *ICML*, 2023.
- [84] Yiping Wang, Qing Yang, Zhiyuan Zeng, Liliang Ren, Lucas Liu, Baolin Peng, Hao Cheng, Xuehai He, Kuan Wang, Jianfeng Gao, et al. Reinforcement learning for reasoning in large language models with one training example. *arXiv preprint arXiv:2504.20571*, 2025.
- [85] David Warde-Farley, Tom Van de Wiele, Tejas Kulkarni, Catalin Ionescu, Steven Hansen, and Volodymyr Mnih. Unsupervised control through non-parametric discriminative rewards. *arXiv preprint arXiv:1811.11359*, 2018.
- [86] Yunzhi Zhang, Pieter Abbeel, and Lerrel Pinto. Automatic curriculum learning through value disagreement. In *NeurIPS*, 2020.
- [87] Andrew Zhao, Yiran Wu, Yang Yue, Tong Wu, Quentin Xu, Matthieu Lin, Shenzhi Wang, Qingyun Wu, Zilong Zheng, and Gao Huang. Absolute zero: Reinforced self-play reasoning with zero data. *arXiv preprint arXiv:2505.03335*, 2025.
- [88] Yuxin Zuo, Kaiyan Zhang, Shang Qu, Li Sheng, Xuekai Zhu, Biqing Qi, Youbang Sun, Ganqu Cui, Ning Ding, and Bowen Zhou. Ttrl: Test-time reinforcement learning. *arXiv preprint arXiv:2504.16084*, 2025.

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [\[Yes\]](#)

Justification: The abstract outlines the main contribution presented in the paper. All empirical claims are supported by the presented experiments in the Results section. All theoretical contributions are supported by the results presented in the Section 4.2. All proofs are presented in Appendix C.

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the contributions made in the paper and important assumptions and limitations. A No or NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [\[Yes\]](#)

Justification: In the conclusion section we outline the main limitation of our work, which is the assumption in the theoretical part that the learned value function provides a well-calibrated model of the true value function. This assumption is unrealistic in practice, due to the update of the value function using bootstrapped estimates. Although we performed extensive evaluation on three complex control tasks, further experiments especially in other domain would support the argument, but are beyond the scope of this paper.

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best

judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [\[Yes\]](#)

Justification: All assumptions and proofs for all theoretical results are outlined in Appendix C.

Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [\[Yes\]](#)

Justification: All experiments in the paper are easily reproducible by following the instructions provided in the README.md file in the attached code submission.

Guidelines:

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
 - (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
 - (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
 - (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [\[Yes\]](#)

Justification: All code used for implementing the method and running all experiments is attached to the submission. All experimental results are reproducible by following the instructions provided in the README.md file. No additional datasets were used for the experiments of this paper.

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (<https://nips.cc/public/guides/CodeSubmissionPolicy>) for more details.
- While we encourage the release of code and data, we understand that this might not be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (<https://nips.cc/public/guides/CodeSubmissionPolicy>) for more details.
- The authors should provide instructions on data access and preparation, including how to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [\[Yes\]](#)

Justification: We outline the most relevant implementation details in Appendix E and list the most relevant hyperparameter choices in Table 2. All further implementation detail can be found in the provided implementations.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [\[Yes\]](#)

Justification: All results are accompanied by error bars. All experiments were performed for 10 different seeds and the mean and one standard error is reported.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.
- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: All experiments were run on an internal cluster using a single NVIDIA GeForce RTX 2080 Ti GPU for each run. Any standard consumer GPU is sufficient for running all experiments. The experiments require at most 16GB of memory. The longest experiment run took approximately 50 hours and to reproduce all experiments about 800 runs, totalling an approximated 8000 compute hours.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics <https://neurips.cc/public/EthicsGuidelines>?

Answer: [Yes]

Justification: The research conducted in this paper respects the NeurIPS code of ethics in every respect.

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a deviation from the Code of Ethics.

- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the broader societal impacts in the following: Improving the efficiency of exploration is one of the key challenges in sparse-reward reinforcement learning. The societal impacts of improved reinforcement learning systems are broad due to their wide applicability. This includes major societal benefits such as improved robotics, accelerating scientific progress, etc. Of course, the overall RL framework is so general that potential misuse cannot be ruled out.

Guidelines:

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.
- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.
- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper doesn't release any data or model, which poses any risk.

Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with necessary safeguards to allow for controlled use of the model, for example by requiring that users adhere to usage guidelines or restrictions to access the model or implementing safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do not require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [\[Yes\]](#)

Justification: For our experiments we adapt the JaxGCRL code base and cite the original authors properly. No additional existing assets are used.

Guidelines:

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.
- If assets are released, the license, copyright information, and terms of use in the package should be provided. For popular datasets, [paperswithcode.com/datasets](#) has curated licenses for some datasets. Their licensing guide can help determine the license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.
- If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [\[Yes\]](#)

Justification: The only asset introduced in this work is the implementation of the novel DISCOVER method along side its baselines. We provide the implementation along side a documentation for understanding the main components and reproducing the experiments.

Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [\[NA\]](#)

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.

- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.
- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorosity, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any important, original, or non-standard components.

Guidelines:

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (<https://neurips.cc/Conferences/2025/LLM>) for what should or should not be described.

Appendices

A Additional Related Work	23
B Connection to the Likelihood of Success	23
C Proofs	23
C.1 Notation	23
C.2 Assumptions	24
C.3 Proof of Informal Theorem 4.2	24
D Additional Experimental Results	28
E Implementation Details	33
E.1 Probabilistic Value Estimation	33
E.2 Environment Details	33
E.3 Training Hyperparameters	34

A Additional Related Work

Self-play Many games can be naturally formulated as sparse-reward reinforcement learning problems, where the agent receives a reward only upon winning. Seminal works have achieved superhuman ability using this approach [e.g., 45, 66, 67, 7]. A central technique, enabling these successes, is self-play [79, 64, 65, 66]. There are clear connections between these techniques and the directed exploration in DISCOVER. Self-play can be viewed as a form of goal selection [64, 65], where the current agent (or a simultaneously trained agent) is chosen as its own opponent. This opponent selection promotes *achievability*, as it is possible to beat a recent version of yourself, *novelty* as the opponent is of similar ability, and *relevance* as it is the currently strongest opponent to beat.

Hierarchical RL DISCOVER is closely related to the field of hierarchical RL [76, 16, 46], which aims to explore and plan at a higher level of abstraction. Recent methods have introduced frameworks in which multiple hierarchical levels are used to propose and learn skills [46, 25]. In this work, we focus on a simplified setting in which a single goal is selected for exploration in each episode. However, the general approach can be naturally extended to more complex hierarchical structures.

Directed exploration in sequential decision making DISCOVER is designed to efficiently address the exploration-exploitation dilemma, a key concept in sequential decision making. Fundamentally, it expresses an agent’s inevitable trade-off between the objectives of learning its environment and solving a task. A particularly common approach to balancing exploration and exploitation is grounded in the principle of optimism in the face of uncertainty [e.g., 68]. Thereby, the agent selects actions that maximize an upper confidence bound (UCB) of the reward function, i.e., it selects actions which based on the agents’ imperfect knowledge *could* lead to a large reward. In many settings of sequential decision making, such as linear bandits, this approach achieves the rate-optimal regret $R_T \sim \tilde{O}(d\sqrt{T})$ [68, 2, 1, 13]. The DISCOVER objective extends UCB to the problem of goal selection in RL. Beyond UCB, many other methods have been shown to effectively direct exploration towards “relevant” experience, such as in bandits [e.g., 60, 59, 34], in RL [e.g., 14, 72], or in active learning [e.g., 42, 37, 6].

B Connection to the Likelihood of Success

From a goal-reaching perspective, the undiscounted version of the DISCOVER criterion is tightly connected to the actual objective of the agent, i.e., reaching the target goal. This emerges naturally as when $\gamma \rightarrow 1$, $\epsilon \rightarrow 0$, and $\pi \rightarrow \pi^*$, the value function becomes a (negative) quasimetric [83]. Thus, it is non-positive, and respects the triangle inequality,

$$V^\pi(s_0, g) + V^\pi(g, g^*) \leq V^\pi(s_0, g^*), \quad (5)$$

for arbitrary $s_0 \in \mathcal{S}$, $g, g^* \in \mathcal{G}$. Note that the direction of the inequality is flipped as the value function represents a negative distance. For $\alpha = 0.5$, DISCOVER maximizes a probabilistic estimate of the left hand side of Equation (5), which is a tight lower-bound to $V^\pi(s_0, g^*)$. The value $V^\pi(s_0, g^*)$ is exactly the quantity of interest for the agent, as it represents the negative expected number of steps to reach the true goal g^* . Intuitively, DISCOVER selects goals that are optimistically going to guarantee the shortest path to the actual goal or, in the undiscounted case, the likelihood of reaching it within an episode.

C Proofs

In this section, we prove the theoretical guarantee informally stated in Informal Theorem 4.2. We begin by introducing some useful notation and the formal assumptions before proving Theorem C.9.

C.1 Notation

We define the reward function $r^*(g) = \alpha V^*(s_0, g) + (1 - \alpha)V^*(g, g^*)$ for any fixed $\alpha \in (0, \frac{1}{2})$. We define $d^*(g, g') = -V^*(g, g^*)$. We denote by $\mathcal{G}_t \subseteq \mathcal{G}$ the goals that are achievable by the agent in episode t with probability at least α , i.e., the policy is able to reach goals within \mathcal{G}_t with probability at least α . We use \log to denote the natural logarithm. For simplicity, we assume throughout that the initial state s_0 is fixed across all episodes.

C.2 Assumptions

Assumption C.1 (Linear value function within feature space). For any $n \geq 1$ and for all $g \in \mathcal{G}_n$, the value functions $V^*(s_0, g)$ and $V^*(g, g^*)$ are linear in the features $\phi(\cdot), \varphi(\cdot) \in \mathbb{R}^d$ with $\phi(\cdot) \perp \varphi(\cdot)$, i.e.,

$$V^*(s_0, g) = \langle \phi(g), \theta \rangle \quad \text{and} \quad V^*(g, g^*) = \langle \varphi(g), \theta' \rangle$$

for some fixed $\theta, \theta' \in \mathbb{R}^d$ with $\|\theta\|_2, \|\theta'\|_2 \leq 1$.

Assumption C.2 (Noisy feedback). In episode t , selecting any $g_t \in \mathcal{G}_t$, the agent receives noisy feedback $y_t = r^*(g_t) + \varepsilon_t$. We assume that the noise sequence $\{\varepsilon_t\}_{t=1}^\infty$ is conditionally R -sub-Gaussian for a fixed constant $R \geq 0$, i.e.,

$$\forall t \geq 0, \quad \forall \lambda \in \mathbb{R}, \quad \mathbb{E}[e^{\lambda \varepsilon_t} | \mathcal{F}_{t-1}] \leq \exp\left(\frac{\lambda^2 R^2}{2}\right)$$

where \mathcal{F}_{t-1} is the σ -algebra generated by the random variables $\{g_s, \varepsilon_s\}_{s=1}^{t-1}$ and g_t .

Assumption C.3 (Value function estimates). For any $h \geq 1, t \geq h$, the value function estimate relative to s_0 is given by

$$\begin{aligned} V_t(s_0, \cdot) &\stackrel{\text{def}}{=} \phi(\cdot)^\top (\Sigma_t + \lambda I)^{-1} \sum_{s=h}^{t-1} \phi(g_s) y_s, \\ \sigma_t(s_0, \cdot) &\stackrel{\text{def}}{=} \sqrt{\phi(\cdot)^\top (\Sigma_t + \lambda I)^{-1} \phi(\cdot)}, \end{aligned}$$

where $\Sigma_t = \sum_{s=h}^{t-1} \phi(g_s) \phi(g_s)^\top$ and $\lambda > 0$. The value function estimate relative to g^* is defined analogously with respect to the feature vector $\varphi(\cdot)$.

Assumption C.4 (Goal space contains optimal paths⁵). For any goal $g' \in \mathcal{G}$, the optimal path from g' to g^* is contained in \mathcal{G} . Formally, there exists a $g \in \mathcal{G}$ such that $d^*(g', g^*) = d^*(g', g) + d^*(g, g^*)$ for any $d^*(g', g) \in [0, d^*(g', g^*)]$.

Assumption C.5 (Goal achievability). We denote by $\mathcal{G}_t \subseteq \mathcal{G}$ the goals that are achievable by the agent in episode t with probability at least $\alpha \in (0, 1)$. Moreover, for any $t \geq 1$, the \mathcal{G}_t contains all goals $g \in \mathcal{G}$ for which we have previously selected a goal, which is $(1 - \alpha)\kappa$ -close (under the optimal value function). We call $\kappa > 0$ the *expansion rate*. Formally,

$$\mathcal{G}_{t+1} \supseteq \{g \in \mathcal{G} \mid \exists t' \leq t : d^*(g_{t'}, g) \leq (1 - \alpha)\kappa\}.$$

Further, $\mathcal{G}_0 \supseteq \{s_0\}$, i.e., the initial state is always achievable.

Relaxing Assumption C.2 One can consider any individual feedback y_t as being the result of an oracle that achieves the commanded goal g_t with probability at least α within K episodes. With this looser assumption, our bound in Informal Theorem 4.2 simply increases by a factor K .

C.3 Proof of Informal Theorem 4.2

We begin by restating the regret bound obtained for linear bandits in [13].

Proposition C.6. *Let Assumptions C.1 to C.3 hold. Fix any $\delta \in (0, 1), n \geq 1, \alpha \in (0, 1)$, and let*

$$\beta_t = 1 + R \sqrt{2(d \log(t - n + 1) + 1 + \log(1/\delta))} \quad \text{for } t \geq n. \quad (6)$$

We then have with probability $1 - \delta$ that the regret of selecting goals g_n, g_{n+1}, \dots with $\text{DISCOVER}(\alpha, \beta_t)$ is bounded by

$$\sum_{t=h}^{h+T} \max_{g \in \mathcal{G}_n} r^*(g) - r^*(g_t) \leq O(d\sqrt{T} \log T \log(1/\delta)).$$

⁵This assumption simply states that the goal space \mathcal{G} is geodesically convex under the quasimetric d^* induced by the optimal value function. This is a standard “reachability” condition, which may be familiar to readers from control theory.

Proof. By Theorem 3 in [13] and using that the feature spaces ϕ and φ are orthogonal (cf. Assumption C.1), we have

$$\sum_{t=h}^{h+T} \max_{g \in \mathcal{G}_n} r^*(g) - r^*(g_t) \leq O(\sqrt{T}(B\sqrt{\gamma_T} + \gamma_T + \sqrt{\gamma_T} \log(1/\delta)))$$

with $B = 1$. Bounding $\gamma_T \leq O(d \log T)$ using Assumption C.1, completes the proof. \square

Lemma C.7. *Let Assumption C.4 hold and fix any $\epsilon > 0, \alpha > 0$. Then, for all $g' \in \mathcal{G}$ with $d^*(g', g^*) \geq \epsilon$ there exists a $g \in \mathcal{G}$ with $d^*(g, g') = \epsilon$ such that $r^*(g) - r^*(g') \geq (1 - 2\alpha)\epsilon$.*

Proof. Consider the optimal path from g' to g^* , i.e., the goals g satisfying

$$d^*(g', g^*) = d^*(g', g) + d^*(g, g^*).$$

By Assumption C.4, for any $d^*(g', g) \in [0, \epsilon]$, we have that $g \in \mathcal{G}$. We take the goal g such that $d^*(g', g) = \epsilon$. We then obtain

$$\begin{aligned} r^*(g) - r^*(g') &= \alpha(V^*(s_0, g) - V^*(s_0, g')) + (1 - \alpha)(V^*(g, g^*) - V^*(g', g^*)) \\ &= \alpha(d^*(s_0, g') - d^*(s_0, g)) + (1 - \alpha)(d^*(g', g^*) - d^*(g, g^*)) \\ &= \alpha(d^*(s_0, g') - d^*(s_0, g)) + (1 - \alpha)\epsilon \\ &\geq \alpha(d^*(s_0, g') - (d^*(s_0, g') + d^*(g', g))) + (1 - \alpha)\epsilon \quad (\text{triangle inequality}) \\ &= -\alpha d^*(g', g) + (1 - \alpha)\epsilon \\ &= -\alpha\epsilon + (1 - \alpha)\epsilon \\ &= (1 - 2\alpha)\epsilon. \end{aligned}$$

\square

Lemma C.8 (Improvement lemma). *Let Assumptions C.1 to C.4 hold with β_t as in Equation (6). Fix any $\delta \in (0, 1)$, $n \geq 1$, $\epsilon > 0$, $\alpha \in (0, \frac{1}{2})$ and $0 < \Delta < (1 - 2\alpha)\epsilon$. With probability $1 - \delta$, there exist a $t' \in \{n, \dots, n + T\}$ with $T = \Theta(\frac{d^2}{\alpha((1 - 2\alpha)\epsilon - \Delta)^2})$ and a $\tilde{g} \in \mathcal{G}$ with $d^*(g_{t'}, \tilde{g}) \leq \epsilon$ such that*

$$r^*(\tilde{g}) - \max_{g \in \mathcal{G}_n} r^*(g) \geq \Delta.$$

Proof. With probability $1 - \frac{\delta}{2}$, the number of episodes T until the agent has achieved T_{ach} of its goals is bounded as $T = \tilde{\Theta}(\frac{T_{\text{ach}}}{\alpha})$.⁶ We denote by $\mathcal{T} \subseteq \{n, \dots, n + T\}$ the set of episodes in which the agent has achieved its goal. Further, by Proposition C.6, also with probability $1 - \frac{\delta}{2}$, we have

$$R_n \stackrel{\text{def}}{=} \frac{1}{|\mathcal{T}|} \sum_{t \in \mathcal{T}} \max_{g \in \mathcal{G}_n} r^*(g) - r^*(g_t) \leq \tilde{O}(d/\sqrt{|\mathcal{T}|}).$$

All further steps are conditional on the union of the above high probability events. Thus, the regret in successful episodes is bounded by $R_n \leq \tilde{O}(d/\sqrt{T_{\text{ach}}})$.

Observe that for some $T_{\text{ach}} = \tilde{\Theta}(d^2/((1 - 2\alpha)\epsilon - \Delta)^2)$, we have that $R_n \leq (1 - 2\alpha)\epsilon - \Delta$, where the conditions $\alpha < \frac{1}{2}$ and $\Delta < (1 - 2\alpha)\epsilon$ ensure that the bound on the regret is positive. This then implies that there exists a $t' \in \mathcal{T}$ such that

$$\max_{g \in \mathcal{G}_n} r^*(g) - r^*(g_{t'}) \leq (1 - 2\alpha)\epsilon - \Delta \tag{7}$$

Further, by Lemma C.7, there exists a $\tilde{g} \in \mathcal{G}$ such that $d^*(g_{t'}, \tilde{g}) = \epsilon$ and

$$r^*(\tilde{g}) - r^*(g_{t'}) \geq (1 - 2\alpha)\epsilon. \tag{8}$$

Combining the above, we obtain

$$r^*(\tilde{g}) - \max_{g \in \mathcal{G}_n} r^*(g) \geq r^*(\tilde{g}) - [(1 - 2\alpha)\epsilon - \Delta + r^*(g_{t'})] \tag{Equation (7)}$$

$$\begin{aligned} &= r^*(\tilde{g}) - r^*(g_{t'}) - (1 - 2\alpha)\epsilon + \Delta \\ &\geq (1 - 2\alpha)\epsilon - (1 - 2\alpha)\epsilon + \Delta \\ &= \Delta. \end{aligned} \tag{Equation (8)}$$

\square

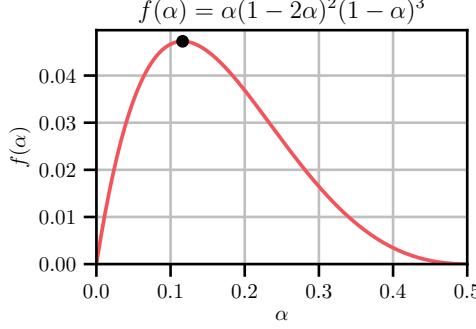


Figure 7: Plotting the effect of the parameter α on the (inverse) goal-achieval rate (cf. Theorem C.9). The target goal is reached fastest for $\alpha \approx 0.1$.

Theorem C.9. *Let Assumptions C.1 to C.5 hold with β_t as in Equation (6). Fix any $\delta \in (0, 1)$, $\alpha \in (0, \frac{1}{2})$, and let $D = d^*(s_0, g^*)$. Then, with probability $1 - \delta$, selecting goals g_t with $\text{DISCOVER}(\alpha, \beta_t)$, the number of episodes N until $g^* \in \mathcal{G}_N$ is bounded by $N \leq \tilde{O}(\frac{Dd^2}{\alpha(1-2\alpha)^2(1-\alpha)^3\kappa^3}) = \tilde{O}(\frac{Dd^2}{\kappa^3})$.*

Proof. We first note that

$$\begin{aligned} r^*(g^*) - r^*(s_0) &= \alpha(V^*(s_0, g^*) - V^*(s_0, s_0)) + (1 - \alpha)(V^*(g^*, g^*) - V^*(s_0, g^*)) \\ &= \alpha V^*(s_0, g^*) - (1 - \alpha)V^*(s_0, g^*) \\ &= (2\alpha - 1)V^*(s_0, g^*) = (1 - 2\alpha)d^*(s_0, g^*) = (1 - 2\alpha)D. \end{aligned}$$

We prove the theorem by applying Lemma C.8 $M \stackrel{\text{def}}{=} \lceil \frac{(1-2\alpha)D}{\Delta} \rceil$ times, while setting $\epsilon = (1 - \alpha)\kappa$. First, for an arbitrary $0 \leq i \leq M - 1$, we assume for the goal set \mathcal{G}_{iT} with some $T = \Theta(\frac{d^2}{\alpha((1-2\alpha)(1-\alpha)\kappa - \Delta)^2})$ that it holds that

$$\max_{g \in \mathcal{G}_{iT}} r^*(g) \geq r^*(s_0) + i\Delta.$$

Now, applying Lemma C.8 yields that after an additional T steps, with high probability, there exists a $t' \in \{iT, \dots, (i+1)T\}$ such that there is a $\tilde{g} \in \mathcal{G}$ with $d^*(g_{t'}, \tilde{g}) \leq (1 - \alpha)\kappa$ satisfying

$$r^*(\tilde{g}) - \max_{g \in \mathcal{G}_{iT}} r^*(g) \geq \Delta.$$

Hence, by Assumption C.5, we have that $\tilde{g} \in \mathcal{G}_{(i+1)T}$, and therefore,

$$\max_{g \in \mathcal{G}_{(i+1)T}} r^*(g) \geq r^*(\tilde{g}) \geq \Delta + \max_{g \in \mathcal{G}_{iT}} r^*(g) \geq r^*(s_0) + (i+1)\Delta.$$

Iterating this argument M times and applying a union bound, we obtain

$$\max_{g \in \mathcal{G}_{MT}} r^*(g) \geq r^*(s_0) + M\Delta \geq r^*(g^*).$$

The total number of episodes is

$$N \stackrel{\text{def}}{=} MT \leq \tilde{O}\left(\frac{(1-2\alpha)Dd^2}{\Delta\alpha((1-2\alpha)(1-\alpha)\kappa - \Delta)^2}\right).$$

We can optimize α and Δ to minimize N under the constraints $0 < \alpha < \frac{1}{2}$, $\Delta > 0$, and $\Delta < (1 - 2\alpha)(1 - \alpha)\kappa$. The optimal choices are $\Delta = \frac{1}{3}(1 - 2\alpha)(1 - \alpha)\kappa$ and $\alpha \approx 0.1$. Substituting, we obtain $N \leq \tilde{O}(\frac{Dd^2}{\alpha(1-2\alpha)^2(1-\alpha)^3\kappa^3}) = \tilde{O}(\frac{Dd^2}{\kappa^3})$. \square

Finally, we include a technical lemma that is used in the proof of Lemma C.8.

⁶See Lemma C.10.

Lemma C.10. *Let $0 < \alpha \leq 1$, $0 < \delta < 1$ and suppose $T_{\text{ach}} \geq 8 \log(1/\delta)$. Furthermore, let $X_1, \dots, X_T \stackrel{\text{i.i.d.}}{\sim} \text{Bern}(\alpha)$ and $S_T = \sum_{t=1}^T X_t$. Then, for some $T = \tilde{\Theta}(\frac{T_{\text{ach}}}{\alpha})$, with probability $1 - \delta$, we have $S_T \geq T_{\text{ach}}$.*

Proof. Set

$$\gamma = \sqrt{\frac{2 \log(1/\delta)}{T_{\text{ach}}}}, \quad T = \left\lceil \frac{(1+\gamma)^2 T_{\text{ach}}}{\alpha} \right\rceil = \tilde{\Theta}\left(\frac{T_{\text{ach}}}{\alpha}\right), \quad \mu = \mathbb{E}[S_T] = \alpha T.$$

Note that $\mu \geq (1 + \gamma)^2 T_{\text{ach}}$ and $0 < \gamma < 1$ (for $T_{\text{ach}} \geq 8 \log(1/\delta)$). Hence,

$$T_{\text{ach}} = (1 - \epsilon) \mu, \quad \epsilon = 1 - \frac{T_{\text{ach}}}{\mu} = \frac{\gamma(2+\gamma)}{(1+\gamma)^2} \geq \frac{\gamma}{1+\gamma} \in (0, 1).$$

By the multiplicative Chernoff bound,

$$\Pr[S_T < T_{\text{ach}}] = \Pr[S_T < (1 - \epsilon)\mu] \leq \exp\left(-\frac{\epsilon^2 \mu}{2}\right) \leq \exp\left(-\frac{\gamma^2 T_{\text{ach}}}{2}\right) = \exp(-\log(1/\delta)) = \delta.$$

□

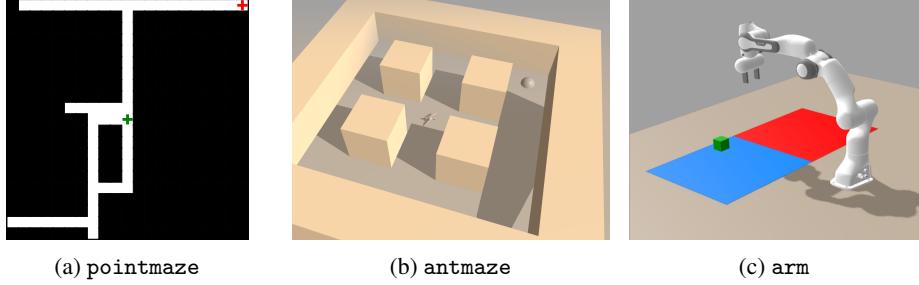


Figure 8: Sparse-reward environments from the JaxGCRL [9] library used in our evaluation. We additionally implement the `pointmaze` environment (left), which allows for arbitrary dimensionality. The maze is created by randomly generating paths in the environment until the target is found sufficiently often.

D Additional Experimental Results

In this section, we present additional experiments and ablations. The environments used for this evaluation are visualized in Figure 8 [9].

In high-dimensional search spaces, even direction estimates with high variance are useful. In complex environments, obtaining accurate direction estimates can be challenging. To evaluate the utility of directed goal selection in scenarios where direction estimates are imprecise, we add Gaussian noise to the target goal location. We then compare the number of environment steps required to reach a 10% target goal achievement rate using the hand-designed goal selection strategy from Figure 5, under varying levels of noise variance. The results in Figure 9 show that even with substantial noise, `pointmaze` environments that are unsolvable by undirected methods, remain solvable by DISCOVER. This demonstrates that even imprecise directional estimates can significantly aid target goal discovery in complex goal spaces.

Ablation of the online parameter adaptation strategy In Figure 10, we evaluate the effect of using the simple proposed adaptation strategy with different target goal achievement ratio p_A^* , and compare with fixing the α_t parameters to 0 (Target Relevance + Novelty) and 0.5 (Fixed DISCOVER). Furthermore, we report the average α_t for DISCOVER for all easy and hard tasks respectively in Figure 11. The comparison of the success rates on the `antmaze` environments demonstrates that the adaptation strategy with any target goal achievement works better than fixing the parameters. This can be observed from the goal achievement rates. If we fix $\alpha_t = 0.5$, we choose goals that are "too easy" and therefore don't explore sufficiently. On the other hand, by fixing $\alpha_t = 0$ we select goals that are "too hard", which also leads to poor improvement. By using the simple adaptation strategy, we roughly achieve the target goal achievement specified. The optimal performance is achieved for the target goal achievement $p_A^* = 0.5$, which is in line with what other methods found [53, 41, 84]. The average α_t , which is found by the adaptation strategy, initially goes up to 0.15, which is roughly what we found in the theoretical analysis in the linear bandit setting (cf. Theorem C.9), and then starts to decay. The decay can be explained by the fact that once we can reach the target goal, we don't need to optimize for achievability anymore.

Influence of the term $\sigma(g, g^*)$ In Figure 12, we study how the standard deviation $\sigma(g, g^*)$ from goal g to the target g^* influences the training. This term theoretically is part of the UCB term, directing the agent towards the target goal. To this end, we fix the contribution of $\sigma(s_0, g)$ (i.e., set

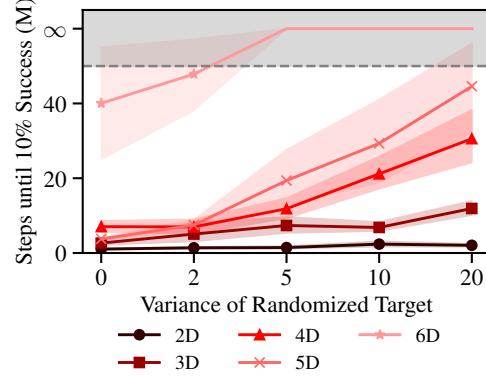


Figure 9: Evaluation of robustness directed goal selection with respect to noisy target estimates. The variance refers to the variance of the random Gaussian noise that is added to the target goal before selecting the goals using the hand-designed goal selection strategy, which uses the L_2 distance to estimate direction.

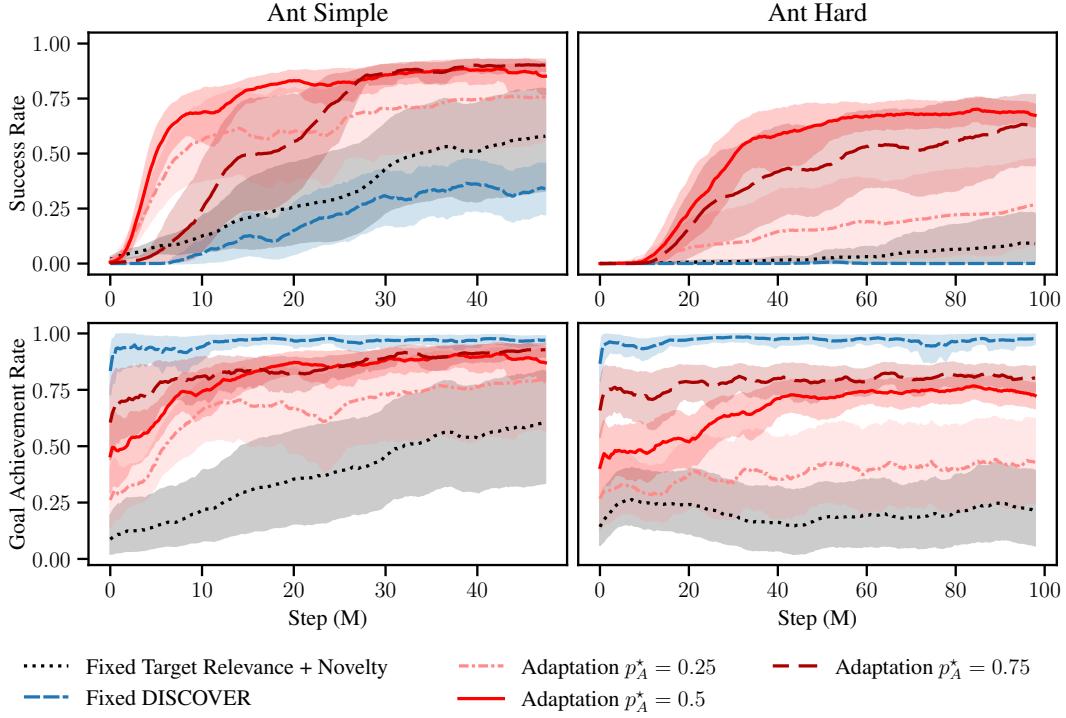


Figure 10: Comparison of how the adaptation strategy influences the goal achievement and success rates. We compare two constant strategies (Fixed DISCOVER and Fixed Target Relevance + Novelty) with an adaptation rule for different goal achievement targets.

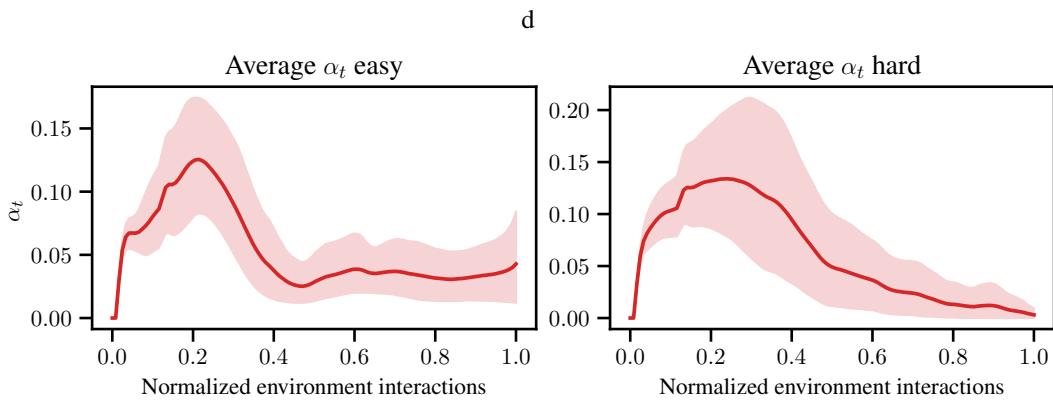


Figure 11: We plot the average α_t over the training, as adapted by the previously introduced online adaptation strategy for the DISCOVER goal selection strategy. The α_t are averaged over the three main environments.

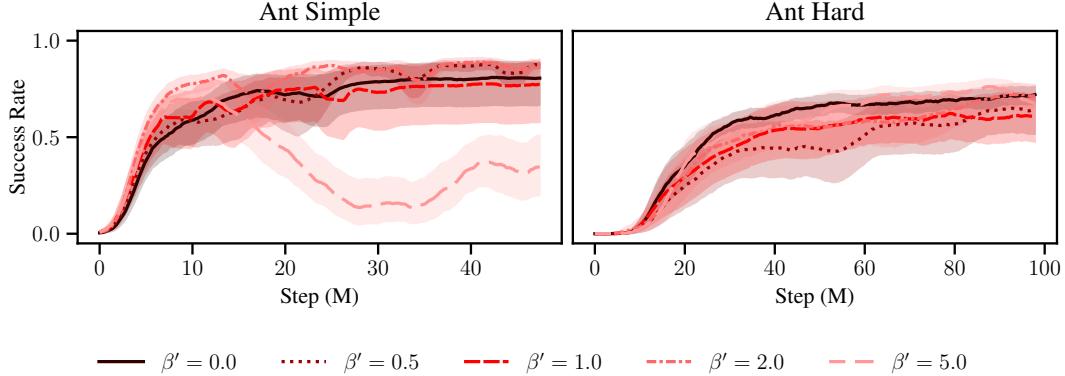


Figure 12: Comparison of how changing the coefficient of $\sigma(g, g^*)$ influences the performance, when training on the two antmaze configurations. We use the configuration with $\beta' = 0$ in all other experiments.

$\beta_t = \frac{1}{\alpha_t}$) and consider a separate fixed $\beta'_t = \frac{\beta'}{1-\alpha}$, which determines the contribution of $\sigma(g, g^*)$. The plot shows that no value for the β' parameter has a significant positive effect on the performance. For this reason, we substitute $\sigma(s_0, g)$ for $\sigma(g, g^*)$ in our other experiments with DISCOVER.

Exploration of DISCOVER + pre-trained prior We visualize the exploration of the DISCOVER + pre-trained prior goal selection strategy in Figure 13. In comparison to DISCOVER starting from a randomly initialized agent, it only explores in the correct direction, avoiding obstacles. This demonstrates that access to prior can further improve performance of DISCOVER.

Investigation of the role of the DISCOVER components for exploration We visualize the different components of the DISCOVER objective over the course of training in Figure 14. The first term $V(s_0, g)$ has high-value close to the initial state. By maximizing it, we will pick a goal that is close to the start and likely to be *achievable*, which matches the intuition. The second term $V(g, g^*)$ represents the value from a goal g to the target goal g^* .

The plots show that in the first episodes the value is small everywhere and only once goals are discovered that are closer to the final target we observe higher values. Over the course of training, its role of encouraging to pick goals *relevant* to the final target becomes more evident. This term therefore directs the goal selection towards the final goal. Finally, the standard deviation $\sigma(s_0, g)$ has the largest value at the border of the current achievable goal set and therefore encourages selecting *novel* goals. In general, the components of the DISCOVER objective during the training match the previously presented intuition and can efficiently guide the goal selection towards the desired target.

Investigation of Direction Estimation To further investigate the ability of the relevance term in the DISCOVER objective to direct the exploration towards the target goal, we plot the Pearson correlation between the relevance term $V^*(g, g^*)$ and a proxy for the true distance $\|g - g^*\|$ in Figure 16a. The correlation in both the antmaze and pointmaze environments increases quickly during training. This indicates that the relevance term captures a useful notion of distance, even before the final goal is reached for the first time. This behavior explains DISCOVER’s superior performance compared to undirected goal-selection strategies, as the value function is able to capture a useful notion of distance to the target, before it was reached. This allows DISCOVER to effectively guide the exploration to the true target goal. Notably, the correlation does not converge to one. This is expected, as the Euclidean distance in the goal space is an imperfect proxy for the true shortest traversable path within the environment.

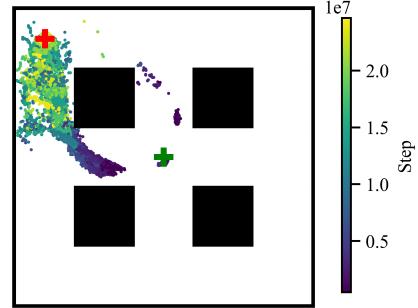


Figure 13: Selected goals by “DISCOVER + pre-trained prior” in the antmaze environment.

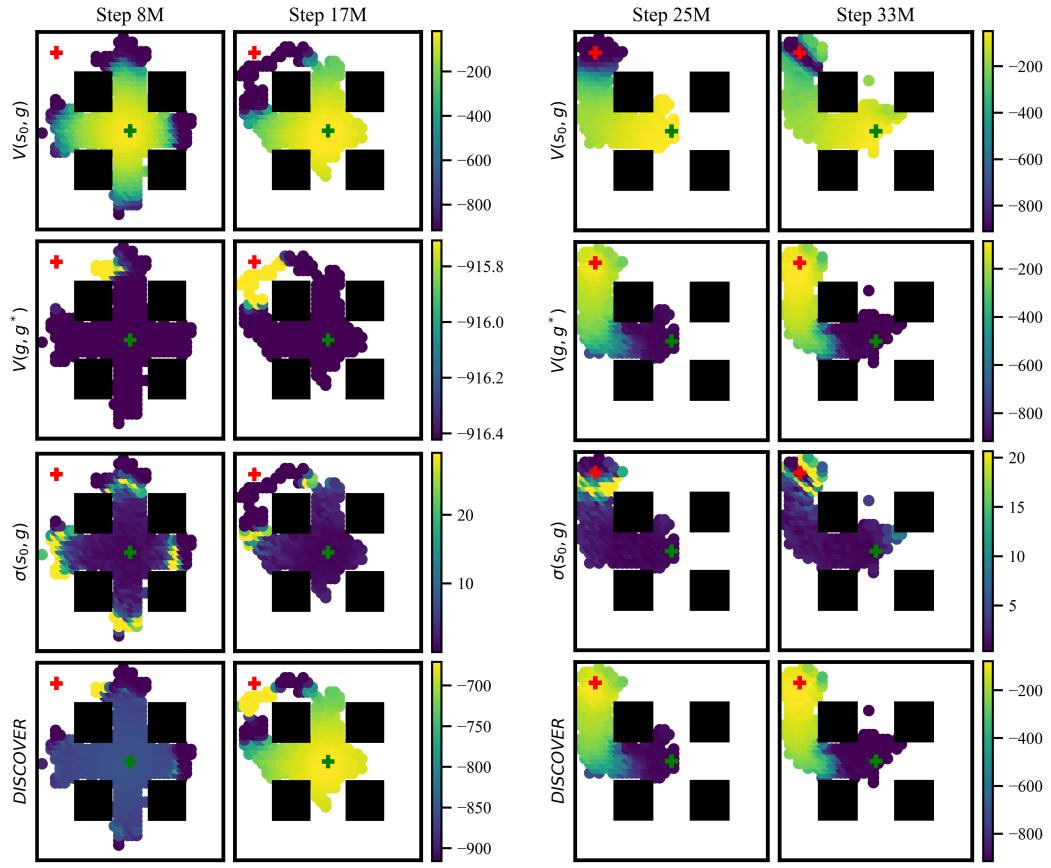


Figure 14: Visualization of the components of the DISCOVER objective at different points of the training. We plot the value functions in the regions, where achieved goals are sampled and therefore goals can be selected. The final DISCOVER objective combines the visualized terms with the current adaptation parameters α_t, β_t .

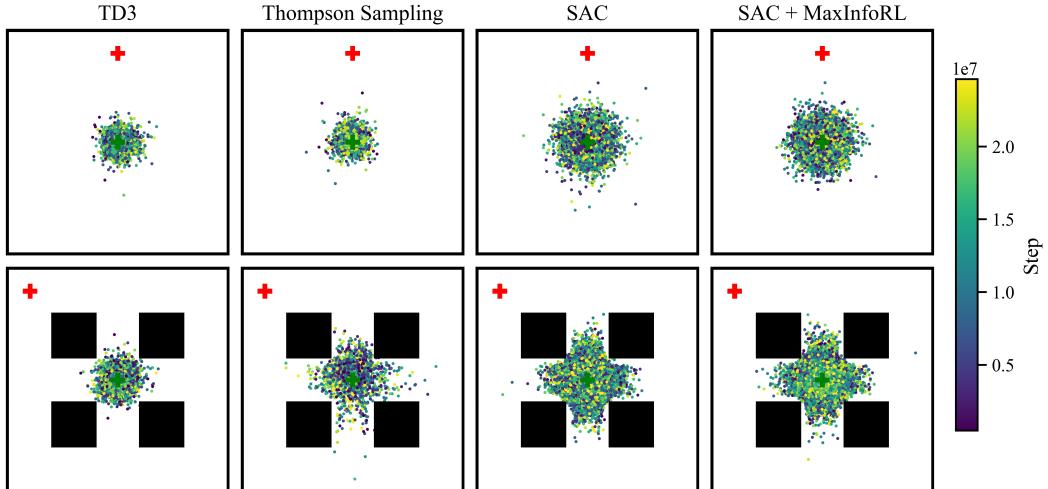
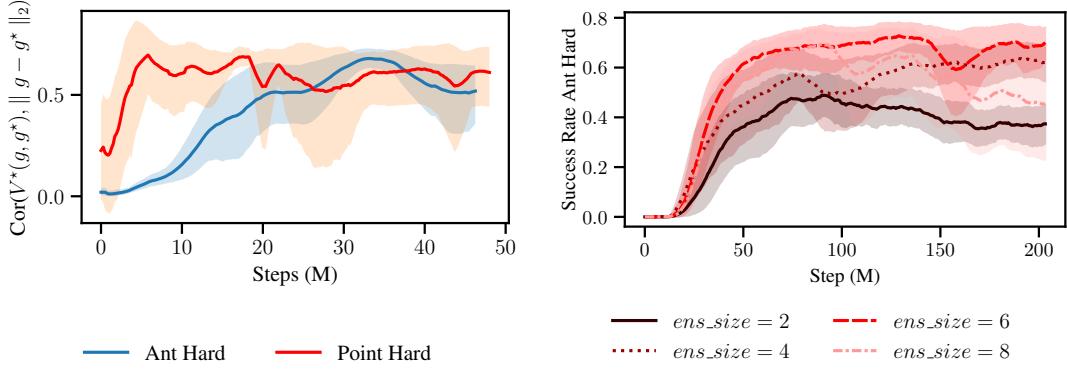


Figure 15: Visualization of the exploration of the standard non-goal-conditioned RL methods in the antmaze environments. We run the state-of-the-art MaxInfoRL [71] with SAC.



(a) Direction estimates become useful before the final goal is reached. We plot the pearson correlation between the current relevance estimate and the L2-distance between the goal and the target goal for the hard variants of the `antmaze` and `pointmaze` environments.

(b) A value function ensemble size of six strikes a good balance between computational cost and the quality of uncertainty estimates, leading to improved exploration and task performance. We plot the performance of DISCOVER varying the number of value function ensemble members in the hard `antmaze` environment.

Ablation of Ensemble Size A key parameter in the DISCOVER algorithm is the value function ensemble size. To quantify the impact of ensemble size on uncertainty estimates, we evaluate the performance of DISCOVER in the hard `antmaze` environment, comparing ensembles of 2, 4, 6, and 8 critics in Figure 16b. Consistent with prior work [48], increasing the number of critics above the default of two improves uncertainty estimation. In our experiments, an ensemble of six critics proved sufficient to yield robust performance.

Relying on an ensemble of critics can be computationally expensive. We find that in our experiments the overhead of increasing the critic size from 2 to 6 was modest. This is mainly due to small critic networks and highly parallel training using jax. In practice, we find that increasing the ensemble from 2 to 6 critics was sufficient to yield high-quality uncertainty estimates, while incurring only a 26% increase in runtime.

E Implementation Details

We consistently substitute $\sigma(g, g^*)$ by $\sigma(s_0, g)$ in all our experiments. In our evaluated environments, the empirical performance of DISCOVER is largely irrespective of $\sigma(g, g^*)$ (cf. Figure 12).

E.1 Probabilistic Value Estimation

A crucial component of DISCOVER is a probabilistic model of the value function, which can enable uncertainty-aware strategies. Fortunately, there are many options for probabilistic models of the value function [39, 48, 47]. For simplicity, we employ an ensemble of value functions [48] and quantify uncertainty via disagreement. This strategy has been used before to select goals, which have high exploration potential and therefore provide novel experiences [86]. Intuitively, these ensemble provide valid uncertainty estimates, as we use different random initializations for the networks and train on different data. If the networks have been trained on a certain training sample sufficiently often, the different ensemble members will converge to the same value, while if a sample hasn't been observed yet or only a few times the discrepancy will be higher. The mean and standard deviations used for the DISCOVER objective are computed as follows:

$$V(s, g) = \frac{1}{N} \sum_{i=1}^N V_i(s, g) \quad \sigma^2(s, g) = \frac{1}{N} \sum_{i=1}^N (V_i(s, g) - V(s, g))^2 \quad (9)$$

This can be seen as a straightforward extension of the standard twin critic approach [24]. We find that a slightly higher number of critic improves accuracy of uncertainty estimates. We further find that by training each critic against a random minimum of two target critics we obtain sufficient diversity for good uncertainty estimates as well as circumvent the maximization bias [81]. Additionally, we use a softplus activation at the output of each critic to limit the values to negative values.

Scaling critic ensembles to domains with large models (e.g., language) is challenging. An exciting direction for future work is to explore DISCOVER with other tools for uncertainty quantification, such as epistemic neural networks [50].

E.2 Environment Details

We adapt the `antmaze` and `arm` environments from the JaxGCRL library [9]. In both cases, we fix the initial-state distribution to be a uniform perturbation of a fixed initial state, and we fix a single target goal location per environment (marked by the red cross in Figure 4). In addition to these two challenging high-dimensional benchmarks, we implement a `pointmaze` environment with potentially arbitrary dimensionality d . In our experiments we consider `pointmazes` with $d \in [2, \dots, 6]$. We construct the `pointmazes` as follows. We sample random paths in the d -dimensional hypercube, by starting from the origin and randomly changing direction with a probability of 16.6%. We terminate this process once the target goal is observed sufficiently often. This number was set to 2 to 4 depending on the dimensionality of the maze.

In our experiments we evaluate both “simple” and “hard” versions of each environment. For the `pointmaze`, the simple configuration is realized on a two-dimensional grid while the hard configuration uses a four-dimensional hypercube. In the `antmaze`, the simple setup contains no walls between start and goal, whereas the hard version introduces a single wall that blocks the direct route to the target (visualized in Figure 4). Finally, in the `arm` environment the simple scenario places one small obstacle that the manipulator must skirt around, while the hard variant includes two larger obstacles that require more precise cube maneuvering to reach the goal.

In the `pointmaze`, the goal space coincides with the full state space, covering all d dimensions (for the simple maze and for the hard maze). Consistent with JaxGCRL [9], in the `antmaze` the goals are defined by the agent’s planar-coordinates, and in the `arm` environment by the 3-dimensional coordinates of the cube.

E.3 Training Hyperparameters

Hyperparameter	Value
Offline RL algorithm	TD3
Ensemble size	6
Discount factor	0.99
Batch size	256
Learning rate	$3 \cdot 10^{-4}$
Policy update delay	2
Target critic Polyak factor	0.005
Relabel strategy	Uniform future: 70%, original: 30%
Target critic computation	Minimum of two random target critics
Size of critic ensemble	6
Initial apdation parameter α_0	0
Horizon	100-250
Parameter adaptation lookback k_{adapt}	64-128

Table 2: Hyperparameters for training in JaxGCRL Environments.