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Abstract

Sparse-reward reinforcement learning (RL) can model a wide range of highly com-
plex tasks. Solving sparse-reward tasks is RL’s core premise—requiring efficient
exploration coupled with long-horizon credit assignment—and overcoming these
challenges is key for building self-improving agents with superhuman ability. Prior
work commonly explores with the objective of solving many sparse-reward tasks,
making exploration of individual high-dimensional, long-horizon tasks intractable.
We argue that solving such challenging tasks requires solving simpler tasks that
are relevant to the target task, i.e., whose achieval will teach the agent skills
required for solving the target task. We demonstrate that this sense of direction,
necessary for effective exploration, can be extracted from existing RL algorithms,
without leveraging any prior information. To this end, we propose a method for
directed sparse-reward goal-conditioned very long-horizon RL (DISCOVER),
which selects exploratory goals in the direction of the target task. We connect
DISCOVER to principled exploration in bandits, formally bounding the time until
the target task becomes achievable in terms of the agent’s initial distance to the
target, but independent of the volume of the space of all tasks. We then perform
a thorough evaluation in high-dimensional environments. We find that the directed
goal selection of DISCOVER solves exploration problems that are beyond the
reach of prior state-of-the-art exploration methods in RL.
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Figure 1: Given a hard task, we compare agents learning to solve this target task by learning from the
experience on simpler exploratory tasks. DISCOVER uses a bootstrapped sense of direction to design
a curriculum of achievable and novel exploratory tasks that are relevant to the target task. In this way,
the agent bootstraps to solve much harder tasks than if using other methods for selecting exploratory
tasks, such as considering only direction or only achievability and novelty. State-of-the-art standard
RL algorithms using intrinsic curiosity for exploration fail to achieve our target tasks at all.
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1 Introduction

Reinforcement learning (RL) provides a general framework in which agents have to learn complex
tasks by interacting with their environment to maximize rewards [75]. Although RL has led to
breakthroughs in many domains such as Atari games [45], board games [e.g., 66], and reasoning [26],
sparse-reward problems, in which a reward is only observed once the task is completed, remain very
challenging [38, 80]. These sparse-reward tasks are hard to solve as the agent needs to gain a deep
understanding of the environment without ever observing a reward. As such, and since they are natu-
rally defined without any human supervision, solving sparse-reward tasks is one of the core premises
of RL. We focus on the setting where the agent is given a single sparse-reward problem to solve. In
sparse-reward RL, traditional methods from RL fail as they need to randomly observe the reward
signal to make progress, which becomes exceedingly unlikely in long-horizon tasks [e.g., 49, 87].

One technique for overcoming this challenge is to frame sparse-reward tasks as multi-goal problems,
which enables the agent to learn about harder goals by generalizing from already learned simpler
goals [63, 5]. In this framework, a goal needs to be specified for the policy in each episode. This
goal selection step plays a crucial role in guiding the exploration of the agent [53]. Choosing a goal
essentially presents its own exploration-exploitation dilemma at a higher level of abstraction: should
the agent try to pursue its final goal or rather aim to reach novel, but achievable intermediate goals,
expanding its horizon of expertise? Previously introduced goal selection strategies have focused
largely on either exploration [e.g., 53] or exploitation [5].

In this work, we argue that goal selection should naturally address this trade-off, considering both
the novelty of commanded goals, and thus their exploration potential, as well as their relevance to
the final objective, while considering their achievability. We propose DISCOVER, a method for
effectively balancing achievability, relevance, and novelty during goal selection. We find that these
quantities can be estimated by commonly used critic networks in standard deep RL algorithms. We
learn an ensemble of critics to estimate the agent’s uncertainty about the direction of the final task.
Intuitively, DISCOVER leverages these value estimates to determine which intermediate goals are
most useful towards learning to solve the final task. We find that DISCOVER enables RL agents
to solve substantially more challenging tasks than previous exploration strategies in RL.

We further provide a formal analysis of DISCOVER, showing that it is closely linked to upper
confidence bound (UCB) sampling [68], a method for balancing exploration and exploitation in
sequential decision-making. We use this connection to prove bounds on the number of episodes
until the final task becomes achievable. Unlike bounds in prior work, our bound for DISCOVER
is independent of the volume of the space of all goals and depends linearly on the “shortest distance”
between the agent’s initial state and the state at which the final task is achieved. We follow this formal
discussion by an extensive evaluation of DISCOVER in three complex sparse-reward environments,
ranging from loco-navigation to manipulation. We observe significant improvements in sample
efficiency compared to previous state-of-the-art exploration strategies in RL.

Our contributions are:

1. We propose DISCOVER, a novel goal selection strategy for solving hard tasks. By leveraging its
connections to UCB, we theoretically analyze the time until the final task becomes achievable.

2. We evaluate the empirical performance of DISCOVER on various complex control tasks and
show substantially improved performance compared to state-of-the-art goal selection strategies.

3. We perform a range of ablation studies, including on the utilization of prior knowledge and on
the importance of balancing achievability, novelty, and relevance in goal selection.

2 Related Work

Exploration in RL Exploration has been a central challenge in reinforcement learning since
its inception. Uninformed exploration strategies, such as e-greedy [44] or uncorrelated noise
injection [24], are crucial to the success of most practical algorithms. Further improvements can
be obtained by leveraging temporally extended strategies [19], or informed criteria, such as curios-
ity [52, 27, 61, 70, 71], diversity [21], count-based strategies [77, 10], or unsupervised environment
design [82, 17]. These strategies are normally applied without any extrinsic signal [43, 61, 70, 51],
or in linear combination with a specific reward signal as defined by the MDP [10, 71]; in the latter



case, balancing the two terms is often complex. This work focuses instead on a setting in which
exploration is instead achieved by attempting to solve different goals than the target goal, i.e., through
exploitation with respect to a different reward, as specified in the next paragraph.

Finding solvable subgoals for exploration Solving many sparse-reward problems with RL has
often been formalized as goal-conditioned [22, 58] or goal-reaching [83] RL, where we jointly learn
a policy for all tasks. A key contribution can be traced back to Schaul et al. [63], which introduces
universal value function estimators, capable of estimating returns for multiple goals. To learn these
functions efficiently, Andrychowicz et al. [S] proposes a goal relabeling scheme to provide signal
for goals that are achieved in hindsight. Further works have explored emerging properties of goal-
conditioned value functions, introducing contrastive [22, 9] or quasimetric [83, 18, 3] approaches.
Interestingly, goal-conditioned approaches enable the design of nuanced exploration strategies, as
the policy can be controlled through its goal-conditioning [56, 85, 53, 23, 69, 86, 35, 43, 55]. These
methods strategically select a goal from the previously achieved goals. After the goal is achieved,
the methods enter a pure exploration phase, in line with the successful exploration strategy proposed
by Ecoffet et al. [20]. However, previous methods are generally not directed towards a particular
target goal, with some exceptions relying on strong assumptions on the distance metric [57], or
on additional costly components such as generative [40, 62] or discriminative [12, 11] models. In
contrast, DISCOVER introduces a notion of relevance during exploration, which is fully bootstrapped
from the agent’s own estimates and experience, leading to deep exploration. We further discuss the
connection of DISCOVER to other work such as self-play in Appendix A.

Test-time training We consider the setting where the agent’s objective is to solve a single, chal-
lenging target task provided at “test-time”, potentially starting from a pre-trained prior. This is a form
of test-time training (TTT) [73], where an agent is trained specifically for the target task at test-time.
TTT on (self-)supervised signals over few gradient updates has shown success in domains such as
control [32], language modeling [33, 36, 74, 8], abstract reasoning [4], and video generation [15].
More recently, test-time reinforcement learning (TTRL) [88] has used RL to iteratively self-improve
an agent’s policy for initially unsolvable tasks, using its own experience on simpler tasks. To
our knowledge, DISCOVER is the first method demonstrating effective TTRL with extensive
self-supervised exploration (millions of steps), thereby enabling agents to solve highly difficult tasks.

3 Problem Setting

We consider the sparse-reward reinforcement learning setting and adopt the goal-conditioned formula-
tion [75, 63], formally described by a multi-goal Markov decision process M = (S, A, p, 10,9, g*).
Here S, A, and G C S denote the set of states, actions, and goals, respectively. Additionally,
p:S x A— A(S) are the transition probabilities and pg is the initial state distribution. In the
following, we denote by sg a random initial state sampled from po. The target goal, denoted by g*,
is the only goal we evaluate on and therefore aim to learn. The sparse goal-conditioned reward
is implicitly defined as r(s,a;9) = —1{s ¢ S;} [54], where S, C S is the subset of the states,
for which the goal g is achieved. We consider the general case, where this subset is defined as
Sy ={s €S |d(s,g) < €}. Here, d defines a standard distance metric, possibly only considering
some parts of the state, such as position. A goal is considered achieved during training if we have
previously observed a non-negative reward for this goal. We keep track of the set of achieved
goals G,cp, which contains all previously achieved goals (initially Gac, = {s0}). In practice, this
is implemented by maintaining a replay buffer of observed states. We consider a fixed episode
length H, with the episode terminating once the target goal is reached. The objective of the agent is
to learn a goal-conditioned policy 7 : S x G — A(.A) that maximizes its value function V7™ (sg, g*),

V7(s,g) = E, [— By (sy ¢ S;ve <t} )

We denote the optimal policy by 7* : & — A(A) and use 7, : S — A(A) to denote the policy
conditioned on g.

3.1 Goal Selection for Sparse-Reward RL

The standard non-goal-conditioned online RL loop collects data according to the current policy,
often with noise injection [19]. In the goal-conditioned framework, the agent can additionally control
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Figure 2: Illustration of the goal selection of DISCOVER compared to prior goal selection strategies.
The white cross represents the initial state of the agent, the red cross represents the target goal. The
blue shaded area symbolizes the set of achieved goals G,.1,. A lighter blue corresponds to harder to
reach goals. Finally, the black crosses represent the kinds of goals selected by each strategy.

the goal-conditioning of the policy, i.e., it may pursue arbitrary goals for data collection. We adopt
the framework of Pitis et al. [53], and summarize its main steps in Algorithm 1. In each episode,
SelectGoal commands a goal g; to the agent, based on prior experience, the current state of the
agent and the final target goal g*. We then roll out the policy conditioned on g; until g; is achieved.
After achieving the goal gy, the agent enters a random exploration phase, during which it selects
actions uniformly at random until the end of the episode. We add the resulting trajectory to the replay
buffer. Finally, we update the agent’s parameters 6 using an off-policy RL algorithm, by sampling
from the replay buffer and relabeling goals, as proposed by Andrychowicz et al. [5]. The focus of
this work is SelectGoal, which designs the agent’s curriculum. Next, we introduce DISCOVER,
which selects a curriculum specifically targeted to g*.

Algorithm 1 Goal-conditioned Reinforcement Learning

1: Initialize: replay buffer: By < 0, actor-critic parameters: 6,
2: fort=1,2,... do

3: gt < SelectGoal(B;—1,0:-1,9"%) > select goal g; for episode
4 By « B;_1 U{Rollout(my, ,,¢)} > add trajectory to replay buffer
5 0; + Update(RelabelGoals(Sample(B;)),0:—1) > using off-policy RL (e.g., TD3 [24])

4 DISCOVER

We introduce DISCOVER, a method for solving hard tasks that require deep exploration. We focus
on the problem of finding intermediate, solvable goals that the agent should attempt to acquire skills,
eventually enabling it to achieve the target goal. We begin by presenting an intuitive explanation of the
DISCOVER objective, followed by a discussion of its tight connection to the exploration-exploitation
dilemma. We argue that, to efficiently learn to solve hard tasks, an agent must adhere to the following
three fundamental principles:

Goal utility = Achievability + Novelty + Relevance 2

Each of these principles is necessary to efficiently learn to solve a hard task. First, achievability
ensures that a task is not “too hard” for the agent to ever achieve it, hence, representing meaningful ex-
perience. Second, novelty ensures that a task is not “too easy”, such that the agent’s new experience on
this task is a useful learning signal to increase the policy’s capabilities. Finally, relevance ensures that
experience on a task is useful for eventually solving the target task (cf. Figure 2). Prior methods [e.g.,
53] have successfully combined achievability and novelty, but are aiming to achieve all possible tasks.

After providing an intuitive discussion of the principles relevant to efficiently learning hard tasks,
the question remains: how can they be quantified in practice? We propose the DISCOVER objective,
which quantifies each of the discussed principles via the value estimate under the current policy.
In each exploration episode, we select a goal from the achieved ones (G,.p) according to

gr = argmax oy | V(so,9) + B U(So,g)] + (=) V(g,g%) + Bro(g,g7)| )
9€Gach N—— N——

Achievability Novelty Relevance



where oy and f; are schedulable coefficients, V' is the mean of an ensemble of the optimal value
function defined in Equation 1, and o2 its variance.” A high value V (s¢, g) indicates that the policy
can reach the goal g from the starting state sg, therefore promoting achievability. In contrast, a large
uncertainty o (s, g) indicates that the agent is not reliably reaching the goal g. Hence, attempting
such goals prioritizes novel experiences. Finally, a high value V (g, g*) indicates that g is “closely
related” to the target goal g*. The relevance term of DISCOVER prioritizes goals that might be
closely related to the target goal, either since they already have a high value V (g, g*) or because
the agent is still uncertain about this value. The relevance term can also be viewed as directing the
goal selection towards the final target g*. Note that while we focus on a single target g*, DISCOVER
is easily extended to distributions over targets by maximizing Equation (3) in expectation.

We emphasize that all terms in Equation (3) are estimated by the critic and do not rely on any prior
information. In particular, the relevance estimates are entirely bootstrapped from the agent’s current
knowledge. While the above gives an intuitive introduction, DISCOVER can be interpreted as an
agent seeking to maximize the likelihood of reaching the target goal g*, as we describe in Appendix B.

4.1 Automatic Online Parameter Adaptation

Prior work has explored adapting the parameters online to meet predefined metrics, such as the entropy
of the policy [28, 71]. In the same spirit, we propose a simple online parameter adaptation strategy
that adjusts «; and (; to maintain a fixed target goal achievement rate p*, similarly to the cutoff
strategy proposed in Pitis et al. [53]. This approach aligns with the previously discussed intuition, as
it ensures that the agent neither selects goals that are “too easy” nor ones that are “too hard”. We find
that it is sufficient to linearly increase o, when the agent achieved too few of its previously selected
goals, and linearly decrease o, when the agent achieved too many, while setting 8; = 1:

a1 =y 1y(ar +n(pe — p*)). 4

Here, p; denotes the average goal achievement rate over the last kyq.p episodes, [, clips the
output value to the interval [a, b], and ) > 0 is the adaptation step size, which we set to 0.01. We
ablate the effects of our adaptation strategy in Figure 10 in the appendix, and find that the optimal
target goal achievement rate p* is approximately 50%, consistent with findings in prior work [53].

4.2 Connection to the Exploration-Exploitation Dilemma

Balancing exploration and exploitation is key when proposing tasks such that the resulting experience
is valuable toward solving the target task. DISCOVER balances exploration and exploitation in two
ways. First, in its estimate of V (s, g), which leads to a trade-off between selecting achievable and
novel goals. Second, in its estimate of V' (g, g*), where exploitation leads to directing goal selection
toward the target goal while exploration prevents the agent from overfitting to an overconfident
estimate of direction.

Theoretical guarantee for DISCOVER To illustrate the underlying exploration-exploitation trade-
off, we consider a simplified setting and use the link between DISCOVER and UCB to prove rates
for the number of episodes until the DISCOVER agent can achieve the target goal. We make the
following simplifying regularity assumptions, analogously to the linear bandit setting [see, e.g., 2, 13]:

Informal Assumption 4.1 (formalized in Assumptions C.1 to C.5).

1. Optimal value functions are linear in latent features: Among the set of achievable® goals g,
the value functions V*(sg, g) and V*(g, g*) are linear in a known d-dimensional feature space.
Note that the above only needs to hold for currently achievable goals.

2. Noisy feedback: In episode t, selecting any achievable g;, the agent receives noisy feedback of
the optimal value functions, with the noise being conditionally sub-Gaussian.

3. Goal space contains optimal paths: For any goal g, the optimal path from g to the target goal g*
is contained in the goal space G.*

4. Goal achievability: Based on our previous observation that o controls the rate of goal-achieval,
we let the probability of achieving any achievable goal g be at least a. Any goal g is considered

2See Appendix E.1.
3The set of achievable goals is defined in Assumption 4.
“That is, G is ¢g*-geodesically convex under the forward quasimetric induced by the optimal value function.



achievable in episode t if the agent previously achieved a goal gy (t' < t) which is within
distance (1 — «)k of g (under the optimal value function). Here, x > 0 is a rate of expansion.

Assumptions 1 and 2 are standard in the literature on linear bandits. Note, however, that in our setting
this feedback model implicitly assumes feedback on V* (g, g*), which can be thought of as a gener-
alization condition: If the agent cannot generalize from its experience from s to g about the relation
of g and g*, then it may never reach the target goal g*. Another implicit consequence of the linearity
assumption is that the bias and non-stationarity of the value function estimates is controlled, which
is not commonly the case when learning value functions with neural networks via bootstrapping. As-
sumption 3 is a continuity assumption on the goal space, which is satisfied in many practical settings.
Finally, Assumption 4 leads to a trade-off in choosing a:: A small « leads to a larger set of achievable
goals, but at a lower goal-achieval rate. In contrast, a large « leads to a more conservative set of achiev-
able goals, but at a higher goal-achieval rate. This trade-off matches the empirical effect of « (cf. Fig-
ure 10 in the appendix). The parameter « controls the rate of expansion of the set of achievable goals.

In the above setting, we bound the number of episodes until DISCOVER reaches the target goal g*:

Informal Theorem 4.2 (formalized in Theorem C.9). Fix any confidence 6 € (0,1) and any
o € (0, 3). Let the above assumptions hold. We denote by D = —V*(sq, g*) the distance from the
initial state s to the target goal g* under the optimal policy. Then, with probability 1 — ¢, selecting
goals g; with DISCOVER (with oy = « and By chosen appropriately), the number of episodes N
until the target goal g* is achievable by the agent is bounded by

V= 5<a<1 - 2a?2€<li - a>3m3> - 5<Dd>

This theorem shows that DISCOVER efficiently learns to solve hard, initially unachievable tasks.
With a larger dimensionality d of the feature space, the learning task becomes harder, which is
reflected in the bound. Similarly, the larger the distance D from the initial state to the target goal,
the longer it takes to reach the target goal. In contrast, the larger the rate of expansion «, the faster
the agent reaches the target goal, since the set of achievable goals expands faster. Finally, the bound
suggests choosing o =~ 0.1 (cf. Figure 7 in the appendix) which roughly matches the average o
chosen in experiments by our adaptation strategy (cf. Figure 11 in the appendix).

Despite our simplifying assumptions, achieving the target goal g* remains non-trivial. The agent must
trade off learning the value function against exploiting the direction this value suggests toward g*.
Overconfidence in the value estimate may lead the agent to diverge and never reach g*. On the other
hand, if the agent is too conservative in its value estimate (or does not use the value estimate for direc-
tion at all), it may never reach the target goal within a reasonable time. To see why guidance matters,
imagine an m-dimensional goal space that is a ball of radius R. Covering that ball with hypercubes of
side € requires on the order of (R/€)™ cells, exponential in m. This back-of-the-envelope calculation
indicates that to achieve hard goals in a high-dimensional goal space, undirected exploration is
insufficient, and the agent must balance exploration and exploitation. In doing so, DISCOVER avoids
this curse of dimensionality and exploits the learned value to stay close to a nearly one-dimensional
corridor from sy to g*. For this reason, the bound in Informal Theorem 4.2 depends solely on the
(1-dim) distance D and not on the total volume of the goal space G. Bounds of previous work [78]
depend on the total volume of G, and quickly become vacuous in high-dimensional problems.

5 Results

We evaluate the empirical performance of DISCOVER across three complex, sparse-reward,
long-horizon control tasks, highlighting five main insights. Unless mentioned otherwise, we employ
the TD3 [24] actor-critic algorithm for training all agents. While our evaluation focuses on model-free
methods, the goal-based directed exploration of DISCOVER can also be used with model-based
backbones such as Dreamer [29, 30, 31]. For all experiments, we report the mean performance
across 10 seeds along with its standard error. Additional implementation details, hyperparameter
choices and experimental results are reported in Appendices D, E and E.3, respectively. The code
is available at https://github. com/LeanderDiazBone/discover.

Environments For our experiments, we use the JaxGCRL library [9] to assess performance on
challenging, high-dimensional navigation and manipulation tasks. Specifically, we evaluate on
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Figure 3: Comparison of the success rates on the target task over the course of training in the
pointmaze, antmaze & arm environments. We compare DISCOVER to other strategies for goal
selection. We consider two difficulty levels for each environment. We find that the DISCOVER
agents learn to solve difficult target tasks significantly faster than the baselines.

the antmaze environment, where a simulated quadruped with a 27-dimensional state space and
an 8-dimensional action space must learn to navigate through a maze to reach a target location.
For manipulation, we consider the arm environment, which features a 23-dimensional state and
a b-dimensional action space. In this task, a robotic arm must move a cube to a specified target
location, potentially while avoiding obstacles. Additionally, we evaluate on randomly generated
pointmazes of varying dimensionality, to assess the capabilities of different goal selection strategies
to explore high-dimensional goal spaces efficiently. We construct these n-dimensional pointmazes
by randomly generating paths in the n-dimensional hypercube until the target location was reached
sufficiently often from the starting location. For all environments, we consider both a simple and
a hard configuration, where the latter is characterized by longer horizons, more complex obstacles,
or higher-dimensional goal spaces.

Goal selection baselines We compare DISCOVER with the following baselines.

1. Hindsight Experience Replay (HER): The HER goal selection strategy [5] always selects goals
from the target goal distribution. Since we consider a single fixed target goal, the goal at time ¢
issetas g: = g*.

2. DISCERN (uniform): The uniform goal selection strategy [85] samples goals uniformly from
the support of the achieved goal distribution, i.e., g; ~ Unif(supp(pacn)). The achieved goal
distribution p,.; is modeled using a kernel density estimator based on randomly sampled
previously achieved goals.

3. Maximum Entropy Gain Achievement (MEGA): The MEGA goal selection strategy [53]
selects goals with the lowest likelihood from the set of achievable goals, ie., g =
argmingcg . Pacn(g). In contrast to DISCOVER, MEGA additionally defines a goal g as
achievable if its value function V' (sg, g) exceeds a threshold, which is adapted dynamically
based on the goal achievement rate over recent episodes.

4. Achievability + Novelty: This baseline corresponds to the undirected components of DISCOVER,
ie., g =argmax g  V(s0,9) + Bio(s0,9).

Insight 1: DISCOVER outperforms state-of-the-art goal selection strategies in complex control

environments. As shown in Figure 3, DISCOVER consistently outperforms all baseline goal
selection strategies across the evaluated environments. The performance gains are particularly
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Figure 4: Visualization of the selected goals of different goal selection strategies during the first
25M steps on the antmaze environment, colored by time step. DISCOVER balances exploring the
environment with exploiting the agent’s sense of direction to select goals relevant to the target task.

notable in the more challenging variants of each task, where emphasizing relevance proves critical
for learning optimal policies. Interestingly, in the arm environment, HER performs better than some
undirected goal selection strategies. We attribute this to the unconstrained nature of the goal space
in the arm environment, which leads undirected methods to explore irrelevant regions that do not
contribute to learning about the target goal.

Insight 2: Undirected goal selection is insufficient for
high-dimensional search spaces. We next evaluate the
performance of goal selection strategies on pointmaze HER 0o 0o 0o
navigation tasks of varying dimensionality. Table 1  pMEgGa 4.8
demonstrates that the undirected goal selection strategies 1 | Nov. 5.2
are eventually successful in two dimensions, but con-
sistently fail in dimension larger than three. In contrast,
DISCOVER, by focusing on the most relevant directions,
successfully solves mazes in up to six dimensions. The
substantial difference in empirical performance can
be explained by the size of the search space explored
by each method. For undirected methods, this space
grows exponentially with dimension, while DISCOVER
mitigates this challenge by only selecting goals that likely
to lead to the final objective, thereby dramatically reducing
the effective search space. While the performance gap
is most pronounced in complex, high-dimensional tasks, we demonstrate that DISCOVER also
improves performance in standard sparse-reward environments.

W

Dimension 2 3 4 6

0o 00
0o 00 00 00
0o 00 00 00
DISCOVER 2.9 31 74 54 18.7

Table 1: Comparison of the required
number of steps (M) for reaching 10%
target goal achievement in pointmazes
of varying dimension. oo denotes no
achievement of 10% success rate be-
fore termination after 50M steps. DIS-
COVER scales to large mazes due to its
awareness of direction and uncertainty.

Insight 3: DISCOVER improves performance by selecting relevant goals towards reaching the
target, while exploring sufficiently. We visualize the goal selection behavior of DISCOVER and
the baseline strategies in the antmaze environment in Figure 4. While all baseline methods perform
undirected goal selection, exploring the entire state space, DISCOVER, after an initial exploration
phase, quickly identifies the correct direction and subsequently focuses its goal selection on the
relevant region. These plots explain the improved performance, as DISCOVER can select (and
achieve) goals at the target much earlier than the other strategies. We provide a detailed evaluation of
how the different components of DISCOVER influence goal selection in Appendix D (cf. Figure 14).



Insight 4: DISCOVER can leverage prior knowledge
to further accelerate exploration. In many scenarios,
prior information about the environment is available, for
example through pre-training on a related environment.
To evaluate whether DISCOVER can leverage prior
knowledge for exploration, we integrate prior information
on relevance by substituting the prior for V(g,¢*) in
Equation (3). We evaluate two kinds of priors: (1) a
hand-designed prior, leveraging human knowledge akin
to reward shaping, and (2) a pre-trained prior from
a similar environment. We use the antmaze (hard)
environment, picking as a natural hand-designed prior
the Lo-distance to the target goal g* (ignoring obstacles),
and as the pre-trained prior a value function learned on
a pointmaze with the same layout. We find in Figure 5
that DISCOVER with a prior can explore marginally
faster than bootstrapping value estimates from scratch.
In particular, in the maze with obstacles, using the

1.0 4 — DISCOVER + hand-designed direction

g === -direction == = + pre-trained direction

T 0.8

é — TR
0.6 4 ~Z

Q

2 0.4 / /

8

S 0.2 7 / / )

? Y iz
O

T T T T T
0 20 40 60 80

Step (M)

Figure 5: Comparison of using different
strategies to determine direction, which
replace the V(g,¢*) term in the DIS-
COVER objective. Hand-designed di-
rection: ||g — g*||2; pre-trained direction:
critic from training in a pointmaze en-
vironment with the same maze layout.
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pre-trained prior accelerates exploration, since the agent explores only in the direction of the
target (cf. Figure 13 in the appendix). We expect that this benefit of priors increases in even harder
tasks, since DISCOVER explores only the difficult and novel aspects of the target task.

Insight 5: Subgoal selection enables deep exploration.
Finally, we evaluate the importance of goal-conditioning
for solving sparse-reward tasks. To this end, we compare
DISCOVER to methods for exploration in RL that do not
explicitly select exploratory intermediate goals [24, 27,
48]. This includes state-of-the-art approaches based on cu-
riosity and reward shaping [10, 71]. We show in Figure 6
that even in the simpler environments, these standard
methods are unable to solve the task. In Figure 15 of the
appendix, we visualize the states visited by the non-goal-
conditioned baselines. While methods leveraging curiosity
to shape the reward explore faster than others, none of
them reaches the target task within our maximum number
of episodes. This highlights that in long-horizon, sparse-
reward settings, directed goal selection can facilitate deep
exploration, which is essential for solving complex tasks.
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Figure 6: State-of-the-art RL algorithms
fail to achieve the target tasks even in

their “simple” configuration.

6 Conclusion

In this work, we introduce DISCOVER, a goal selection method for solving challenging tasks by
balancing novelty, achievability, and relevance. DISCOVER is closely related to principled methods
for balancing exploration and exploitation, and we theoretically show that it efficiently reaches
the target goal in a simplified linear bandit setting. We further empirically evaluate DISCOVER
on various complex control tasks and find that it consistently outperforms prior state-of-the-art
exploration strategies in RL in solving difficult, sparse-reward tasks.

A limitation of DISCOVER is that it relies on bootstrapped estimates of the value function, which
depend on the ability of the value network to generalize. Additionally, our method incurs overhead by
training an ensemble of critics for uncertainty estimation, potentially limiting its direct applicability
to implementations involving large critic networks such as in language domains. We believe that
exploring alternative means of efficient uncertainty estimation for DISCOVER is an exciting direction
for future work. Furthermore, we hypothesize that directed exploration is especially advantageous
in high-dimensional and complex goal spaces, as demonstrated for the pointmaze with variable
dimensions. Therefore, particularly interesting is the application of DISCOVER to problems with
highly complex goal spaces, such as in mathematics or programming with large language model
priors. Finally, our work also highlights important directions for future research, including enabling
the generation (rather than selection) of goals, extending DISCOVER to hierarchical planning, and
reusing experience from one target task for future tasks.
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: | Yes]

Justification: The abstract outlines the main contribution presented in the paper. All empirical
claims are supported by the presented experiments in the Results section. All theoretical
contributions are supported by the results presented in the Section 4.2. All proofs are
presented in Appendix C.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: | Yes]

Justification: In the conclusion section we outline the main limitation of our work, which
is the assumption in the theoretical part that the learned value function provides a well-
calibrated model of the true value function. This assumption is unrealistic in practice, due
to the update of the value function using bootstrapped estimates. Although we performed
extensive evalutation on three complex control tasks, further experiments especially in other
domain would support the argument, but are beyond the scope of this paper.
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* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
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judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: | Yes]

Justification: All assumptions and proofs for all theoretical results are outlined in Appendix
C.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: | Yes]

Justification: All experiments in the paper are easily reproducible by following the instruc-
tions provided in the README.md file in the attached code submission.

Guidelines:

» The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: | Yes]|

Justification: All code used for implementing the method and running all experiments is
attached to the submission. All experimental results are reproducible by following the
instructions provided in the README.md file. No additional datasets were used for the
experiments of this paper.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: | Yes]

Justification: We outline the most relevant implementation details in Appendix E and list the
most relevant hyperparameter choices in Table 2. All further implementation detail can be
found in the provided implementations.

Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: | Yes]
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Justification: All results are accompanied by error bars. All experiments were performed for
10 different seeds and the mean and one standard error is reported.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: | Yes]

Justification: All experiments were run on an internal cluster using a single NVIDIA GeForce
RTX 2080 Ti GPU for each run. Any standard consumer GPU is sufficient for running all
experiments. The experiments require at most 16GB of memory. The longest experiment
run took approximately 50 hours and to reproduce all experiments about 800 runs, totalling
an approximated 8000 compute hours.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: | Yes]|

Justification: The research conducted in this paper respects the NeurIPS code of ethics in
every respect.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.
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* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: | Yes]|

Justification: We discuss the broader societal impacts in the following: Improving the
efficiency of exploration is one of the key challenges in sparse-reward reinforcement learning.
The societal impacts of improved reinforcement learning systems are broad due to their wide
applicability. This includes major societal benefits such as improved robotics, accelerating
scientific progress, etc. Of course, the overall RL framework is so general that potential
misuse cannot be ruled out.

Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper doesn’t release any data or model, which poses any risk.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
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13.

14.

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: | Yes]

Justification: For our experiments we adapt the JaxGCRL code base and cite the original
authors properly. No additional existing assets are used.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: | Yes]

Justification: The only asset introduced in this work is the implementation of the novel
DISCOVER method along side its baselines. We provide the implementation along side a
documentation for understanding the main components and reproducing the experiments.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

» At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.
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16.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Additional Related Work

Self-play Many games can be naturally formulated as sparse-reward reinforcement learning
problems, where the agent receives a reward only upon winning. Seminal works have achieved
superhuman ability using this approach [e.g., 45, 66, 67, 7]. A central technique, enabling these
successes, is self-play [79, 64, 65, 66]. There are clear connections between these techniques and
the directed exploration in DISCOVER. Self-play can be viewed as a form of goal selection [64, 65],
where the current agent (or a simultaneously trained agent) is choosen as its own opponent. This
opponent selection promotes achievability, as it is possible to beat a recent version of yourself, novelty
as the opponent is of similar ability, and relevance as it is the currently strongest opponent to beat.

Hierarchical RL. DISCOVER is closely related to the field of hierarchical RL [76, 16, 46], which
aims to explore and plan at a higher level of abstraction. Recent methods have introduced frameworks
in which multiple hierarchical levels are used to propose and learn skills [46, 25]. In this work,
we focus on a simplified setting in which a single goal is selected for exploration in each episode.
However, the general approach can be naturally extended to more complex hierarchical structures.

Directed exploration in sequential decision making DISCOVER is designed to efficiently address
the exploration-exploitation dilemma, a key concept in sequential decision making. Fundamentally, it
expresses an agent’s inevitable trade-off between the objectives of learning its environment and solving
a task. A particularly common approach to balancing exploration and exploitation is grounded in the
principle of optimism in the face of uncertainty [e.g., 68]. Thereby, the agent selects actions that max-
imize an upper confidence bound (UCB) of the reward function, i.e., it selects actions which based on
the agents’ imperfect knowledge could lead to a large reward. In many settings of sequential decision
making, such as linear bandits, this approach achieves the rate-optimal regret Ry ~ O(dv/T) [68, 2,
1, 13]. The DISCOVER objective extends UCB to the problem of goal selection in RL. Beyond UCB,
many other methods have been shown to effectively direct exploration towards “relevant” experience,
such as in bandits [e.g., 60, 59, 34], in RL [e.g., 14, 72], or in active learning [e.g., 42, 37, 6].

B Connection to the Likelihood of Success

From a goal-reaching perspective, the undiscounted version of the DISCOVER criterion is tightly
connected to the actual objective of the agent, i.e., reaching the target goal. This emerges naturally as
when v — 1, € — 0, and m — 7*, the value function becomes a (negative) quasimetric [83]. Thus, it
is non-positive, and respects the triangle inequality,

Vﬁ(80a9> + Vﬂ—(g’g*) S Vﬂ(507g*)7 (5)

for arbitrary sg € S, g,g* € G. Note that the direction of the inequality is flipped as the value function
represents a negative distance. For o = 0.5, DISCOVER maximizes a probabilistic estimate of the left
hand side of Equation (5), which is a tight lower-bound to V™ (sq, g*). The value V™ (sg, g*) is exactly
the quantity of interest for the agent, as it represents the negative expected number of steps to reach the
true goal g*. Intuitively, DISCOVER selects goals that are optimistically going to guarantee the short-
est path to the actual goal or, in the undiscounted case, the likelihood of reaching it within an episode.

C Proofs

In this section, we prove the theoretical guarantee informally stated in Informal Theorem 4.2. We
begin by introducing some useful notation and the formal assumptions before proving Theorem C.9.

C.1 Notation

We define the reward function r*(g) = aV*(so,9) + (1 — a)V*(g, g*) for any fixed o € (0, 3).
We define d*(g,9") = —V*(g, g*). We denote by G; C G the goals that are achievable by the agent
in episode ¢ with probability at least «, i.e., the policy is able to reach goals within G; with probability
at least a. We use log to denote the natural logarithm. For simplicity, we assume throughout that the
initial state sg is fixed across all episodes.

23



C.2 Assumptions

Assumption C.1 (Linear value function within feature space). For any n > 1 and for all g € G,,, the
value functions V*(sg, g) and V*(g, g*) are linear in the features ¢(-), p(-) € R? with ¢(-) L (),
ie.,

V*(s0,9) = {¢(9),0) and V*(g,9%) = (¢(9),0")

for some fixed 0,0’ € R with [|6)]|2, [|6'||]2 < 1.

Assumption C.2 (Noisy feedback). In episode ¢, selecting any g; € G;, the agent receives noisy
feedback y; = r*(g:) + ;. We assume that the noise sequence {c;}{2, is conditionally R-sub-
Gaussian for a fixed constant B > 0, i.e.,

)\2 2
Vt>0, VAER, E[e*|F_i] <exp ( 5 >

where F;_1 is the o-algebra generated by the random variables {gs, 88}2;11 and g;.

Assumption C.3 (Value function estimates). For any h > 1,¢ > h, the value function estimate
relative to s is given by

t—1

Vi(so,) () TS+ 2D 6(gs)s,

s=h
oS0, ) o \/¢(')T(Et +A)~1o(-),

where ¥, = Zi;}z #(gs)#(gs) T and A > 0. The value function estimate relative to g* is defined
analogously with respect to the feature vector ¢(+).

Assumption C.4 (Goal space contains optimal paths®). For any goal g’ € G, the optimal path from
g’ to g* is contained in G. Formally, there exists a g € G such that d*(¢’, ¢*) = d*(¢, g9) + d* (g, g*)
for any d*(¢', g) € [0,d*(¢', g%)]-

Assumption C.5 (Goal achievability). We denote by G; C G the goals that are achievable by the
agent in episode ¢ with probability at least « € (0, 1). Moreover, for any ¢t > 1, the G, contains all
goals g € G for which we have previously selected a goal, which is (1 — «)k-close (under the optimal
value function). We call x > 0 the expansion rate. Formally,

Gir12{9€G|3t' <t:d"(gr,9) < (1 -a)xr}.
Further, Gy 2 {s¢}, i.e., the initial state is always achievable.

Relaxing Assumption C.2 One can consider any individual feedback y; as being the result of an
oracle that achieves the commanded goal g; with probability at least o within K episodes. With this
looser assumption, our bound in Informal Theorem 4.2 simply increases by a factor K.

C.3 Proof of Informal Theorem 4.2

We begin by restating the regret bound obtained for linear bandits in [13].
Proposition C.6. Ler Assumptions C.1 to C.3 hold. Fix any § € (0,1),n > 1,«a € (0,1), and let

By =1+ R\/2(dlog(t —n+1) + 1 +1log(1/0)) fort > n. (6)
We then have with probability 1 — § that the regret of selecting goals gp,gn+i1,... with
DISCOVER(«, 3¢) is bounded by
h4T

max r*(g) — r*(g:) < O(dV'Tlog T log(1/4)).

>This assumption simply states that the goal space G is geodesically convex under the quasimetric d* induced
by the optimal value function. This is a standard “reachability” condition, which may be familiar to readers from
control theory.

24



Proof. By Theorem 3 in [13] and using that the feature spaces ¢ and ¢ are orthogonal (cf. Assump-
tion C.1), we have

h+T

max 1 (g) = r*(9:) < OVT(BYAT + 71 + /1 log(1/9)))
t=h "
with B = 1. Bounding vy < O(dlogT) using Assumption C.1, completes the proof. O

Lemma C.7. Let Assumption C.4 hold and fix any ¢ > 0,« > 0. Then, for all ¢ € G with
d*(¢',9*) > e there exists a g € G with d*(g,¢") = € such that r*(g) — r*(¢') > (1 — 2a)e.

Proof. Consider the optimal path from ¢’ to g*, i.e., the goals g satisfying

d*(g',9%) = d*(g'.9) + d* (9, 97).
By Assumption C.4, for any d*(¢’, g) € [0, €], we have that g € G. We take the goal g such that
d*(¢', g) = €. We then obtain

r*(g) = (") = a(V*(s0,9) = V*(s0,9")) + (1 = ) (V*(g,9") = V*(¢'.97))
= a(d*(s0,9') — d*(s0,9)) + (1 — a)(d"(¢', 9%) — d"(g,9"))
= a(d"(s0,9) — d*(807 )+ (1 — e
> a(d*(s0, ") — (d*(s0,9') +d*(¢',9))) + (1 —a)e  (triangle inequality)
= —ad" (¢, 9) + (1 — a)e
=—ae+ (1 —a)e
=(1-2a)e.

O

Lemma C.8 (Improvement lemma). Let Assumptions C.1 to C.4 hold with (3; as in Equation (6). Fix
any 0 € (0, 1) n>1e>0ac(0,3)and0 <A < (1—2a)e. With probability 1 — §, there exist

at' €e{n,....,n+T}withT = @(W) and a g € G with d*(gv, g) < € such that

r(9) — maxr*(g) = A.

Proof. With probability 1 — 5, the number of episodes 7" until the agent has achieved Ty, of its
goals is bounded as T' = @( Tach) 6 We denote by 7 C {n,...,n + T} the set of episodes in which
the agent has achieved its goal Further, by Proposition C.6, also with probability 1 — 5, we have
det 1 " * S
Ry, = = ) maxr’(g) —r*(g) < Od/V/|TI).

‘T| tE’Tgegn

All further steps are conditional on the union of the above high probability events. Thus, the regret in
successful episodes is bounded by R,, < O(d/+/Tach)-

Observe that for some The, = O(d?/((1 — 2a)e — A)?), we have that R,, < (1 — 2a)e — A, where
the conditions a < % and A < (1 — 2«)e ensure that the bound on the regret is positive. This then
implies that there exists a t’ € T such that

max r*(g) — 1 (gr) < (1 —2a)e — A 7
9EGn

Further, by Lemma C.7, there exists a § € G such that d*(g4, ) = € and

r(g) —r*(gr) = (1 - 2a)e. ®
Combining the above, we obtain
r(9) = maxr*(g) > 7(9) = [(1 = 2a)e = A+ 1" (gv)] (Equation (7))
=7(g) =" (gr) = (1 =2a)e+ A
>(1-2a)e— (1 —-2a)e+ A (Equation (8))
=A.
O
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Figure 7: Plotting the effect of the parameter «v on the (inverse) goal-achieval rate (cf. Theorem C.9).
The target goal is reached fastest for o ~ 0.1.

Theorem C.9. Let Assumptions C.I to C.5 hold with By as in Equation (6). Fix any
§€(0,1), a€(0,%), and let D = d*(sg,g*). Then, with probability 1 — 8, selecting
goals g with DISCOVER(«, By), the number of episodes N until g* € Gy is bounded by
N < O(sr=gti—y) = O(24).

a(l—2a)?2(l—a)3k3

Proof. We first note that

7(g") —r*(s0) = a(V*(s0,9") — V*(s0,80)) + (1 — a)(V*(g",9%) = V*(50,9"))
=aV*(sg,9") — (1 — @)V*(s0,9")
= (2a — 1)V*(s0,9%) = (1 — 2a)d*(s0,9*) = (1 — 2a)D.
We prove the theorem by applying Lemma C.8 M def [%1 times, while setting € = (1 — «)k.
First, for an arbiztrary 0 < i < M — 1, we assume for the goal set G, with some
T =0( that it holds that

d
a((1—-2a)(1—a)k—A)2 )

max 7*(g) > r*(so) + IA.
9€GiT

Now, applying Lemma C.8 yields that after an additional T" steps, with high probability, there exists a
t' e {iT,..., (i + 1)T'} such that there is a § € G with d* (g, §) < (1 — «)k satisfying

*(g) — max r*(g) > A.
(9) Joax r (9) >
Hence, by Assumption C.5, we have that g € Q(Hl)T, and therefore,

max r*(g) > 7*(g) > A+ max r*(g9) > r*(so) + (¢ + 1)A.
9€Gir1)T 9€GiT

Iterating this argument M times and applying a union bound, we obtain

max 7*(g) > r*(so) + MA > r*(g%).

9eGmT

The total number of episodes is

def ~ (1 —2a)Dd?
N=MT<O
- (Aa((l —20)(1 —a)k — A)?
We can optimize o and A to minimize N under the constraints 0 < o < %, A > 0, and
A < (1—2a)(1 — a)x. The optimal choices are A = 1(1 — 2a)(1 — @)x and o ~ 0.1. Sub-
stituting, we obtain N < 5(#&)%3) = 6(2%2 )- O

Finally, we include a technical lemma that is used in the proof of Lemma C.8.

See Lemma C.10.
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Lemma C.10. Let 0 < o < 1, 0 < § < 1 and suppose Toer, > 8log(1/5). Furthermore, let

X1,...,Xr N Bern(a) and St = Zthl Xi. Then, for some T = @(%), with probability
1— 06, we have St > Tyep.

[2log(1/0 2 ~
N = %7 T = ’7(1-"-721 Tach—‘ :Q(T.z;h)7 M:E[ST} —aT.

Note that y > (1 + 7)2Taen and 0 < 7 < 1 (for T, > 8log(1/4)). Hence,

Proof. Set

2
Toen=(1—€)p, e=1-"Toan =35 > 2 ¢ (0,1).

By the multiplicative Chernoff bound,

Pr[Sy < Taen] = Pr[Sr < (1 —€)u] < exp(—%) < exp(—@) = exp(—log(1/8)) = 6.
O
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1 8

(a) pointmaze (b) antmaze (c) arm

Figure 8: Sparse-reward environments from the JaxGCRL [9] library used in our evaluation. We
additionally implement the pointmaze environment (left), which allows for arbitrary dimensionality.
The maze is created by randomly generating paths in the environment until the target is found
sufficiently often.

D Additional Experimental Results

In this section, we present additional experiments and ablations. The environments used for this
evaluation are visualized in Figure 8 [9].

In high-dimensional search spaces, even direction
estimates with high variance are useful. In com-
plex environments, obtaining accurate direction esti-
mates can be challenging. To evaluate the utility of
directed goal selection in scenarios where direction
estimates are imprecise, we add Gaussian noise to the
target goal location. We then compare the number of
environment steps required to reach a 10% target goal
achievement rate using the hand-designed goal selec-

8

N
o
1

[\
o
1

Steps until 10% Success (M)

tion strategy from Figure 5, under varying levels of 0- = —0— —e
noise variance. The results in Figure 9 show that even 0 2 5 10 20
with substantial noise, pointmaze environments that Variance of Randomized Target

are unsolvable by undirected methods, remain solv- —e— 2D —A— 4D 6D
able by DISCOVER. This demonstrates that even —=— 3D 5D

imprecise directional estimates can significantly aid

target goal discovery in complex goal spaces. Figure 9: Evaluation of robustness directed

goal selection with respect to noisy target es-
Ablation of the online parameter adaptation strat- timates. The variance refers to the variance
egy In Figure 10, we evaluate the effect of using of the random Gaussian noise that is added
the simple proposed adaptation strategy with differ- to the target goal before selecting the goals
ent target goal achievement ratio p,, and compare using the hand-designed goal selection strat-
with fixing the a;; parameters to O (Target Relevance egy, which uses the L, distance to estimate
+ Novelty) and 0.5 (Fixed DISCOVER). Furthermore, direction.
we report the average oy for DISCOVER for all easy
and hard tasks respectively in Figure 11. The comparison of the success rates on the antmaze
environments demonstrates that the adaptation strategy with any target goal achievement works better
than fixing the parameters. This can be observed from the goal achievement rates. If we fix a; = 0.5,
we choose goals that are "too easy" and therefore don’t explore sufficiently. On the other hand,
by fixing oy, = 0 we select goals that are "too hard", which also leads too poor improvement. By
using the simple adaptation strategy, we roughly achieve the target goal achievement specified. The
optimal performance is achieved for the target goal achievement p% = 0.5, which is in line with
what other methods found [53, 41, 84]. The average o, which is found by the adaptation strategy,
initially goes up to 0.15, which is roughly what we found in the theoretical analysis in the linear
bandit setting (cf. Theorem C.9), and then starts to decay. The decay can be explained by the fact that
once we can reach the target goal, we don’t need to optimize for achievability anymore.

Influence of the term o (g, g*) In Figure 12, we study how the standard deviation o (g, g*) from
goal g to the target g* influences the training. This term theoretically is part of the UCB term,
directing the agent towards the target goal. To this end, we fix the contribution of o (sg, g) (i.e., set
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Figure 10: Comparison of how the adaptation strategy influences the goal achievement and success
rates. We compare two constant strategies (Fixed DISCOVER and Fixed Target Relevance + Novelty)
with an adaptation rule for different goal achievement targets.
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Figure 11: We plot the average «;; over the training, as adapted by the previously introduced online
adaptation strategy for the DISCOVER goal selection strategy. The o, are averaged over the three
main environments.
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The plot shows that no value for the 3’ parameter has a significant positive effect on the performance.
For this reason, we substitute o(sg, g) for (g, ¢*) in our other experiments with DISCOVER.

By = 1f) and consider a separate fixed 3, = " which determines the contribution of o(g,g*).

Exploration of DISCOVER + pre-trained prior We R le7
visualize the exploration of the DISCOVER + pre-trained ;
prior gaol selection strategy in Figure 13. In comparison
to DISCOVER starting from a randomly initialized agent,
it only explores in the correct direction, avoiding obstacles.
This demonstrates that access to prior can further improve
performance of DISCOVER.

Investigation of the role of the DISCOVER components
for exploration We visualize the different components
of the DISCOVER objective over the course of training
in Figure 14. The first term V (sg, g) has high-value close
to the initial state. By maximizing it, we will pick a Figure 13: Selected goals by “DIS-
goal that is close to the start and likely to be achievable, COVER + pre-trained prior” in the
which matches the intuition. The second term V' (g,¢*) antmaze environment.

represents the value from a goal g to the target goal g*.

The plots show that in the first episodes the value is small everywhere and only once goals are
discovered that are closer to the final target we observe higher values. Over the course of training,
its role of encouraging to pick goals relevant to the final target becomes more evident. This term
therefore directs the goal selection towards the final goal. Finally, the standard deviation o (sg, ¢g) has
the largest value at the border of the current achievable goal set and therefore encourages selecting
novel goals. In general, the components of the DISCOVER objective during the training match the
previously presented intuition and can efficiently guide the goal selection towards the desired target.

Step

Investigation of Direction Estimation To further investigate the ability of the relevance term in
the DISCOVER objective to direct the exploration towards to the target goal, we plot the pearson
correlation between the relevance term V*(g, g*) and a proxy for the true distance ||g — ¢*|| in
Figure 16a. The correlation in both the antmaze and pointmaze environments increases quickly
during training. This indicates that the relevance term captures a useful notion of distance, even
before the final goal is reached for the first time. This behavior explains DISCOVER’s superior
performance compared to undirected goal-selection strategies, as the value function is able to capture
a useful notion of distance to the target, before it was reached. This allows DISCOVER to effectively
guide the exploration to the true target goal. Notably, the correlation does not converge to one. This
is expected, as the Euclidean distance in the goal space is an imperfect proxy for the true shortest
traversable path within the environment.
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Figure 14: Visualization of the components of the DISCOVER objective at different points of the
training. We plot the value functions in the regions, where achieved goals are sampled and therefore
goals can be selected. The final DISCOVER objective combines the visualized terms with the current
adaptation parameters oy, ;.
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Figure 15: Visualization of the exploration of the standard non-goal-conditioned RL methods in the
antmaze environments. We run the state-of-the-art MaxInfoRL [71] with SAC.
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Ablation of Ensemble Size A key parameter in the DISCOVER algorithm is the value function
ensemble size. To quantify the impact of ensemble size on uncertainty estimates, we evalute the
performance of DISCOVER in the hard antmaze environment, comparing ensembles of 2, 4, 6, and
8 critics in Figure 16b. Consistent with prior work [48], increasing the number of critics above the
default of two improves uncertainty estimation. In our experiments, an ensemble of six critics proved
sufficient to yield robust performance.

Relying on an ensemble of critics can be computationally expensive. We find that in our experiments
the overhead of increasing the critic size from 2 to 6 was modest. This is mainly due to small critic
networks and highly parallel training using jax. In practice, we find that increasing the ensemble
from 2 to 6 critics was sufficient to yield high-quality uncertainty estimates, while incurring only a
26% increase in runtime.
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E Implementation Details

We consistently substitute o (g, g*) by o(sg, ¢) in all our experiments. In our evaluated environments,
the empirical performance of DISCOVER is largely irrespective of o (g, g*) (cf. Figure 12).

E.1 Probabilistic Value Estimation

A crucial component of DISCOVER is a probabilistic model of the value function, which can enable
uncertainty-aware strategies. Fortunately, there are many options for probabilistic models of the
value function [39, 48, 47]. For simplicity, we employ an ensemble of value functions [48] and
quantify uncertainty via disagreement. This strategy has been used before to select goals, which have
high exploration potential and therefore provide novel experiences [86]. Intuitively, these ensemble
provide valid uncertainty estimates, as we use different random initilizations for the networks and
train on different data. If the networks have been trained on a certain training sample sufficiently
often, the different ensemble members will converge to the same value, while if a sample hasn’t been
observed yet or only a few times the discrepancy will be higher. The mean and standard deviations
used for the DISCOVER objective are computed as follows:

1

N N
Vis.0) = 5 D Vils.9) o(5,9) = 5 D (Vils.0) ~V(s.9)?  ©
i=1 =1

=|

This can be seen as a straightforward extension of the standard twin critic approach [24]. We find
that a slightly higher numer of critic improves accuracy of uncertainty estimates. We further find that
by training each critic against a random minimum of two target critics we obtain sufficient diversity
for good uncertainty estimates as well as circumvent the maximization bias [81]. Additionally, we
use a softplus activation at the output of each critic to limit the values to negative values.

Scaling critic ensembles to domains with large models (e.g., language) is challenging. An exciting
direction for future work is to explore DISCOVER with other tools for uncertainty quantification,
such as epistemic neural networks [50].

E.2 Environment Details

We adapt the antmaze and arm environments from the JaxGCRL library [9]. In both cases, we fix
the initial-state distribution to be a uniform pertubation of a fixed intial state, and we fix a single
target goal location per environment (marked by the red cross in Figure 4). In addition to these two
challenging high-dimensional benchmarks, we implement a pointmaze environment with potentially
arbitrary dimensionality d. In our experiements we consider pointmazes with d € [2,...,6]. We
construct the pointmazes as follows. We sample random paths in the d-dimensional hypercube, by
starting from the origin and randomly changing direction with a probability of 16.6%. We terminate
this process once the target goal is observed sufficiently often. This number was set to 2 to 4
depending on the dimensionality of the maze.

In our experiments we evaluate both “simple” and “hard” versions of each environment. For
the pointmaze, the simple configuration is realized on a two-dimensional grid while the hard
configuration uses a four-dimensional hypercube. In the antmaze, the simple setup contains no walls
between start and goal, whereas the hard version introduces a single wall that blocks the direct route
to the target (visualized in Figure 4). Finally, in the arm environment the simple scenario places
one small obstacle that the manipulator must skirt around, while the hard variant includes two larger
obstacles that require more precise cube maneuvering to reach the goal.

In the pointmaze, the goal space coincides with the full state space, covering all d dimensions (for
the simple maze and for the hard maze). Consistent with JaxGCRL [9], in the antmaze the goals
are defined by the agent’s planar-coordinates, and in the arm environment by the 3-dimensional
coordinates of the cube.
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E.3 Training Hyperparameters

Hyperparameter Value

Offline RL algorithm TD3

Ensemble size 6

Discount factor 0.99

Batch size 256

Learning rate 3-1074

Policy update delay 2

Target critic Polyak factor 0.005

Relabel strategy Uniform future: 70%, original: 30%
Target critic computation Minimum of two random target critics
Size of critic ensemble 6

Initial apdation parameter oy 0

Horizon 100-250

Parameter adaptation lookback kagapt 64-128

Table 2: Hyperparameters for training in JaxGCRL Environments.
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