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Abstract
Graph Edit Distance (GED) is a powerful framework for modeling both sym-
metric and asymmetric relationships between graph pairs under various cost
settings. Due to the combinatorial intractability of exact GED computation,
recent advancements have focused on neural GED estimators that approximate
GED by leveraging data distribution characteristics. These estimators map the
structural information of graphs into an embedding space while preserving es-
sential graph invariances and equivariances. However, the datasets commonly
used to benchmark such neural models exhibit two critical flaws: (1) significant
isomorphism bias leading to high likelihood of train-test leakage, with only a
small fraction of graphs being structurally unique (8.9% in Linux, 25.8% in
IMDB, and 41% in AIDS data sets), and (2) reliance on uniform edit costs for
GED ground truths. These limitations constrain the evaluation of learning and
generalization capabilities of competing methods, casting doubt on the validity
of existing results and suggesting potential biases in comparative studies.
In this work, we introduce and release a comprehensive suite of datasets specifi-
cally designed to rectify these shortcomings. Our datasets eliminate isomorphism
leakage and incorporate a range of edit costs, facilitating more accurate assess-
ment of GED methods. We conduct benchmarking evaluations of state-of-the-art
methods using these datasets, providing insights into their true generalization
capabilities. By making these datasets available as open-source resources, we
offer a robust foundation for advancing research in GED estimation.

1 Introduction
Graph Edit Distance (GED) measures the minimum cost of transforming one graph into another
through a series of edit operations like node and edge insertions, deletions, and substitutions. Each
operation can have a different cost, allowing GED to represent both symmetric and asymmetric
relationships between graph pairs. This flexibility makes GED suitable for various graph comparison
tasks, such as identifying the Maximum Common Subgraph and verifying Subgraph Isomorphism [1].
However, computing GED is computationally challenging, especially with variable edit costs. Recent
neural network-based approaches, typically leveraging Graph Neural Networks (GNNs), aim to
approximate GED efficiently. Still, many of these methods struggle with incorporating variable
operation costs, limiting their ability to generalize across diverse scenarios.

1.1 GED Evaluation Datasets

Exact GED computation is notoriously intractable, and while neural approaches offer promising
approximations, training these models requires ground truth data. Generating this data is computa-
tionally expensive, especially for larger graphs. Early neural GED papers relied on datasets with
small graphs to address this limitation. For instance, SimGNN [2] and other early works focused on
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datasets like AIDS, LINUX, and IMDB, which mostly feature graphs with fewer than 10 nodes. This
trend continued with subsequent models like GED-GNN [3], EGSC [4], and ERIC [5], which also
utilized small graph datasets such as ALKANE and NCI109, in addition to the original three datasets.

Table 1: Size of datasets before and af-
ter filtering isomorphic graphs and the
reduction in (%) of the datasets.

Dataset D |D| |Dunq| ↓ %
LINUX 1000 89 91.1%
IMDB 1500 387 74.2%
AIDS (w/o label) 700 290 58.6%
AIDS (w/ label) 700 670 4.3%

This computationally intensive prerequisite poses a sig-
nificant barrier to entry for new research. This difficulty
is further exacerbated by the fact that many studies do
not release their generated datasets. Consequently, most
recent work relies heavily on the original three datasets
introduced by SimGNN—AIDS, LINUX, and IMDB. We
investigate these three main datasets used for GED esti-
mation by the current state-of-the-art neural GED meth-
ods [2–9], also provided in the torch-geometric’s GEDDataset class 1. These datasets consists of a
collection of graphs D, which are further divided into train Dtrain, validation Dval, and test Dtest splits,
and appropriately paired either by (1) taking |D•|2 combinations within the split, or (2) as a retrieval
setup, pairing test graphs with train graphs. Upon further inspection, we identified a high prevalence
of isomorphic graphs, reducing the unique dataset Dunq to a small fraction of the original size, as
shown in Table 1.

Consequently, irrespective of the methodology employed for forming pairs within the GED datasets,
substantial train-test leakage remains unavoidable, significantly undermining the validity of the
results reported by current neural approaches for GED estimation. Additionally, these datasets only
provide graph edit distance values based on uniform costs (where all edit operations incur a cost of
1), restricting the broader applicability of these methods. To this effect, there is a need in literature
for new benchmark datasets which:

1. Eliminate train-test leakage, allowing for robust evaluation of learning and generalization
capabilities of competing methods,

2. Incorporate varied edit costs across datasets for comprehensively evaluating the capabilities of
neural models to exploit the underlying flexibility of the GED framework,

3. Are open-source, with publicly available ground truth data to lower the barrier of entry and
advancing research in GED estimation.

2 Proposed Datasets
In response to the aforementioned challenges, we introduce a comprehensive benchmarking suite
for GED estimation, encompassing seven datasets and four distinct edit cost combinations. The
datasets, namely Mutagenicity (Mutag), Ogbg-Code2 (Code2), Ogbg-Molhiv (Molhiv), Ogbg-
Molpcba (Molpcba), AIDS (AIDS), Linux (Linux), and Yeast (Yeast), have been extracted from
standard graph benchmarks [2, 10–12], and are further tailored to the task of computing the GED.
We define the costs associated with node addition, deletion, and substitution as Cn = (cadd

n , cdel
n , csub

n ),
and edge costs as Ce = (cadd

e , cdel
e , csub

e ). The benchmark variants are summarized as follows:

1. Uniform-GED (U-GED): Consisting of graphs from the following datasets – Mutag, Code2,
Molhiv, Molpcba, AIDS, Linux, Yeast with Cn = (1, 1, 0), and Ce = (1, 1, 0).

2. Non-uniform-GED (NU-GED): Consisting of graphs from the following datasets – Mutag,
Code2, Molhiv, Molpcba, AIDS, Linux, Yeast with Cn = (1, 3, 0), and Ce = (1, 2, 0).

3. Label-GED (L-GED): Consisting of graphs from the following datasets – Mutag, Code2,
Molhiv, Molpcba, AIDS with Cn = (1, 1, 1), and Ce = (1, 1, 0).

4. Non-uniform-edge-GED (NUE-GED): Consisting of graphs from the following datasets –
Mutag, Molhiv, Linux with Cn = (0, 0, 0), and Ce = (1, 2, 0).

For Uniform-GED and Non-uniform-GED, the graph edit distance is computed between two graphs
without any node substitution cost. In Label-GED, a label substitution cost of 1 is introduced.
Additionally, we consider a special case, Non-uniform-edge-GED, where all node-related costs are
set to 0, making the edit distance exclusively focused on the cost of edge alignment.

1https://pytorch-geometric.readthedocs.io/en/2.5.3/generated/torch_geometric.
datasets.GEDDataset.html
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Figure 1: Steps involved to generate the proposed datasets. First, from the collection of graphs D
belonging to a standard graph benchmark, we filter out isomorphic graphs to get the set of graphs
S. S is further split into training, validation, and test splits in the ratio of 60 : 20 : 20. Then
we consider all combinations (including self-combinations) of graphs within each split to generate
|S•| × (|S•|+ 1)/2 pairs of graphs. Finally, we calculate the ground truth GED Y• through a GED
generator using the MIP-F2 [13] with appropriate edit costs.

We generate the datasets as follows: Given the graph benchmark dataset D, we first filter out
isomorphic graphs through an extensive, explicit isomorphism check between all pairs, resulting in a
set of unique graphs S. This set is then split into Strain,Sval, and Stest in a 60:20:20 ratio. For each
split, we generate pairs P• by considering all combinations (including self-combinations), yielding
|S•| × (|S•| + 1)/2 pairs. The GED ground truth Y• for each pair is computed using the MIP-F2
solver [13], with our varying edit cost configurations. Since all graphs within and across splits are
unique, we effectively prevent isomorphic leakage. This pipeline is demonstrated in Figure 1. We
further present the statistics for Uniform-GED and Non-Uniform-GED in Table 2. Statistics on
Label-GED and Non-uniform-edge-GED are present in the Appendix.

Table 2: Salient characteristics of datasets for Uniform-GED and Non-uniform-GED.

#Graphs # Train Pairs # Val Pairs # Test Pairs Avg. |V | Avg. |E| Avg. U-GED Avg. NU-GED

Mutag 729 95703 10585 10878 16.01 15.76 11.15 18.57
Code2 128 2926 325 378 18.77 17.77 10.02 16.43
Molhiv 1000 180300 20100 20100 15.01 15.65 11.77 19.86
Molpcba 1000 180300 20100 20100 17.52 18.67 9.58 15.73
AIDS 911 149331 16653 16836 10.97 10.97 7.38 12.07
Yeast 1000 180300 20100 20100 16.59 17.04 10.65 17.74
Linux 89 1431 153 190 8.71 8.35 4.91 7.94

3 Experiments
We present the evaluation results of nine state-of-the-art methods across all four cost variants of our
datasets. Additional experiments and standard error measurements for the methods are provided in
the appendix. Upon acceptance, we will publicly release the datasets, along with the code for dataset
generation, ground truth computation under all cost variants, and benchmarking of the methods

3.1 Methods

We compare nine state-of-the-art methods, namely GMN-Match [14], GMN-Embed [14],
ISONET [15], GREED [7], ERIC [5], SimGNN [2], H2MN [6], GraphSim [8], and EGSC [4].
Among these, GMN-Match and H2MN are early-interaction networks that leverage cross-graph
signals during node embedding computation, while the others are late-interaction networks, where
node embeddings are computed independently for each graph in the pair. The methods use two
approaches to estimate the GED: (1) calculating the Euclidean distance between node or graph
embeddings to directly estimate GED, or (2) computing a normalized GED-based similarity score,
given by s = exp (−2yG1,G2

/(|V1|+ |V2|)), where yG1,G2
is the GED between graphs G1 and G2.

Additionally, none of the methods incorporate edit costs into their formulations, and hence they are
presented as features to the network explicitly.

3.2 Evaluation.

We train the models using the Mean Squared Error (MSE) between the predicted GED and the ground
truth GED as the loss function, and present the MSE on the test set. In each case, we mark the best
performing method by yellow.
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3.3 Results.

In Table 3, we compare the performance of all methods on the Uniform-GED task in terms of MSE.
Notably, EGSC and ERIC consistently outperform the other methods across the majority of datasets.

Table 3: MSE of methods for Uniform-GED with Cn = (1, 1, 0), and Ce = (1, 1, 0).
Mutag Code2 Molhiv Molpcba AIDS Linux Yeast

GMN-Match 0.797 1.677 1.318 1.073 0.821 0.687 1.175
GMN-Embed 1.032 1.358 1.859 1.951 1.044 0.736 1.767
ISONET 1.187 0.879 1.354 1.106 1.640 1.185 1.578
GREED 1.398 1.869 1.708 1.550 1.004 1.331 1.423
ERIC 0.719 1.363 1.165 0.862 0.731 1.664 0.969
SimGNN 1.471 2.667 1.609 1.456 1.455 7.232 1.999
H2MN 1.278 7.240 1.521 1.402 1.114 2.238 1.353
GraphSim 2.005 3.139 2.577 1.656 1.936 2.900 2.232
EGSC 0.765 4.165 1.138 0.938 0.627 2.411 0.950

In Table 4, we compare the performance of all methods on the Non-uniform-GED task in terms of
MSE. We note that EGSC, ERIC, and ISONET consistently outperform the other methods across
the majority of datasets. Moreover the methods which predict the GED through Euclidean distance
between graph vectors, namely GMN-Match, GMN-Embed, and GREED do not scale with the edit
costs, and performed significantly poorly compared to the other methods.

Table 4: MSE of methods for Non-uniform-GED with Cn = (1, 3, 0) and Ce = (1, 2, 0).
Mutag Code2 Molhiv Molpcba AIDS Linux Yeast

GMN-Match 69.210 13.472 76.923 23.985 31.522 21.519 63.179
GMN-Embed 72.495 13.425 78.254 28.437 33.221 20.591 60.949
ISONET 3.369 3.025 3.451 2.781 5.513 3.031 4.555
GREED 68.732 11.095 78.300 26.057 34.354 20.667 60.652
ERIC 1.981 12.767 3.377 2.057 1.581 7.809 2.341
SimGNN 4.747 5.212 4.145 3.465 4.316 5.369 4.496
H2MN 3.413 9.435 3.782 3.396 3.105 5.848 3.678
GraphSim 5.370 7.405 6.643 3.928 5.266 6.815 6.907
EGSC 1.758 3.957 2.371 2.133 1.693 5.503 2.157

In Table 5, we compare the performance of all methods on the Label-GED task in terms of MSE. No
single method consistently outperforms the others: EGSC leads in two cases, while ERIC, ISONET,
and GMN-Match excel in the remaining datasets. However, in the case of Non-uniform-edge-GED,
as reported in Table 6, ISONET is the best performer.

Table 5: MSE of methods for Label-GED with Cn = (1, 1, 1)
and Ce = (1, 1, 0).

Mutag Code2 Molhiv Molpcba AIDS
GMN-Match 1.057 5.224 1.388 1.432 0.868
GMN-Embed 2.159 4.070 3.523 4.657 1.818
ISONET 0.876 1.129 1.617 1.332 1.142
GREED 2.876 4.983 2.923 3.902 2.175
ERIC 0.886 6.323 1.537 1.278 1.602
SimGNN 1.160 5.909 1.888 2.172 1.418
H2MN 1.277 6.783 1.891 1.666 1.290
GraphSim 1.043 4.708 1.817 1.748 1.561
EGSC 0.776 8.742 1.273 1.426 1.270

Table 6: MSE of methods for NUE-GED
with Cn = (0, 0, 0) and Ce = (1, 2, 0).

Mutag Molhiv Linux
GMN-Match 11.276 13.586 4.893
GMN-Embed 13.627 16.482 4.363
ISONET 1.468 2.142 1.930
GREED 11.906 13.723 3.847
ERIC 1.900 2.154 3.361
SimGNN 3.138 3.771 5.089
H2MN 3.771 3.735 5.443
GraphSim 4.696 5.200 6.597
EGSC 1.871 2.187 2.803

4 Conclusion
In this work, we first examined the current datasets for GED estimation and identified two key issues:
(1) significant train-test leakage and (2) a lack of variation in edit costs. To address these challenges,
we introduced a comprehensive suite of datasets incorporating four distinct edit cost configurations,
aimed at advancing neural GED research. Lastly, we benchmarked nine state-of-the-art methods on
these newly proposed datasets.
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A Dataset statistics
In Tables 7, 8, 9, and 10 we present the statistics of the proposed datasets for the tasks of Uniform-
GED, Non-uniform-GED, Label-GED, and Non-uniform-edge-GED respectively.

Table 7: Salient characteristics of datasets for Uniform-GED with Cn = (1, 1, 0) and Ce = (1, 1, 0).

#Graphs # Train Pairs # Val Pairs # Test Pairs Avg. |V | Avg. |E| Avg. U-GED

Mutag 729 95703 10585 10878 16.01 15.76 11.15
Code2 128 2926 325 378 18.77 17.77 10.02
Molhiv 1000 180300 20100 20100 15.01 15.65 11.77
Molpcba 1000 180300 20100 20100 17.52 18.67 9.58
AIDS 911 149331 16653 16836 10.97 10.97 7.38
Yeast 1000 180300 20100 20100 16.59 17.04 10.65
Linux 89 1431 153 190 8.71 8.35 4.91

Table 8: Salient characteristics of datasets for Non-uniform-GED with Cn = (1, 3, 0) and Ce =
(1, 2, 0).

#Graphs # Train Pairs # Val Pairs # Test Pairs Avg. |V | Avg. |E| Avg. NU-GED

Mutag 729 95703 10585 10878 16.01 15.76 18.57
Code2 128 2926 325 378 18.77 17.77 16.43
Molhiv 1000 180300 20100 20100 15.01 15.65 19.86
Molpcba 1000 180300 20100 20100 17.52 18.67 15.73
AIDS 911 149331 16653 16836 10.97 10.97 12.07
Yeast 1000 180300 20100 20100 16.59 17.04 17.74
Linux 89 1431 153 190 8.71 8.35 7.94

Table 9: Salient characteristics of datasets for Label-GED with Cn = (1, 1, 1) and Ce = (1, 1, 0).

#Graphs # Train Pairs # Val Pairs # Test Pairs Avg. |V | Avg. |E| Avg. L-GED

Mutag 1287 298378 33153 33411 15.25 15.02 15.68
Code2 181 5886 666 703 18.9 17.9 16.87
Molhiv 1000 180300 20100 20100 14.45 15.03 16.55
Molpcba 1000 180300 20100 20100 17.43 18.59 13.84
AIDS 1588 453628 50403 51040 10.53 10.54 11.12

Table 10: Salient characteristics of datasets for Non-uniform-edge-GED with Cn = (0, 0, 0) and
Ce = (1, 2, 0).

#Graphs # Train Pairs # Val Pairs # Test Pairs Avg. |V | Avg. |E| Avg. NUE-GED

Mutag 729 95703 10585 10878 16.01 15.76 11.16
Molhiv 1000 180300 20100 20100 15.01 15.65 11.87
Linux 89 1431 153 190 8.71 8.35 5.32
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B Additional Experiments
In Tables 11, 12, 13, and 14, we report the MSE along with standard error on all methods for the
Uniform-GED, Non-uniform-GED, Label-GED, and Non-uniform-edge-GED respectively. In
each case, yellow denotes the best performer.

Table 11: MSE ± STD of methods for Uniform-GED with Cn = (1, 1, 0), and Ce = (1, 1, 0).
Mutag Code2 Molhiv Molpcba AIDS Linux Yeast

GMN-Match 0.797 ± 0.013 1.677 ± 0.187 1.318 ± 0.020 1.073 ± 0.011 0.821 ± 0.010 0.687 ± 0.088 1.175 ± 0.013
GMN-Embed 1.032 ± 0.016 1.358 ± 0.104 1.859 ± 0.020 1.951 ± 0.020 1.044 ± 0.013 0.736 ± 0.102 1.767 ± 0.021
ISONET 1.187 ± 0.021 0.879 ± 0.061 1.354 ± 0.015 1.106 ± 0.011 1.640 ± 0.020 1.185 ± 0.115 1.578 ± 0.019
GREED 1.398 ± 0.033 1.869 ± 0.140 1.708 ± 0.019 1.550 ± 0.017 1.004 ± 0.012 1.331 ± 0.169 1.423 ± 0.015
ERIC 0.719 ± 0.011 1.363 ± 0.110 1.165 ± 0.018 0.862 ± 0.009 0.731 ± 0.008 1.664 ± 0.260 0.969 ± 0.010
SimGNN 1.471 ± 0.024 2.667 ± 0.215 1.609 ± 0.020 1.456 ± 0.020 1.455 ± 0.020 7.232 ± 0.762 1.999 ± 0.043
H2MN 1.278 ± 0.021 7.240 ± 0.527 1.521 ± 0.020 1.402 ± 0.020 1.114 ± 0.015 2.238 ± 0.247 1.353 ± 0.018
GraphSim 2.005 ± 0.031 3.139 ± 0.206 2.577 ± 0.064 1.656 ± 0.023 1.936 ± 0.026 2.900 ± 0.318 2.232 ± 0.030
EGSC 0.765 ± 0.011 4.165 ± 0.285 1.138 ± 0.016 0.938 ± 0.010 0.627 ± 0.007 2.411 ± 0.325 0.950 ± 0.010

Table 12: MSE ± STD of methods for Non-uniform-GED with Cn = (1, 3, 0), and Ce = (1, 2, 0).
Mutag Code2 Molhiv Molpcba AIDS Linux Yeast

GMN-Match 69.210 ± 0.883 13.472 ± 0.970 76.923 ± 0.862 23.985 ± 0.224 31.522 ± 0.513 21.519 ± 2.256 63.179 ± 1.127
GMN-Embed 72.495 ± 0.915 13.425 ± 1.035 78.254 ± 0.865 28.437 ± 0.268 33.221 ± 0.523 20.591 ± 2.136 60.949 ± 0.663
ISONET 3.369 ± 0.062 3.025 ± 0.206 3.451 ± 0.039 2.781 ± 0.029 5.513 ± 0.092 3.031 ± 0.299 4.555 ± 0.061
GREED 68.732 ± 0.867 11.095 ± 0.773 78.300 ± 0.795 26.057 ± 0.238 34.354 ± 0.557 20.667 ± 2.140 60.652 ± 0.704
ERIC 1.981 ± 0.032 12.767 ± 1.177 3.377 ± 0.070 2.057 ± 0.020 1.581 ± 0.017 7.809 ± 0.911 2.341 ± 0.030
SimGNN 4.747 ± 0.079 5.212 ± 0.360 4.145 ± 0.051 3.465 ± 0.047 4.316 ± 0.071 5.369 ± 0.546 4.496 ± 0.060
H2MN 3.413 ± 0.053 9.435 ± 0.728 3.782 ± 0.046 3.396 ± 0.046 3.105 ± 0.043 5.848 ± 0.611 3.678 ± 0.046
GraphSim 5.370 ± 0.092 7.405 ± 0.577 6.643 ± 0.181 3.928 ± 0.053 5.266 ± 0.081 6.815 ± 0.628 6.907 ± 0.137
EGSC 1.758 ± 0.026 3.957 ± 0.365 2.371 ± 0.025 2.133 ± 0.022 1.693 ± 0.023 5.503 ± 0.496 2.157 ± 0.027

Table 13: MSE ± STD of methods for Label-GED with Cn = (1, 1, 1), and Ce = (1, 1, 0).
Mutag Code2 Molhiv Molpcba AIDS

GMN-Match 1.057 ± 0.011 5.224 ± 0.404 1.388 ± 0.018 1.432 ± 0.017 0.868 ± 0.007
GMN-Embed 2.159 ± 0.026 4.070 ± 0.318 3.523 ± 0.040 4.657 ± 0.054 1.818 ± 0.014
ISONET 0.876 ± 0.008 1.129 ± 0.084 1.617 ± 0.020 1.332 ± 0.014 1.142 ± 0.010
GREED 2.876 ± 0.032 4.983 ± 0.531 2.923 ± 0.033 3.902 ± 0.044 2.175 ± 0.016
ERIC 0.886 ± 0.009 6.323 ± 0.683 1.537 ± 0.018 1.278 ± 0.014 1.602 ± 0.036
SimGNN 1.160 ± 0.013 5.909 ± 0.490 1.888 ± 0.031 2.172 ± 0.050 1.418 ± 0.020
H2MN 1.277 ± 0.014 6.783 ± 0.587 1.891 ± 0.024 1.666 ± 0.021 1.290 ± 0.011
GraphSim 1.043 ± 0.010 4.708 ± 0.425 1.817 ± 0.021 1.748 ± 0.021 1.561 ± 0.021
EGSC 0.776 ± 0.008 8.742 ± 0.831 1.273 ± 0.016 1.426 ± 0.018 1.270 ± 0.028

Table 14: MSE ± STD of methods for Non-uniform-edge-GED with Cn = (0, 0, 0), and Ce =
(1, 2, 0).

Mutag Molhiv Linux
GMN-Match 11.276 ± 0.143 13.586 ± 0.171 4.893 ± 0.527
GMN-Embed 13.627 ± 0.179 16.482 ± 0.188 4.363 ± 0.420
ISONET 1.468 ± 0.020 2.142 ± 0.023 1.930 ± 0.186
GREED 11.906 ± 0.148 13.723 ± 0.136 3.847 ± 0.397
ERIC 1.900 ± 0.028 2.154 ± 0.024 3.361 ± 0.353
SimGNN 3.138 ± 0.052 3.771 ± 0.046 5.089 ± 0.524
H2MN 3.771 ± 0.062 3.735 ± 0.047 5.443 ± 0.566
GraphSim 4.696 ± 0.076 5.200 ± 0.074 6.597 ± 0.697
EGSC 1.871 ± 0.028 2.187 ± 0.025 2.803 ± 0.260
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