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ABSTRACT

While significant progress has been made in heterogeneous treatment effect (HTE)
estimation, the evaluation of HTE estimators remains underdeveloped. In this
article, we propose a robust evaluation framework based on relative error, which
quantifies performance differences between two HTE estimators. We first derive
the key theoretical conditions on the nuisance parameters that are necessary to
achieve a robust estimator of relative error. Building on these conditions, we
introduce novel loss functions and design a neural network architecture to estimate
nuisance parameters and obtain robust estimation of relative error, thereby achiev-
ing reliable evaluation of HTE estimators. We provide large sample properties of
the proposed relative error estimator. Furthermore, beyond evaluation, we propose
a new learning algorithm for HTE that leverages both the previously HTE estima-
tors and the nuisance parameters learned through our neural network architecture.
Extensive experiments demonstrate that our evaluation framework supports reliable
comparisons across HTE estimators, and the proposed learning algorithm for HTE
exhibits desirable performance.

1 INTRODUCTION

The estimation of heterogeneous treatment effects (HTEs) has attracted substantial attention across
a range of disciplines, including economics (Imbens & Rubin, 2015), marketing (Wager & Athey,
2018b), biology (Rosenbaum, 2020), and medicine (Hernán & Robins, 2020), due to its critical role in
understanding individual-level treatment heterogeneity and supporting personalized, context-specific
decision-making (Wu et al., 2024b;c). Various methods have been developed to estimate HTEs; see
Kunzel et al. (2019); Caron et al. (2022) for comprehensive reviews. Despite their growing popularity,
the evaluation of HTE estimators remain relatively underexplored (Gao, 2025). Assessing estimator
performance is crucial in real-world applications, as a reliable evaluation framework can identify the
most suitable methods (Curth & Van Der Schaar, 2023), directly impacting downstream tasks.

Evaluating HTEs is inherently challenging, as the ground truth is not available: only one potential
outcome is observed for each individual, while HTEs are defined as the difference between two. To
address this, researchers often rely on stringent model assumptions (Saito & YasuiAuthors, 2023;
Mahajan et al., 2024; Wu & Wang, 2026) or preprocessing methods (e.g., matching, Rolling & Yang
(2014)) to approximate the unobserved counterfactuals, and obtain an estimated treatment effect.
Our work is motivated by Gao (2025), who introduced relative error to quantify the performance
difference between two estimators, thereby reducing the bias caused by using inaccurately estimated
treatment effects as ground truth.

Despite the significant contributions of Gao (2025), a notable limitation remains unaddressed. Their
estimator requires that all nuisance estimators (propensity score and outcome models) are consistent
at a rate faster than n−1/4 to achieve consistency and valid confidence intervals for the relative
error, which may be too stringent for real-world applications. In practice, the outcome models for
potential outcomes heavily rely on model extrapolation. These models are trained separately within
the treated and control groups, yet their predictions are applied across the entire dataset. When
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there exists a significant distributional difference between the treated and control groups (Jeong &
Namkoong, 2020; Jing Qin & Huang, 2024), the extrapolated predictions from these models are
prone to inaccuracy, potentially leading to unreliable conclusions. Therefore, it is desirable to develop
methods that reduce reliance on such extrapolation to ensure more robust and trustworthy evaluations.

To address this limitation, we propose a reliable evaluation approach for HTE estimation that retains
the desirable properties of the method in Gao (2025), while relaxing the requirement for consistent
outcome regression models. We show that the proposed estimator of relative error is

√
n-consistent,

asymptotically normal, and yields valid confidence intervals, provided that the propensity score model
is consistent at a rate faster than n−1/4, even if the outcome regression model is inconsistent.

This robustness is achieved by carefully exploring the relationships between nuisance parameter
models. We first derive the key conditions necessary for robustness and then design a novel loss
function for estimating outcome regression models. Moreover, because our method still relies on a
consistent propensity score model, we introduce new balance regularizers that reduce this dependence
by encouraging the estimated scores to satisfy the balance property (Imai & Ratkovic, 2014), ensuring
that inverse-propensity–weighted covariate functions have equal expectations across treatment groups.

Furthermore, by combining the novel loss function with balance regularizers, we design a new neural
network architecture that more accurately estimates outcome regression and propensity score models,
enabling more reliable relative error estimation and, in turn, more robust HTE evaluations. It should
be mentioned that the proposed method does not require sample splitting and is numerically more
tractable, which is discussed in Section 4.4. The main contributions are summarized as follows.

• We reveal the limitations of existing methods and, through theoretical analysis, derive key conditions
for estimating the relative error that mitigate these limitations.

• We propose a reliable HTE evaluation method by designing novel loss functions and introducing a
new neural network, enabling more robust estimation of relative error.

• We conduct extensive experiments to demonstrate the effectiveness of the proposed method.

2 PRELIMINARIES

2.1 PROBLEM SETTING

We introduce notations to formulate the problem of interest. For each individual i, let Ai ∈ A =
{0, 1} denote the binary treatment variable, where Ai = 1 and Ai = 0 denote treatment and control.
Let Xi ∈ X ⊂ Rd be the pre-treatment covariates, and Yi ∈ R be the outcome. We adopt the
potential outcome framework in causal inference, defining Yi(0) and Yi(1) as the potential outcomes
under Ai = 0 and Ai = 1, respectively. Since each individual receives either the treatment or the
control, the observed outcome Yi satisfies Yi = AiYi(1) + (1−Ai)Yi(0).

The individual treatment effect (ITE) is defined as Yi(1) − Yi(0), which represents the treatment
effect for a specific individual i. However, since only one of (Yi(0), Yi(1)) is observable, ITE is not
identifiable without imposing strong assumptions (Pearl, 2009; Wu et al., 2025). In practice, the
heterogeneous treatment effect (HTE) is often used to characterize “individual" treatment effects.

τ(x) = E[Yi(1)− Yi(0)|Xi = x],

which captures how treatment effects vary across individuals with different covariate values.

Assumption 1 (Strongly Ignorability, (Rosenbaum & Rubin, 1983)). (i) (Yi(0), Yi(1)) ⊥⊥ Ai | Xi;
(ii) 0 < e(x) ≜ P(Ai = 1 | Xi = x) < 1 for all x ∈ X , where e(x) is the propensity score.

Under the standard strong ignorability assumption, HTE is identified as µ1(x)−µ0(x) where µa(x) =
E[Yi | Xi = x,Ai = a] for a = 0, 1 are the outcome regression functions, and various methods have
been developed for estimating HTE (Wager & Athey, 2018a; Shalit et al., 2017a). Suppose we have a
set of candidate HTE estimators trained on a training set, denoted by {τ̂1(x), · · · , τ̂K(x)}. We aim to
select the estimator with the highest accuracy of HTE using a test dataset {(Xi, Ai, Yi), i = 1, . . . , n},
which is of size n and sampled from the super-population P, and is independent of the training set.
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2.2 EVALUATION METRICS: ABSOLUTE ERROR AND RELATIVE ERROR

For a given estimator τ̂(x), its accuracy is typically evaluated using the MSE defined by

ϕ(τ̂) ≜ E[(τ̂(X)− τ(X))2].

For any two estimators τ̂1(x) and τ̂2(x), the difference in their MSE is

δ(τ̂1, τ̂2) ≜ ϕ(τ̂1)− ϕ(τ̂2) = E[τ̂21 (X)− τ̂22 (X)− 2(τ̂1(X)− τ̂2(X))τ(X)].

Gao (2025) refers to ϕ(τ̂) and δ(τ̂1, τ̂2) as the absolute error and relative error, respectively. In
practice, absolute error is used much more frequently than relative error. However, Gao (2025)
established, through theoretical analysis and experiments, that relative error is preferable to absolute
error; details are provided in Section 3. Intuitively, one can see that the key advantage of using
relative error over absolute error lies in that it only relies on the first-order term of the unobserved τ ,
which reduces the impact of estimation error in τ .

Several studies (Gutierrez & Gérardy, 2017; Powers et al., 2017) have used E[(Y (1)−Y (0)−τ̂(X))2]
to evaluate the estimator τ̂(x). However, its estimator requires knowing the values of (Y (0), Y (1))
that are not observable in real-world applications. We note that

E[(Y (1)− Y (0)− τ̂(X))2 = E[(τ̂(X)− τ(X))2 + E[Var(Y (1)− Y (0)|X)],

where the second term on the right-hand side is independent of τ̂(x). Thus, this metric is essentially
equivalent to the absolute error ϕ(τ̂), and we will not discuss it further. For clarity, we provide a
notation summary tab, but due to limited space, we present it in Appendix A.

3 MOTIVATION

In this section, we briefly discuss the advantages of using relative error over absolute error, and then
analyze the limitations of the method in Gao (2025), which motivate this work.

The key theoretical advantage of relative error over absolute error is demonstrated through its
semiparametric efficient estimators. A semiparametric efficient estimator is considered optimal (or
gold standard) in the sense that it has the smallest asymptotic variance under regularity conditions
(Newey, 1990; van der Vaart, 1998) given the observed test data. Let {ẽ(x), µ̃1(x), µ̃0(x)} be the
estimators of {e(x), µ1(x), µ0(x)}, which are the nuisance functions to construct semiparametric
efficient estimators of absolute error and relative error. Denote τ̃(x) = µ̃1(x)− µ̃0(x).

Absolute Error. Given τ̂(x), an estimator of ϕ(τ̂) is constructed as

ϕ̂(τ̂) =
1

n

n∑
i=1

{τ̃(Xi)− τ̂(Xi)}2 + 2(τ̃(Xi)− τ̂(Xi))

(
Ai(Yi − µ̃1(Xi))

ẽ(Xi)
− (1−Ai)(Yi − µ̃0(Xi))

1− ẽ(Xi)

)
.

Under Assumption 1, ϕ̂(τ̂) is
√
n-consistent, asymptotically normal, and semiparametric efficient,

provided that the estimated nuisance parameter satisfy the key Condition 1.

Condition 1. E[(ẽ(X)− e(X))2] = oP(n
−1/2), E[(µ̃a(X)− µa(X))2] = oP(n

−1/2) for a = 0, 1.

Relative Error. Likewise, we can construct the estimator of δ(τ̂1, τ̂2) given as

δ̂(τ̂1, τ̂2) =
1

n

n∑
i=1

φ(Zi; µ̃0, µ̃1, ẽ), where Zi ≜ (Ai, Xi, Yi),

φ(Zi; µ̃0, µ̃1, ẽ) ≜ {τ̂2
1 (Xi)− τ̂2

2 (Xi)} − 2(τ̂1(Xi)− τ̂2(Xi))·(
Ai(Yi − µ̃1(Xi))

ẽ(Xi)
+ µ̃1(Xi)−

(1−Ai)(Yi − µ̃0(Xi))

1− ẽ(Xi)
− µ̃0(Xi)

)
.

Under Assumption 1, the
√
n-consistency, asymptotic normality, and semiparametric efficiency of

δ̂(τ̂1, τ2) rely on the key Condition 2 below.

Condition 2. E[|µ̃a(X)− µa(X)||ẽ(X)− e(X)|] = oP(n
−1/2).
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Condition 2 is strictly weaker than Condition 1. Moreover, the estimator δ̂(τ̂1, τ̂2) offers several
additional advantages over ϕ̂(τ̂), see Appendix B for more details.

Motivation. Although δ̂(τ̂1, τ̂2) has several desirable properties, a notable limitation is that Condition
2 requires all nuisance parameter estimators to be consistent (as ẽ(x) and µ̃a(x) generally converge
at most at the rate of n−1/2), which may be overly restrictive in practical settings. In practice, the
outcome regression model µ̃a(x) is learned from the data with A = a and then applied to the entire
data. It heavily relies on model extrapolation, as there is often a significant distributional difference
between the data with A = a and A = 1 − a (Jeong & Namkoong, 2020; Jing Qin & Huang,
2024). As a result, µ̃a(x) is likely to be inaccurate and biased, violating Assumption 2. Therefore,
it is beneficial and practical to develop methods that rely less on model extrapolation. In contrast,
estimating the propensity score does not involve any model extrapolation, as the score is learned from
the full dataset. As a result, the model is not required to predict outside the support of the observed
covariates, making propensity score estimation substantially less susceptible to extrapolation errors
and more robust to flexible machine learning specifications.

A natural and practical question arises: Can we develop a method for estimating δ(τ̂1, τ̂2), that retains
all the desirable properties of δ̂(τ̂1, τ̂2), while allowing for bias in µ̃a(x) (relaxing Condition 2)?
In this article, we show that this is achievable by carefully exploiting the connection between the
propensity score and outcome regression models, and by designing appropriate loss functions.

4 PROPOSED METHOD

In this section, we propose a novel method for estimating the relative error δ(τ̂1, τ̂2) that retains the
desirable properties of δ̂(τ̂1, τ̂2) while simultaneously being robust to bias in µ̃a(x) for a = 0, 1. We
consider the following working models for the propensity score and outcome regression functions,

e(X) = P(A = 1 | X) = e(Φ(X), γ) =
exp(Φ(X)⊺γ)

1 + exp(Φ(X)⊺γ)
, (1)

µa(X) = E(Y | X,A = a) = µa(Φ(X), βa) = Φ(X)⊺βa, a = 0, 1, (2)

where Φ(X) is a representation of X adaptively learned from data. It facilitates theoretical analysis
of the connections between models and helps establish more desirable theoretical properties and
is widely used in the literature (e.g. (Shi et al., 2019b)) and usually yield more stable numerical
results. That said, to illustrate the role of representation sharing more concretely, we also report in
Appendix F.2 the empirical performance of the method when no shared representation is used.

To quantify the bias of µ̃a(x), it is crucial to distinguish between the working model and the true
model. We say a working model is misspecified if the true model does not belong to the working
model class, and it is correctly specified if the true model is within the working model class. For
clarity, we provide a misspecified example in Appendix B.

For models (1) and (2), let γ̌ and β̌a denote the estimators of γ and βa, respectively. Define γ̄ and β̄a

as the probability limits of γ̌ and β̌a, and denote ē(X) = e(Φ(X), γ̄) and µ̄a(X) = µa(Φ(X), β̄a).
If model (1) is specified correctly, e(X) = ē(X); otherwise, e(X) ̸= ē(X) and their difference
represents the systematic bias induced by model misspecification. Similarly, if model (2) is correctly
specified, µ̄a(X) = µa(X); otherwise, µ̄a(X) ̸= µa(X). It is important to note that (γ̌, β̌0, β̌1)
always converges to (γ̄, β̄0, β̄1), regardless of whether models (1) and (2) are correctly specified.

4.1 BASIC IDEA

Before delving into the details, we outline its basic idea to provide an intuitive understanding.

First, to retain the semiparametric efficiency, the proposed estimator δ(τ̂1, τ̂2) preserves the same
form of δ̂(τ̂1, τ2), which is given as

δ̌(τ̂1, τ̂2; γ̌, β̌0, β̌1) =
1

n

n∑
i=1

φ(Zi; µ̌0, µ̌1, ě),

where ě(X) = e(Φ(X), γ̌) and µ̌a(X) = µa(Φ(X), β̌a) for a = 0, 1. Although δ̌(τ̂1, τ̂2; γ̌, β̌0, β̌1)
shares the same algebraic form as δ(τ̂1, τ̂2), its construction is fundamentally different, which

4



Published as a conference paper at ICLR 2026

makes the resulting estimator substantially more robust to bias in µ̌a(X). This distinction is a key
methodological contribution of our work.

Second, we analyze the key conditions necessary to achieve robustness to biases in µ̌a(X). By a
Taylor expansion of δ̌(τ̂1, τ̂2; γ̌, β̌0, β̌1) with respect to (γ̄, β̄0, β̄1), we have that

δ̌(τ̂1, τ̂2; γ̌, β̌0, β̌1)− δ̌(τ̂1, τ̂2; γ̄, β̄0, β̄1) = ∆⊺
γ(γ̌ − γ̄) + ∆⊺

β0
(β̌0 − β̄0) + ∆⊺

β1
(β̌1 − β̄1)

+OP((γ̌ − γ̄)2 + (γ̌ − γ̄)(β̌1 − β̄1) + (γ̌ − γ̄)(β̌0 − β̄0)),

where

∆γ = − 1

n

n∑
i=1

2(τ̂1(Xi)− τ̂2(Xi))
(Ai(1− ē(Xi))(Yi − µ̄1(Xi))

ē(Xi)
+

(1−Ai)ē(Xi)(Yi − µ̄0(Xi))

1− ē(Xi)

)
Φ(Xi),

∆β0 = − 1

n

n∑
i=1

2(τ̂1(Xi)− τ̂2(Xi))

(
1− 1−Ai

1− ē(Xi)

)
Φ(Xi),

∆β1 =
1

n

n∑
i=1

2(τ̂1(Xi)− τ̂2(Xi))

(
1− Ai

ē(Xi)

)
Φ(Xi).

Under mild conditions (see Theorem 1), the last term of above Taylor expansion is oP(n−1/2). We
note that δ̌(τ̂1, τ̂2; γ̄, β̄0, β̄1) is a

√
n-consistent and asymptotically normal estimator of δ(τ̂1, τ̂2) if

either ě(x) is correctly specified, or (µ̌0(x), µ̌1(x)) is correctly specified. Thus, it is robust to biases
in µ̌a(x) for a = 0, 1 and is the ideal estimator we aim to obtain. To ensure that δ̌(τ̂1, τ̂2; γ̌, β̌0, β̌1)
has the same asymptotic properties as δ̌(τ̂1, τ̂2; γ̄, β̄0, β̄1), we require that

∆⊺
γ(γ̌ − γ̄) + ∆⊺

β0
(β̌0 − β̄0) + ∆⊺

β1
(β̌1 − β̄1) = oP(n

−1/2), (3)

even when (µ̌0(x), µ̌1(x)) is misspecified. Note that (γ̌, β̌0, β̌1) always converges to (γ̄, β̄0, β̄1). To
satisfy Eq. (3), it suffices for ∆γ , ∆β0

, and ∆β1
to converge to zero at a certain rate. By the central

limit theorem, ∆γ − E[∆γ ] = OP(n
−1/2), ∆β0 − E[∆β0 ] = OP(n

−1/2), and ∆β1 − E[∆β1 ] =

OP(n
−1/2). Thus, Eq. (3) holds provided that

E[∆γ ] = 0, E[∆β0
] = 0, E[∆β1

] = 0,

which is equivalent to the following equations:
E
[
(τ̂1(Xi)− τ̂2(Xi))

(
Ai(1−ē(Xi))(Yi−µ̄1(Xi))

ē(Xi)
+ (1−Ai)ē(Xi)(Yi−µ̄0(Xi))

1−ē(Xi)

)
Φ(Xi)

]
= 0,

E
[
(τ̂1(Xi)− τ̂2(Xi))

(
1− Ai

ē(Xi)

)
Φ(Xi)

]
= 0,

E
[
(τ̂1(Xi)− τ̂2(Xi))

(
1− 1−Ai

1−ē(Xi)

)
Φ(Xi)

]
= 0.

(4)

4.2 NOVEL LOSS FOR NUISANCE PARAMETER ESTIMATION

To ensure that the first term in Eq. (4) holds, we design the weighted least square loss function for
(β0, β1) as follows:

Lwls(β0, β1; γ̌) =
1

n

n∑
i=1

(τ̂1(Xi)− τ̂2(Xi))

[
(1−Ai)ě(Xi){Yi − Φ(X)⊺β0}2

1− ě(Xi)
+

Ai(1− ê(Xi)){Yi − Φ(X)⊺β1}2

ê(Xi)

]
.

These loss functions imply that (β̄0, β̄1) ≜ argminβa
E[Lwls(β0, β1; γ̄)]. By setting

∂E[Lwls(β0, β1; γ̄)]/∂β0

∣∣
β0=β̄0

= 0 and ∂E[Lwls(β0, β1; γ̄)]/∂β1

∣∣
β1=β̄1

= 0, one can see that
the first term in Eq. (4) holds even if (µ̌0(x), µ̌1(x)) is misspecified.

For learning γ, observe that Eq. (4) specifies 2d linear constraints, whereas γ ∈ Rd contains only
d free parameters, making the system inherently over-constrained. To obtain a feasible solution,
we adopt a soft relaxation strategy inspired by the soft-margin formulation of support vector ma-
chines (Murphy, 2022): we introduce slack variables ξ, η ∈ Rd that permit controlled deviations
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from the constraints, and penalize their magnitudes in the optimization objective. Formally, we solve:

min
γ,ξ,η

− 1

n

n∑
i=1

[Ai log(e(Xi)) + (1−Ai) log(1− e(Xi))] + c

d∑
j=1

(ξj + ηj)

s.t. e(Xi) =
exp(Φ(Xi)

⊤γ)

1 + exp(Φ(Xi)⊤γ)
, i = 1, . . . , n,∣∣∣∣∣ 1n

n∑
i=1

(τ̂1(Xi)− τ̂2(Xi))

(
1− Ai

e(Xi)

)
Φj(Xi)

∣∣∣∣∣ ≤ ξj , ∀j,∣∣∣∣∣ 1n
n∑

i=1

(τ̂1(Xi)− τ̂2(Xi))

(
1− 1−Ai

1− e(Xi)

)
Φj(Xi)

∣∣∣∣∣ ≤ ηj , ∀j,

ξj , ηj ≥ 0, j = 1, . . . , d.

where c is a given hyperparameter. In practice, we convert the above constrained optimization into
two unconstrained loss terms, including the cross-entropy loss

Lce = − 1

n

n∑
i=1

[Ai log(e(Xi)) + (1−Ai) log(1− e(Xi))] ,

and the balance regularizer

Lconst = c

d∑
j=1

(ξj + ηj) + ρ ·

∥∥∥∥∥∥∥∥∥


max

{∣∣∣ 1n ∑n
i=1(τ̂1(Xi)− τ̂2(Xi))

(
1− Ai

e(Xi)

)
Φ(Xi)

∣∣∣− ξ, 0
}

max
{∣∣∣ 1n ∑n

i=1(τ̂1(Xi)− τ̂2(Xi))
(
1− 1−Ai

1−e(Xi)

)
Φ(Xi)

∣∣∣− η, 0
}

max(−ξ, 0)
max(−η, 0)


∥∥∥∥∥∥∥∥∥
2

,

where ρ > 0 is a penalty parameter encouraging the satisfaction of the original constraints. As
we show in Appendix F.4, this relaxation is effective in practice, and the resulting unconstrained
formulation still enforces the original conditions to a high degree of accuracy.

4.3 CONSTRUCTING NEURAL NETWORK

Building on the constraint loss from Section 4.2, we adopt a neural architecture derived from the
Dragonnet framework (Shi et al., 2019a). The proposed network takes input features x ∈ Rd, and first
passes them through multiple fully connected layers to produce the shared representation Φ(x) ∈ Rm.
This representation is then fed into three separate heads: a control outcome head µ0(x), predicting
the potential outcome under control; a treated outcome head µ1(x), predicting the potential outcome
under treatment; a treatment head e(x), estimating the propensity score via a sigmoid activation.

The control outcome head and the treated outcome head contribute to the weighted least square loss
Lwls, while Lce and Lconst are computed by the treatment head and the shared representation. During
training, we minimize the total training loss given by:

L = Lwls + λ1Lce + λ2Lconst.

This formulation encourages the propensity model e(X) and the outcome model µa(X) to satisfy
Eq. (4), providing a reliable estimation that can be used in computing the estimated relative error δ̂
mentioned in Section 3. For clarity, we provide a schematic illustration of the network architecture in
Appendix D.

4.4 THEORETICAL ANALYSIS

We analyze the large sample properties of the proposed estimator δ̌(τ̂1, τ̂2; γ̌, β̌0, β̌1).

Theorem 1. If the propensity score model is correctly specified, and γ̌, β̌0 as well as β̌1 converge to
their probability limits at a rate faster than n−1/4, then we have

√
n{δ̌(τ̂1, τ̂2; γ̌, β̌0, β̌1)− δ(τ̂1, τ̂2)}

d−→ N (0, σ2),

where σ2 = Var{φ(Z; ū0, ū1, ē)} and d−→ means convergence in distribution.

6



Published as a conference paper at ICLR 2026

Theorem 1 shows that the proposed estimator is
√
n-consistent and asymptotically normal. These

properties hold even when the outcome regression model is misspecified, as long as γ̌, β̌0, and β̌1

converge to their respective probability limits at a rate faster than n−1/4. This condition is readily
satisfied, as (γ̌, β̌0, β̌1) always converge to their probability limits (γ̄, β̄0, β̄1), and a variety of flexible
machine learning methods can achieve the required convergence rates (Chernozhukov et al., 2018;
Semenova & Chernozhukov, 2021).

Based on Theorem 1, we can obtain a valid asymptotic (1− η) confidence interval of δ(τ̂1, τ̂2).

Proposition 2. Under the conditions in Theorem 1, a consistent estimator of σ2 is

σ̂2 =
1

n

n∑
i=1

{
φ(Zi; ǔ0, ǔ1, ě)− δ̌(τ̂1, τ̂2; γ̌, β̌0, β̌1)

}2
,

an asymptotic (1− η) confidence interval for δ(τ̂1, τ̂2) is δ̌(τ̂1, τ̂2; γ̌, β̌0, β̌1)± zη/2
√
σ̂2/n, where

zη/2 is the (1− η/2) quantile of the standard normal distribution.

Proposition 2 shows that a valid asymptotic confidence interval for δ(τ̂1, τ̂2) is achievable even with a
misspecified outcome model, unlike previous methods that require correct specification. This further
indicates the robustness of the proposed method. We also emphasize that, unlike (Gao, 2025), our
proposed methodology does not require sample splitting. The key derivation in Section 4.1, as well
as the proofs of Theorem 1 and Proposition 2 in this section, are conducted using the full dataset
without sample splitting.

Besides, we clarify that the correct specification of propensity score in Theorem 1 and Proposition 2 is
a mild condition. First, as Φ(X) can be adaptively learned from the data, we are likely to gain the true
working model using flexible neural networks. Despite this, we provide a sensitivity analysis on the
correct specification on Φ(X) (Appendix F.3). In addition, we could adjust the model specification
iteratively by balancing checking as follows: (1) Model specification and estimation: specify the
model and estimate the propensity scores; (2) Covariates balance checking (Imai & Ratkovic, 2014).
If the covariates balance is inadequate, adjust the model specification and re-estimate the propensity
scores; if the balance is satisfactory, proceed with the estimated propensity scores.

5 ENHANCED ESTIMATION OF HETEROGENEOUS TREATMENT EFFECTS

In this section, building on the evaluation framework proposed in Section 4, we extend the idea to
develop a learning method for HTE. In general, a reliable evaluation method can naturally serve
as a basis for developing a learning method. In our proposed approach, for any given pair of HTE
estimators τ̂k(x) and τ̂k′(x), the proposed neural network architecture introduced in Section 4.3 can
output the corresponding estimates of outcome regression functions. We denote them as µ̌0(x; τ̂k, τ̂k′)
and µ̌1(x; τ̂k, τ̂k′), emphasizing their dependence on τ̂k(x) and τ̂k′(x). This leads to a new HTE
estimator, defined as

τ̌(x; τ̂k, τ̂k′) = µ̌1(x; τ̂k, τ̂k′)− µ̌0(x; τ̂k, τ̂k′).

Clearly, the performance of the estimator heavily depends on the choice of HTE estimators
τ̌(x; τ̂k, τ̂k′). However, due to the fundamental challenge in evaluating HTE (i.e., the absence
of ground truth), it is difficult to develop a direct strategy for selecting them. To mitigate this issue,
we propose the following aggregation strategy for estimating HTE,

τ̌(x) =
2

|K|(|K| − 1)

∑
k,k′∈K

µ̌1(x; τ̂k, τ̂k′)− µ̌0(x; τ̂k, τ̂k′)

where K = {1, 2, . . . ,K} is the index set for the candidate HTE estimators. This aggregated
estimator aims to stabilize and improve the estimation of HTE by averaging over all pairs of candidate
estimators. When K is large, averaging over all pairs can be computationally burdensome. In such
cases, one can randomly select a subset of pairs τ̌(x; τ̂k, τ̂k′) and compute their average instead.
Surprisingly, our experiments show that this estimator performs exceptionally well, even surpassing
the performance of any single candidate estimator.
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Figure 1: Coverage rate on IHDP and Twins. Figure 2: Selection accuracy on IHDP and Twins.

Table 1: HTE estimation performance on the IHDP and Twins datasets (in-sample and out-of-sample).
The best results are bolded.

IHDP Twins

Method
√
ϵin

PEHE ϵin
ATE

√
ϵout

PEHE ϵout
ATE

√
ϵin

PEHE ϵin
ATE

√
ϵout

PEHE ϵout
ATE

LinDML 1.053 ± 0.134 0.580 ± 0.152 1.085 ± 0.187 0.574 ± 0.176 0.295 ± 0.005 0.013 ± 0.009 0.296 ± 0.008 0.013 ± 0.010
SpaDML 0.832 ± 0.119 0.252 ± 0.185 0.866 ± 0.112 0.280 ± 0.183 0.300 ± 0.008 0.046 ± 0.030 0.303 ± 0.010 0.046 ± 0.033
CForest 0.891 ± 0.121 0.419 ± 0.182 0.903 ± 0.127 0.403 ± 0.185 0.297 ± 0.005 0.012 ± 0.008 0.306 ± 0.008 0.013 ± 0.011
X-Learner 0.971 ± 0.178 0.196 ± 0.137 0.987 ± 0.196 0.207 ± 0.141 0.293 ± 0.005 0.022 ± 0.014 0.294 ± 0.008 0.024 ± 0.016
S-Learner 0.920 ± 0.102 0.212 ± 0.100 0.950 ± 0.111 0.205 ± 0.117 0.298 ± 0.011 0.057 ± 0.042 0.299 ± 0.010 0.059 ± 0.042
TARNet 0.896 ± 0.054 0.279 ± 0.084 0.920 ± 0.070 0.266 ± 0.117 0.292 ± 0.011 0.090 ± 0.047 0.294 ± 0.019 0.091 ± 0.045
Dragonnet 0.840 ± 0.046 0.124 ± 0.089 0.867 ± 0.087 0.134 ± 0.092 0.292 ± 0.004 0.080 ± 0.008 0.290 ± 0.007 0.092 ± 0.011
DRCFR 0.741 ± 0.068 0.186 ± 0.138 0.760 ± 0.090 0.185 ± 0.135 0.290 ± 0.004 0.075 ± 0.007 0.288 ± 0.007 0.076 ± 0.010
SCIGAN 0.898 ± 0.374 0.358 ± 0.509 0.919 ± 0.369 0.358 ± 0.502 0.296 ± 0.037 0.041 ± 0.044 0.293 ± 0.039 0.040 ± 0.047
DESCN 0.793 ± 0.187 0.133 ± 0.106 0.835 ± 0.197 0.140 ± 0.112 0.296 ± 0.060 0.059 ± 0.043 0.293 ± 0.063 0.058 ± 0.042
ESCFR 0.802 ± 0.041 0.111 ± 0.070 0.841 ± 0.074 0.135 ± 0.076 0.290 ± 0.004 0.075 ± 0.007 0.288 ± 0.007 0.076 ± 0.010

Ours 0.638 ± 0.138 0.090 ± 0.087 0.670 ± 0.150 0.105 ± 0.099 0.284 ± 0.005 0.009 ± 0.005 0.286 ± 0.007 0.009 ± 0.006

6 EXPERIMENTS

6.1 EXPERIMENTAL SETUP

Datasets and Processing. Following previous studies (Yoon et al., 2018; Yao et al., 2018; Louizos
et al., 2017), we choose one semi-synthetic dataset IHDP, and two real datasets, Twins and Jobs, to
conduct our experiments. The Twins dataset is constructed from all twin births in the United States
between 1989 and 1991 (Almond et al., 2005), owning 5271 samples with 28 different covariates. The
IHDP dataset is used to estimate the effect of specialist home visits on infants’ future cognitive test
scores, containing 747 samples (139 treated and 608 control), each with 25 pre-treatment covariates,
while the Jobs dataset focuses on estimating the impact of job training programs on individuals’
employment status, including 297 treated units, 425 control units from the experimental sample,
and 2490 control units from the observational sample. We provide more dataset details in the
Appendix F.1. We randomly split each dataset into training and test sets in a 2:1 ratio, and repeat the
experiments 50 times for the Twins, 100 times for the IHDP, and 20 times for the Jobs.

Evaluation Metrics. We consider two classes of evaluation metrics below.

• We assess the proposed relative error estimator using two key metrics: (i) the coverage probability
of its confidence interval (named coverage rate), and (ii) the probability of correctly identifying the
better estimator (i.e., selecting the true winner, named selection accuracy). In practice, we only pick
the winner when the confidence interval for the relative error does not contain zero, otherwise, no
selection will be made. We calculate the coverage rate of the targeted 90% confidence intervals.

• For evaluating the performance of HTE estimation of our novel network, following previous stud-
ies (Shalit et al., 2017a; Shi et al., 2019b; Louizos et al., 2017), we compute the Precision in Estima-

tion of Heterogeneous Effect (PEHE) (and, 2011), where
√
ϵPEHE =

√
1
n

∑n
i=1 (τ̂(xi)− τ(xi))

2,

and the absolute error on the ATE, ϵATE = |ATE − ÂTE| , where ATE = 1
n

∑n
i=1(y

1
i − y0j ), in

which y1i and y0j are the true potential outcomes.
Baselines and Experimental Details. To evaluate the performance of relative error estimation,
we select three representative estimators from different methodological families: Causal Forest
(tree-based) (Athey & Wager, 2019), X-Learner (meta-learner) (Künzel et al., 2019), and TARNet
(representation learning) (Shalit et al., 2017a). We estimate their pairwise relative errors and evaluate
the estimation performances.

For HTE estimation, the baselines include Causal Forest (Athey & Wager, 2019), meta-learners
(X-Learner, S-Learner) (Künzel et al., 2019), double machine learning (Linear DML, Sparse Linear
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Table 2: δ Inference with Different Nuisance
IHDP Twins

Nuisance Coverage Selection Coverage Selection

Regression 0.94 0.44 0.94 0.88
Boosting 0.95 0.48 0.94 0.86

Ours 0.96 0.80 0.94 0.94

Table 3: Running Time under Different Settings
Sample Size Time (s) # Candidate Est. Time (s)
30 2.527 2 1.0780
400 2.668 3 3.1321
500 2.739 4 6.1955
600 3.063 5 12.2401
700 3.134 TARNet 2.0306

Table 4: Sensitivity analysis on the hyperparameter λ2 (weight of constraint loss) for IHDP and
Twins datasets. The best hyperparameter values and results are in bold.

IHDP Twins

Value
√

ϵin
PEHE ϵin

ATE

√
ϵout

PEHE ϵout
ATE Coverage Selection Value

√
ϵin

PEHE ϵin
ATE

√
ϵout

PEHE ϵout
ATE Coverage Selection

0.01 0.860 0.216 0.902 0.238 0.85 0.50 0.005 0.319 0.029 0.331 0.027 0.82 0.38
0.1 0.800 0.142 0.837 0.158 0.91 0.61 0.05 0.289 0.016 0.292 0.015 0.82 0.84
0.5 0.714 0.099 0.747 0.118 0.95 0.78 0.25 0.297 0.018 0.297 0.020 0.86 0.42
1 0.638 0.090 0.670 0.105 0.96 0.80 0.5 0.284 0.009 0.286 0.009 0.94 0.94
5 0.715 0.099 0.748 0.116 0.94 0.77 2.5 0.285 0.011 0.287 0.012 0.94 0.92
10 0.795 0.157 0.830 0.172 0.90 0.60 5 0.289 0.028 0.290 0.026 0.80 0.86
100 0.801 0.156 0.836 0.170 0.90 0.60 50 0.287 0.024 0.288 0.023 0.84 0.88

DML) (Chernozhukov et al., 2024), TARNet (Shalit et al., 2017a), Dragonnet (Shi et al., 2019a),
DR-CFR (Hassanpour & Greiner, 2020), SCIGAN (Bica et al., 2020), DESCN (Zhong et al., 2022)
and ESCFR (Wang et al., 2023). See Appendix F.11 for training details of hyperparameter tuning.

6.2 EXPERIMENTAL RESULTS

Quality of Relative Error Estimation. We first evaluate the performance of relative error estimation,
comparing different pairs of HTE estimators. In Figures 1 and 2, we present the coverage of the
90% confidence intervals and the accuracy of selecting the better HTE estimator on the test sets,
respectively, where TN stands for TARNet, CF stands for Causal Forest, and X stands for X-Learner,
and the red dashed line marks the target level of 90%. From these two figures, our method successfully
achieves the target coverage, and provide trustworthy advice on the selection across different pairs of
HTE estimators. These results demonstrate the validity of our uncertainty quantification and estimator
selection. In Appendix F.6, we provide additional results on ACIC 2016 and News.

Accuracy of the HTE Estimation. We then evaluate the performance of HTE estimation learned by
our novel network and compare it with competing baselines. We average over 100 realizations of our
networks in IHDP and 50 realizations in Twins. The results are presented in Table 1. Our proposed
method achieves the best performance across all metrics, with the lowest

√
ϵPEHE and ϵATE on both

datasets. This demonstrates its ability to accurately estimate HTE. In addition, we report results on
the Jobs dataset in Appendix F.5 due to limited space. We also examine how varying the number of
candidate HTE estimators affects the final performance, and report these results in Appendix F.7.

Comparison with Gao’s Method. Although Gao’s work does not propose a concrete learning
method, we follow their choice of nuisance estimators (Linear Regression, Boosting) to compute
relative errors for reference. We provide the results on the IHDP and the Twins. When plugging
conventional nuisance estimators (linear regression and gradient boosting) into the relative error
framework, the resulting procedures do achieve nominal coverage (Table 2). Nevertheless, the
corresponding variance is so large that the confidence intervals frequently include zero, making
it essentially impossible to tell which candidate estimator is superior. These baselines therefore
serve as valid but uninformative references. In contrast, our proposed method not only maintains
well-calibrated coverage but also delivers much higher selection accuracy, producing confidence
intervals that are substantially tighter and practically useful for identifying the winner.

Running Time under Different Settings. As the proposed HTE estimator indicates a high level
of complexity, we demonstrate experiment results for assessing the computational complexity and
scalability of it. We vary sample size and the number of candidate estimators, and a more detailed
description is provided in Appendix F.8. It can be seen from Table 3 that our estimator exhibits a
runtime that grows approximately linearly with the sample size, but increases super-linearly as the
number of candidate estimators in the system expands. Nevertheless, when the system contains only
a small number of estimators, our method remains faster than the baseline TARNet.
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Table 5: Ablation study results on the IHDP and Twins datasets.
IHDP Twins

Training Loss
√

ϵin
PEHE ϵin

ATE

√
ϵout

PEHE ϵout
ATE Coverage Selection

√
ϵin

PEHE ϵin
ATE

√
ϵout

PEHE ϵout
ATE Coverage Selection

Lwls & Lconst 0.725 0.101 0.758 0.122 0.92 0.71 0.284 0.013 0.287 0.013 0.94 0.92
Lwls & Lce 3.495 2.879 3.531 2.900 0.88 0.14 0.319 0.028 0.328 0.026 0.82 0.14

Full (Ours) 0.638 0.090 0.670 0.105 0.96 0.80 0.284 0.009 0.286 0.009 0.94 0.94

Table 6: Sensitivity Analysis on Propensity Score

Metric (0.05, 0.12) (0.1, 0.12) (0.2, 0.12) (0.05, 0.32) (0.1, 0.32) (0.2, 0.32) no noise

Coverage 0.88 0.94 0.96 0.88 0.94 0.80 0.96
Selection 0.74 0.78 0.82 0.76 0.78 0.74 0.84

Sensitivity Towards Propensity Score Misspecification. To test if our evaluation method is sensitive
towards the misspecification of propensity score, we conduct sensitivity analysis. Because the true
propensity score is required for this experiment, we use simulated data here, and the data-generating
process is provided in Appendix F.10. To evaluate the sensitivity of our method to the propensity
score, we fix the t-head of our proposed neural network to the input propensity score while keeping
all other computations unchanged. The input propensity score is constructed by adding Gaussian
noise with varying means and variances to the true propensity score. As shown in Table 6 (we provide
(µ, σ2) of the gaussian noise), injecting noise leads to a degradation in the accuracy and validity of
the relative-error confidence intervals, but the decline is not substantial. Overall, our method appears
to be reasonably robust to perturbations in the propensity score.

Sensitive Analysis. The hyperparameter λ2 before the constraint loss Lconst, λ1 before the cross
entropy loss Lce and the penalty weight ρ in the constraint loss play important roles in our training. In
order to explore under which parameters our method has the best performance, we conduct sensitivity
analysis experiments. We present the results of λ2 in Table 4. We observe that both the performance
of HTE estimation and the relative error estimation remain relatively stable across a range of λ2

values from 0.5 to 5, indicating robustness to this hyperparameter. However, when λ2 is extremely
small (e.g., λ2 = 0.01), the performance of the proposed method degrades significantly, indicating
the importance of the constraint loss Lconst. Also, we perform sensitive analysis for λ1 and ρ, the
associated results are provided in the Appendix F.9.

Ablation Study. As shown in Section 4.3, the proposed method involves three loss functions:
Lwls,Lce, and Lconst. We conduct an ablation study to assess the impact of Lce and Lconst on overall
performance. The corresponding results are reported in Table 5. Specifically, removing Lconst results
in a notable drop in the accuracy of both outcome and relative error estimation, whereas removing
Lce only causes a moderate decline. These findings highlight the importance of the proposed novel
loss Lconst, which not only improves HTE estimation accuracy but also facilitates the construction of
narrower and more precise confidence intervals for relative error. Besides, the method (Lwls&Lce)
can be seen as a method of (Gao, 2025), where the proposed neural network degenerates to TARNet
and serves as a conventional nuisance estimator to be used in Gao’s structure. From the result of
the coverage rate and selection accuracy of relative errors, we can see that our method significantly
outperforms this baseline.

7 CONCLUSION

In this work, we tackled the challenge of evaluating HTE estimators with reduced reliance on
strong modeling assumptions for nuisance components. Building on the relative error framework,
we proposed a new loss together with balance regularizers, and embedded them in a Dragonnet-
inspired neural architecture to enable more stable and accurate nuisance learning. A remaining
limitation is our use of a simple uniform averaging scheme over all estimator pairs blue in the
enhanced HTE estimator, which, while stabilizing performance, may underutilize the heterogeneous
strengths of individual estimators. Future work includes developing adaptive weighting strategies
for the estimator and incorporating a “worst-case performance" perspective to improve robustness in
evaluation, potentially by relaxing Assumption 1 along the lines of Huang et al. (2024). Moreover,
although HTE characterizes treatment effect heterogeneity with respect to observed covariates, it
differs fundamentally from individual-level treatment effects (Wu et al., 2024a). Complementary
investigation of ITE (Wu et al., 2025) or joint distribution of potential outcomes (Wu & Mao, 2025)
would be desirable to provide a more comprehensive evaluation alongside HTE.
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A NOTATION SUMMARY

Table 7 below summarizes the notation used in the main text.

Table 7: Notation and their meanings.

Symbol Meaning
A Binary treatment variable
X Pre-treatment covariates
Y Outcome
τ(x) Individual treatment effect
e(x) Propensity score
µa(x) Outcome regression function, i.e., µa(x) = E[Y | X = x,A = a] for a = 0, 1
δ(τ̂1, τ̂2) Relative error between estimator τ̂1 and τ̂2
δ̌(τ̂1, τ̂2) Estimated relative error between estimator τ̂1 and τ̂2
ě, µ̌a, γ̌, β̌a Nuisance estimators for propensity score, conditional outcomes and their coefficients
ē, µ̄a, γ̄, β̄a Probability limits of propensity score, conditional outcomes and their coefficients
Φ(X) The shared representation of X , defined in Eq. (1) & (2)

B MERITS OF RELATIVE ERROR

There are several advantages of using relative error over absolute error.

• (1) Weaker condition. Condition 2 is strictly weaker than Condition 1. Condition 1 requires
that all nuisance parameter estimators converge to their true values at a rate faster than
n−1/4. In contrast, Condition 2 imposes a weaker requirement—only that the product of the
bias, (µ̃a(x)− µa(x))(ẽ(x)− e(x)), converges at a rate of order oP(n−1/2) as well as the
nuisance function estimators being consistent. This allows for cases where ẽ(x) converges
at a rate of oP(n−1/5) and µ̃a(x) converges at a rate of oP(n−1/3).

• (2) Easier to compare multiple estimators. When comparing two estimators τ̂1(x) and
τ̂2(x) in terms of absolute error, although both ϕ̂(τ̂1) and ϕ̂(τ̂2) are asymptotically normal,
we cannot directly construct a confidence interval for ϕ̂(τ̂1)− ϕ̂(τ̂2) due to their dependency
(as they use the same test data and share the same nuisance parameter estimates). In contrast,
δ̂(τ̂1, τ̂2) does not suffer such a problem.

• (3) Double robustness. When we replace oP(n
−1/2) in Conditions 1 and 2 with oP(1),

both ϕ̂(τ̂1) and δ̂(τ̂1, τ̂2) are consistent (asymptotically unbiased) under their respective
conditions. Thus, from Condition 2, δ̂(τ̂1, τ̂2) exhibits the property of double robustness,
meaning it is a consistent estimator if either ẽ(x) is consistent or µ̃a(x) for a = 0, 1 are
consistent. However, ϕ̂(τ̂1) dose not possess this property.

C A MISSPECIFIED EXAMPLE

Example 1 (A misspecified model). Consider X as a scalar and assume that the true model is
µa(X) = E(Y |X,A = a) = X2β∗

a , which represents the true data-generating mechanism of Y
given (X,A = a). However, if we learn E(Y |X,A = a) using a linear model, i.e. µa(X,βa) :=
Xβa, βa ∈ R, we introduce an inductive bias, meaning we can never reach the true value of β∗, even
though the estimator may converge. Specifically, denote β̂a as the least-square estimator of βa. By
the property of least-square estimator, it converges to β̄a := E[XX]−1E[XY ], regardless of whether
µa(X,βa) is correctly specified or not. Since µa(X,βa) is misspecified, β̄a ̸= β∗

a .
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Figure 3: Neural Network Structure

D ILLUSTRATION OF NEURAL NETWORK STRUCTURE

Figure 3 shows the schematic structure of our proposed network. The input covariates X ∈ Rp are
passed through fully connected hidden layers to obtain a shared representation Φ(X) ∈ Rd. This
representation is fed into three heads: the control outcome head µ0(X), the treated outcome head
µ1(X), and the treatment head e(X). The outcome heads contribute to the weighted least square loss
Lwls, the treatment head contributes to the cross entropy loss Lce, and the shared representation is
regularized by the constraint loss Lconst. The total objective is given by

L = Lwls + λ1Lce + λ2Lconst.

E PROOF OF THEOREM 1

Theorem 1. If the propensity score model is correctly specified, and γ̌, β̌0 as well as β̌1 converge to
their probability limits at a rate faster than n−1/4, then we have

√
n{δ̌(τ̂1, τ̂2; γ̌, β̌0, β̌1)− δ(τ̂1, τ̂2)}

d−→ N (0, σ2),

where σ2 = Var{φ(Z; ū0, ū1, ē)} and d−→ means convergence in distribution.

Proof of Theorem 1. As discussed in Section 4.1, we first show that

δ̌(τ̂1, τ̂2; γ̌, β̌0, β̌1)− δ̌(τ̂1, τ̂2; γ̄, β̄0, β̄1) = oP(n
−1/2). (A.1)

By a Taylor expansion of δ̌(τ̂1, τ̂2; γ̌, β̌0, β̌1) around (γ̄, β̄0, β̄1), we obtain

δ̌(τ̂1, τ̂2; γ̌, β̌0, β̌1)− δ̌(τ̂1, τ̂2; γ̄, β̄0, β̄1)

= ∆⊺
γ(γ̌ − γ̄) + ∆⊺

β0
(β̌0 − β̄0) + ∆⊺

β1
(β̌1 − β̄1)

+OP((γ̌ − γ̄)2 + (γ̌ − γ̄)(β̌1 − β̄1) + (γ̌ − γ̄)(β̌0 − β̄0)),
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where

∆γ = − 1

n

n∑
i=1

2(τ̂1(Xi)− τ̂2(Xi))

×
(Ai(1− ē(Xi))(Yi − µ̄1(Xi))

ē(Xi)
+

(1−Ai)ē(Xi)(Yi − µ̄0(Xi))

1− ē(Xi)

)
Φ1(Xi),

∆β0
= − 1

n

n∑
i=1

2(τ̂1(Xi)− τ̂2(Xi))

(
1− 1−Ai

1− ē(Xi)

)
Φ2(Xi),

∆β1
=

1

n

n∑
i=1

2(τ̂1(Xi)− τ̂2(Xi))

(
1− Ai

ē(Xi)

)
Φ2(Xi).

By the condition that γ̌ = γ̄ + oP(n
−1/4), β̌0 = β̄0 + oP(n

−1/4) and β̌0 = β̄0 + oP(n
−1/4), we

obtain OP((γ̌ − γ̄)2 + (γ̌ − γ̄)(β̌1 − β̄1) + (γ̌ − γ̄)(β̌0 − β̄0)) = oP(n
−1/2). Thus, we only need to

deal with ∆⊺
γ(γ̌ − γ̄), ∆⊺

β0
(β̌0 − β̄0) and ∆⊺

β1
(β̌1 − β̄1).

Since γ̄, β̄0 and β̄1 are the probability limits of γ̌, β̌0 and β̌1, respectively, we obtain γ̌ − γ̄ = oP(1),
β̌0 − β̄0 = oP(1) and β̌1 − β̄1 = oP(1).

Then, it sufficies to show that ∆γ = OP(n
−1/2), ∆β0

= OP(n
−1/2) and ∆β1

= OP(n
−1/2). By

CLT, ∆γ − E(∆γ) = OP(n
−1/2), ∆β0 − E(∆β0) = OP(n

−1/2) and ∆β1 − E(∆β1) = OP(n
−1/2),

then, we only need to show that E(∆γ) = E(∆β0) = E(∆β1) = 0.

We first deal with E(∆γ).

E(∆γ) =E

(
− 1

n

n∑
i=1

2(τ̂1(Xi)− τ̂2(Xi))
(Ai(1− ē(Xi))(Yi − µ̄1(Xi))

ē(Xi)
+

(1−Ai)ē(Xi)(Yi − µ̄0(Xi))

1− ē(Xi)

)
Φ1(Xi)

)

=2E
(
(τ̂1(X)− τ̂2(X))

(A(1− ē(X))(Y − µ̄1(X))

ē(X)
+

(1−A)ē(X)(Y − µ̄0(X))

1− ē(X)

)
Φ1(X)

)
=2E

(
(τ̂1(X)− τ̂2(X))

A(1− ē(X))(Y − µ̄1(X))

ē(X)
Φ1(X)

)
+ 2E

(
(τ̂1(X)− τ̂2(X))

(1−A)ē(X)(Y − µ̄0(X))

1− ē(X)
Φ1(X)

)
=0.

The last equation holds by the definition of β̄0 and β̄1 and the fact that Φ1(X) is a sub-vector of
Φ2(X).

We then deal with E(∆β0
).

E(∆β0) = E

(
− 1

n

n∑
i=1

2(τ̂1(Xi)− τ̂2(Xi))

(
1− 1−Ai

1− ē(Xi)

)
Φ2(Xi)

)

=− 2E
(
(τ̂1(X)− τ̂2(X))

(
1− 1−A

1− ē(X)

)
Φ2(X)

)
=− 2EX

(
E
(
(τ̂1(X)− τ̂2(X))

(
1− 1−A

1− ē(X)

)
Φ2(X)

∣∣∣∣X))
=0.
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The last equation holds since the PS model is correct. Finally, we handle E(∆β1
).

E(∆β1
) = E

(
1

n

n∑
i=1

2(τ̂1(Xi)− τ̂2(Xi))

(
1− Ai

ē(Xi)

)
Φ2(Xi)

)

=2E
(
(τ̂1(X)− τ̂2(X))

(
1− A

ē(X)

)
Φ2(X)

)
=2EX

(
E
(
(τ̂1(X)− τ̂2(X))

(
1− A

ē(X)

)
Φ2(X)

∣∣∣∣X))
=0.

The last equation holds since the PS model is correct. Therefore, equation A.1 holds.

We then want to show that

√
n(δ̌(τ̂1, τ̂2; γ̄, β̄0, β̄1)− δ(τ̂1, τ̂2))→ N (0, σ2). (A.2)

By definiton,

δ̌(τ̂1, τ̂2; γ̄, β̄0, β̄1)

=
1

n

n∑
i=1

{τ̂21 (Xi)− τ̂22 (Xi)}

− 1

n

n∑
i=1

(
2{τ̂1(Xi)− τ̂2(Xi)} ·

[
Ai{Yi − µ̄1(Xi)}

ē(Xi)
+ µ̄1(Xi)−

(1−Ai){Yi − µ̄0(Xi)}
1− ē(Xi)

− µ̄0(Xi)

])

If model 1 is correct,

E
[
{τ̂21 (Xi)− τ̂22 (Xi)}

]
−E

{(
2{τ̂1(Xi)− τ̂2(Xi)} ·

[
Ai{Yi − µ̄1(Xi)}

ē(Xi)
+ µ̄1(Xi)−

(1−Ai){Yi − µ̄0(Xi)}
1− ē(Xi)

− µ̄0(Xi)

])}
=E

[
{τ̂21 (X)− τ̂22 (X)}

]
− EXi

E
[{(

2{τ̂1(Xi)− τ̂2(Xi)} ·
[
Ai{Yi − µ̄1(Xi)}

ē(Xi)
+ µ̄1(Xi)−

(1−Ai){Yi − µ̄0(Xi)}
1− ē(Xi)

− µ̄0(Xi)

])}∣∣∣∣Xi

]
=E

[
{τ̂21 (X)− τ̂22 (X)}

]
−EXi

E
[{(

2{τ̂1(Xi)− τ̂2(Xi)} ·
[
Ai{Yi(1)− µ̄1(Xi)}

ē(Xi)
+ µ̄1(Xi)

− (1−Ai){Yi(0)− µ̄0(Xi)}
1− ē(Xi)

− µ̄0(Xi)

])}∣∣∣∣Xi

]
=E

[
{τ̂21 (X)− τ̂22 (X)}

]
−EXi

E [{(2 {τ̂1(Xi)− τ̂2(Xi)} · [{Yi(1)− µ̄1(Xi)}+ µ̄1(Xi)− {Yi(0)− µ̄0(Xi)} − µ̄0(Xi)])}|Xi]

=E
[
{τ̂21 (X)− τ̂22 (X)}

]
− EXiE[{(2{τ̂1(Xi)− τ̂2(Xi)}τ(Xi)|Xi]

=E
[
{τ̂21 (X)− τ̂22 (X)} − 2{τ̂1(X)− τ̂2(X)}τ(X)

]
=δ(τ̂1, τ̂2).
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If model 2 is correct,

E
[
{τ̂21 (Xi)− τ̂22 (Xi)}

]
−E

{(
2{τ̂1(Xi)− τ̂2(Xi)} ·

[
Ai{Yi − µ̄1(Xi)}

ē(Xi)
+ µ̄1(Xi)−

(1−Ai){Yi − µ̄0(Xi)}
1− ē(Xi)

− µ̄0(Xi)

])}
=E

[
{τ̂21 (X)− τ̂22 (X)}

]
− EXiE

[{(
2{τ̂1(Xi)− τ̂2(Xi)} ·

[
Ai{Yi − µ̄1(Xi)}

ē(Xi)
+ µ̄1(Xi)−

(1−Ai){Yi − µ̄0(Xi)}
1− ē(Xi)

− µ̄0(Xi)

])}∣∣∣∣Xi

]
=E

[
{τ̂21 (X)− τ̂22 (X)}

]
−EXi

E
[{(

2{τ̂1(Xi)− τ̂2(Xi)} ·
[
Ai{Yi(1)− µ̄1(Xi)}

ē(Xi)
+ µ̄1(Xi)

− (1−Ai){Yi(0)− µ̄0(Xi)}
1− ē(Xi)

− µ̄0(Xi)

])}∣∣∣∣Xi

]
=E

[
{τ̂21 (X)− τ̂22 (X)}

]
−EXi

E
[{(

2{τ̂1(Xi)− τ̂2(Xi)} ·
[
Ai{µ̄1(Xi)− µ̄1(Xi)}

ē(Xi)
+ µ̄1(Xi)

− (1−Ai){µ̄0(Xi)− µ̄0(Xi)}
1− ē(Xi)

− µ̄0(Xi)

])}∣∣∣∣Xi

]
=E

[
{τ̂21 (X)− τ̂22 (X)}

]
− EXi

E[{(2{τ̂1(Xi)− τ̂2(Xi)}τ(Xi)|Xi]

=E
[
{τ̂21 (X)− τ̂22 (X)} − 2{τ̂1(X)− τ̂2(X)}τ(X)

]
=δ(τ̂1, τ̂2).

Therefore, when at least one of models 1 or 2 is correct, δ̄(τ̂1, τ̂2; γ̄, β̄0, β̄1)− δ(τ̂1, τ̂2) is the average
of i.i.d. observations with mean 0 and variance Var{φ(Z; ū0, ū1, ē)}. By CLT, A.2 holds with
σ2 = Var{φ(Z; ū0, ū1, ē)}.

□

E.1 PROOF OF PROPOSITION 2

Proposition 2. Under the conditions in Theorem 1, a consistent estimator of σ2 is

σ̂2 =
1

n

n∑
i=1

{
φ(Zi; ǔ0, ǔ1, ě)− δ̌(τ̂1, τ̂2; γ̌, β̌0, β̌1)

}2
,

an asymptotic (1− η) confidence interval for δ(τ̂1, τ̂2) is δ̌(τ̂1, τ̂2; γ̌, β̌0, β̌1)± zη/2
√
σ̂2/n, where

zη/2 is the (1− η/2) quantile of the standard normal distribution.

Proof of Proposition 2.

σ̂2 − σ2 =
1

n

n∑
i=1

{
φ(Zi; ǔ0, ǔ1, ě)− δ̌(τ̂1, τ̂2; γ̌, β̌0, β̌1)

}2 − E {φ(Zi; ū0, ū1, ē)− Eφ(Zi; ū0, ū1, ē)}2

=
1

n

n∑
i=1

{
φ(Zi; ǔ0, ǔ1, ě)− δ̌(τ̂1, τ̂2; γ̌, β̌0, β̌1)

}2 − 1

n

n∑
i=1

{φ(Zi; ū0, ū1, ē)− Eφ(Zi; ū0, ū1, ē)}2︸ ︷︷ ︸
1⃝

+
1

n

n∑
i=1

{φ(Zi; ū0, ū1, ē)− Eφ(Zi; ū0, ū1, ē)}2 − E {φ(Zi; ū0, ū1, ē)− Eφ(Zi; ū0, ū1, ē)}2︸ ︷︷ ︸
2⃝

.
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By the law of large numbers (LLN), 2⃝ p→ 0, we only need to deal with 1⃝:

1

n

n∑
i=1

{
φ(Zi; ǔ0, ǔ1, ě)− δ̌(τ̂1, τ̂2; γ̌, β̌0, β̌1)

}2
=
1

n

n∑
i=1

{
φ(Zi; ǔ0, ǔ1, ě)− φ(Zi; ū0, ū1, ē) + φ(Zi; ū0, ū1, ē)− δ̌(τ̂1, τ̂2; γ̌, β̌0, β̌1)

}2
=

1

n

n∑
i=1

{φ(Zi; ǔ0, ǔ1, ě)− φ(Zi; ū0, ū1, ē)}2︸ ︷︷ ︸
a⃝

+
1

n

n∑
i=1

{
φ(Zi; ū0, ū1, ē)− δ̌(τ̂1, τ̂2; γ̌, β̌0, β̌1)

}2
︸ ︷︷ ︸

b⃝

+
2

n

n∑
i=1

{φ(Zi; ǔ0, ǔ1, ě)− φ(Zi; ū0, ū1, ē)}
{
φ(Zi; ū0, ū1, ē)− δ̌(τ̂1, τ̂2; γ̌, β̌0, β̌1)

}
︸ ︷︷ ︸

c⃝

.

By LLN, a⃝ p→ 0, and c⃝ p→ 0. Similarly, we can obtain

b⃝ =
1

n

n∑
i=1

{φ(Zi; ū0, ū1, ē)− Eφ(Zi; ū0, ū1, ē)}2 + op(1).

Therefore 1⃝ p→ 0, which leads to σ̂2 p→ σ2.

The asymptotic 1− η confidence interval is constructed by the standard theory.

F EXPERIMENTAL DETAILS

F.1 DATASET DETAILS

IHDP. The IHDP dataset is based on a randomized controlled trial conducted as part of the Infant
Health and Development Program. The goal is to assess the impact of specialist home visits
on children’s future cognitive outcomes. Following Hill (and, 2011), a subset of treated units is
removed to introduce selection bias, creating a semi-synthetic evaluation setting. The dataset contains
747 samples (139 treated and 608 control), each with 25 pre-treatment covariates. The simulated
outcome is the same as that in Shalit et al.(2017) (Shalit et al., 2017a), by setting “A” in the NPCI
package (Dorie, 2016).

Twins. The Twins dataset is constructed from twin births in the U.S.. For each twin pair, the heavier
twin is assigned as the treated unit (ti = 1), and the lighter twin as the control (ti = 0). We extract
28 covariates related to parental, pregnancy, and birth characteristics from the original data and
generate an additional 10 covariates following (Wu et al., 2022). The outcome of interest is the
one-year mortality of each child. We restrict the analysis to same-sex twins with birth weights below
2000g and without any missing features, yielding a final dataset with 5,271 samples. The treatment
assignment mechanism is defined as: ti | xi ∼ Bern

(
σ(w⊤X + n)

)
, where σ(·) is the sigmoid

function, w⊤ ∼ U((−0.1, 0.1)38×1), and n ∼ N (0, 0.1).

Jobs. The Jobs dataset is a standard benchmark in causal inference, originally introduced by LaLonde
(1986) (LaLonde, 1986). It evaluates the impact of job training on employment outcomes by
combining data from a randomized study (National Supported Work program) with observational
records (PSID), following the setup of Smith and Todd (2005) (A. Smith & E. Todd, 2005). The
dataset includes 297 treated units, 425 control units from the experimental sample, and 2490 control
units from the observational sample. Each record consists of 8 covariates, such as age, education,
ethnicity, and pre-treatment earnings. The task is framed as a binary classification problem predicting
unemployment status post-treatment, using features defined by Dehejia and Wahba (2002) (Dehejia
& Wahba, 2002).
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Table 8: Ablation Study on Removing the Shared Representation (IHDP)

Method
√

ϵin
PEHE ϵin

ATE

√
ϵout

PEHE ϵout
ATE Coverage Selection

separate propensity 1.659± 0.224 0.216± 0.167 1.576± 0.196 0.187± 0.145 0.88 0.25

all separate 7.177± 0.119 7.074± 0.119 7.133± 0.063 7.057± 0.067 0.83 0.21

Ours 0.638± 0.138 0.090± 0.087 0.670± 0.150 0.105± 0.099 0.96 0.80

Table 9: Ablation Study on Representation Depth and Width (IHDP)

Setting
√

ϵin
PEHE ϵin

ATE

√
ϵout

PEHE ϵout
ATE Coverage Selection

4 layers 0.784± 0.249 0.126± 0.099 0.820± 0.279 0.146± 0.121 0.90 0.75
2 layers 0.705± 0.083 0.116± 0.095 0.739± 0.103 0.136± 0.113 0.94 0.73
2× width 0.695± 0.156 0.093± 0.074 0.734± 0.188 0.113± 0.099 0.92 0.81
1
2

width 0.897± 0.139 0.112± 0.088 0.932± 0.174 0.141± 0.116 0.91 0.72

Ours (original model) 0.638± 0.138 0.090± 0.087 0.670± 0.150 0.105± 0.099 0.96 0.80

F.2 JUSTIFICATION FOR SHARED REPRESENTATION

To further examine the role of the shared representation, we conduct an ablation experiment in which
the shared feature extractor is removed and the three task-specific heads (two outcome heads and one
propensity head) are trained independently. We evaluate two aspects on the IHDP dataset:

1. the estimation accuracy of the nuisance components (measured by in-sample and out-of-
sample PEHE and ATE errors), and

2. the validity of the resulting relative-error inference (coverage and selection accuracy).

Table 8 shows that removing the shared representation leads to a substantial degradation in both
nuisance estimation and inferential performance. In contrast, our full model consistently achieves the
lowest estimation errors and the highest inferential validity. These results highlight that the shared
representation is crucial for stable nuisance learning and is an essential component of our method.

F.3 SENSITIVITY ANALYSIS ON SHARED REPRESENTATION

Although Φ(X) is data-driven, once the architecture is fixed, a neural network still constitutes a
parametric model, and therefore it is important to demonstrate the robustness of our method when the
network specification changes substantially.

To assess this, we conduct an additional experiment on the IHDP dataset under the same setting as
Table 1. Specifically, we alter the representation network by (i) changing its depth from 3 layers to 2
and 4 layers, and (ii) doubling or halving the hidden dimension of each layer. These modifications
create clear and significant deviations from the original architecture.

As shown in Table 9, despite these substantial changes to the model specification, the performance
for both nuisance-estimation accuracy and relative-error inference accuracy is remarkably stable. In
particular, the validity and efficiency of the relative-error inference exhibit no meaningful deterioration.
This provides strong empirical evidence that our method is robust even when Φ(X) is misspecified.

F.4 CONVERGENCE ANALYSIS OF THE LOSSES

We report the procedural results under the same settings as Table 1 in the main text. Here, constraint
penalty (CP) refers to the first two terms of the penalty in Lconst, which penalize violations of the
inequality constraints shown in lines 280–284. Negative penalty (NP) corresponds to the last two
terms in Lconst, which penalize violations of the inequalities in lines 285–286. From Table 10, it is
evident that the original conditions are well satisfied: the vast majority of constraints hold strictly,
and the remaining few exhibit only negligible numerical discrepancies.
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Table 10: Constraint Penalty Statistics Across Datasets

Dataset Mean CP Mean NP % Zero CP % CP < 10−5

IHDP 1.511× 10−5 0 72% 95%
Twins 2.604× 10−8 0 84% 100%

Table 11: Performance on the Jobs dataset (in-sample and out-of-sample).

Method Rin
pol ϵin

ATT Rout
pol ϵout

ATT

LinDML 0.158 ± 0.015 0.019 ± 0.015 0.183 ± 0.040 0.053 ± 0.051
SpaDML 0.150 ± 0.024 0.131 ± 0.118 0.165 ± 0.046 0.144 ± 0.134
CForest 0.114 ± 0.016 0.025 ± 0.018 0.155 ± 0.028 0.058 ± 0.047
X-Learner 0.169 ± 0.037 0.026 ± 0.015 0.173 ± 0.034 0.053 ± 0.050
S-Learner 0.148 ± 0.026 0.095 ± 0.040 0.160 ± 0.027 0.115 ± 0.070
TarNet 0.141 ± 0.005 0.183 ± 0.047 0.145 ± 0.009 0.190 ± 0.074
Dragonnet 0.230 ± 0.011 0.021 ± 0.018 0.143 ± 0.009 0.172 ± 0.039
DRCFR 0.142 ± 0.005 0.122 ± 0.017 0.218 ± 0.021 0.048 ± 0.032
SCIGAN 0.144 ± 0.005 0.112 ± 0.025 0.220 ± 0.026 0.049 ± 0.034
DESCN 0.192 ± 0.029 0.098 ± 0.029 0.143 ± 0.011 0.065 ± 0.046
ESCFR 0.202 ± 0.023 0.086 ± 0.028 0.145 ± 0.011 0.076 ± 0.045

Ours 0.112 ± 0.019 0.018 ± 0.012 0.131 ± 0.030 0.053 ± 0.039

F.5 RESULTS ON JOBS

Evaluation Metrics. For the Jobs datasets, as there are no counterfactual outcomes, we report
the true Average Treatment Effect on the Treated (ATT) and the Policy Risk (Rpol) recommended
by Shalit et al.(Shalit et al., 2017b). Specifically, the policy risk can be estimated using only the
randomized subset of the Jobs dataset:

R̂pol = 1−

(
1

|A1 ∩ T1 ∩ E|
∑

xi∈A1∩T1∩E

y
(i)
1 ·
|A1 ∩ E|
|E|

+
1

|A0 ∩ T0 ∩ E|
∑

xi∈A0∩T0∩E

y
(i)
0 ·
|A0 ∩ E|
|E|

)

where E denotes units from the experimental group, A1 = {xi : ŷ
(i)
1 − ŷ

(i)
0 > 0}, A0 = {xi :

ŷ
(i)
1 − ŷ

(i)
0 < 0}, and T1, T0 are the treated and control subsets, respectively. Since all treated units T

belong to the randomized subset E, the true Average Treatment Effect on the Treated (ATT) can be
identified and computed as:

ATT =
1

|T |
∑
i∈T

yi −
1

|C ∩ E|
∑

i∈C∩E

yi

where C denotes the control group. We evaluate estimation accuracy using the ATT error: ϵATT =∣∣∣ATT− 1
|T |
∑

i∈T (f(xi, 1)− f(xi, 0))
∣∣∣ .

Accuracy of the HTE Estimation. We evaluate the performance of HTE estimation by our network
and compare it with baselines mentioned in Section 6. We average over 20 realizations of our network,
and the results are presented in Table 11. One can clearly see that our proposed method achieves the
best performance across all metrics, having the lowest R̂pol and ϵATT in both training sets and test
sets. Sensitive Analysis and Ablation Study. We explore which value of λ1, λ2 and ρ can achieve
the best performance. The results are demonstrated in Table 12. We can see that our model is not
sensitive to the change of hyperparameters. That is, the performance of HTE estimation remains
relatively stable across a range of hyperparameters. For the ablation study presented in Table 13, as
that in IHDP and Twins, taking Lce off only causes a moderate decline, while removing Lconst brings
a whole disaster.

F.6 RESULTS ON ACIC 2016 AND NEWS

Dataset Description. The ACIC 2016 competition dataset Dorie et al. (2019), built upon the real-
world Collaborative Perinatal Project Niswander et al. (1972), serves as a widely used benchmark for
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Table 12: Sensitivity analysis on the Jobs dataset with respect to λ1, λ2, and ρ.

λ1 λ2 ρ

Value Rin
pol ϵin

ATT Rout
pol ϵout

ATT Value Rin
pol ϵin

ATT Rout
pol ϵout

ATT Value Rin
pol ϵin

ATT Rout
pol ϵout

ATT

0.1 0.113 0.018 0.132 0.054 0.1 0.109 0.021 0.129 0.056 10 0.124 0.020 0.141 0.051
0.5 0.113 0.022 0.130 0.058 0.5 0.109 0.020 0.128 0.054 50 0.112 0.019 0.131 0.052
1 0.112 0.018 0.131 0.053 1 0.112 0.018 0.131 0.053 100 0.112 0.018 0.131 0.053
2 0.115 0.020 0.135 0.054 2 0.117 0.019 0.135 0.050 200 0.115 0.020 0.132 0.053

10 0.121 0.027 0.140 0.060 10 0.123 0.027 0.144 0.060 1000 0.114 0.020 0.133 0.052

Table 13: ablation studies Jobs

Training Loss Rwithin-s.
pol ϵwithin-s.

ATT Rout-of-s.
pol ϵout-of-s.

ATT

Lwls & Lconst 0.114 0.023 0.134 0.053
Lwls & Lce 0.121 0.029 0.141 0.055
Full (Ours) 0.112 0.018 0.131 0.053

evaluating heterogeneous treatment effect estimators. It contains 55 observed covariates of diverse
types with realistic dependence structures, while treatment assignments and potential outcomes
are synthetically generated under multiple data-generating mechanisms. We use the R package
aciccomp2016 with setting 1 to generate semi-synthetic datasets. The News dataset consists of
n = 5000 news articles, each represented by high-dimensional word-count covariates (x ∈ R3477)
and embedded into a k = 50-dimensional LDA topic space (Johansson et al., 2018). The treatment
corresponds to the device on which the article is consumed (mobile vs. desktop), and the outcome
reflects the reader’s perceived experience of the article. Both the treatment assignment and the
outcome depend on the article’s topical structure, introducing realistic heterogeneity and non-random
treatment mechanisms. This dataset provides a challenging setting for evaluating causal inference
methods with high-dimensional text features and structured confounding.

Results. We report both the coverage rate and selection accuracy of the relative error. under the same
setting as Figure 1, using X-Learner, S-Learner, and Causal Forest as the three candidate estimators.
From Table 14 and Table 15, one can clearly see that our method also performs strongly on both
ACIC and News, consistent with the main paper and demonstrating the generality and applicability
of our approach across different datasets.

F.7 THE EFFECT OF THE NUMBER OF CANDIDATE HTE ESTIMATORS

We use the same setting as Table 1 on IHDP. The candidate estimator list is: TARNet, Causal Forest,
X-learner, S-learner. It can be seen from Table 16 that increasing the number of candidate estimators
does not necessarily improve estimation accuracy, possibly because some of the pairs perform poorly
and dilute the overall effect.

F.8 DETAILS OF COMPLEXITY ANALYSIS

We conduct two experiments regarding sample size and number of candidate estimators, respectively.

• We varied the sample size by randomly subsampling the IHDP dataset, and measured the
running time of our method under different data scales. This demonstrates how the method
scales with input size.

• We varied the number of baseline HTE estimators τ̂k, used to construct the aggregated
CATE estimator τ̃(x) as described in Section 4.5. Specifically, for each pair (k, k′), we
used the shared neural network architecture to obtain outcome regressions µ̂1(x; τ̂k, τ̂k′)
and µ̂0(x; τ̂k, τ̂k′), and then formed τ̃(x; τ̂k, τ̂k′). The final output τ̃(x) is an average over
all (or a subset of) such pairs. Since this pairwise process increases computational cost
quadratically with the number of baseline estimators, we report running time to illustrate the
method’s scalability. We also include the runtime of TARNet as a baseline for comparison.
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Table 14: Coverage rate and selection accuracy on the ACIC dataset.

Coverage Rate Selection Accuracy
Min 25% 50% 75% Max Min 25% 50% 75% Max

S-Learner vs. X-Learner 0.68 0.86 0.90 0.93 0.99 0.58 0.68 0.75 0.80 0.91
S-Learner vs. Causal Forest 0.83 0.88 0.90 0.93 0.98 0.60 0.66 0.71 0.78 0.88
X-Learner vs. Causal Forest 0.77 0.88 0.92 0.94 0.99 0.64 0.78 0.83 0.87 0.92

Table 15: Coverage rate and selection accuracy on the News dataset.

Coverage Rate Selection Accuracy
Min 25% 50% 75% Max Min 25% 50% 75% Max

S-Learner vs. X-Learner 0.82 0.88 0.93 0.96 1.00 0.53 0.64 0.70 0.74 0.83
S-Learner vs. Causal Forest 0.81 0.87 0.90 0.92 0.96 0.70 0.78 0.83 0.86 0.91
X-Learner vs. Causal Forest 0.82 0.86 0.90 0.93 0.99 0.60 0.66 0.73 0.78 0.89

F.9 EXTENDED SENSITIVE ANALYSIS

In this section we present the results of the sensitive analysis of hyperparameter λ1 and ρ in the IHDP
and Twins dataset. One can see from Table 17 and Table 18 that our model is robust to the change of
λ1 and ρ, remaining good performance in the HTE estimation as well as relative error prediction.

F.10 SIMULATED DATA-GENERATING PROCESS

The data-generating process is described as follows: We sample latent covariates L ∼ N (0, Im) and
split them into I, C,A,D. Nonlinear structure is introduced via I ← sin(I)− C, A← (A1, A2).
The treatment assignment depends on IC = (I, C) through π(Z) = σ(IC ·wIC + ε), ε ∼ N (0, 1),

with clipping to [0.1, 0.9], and T ∼ Bernoulli(π(Z)). Potential outcomes follow f0 = (C,A)◦1w0

mC+mA
+

η0, f1 = (C,A)◦2w1

mC+mA
+ η1, where η0, η1 ∼ N (0, 0.5), yielding µ0 = f0 and µ1 = f1.

F.11 MODEL IMPLEMENTATION

We implement all models using PyTorch and optimize them with the Adam optimizer. The key hyper-
parameters include the size of each hidden layer, learning rate, the loss coefficients λ1, λ2, the penalty
coefficient ρ, and the number of training epochs. These hyperparameters are manually tuned through
empirical trials. The search ranges are as follows: hidden layer size in {30, 40, 50, 60, 70}, learning
rate in {5×10−4, 10−3, 2×10−3, 3×10−3}, λ1, λ2 in {0.1, 0.25, 0.5, 1, 2}, ρ in {10, 50, 100, 200},
and number of training epochs in {700, 800, 900, 1000, 1100}.

G THE USE OF LARGE LANGUAGE MODELS

We used large language models (LLMs), specifically, ChatGPT 5 to polish the writing of our paper.
All ideas, methods, experimental designs, and analyses are our own, and the use of LLMs was limited
to language editing.
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Table 16: Effect of Varying the Number of Candidate Estimators

# Estimators
√
ϵin

PEHE ϵin
ATE

√
ϵout

PEHE ϵout
ATE

2 0.708 0.107 0.740 0.112
3 0.638 0.090 0.670 0.105
4 0.6703 0.1107 0.6980 0.1227

TARNet (baseline) 0.896 0.279 0.920 0.266

Table 17: Sensitivity analysis of λ1 on IHDP and Twins datasets.

IHDP Twins

Value
√

ϵin
PEHE ϵin

ATE

√
ϵout

PEHE ϵout
ATE Coverage Selection Value

√
ϵin

PEHE ϵin
ATE

√
ϵout

PEHE ϵout
ATE Coverage Selection

0.1 0.678 0.096 0.709 0.112 0.93 0.74 0.1 0.286 0.009 0.288 0.010 0.96 0.94
0.25 0.693 0.096 0.724 0.113 0.93 0.75 0.25 0.285 0.010 0.287 0.010 0.94 0.94
0.5 0.638 0.090 0.670 0.105 0.96 0.80 0.5 0.284 0.009 0.286 0.009 0.94 0.94
1 0.712 0.103 0.746 0.115 0.96 0.79 1 0.285 0.013 0.287 0.014 0.94 0.92

2.5 1.011 0.245 1.036 0.262 0.94 0.77 2.5 0.283 0.015 0.284 0.016 0.92 0.88

Table 18: Sensitivity analysis of ρ on IHDP and Twins datasets.

IHDP Twins

Value
√

ϵin
PEHE ϵin

ATE

√
ϵout

PEHE ϵout
ATE Coverage Selection Value

√
ϵin

PEHE ϵin
ATE

√
ϵout

PEHE ϵout
ATE Coverage Selection

10 0.698 0.108 0.735 0.123 0.96 0.78 10 0.299 0.015 0.306 0.015 0.92 0.62
50 0.711 0.098 0.745 0.116 0.95 0.79 50 0.289 0.011 0.291 0.012 0.90 0.88

100 0.638 0.090 0.670 0.105 0.96 0.80 100 0.284 0.009 0.286 0.009 0.94 0.94
200 0.737 0.103 0.772 0.123 0.94 0.76 200 0.286 0.012 0.288 0.013 0.94 0.92
1000 0.751 0.111 0.785 0.130 0.93 0.76 1000 0.284 0.010 0.285 0.011 0.92 0.94
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