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Abstract

Large Language models (LLMs) have achieved encouraging results on tabular data
generation. However, existing approaches require fine-tuning, which is computa-
tionally expensive. This paper explores an alternative: prompting a fixed LLM
with in-context examples. Two main challenges arise: 1) presenting the entire
training table to LLMs with limited input token length, and 2) ensuring LLMs learn
effectively from the in-context examples. To address these challenges, we pro-
pose a novel retrieval-augmented generation (RAG) framework: TABGEN-RAG,
to enhance the in-context learning ability of LLMs for tabular data generation.
TABGEN-RAG operates iteratively, retrieving a subset of real samples that rep-
resent the residual between currently generated samples and true data. Extensive
experiments on five real-world tabular datasets demonstrate that TABGEN-RAG
significantly improves the quality of generated samples.

1 Introduction

Synthetic tabular data generation has been extensively studied using deep generative models, including
GANs [1], VAEs [2], autoregressive models [3], and diffusion models [4–7]. These approaches face
two main limitations. First, they require model retraining for each new dataset, preventing zero-shot
application to unseen data. Second, they need specialized architectures to handle heterogeneous
data types (continuous and categorical columns) present in tabular data. Large language models
(LLMs) [8] offer a promising alternative that addresses both challenges. Their zero-shot capabilities
enable data generation without domain-specific training, as they can interpret column semantics
and generalize across datasets. Additionally, LLMs process both continuous and categorical data as
natural language, providing a unified framework for handling heterogeneous data types. However,
a critical research question remains: can LLMs generate realistic tabular data that preserves the
statistical properties and relationships present in real-world datasets without fine-tuning?

[9] propose to use in-context learning to prompt LLMs to generate tabular data that follows the same
distribution with real samples. At each prompting iteration, they uniformly sample a subset from
the real samples and use them as in-context examples. However, we observe that LLMs can easily
ignore the in-context examples and generate memorized samples from their pre-training corpora, see
Figure 1(a),(b),(d). By contrast, if we provide in-context examples that have simpler patterns (e.g.
have the same attribute value on a selected column), LLMs do generate faithful samples, mimicking
the patterns of the in-context examples, see Figure 1(c).
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Figure 2: Overview of TABGEN-RAG framework. We generate synthetic samples in batches, at each
prompt iteration, TABGEN-RAG retrieves a subset of real samples that acts as a residual between the
currently generated samples and real data. The residual samples will be used as in-context examples
to prompt LLMs in the next iteration. The full prompt template is avaliable in Appendix A.2.

(a) No in-context Ex. (b) Sampled in-context Ex.

(c) Fixed in-context Ex. (d) Ground Truth

Figure 1: Scatter plots of 2000 California hous-
ing locations (longitude and latitude) generated
under different conditions: (a) LLM output with
only table headers, (b) LLM output with real data
examples, (c) LLM output with range-constrained
examples, and (d) actual training data. State bound-
ary shown as solid line on each plot.

This phenomenon reveals the importance of
choosing in-context examples. In this work,
we propose TABGEN-RAG, a novel retrieval-
augmented generation (RAG) [10] framework
for tabular data generation. At each prompting it-
eration, we retrieve a subset of real samples that
has simple patterns and closely matches the gap
between the current generated data distribution
and the real data distribution. This approach en-
ables 1) flexibility to choose simple patterns for
in-context examples, thus ensuring that LLMs
can learn from the in-context examples and gen-
erate realistic tabular data, and 2) progressively
narrows the gap between the generated samples
and the real data distribution, thus leading to
consistent generation.

2 Methodology

Notations. Let Dtrain = {xi}Ni=1 denote a tab-
ular dataset comprising N rows and D columns,
where each row represents a data record and
each column represents an attribute. The at-
tributes can be either discrete (e.g. categori-
cal) or continuous (e.g. numerical). We assume
Dtrain consists of N i.i.d. samples from an
unknown distribution P(x), where x is a D-
dimensional random vector containing both nu-
merical and categorical variables. Our objec-
tive is to generate a synthetic dataset Dsyn =
{x̂i}Ni=1 where each x̂i is sampled i.i.d. from the same underlying distribution P(x).

2.1 In-context Examples Selection

A key challenge in using LLMs for data generation is their tendency to generate samples that follow
their prior distribution, often disregarding the statistical patterns present in the in-context examples
(see Figure 1). To address this limitation, we propose a novel approach that dynamically selects
in-context examples representing the residual between the LLM’s current generations and the target
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distribution. This residual-based sampling aims to correct the distributional bias of the LLM. We
formally define the residual as follows:

Definition 1 (Residual). Let X be a set of N i.i.d. samples from a data distribution P(x), and let Y
be an arbitrary set of samples with the same dimension as X . We define the residual (abbrev. RES)
of X w.r.t. Y as a subset of n samples of X such that, when concatenated with Y , the empirical
distribution of the concatenated samples is most similar to the data distribution P(x):

RES(X,Y , n) := argmin
X′⊆X,|X′|=n

d(X,Y ∪X ′) (1)

where d can be any distance metric between two empirical distributions.

Remark 1. In our case, X is the real tabular samples, Y is the current generated samples by a LLM.
Intuitively, the residual samples capture the part of the real samples that LLM has not yet grasped,
thus named as residual. We also limit the size of the residual samples with a upper-bound n, to
avoid prompting LLMs with long context. In our experiments, we set n = 500 and instantiate d as
Jensen-Shannon Divergence (JSD) and Kolmogorov-Smirnov Distance (KSD).

The brute-force way of computing the residual is computationally infeasible for large N and n.
Therefore, we propose a simple heuristic to sample the residual, which empirically works well.

2.2 Compute Residual

We propose to use a simple heuristic to shrink the search space. Specifically, we first randomly select
a column, then we group the real samples X based on the value of the selected column1. Each group
of samples is then concatenated with the generated samples Y . Finally, we select the group that has
the smallest distance to the real samples X as the residual. The time complexity of this heuristic
search algorithm is O(N).

Remark 2. Note that in the heuristic search, we further constrain the residual samples to be selected
from grouped samples, i.e. the subset always has the same attribute value on the selected column.
This design choice can make the pattern of the residual samples more simple and consistent, thus
easier for LLMs to do in-context learning.

2.3 Tabular Data Generation with TABGEN-RAG

TABGEN-RAG can be easily integrated with LLMs to generate high-quality synthetic tabular data.
See Fig. 2 for an overview of the procedure. Here are the concrete steps involved in this procedure:

1. In-context Prompting: We plug the residual samples computed in the previous iteration
into the prompt template to prompt LLMs. For the first iteration, we randomly select n
samples from the real dataset X as the initial set of in-context examples. We append the
generated samples into Y .

2. Residual Computation: We then compute the residual of X w.r.t. Y : RES(X,Y , n).
Specifically, if current iteration is a even number, we instantiate d as JSD, otherwise, we
instantiate d as KSD.

3. Iterative Refinement: Repeat the above steps until enough synthetic samples are generated.

3 Experiments

3.1 Experiment Setup

Datasets We select five real-world tabular datasets containing both numerical and categorical
attributes: Adult, Default, Shoppers, Magic and California. The statistics of the datasets are
summarized in Table 2 in Appendix.

1For categorical columns, we group by the categorical values. For continuous columns, we discretize it into a
fixed number of bins and group by the bin index.
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Baselines We compare TABGEN-RAG with a variety of baselines for tabular data generation,
including 1) VAE-based method TVAE [1] 2) GAN-based method CTGAN [1] 3) Diffusion-based
method TabSyn [7], TabDDPM [6], CoDi [5], STaSy [4] 4) LLM-based method with fine-tuning:
GReaT [3], REaLTabFormer [11], without fine-tuning: CLLM [9]2.

Evaluation Methods We evaluate the synthetic tabular data from three distinct dimensions: 1

Fidelity - if the synthetic data faithfully recovers the ground-truth data distribution. We evaluate
fidelity by 5 metrics: 1) Marginal distribution through Kolmogorov-Sirnov Test, 2) Pair-wise column
correlation (Corr.) by computing Pearson Correlation, 3) Classifier Two Sample Test (C2ST) 4)
Precision and Recall, 5) Jensen-Shannon Divergence (JSD). 2 Utility - the utility of the synthetic data
when used to train downstream models, we use the Train-on-Synthetic-then-Test (TSTR) protocol
to evaluate the AUC score of XGBoost model on predicting the target column of each dataset. 3

Privacy - if the synthetic data is not copied from the real records, we employ the Distance to Closest
Record (DCR) metric. We defer the full description of the metrics to Appendix A.6.

3.2 Results
Method Marginal↓ % Corr↓ % Precision↓ % Recall↓ % C2ST↓ % JSD↓ 10−2

VAE-based
TVAE [1] 13.59 17.32 11.65 9.11 41.72 0.63

GAN-based
CTGAN [1] 16.36 20.33 30.65 11.41 42.90 0.91

Diffusion-based
STaSy [4] 12.35 9.72 11.09 2.66 55.82 1.34
CoDi [5] 21.70 24.92 9.89 6.74 57.88 1.07
TabDDPM [6] 14.04 8.16 13.37 2.27 24.21 0.85
TabSyn [7] 1.40 2.36 3.76 2.29 2.64 0.05

LLM-Finetuned
GReaT [3] 15.53 40.48 1.49 10.06 48.28 1.06

LLM-Prompt-Only
CLLM w. GPT-4o-mini 13.17 19.57 5.54 8.08 39.02 0.78
Ours w. GPT-4o-mini 11.39 17.07 6.63 4.67 37.63 0.80
Improvement 13.5% 12.8% 19.7% 42.2% 3.5% −
CLLM w. GPT-4o 10.57 13.46 4.00 4.25 31.51 0.63
Ours w. GPT-4o 9.14 12.86 4.93 2.80 26.70 0.62
Improvement 13.6% 4.5% − 34.1% 15.3% 1.6%

Table 1: Fidelity: Comparison of various methods on fidelity metrics. Results are averaged over
all datasets. All metrics are scaled to percentages (%) or 10−2, and reversed so that lower values
indicate better performance.

In Table 1, we present the performance comparison of all methods on fidelity metrics. For each
metric, we report the average result on five datasets. TABGEN-RAG consistently outperforms
existing LLM-based methods on fidelity metrics, which include training-free method CLLM and
fine-tuning based method GReaT. Compare to CLLM, TABGEN-RAG achieves an improvement
by margin of 3.5%− 42.2% on different fidelity metrics, when both employed with GPT-4o-mini,
and by 1.6% − 34.1% when employed with GPT-4o. Notably, TABGEN-RAG achieves highest
improvement on Recall: 42.2% on GPT-4o-mini and 34.1% on GPT-4o. Recall measures if the
synthetic data covers a broad spectrum of real data, improving Recall indicates that the synthetic
data is more diverse. This large improvement on Recall is anticipated as at each prompt iteration,
TABGEN-RAG computes residual samples to cover the under-represented regions of the real data
distribution, thus enriching the synthetic data’s diversity. This observation further validates the
effectiveness of TABGEN-RAG’s residual-based iterative refinement mechanism. The Utility and
Privacy results are reported in Table 3 and Figure 4. The detailed experiment results on each dataset
is presented in Appendix A.8.

2CLLM was originally employed with GPT-3.5 and GPT-4, for fair comparison to our method, we employ
CLLM with stronger models: GPT-4o-mini and GPT-4o.
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4 Conclusion

This paper proposes TABGEN-RAG, a novel retrieval-augmented generation (RAG) framework for
tabular data generation. TABGEN-RAG validates the importance to accomendate the strong prior
distribution of LLMs in generating realistic and diverse synthetic data. Extensive experiments on
five real-world tabular datasets and various metrics validate the effectiveness of TABGEN-RAG. We
hope this work can pave the way for more research on using LLMs to generate realistic and diverse
synthetic data.
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A Appendix

A.1 Related works

Deep generative models for synthetic tabular data generation Generative models for tabular
data have become increasingly important and have widespread applications [12–14]. For example,
CTGAN and TAVE [1] deal with mixed-type tabular data generation using the basic GAN [15] and
VAE [16] framework. GOGGLE [2] incorporates Graph Attention Networks in a VAE framework
such that the correlation between different data columns can be explicitly learned. Recently, inspired
by the success of Diffusion models in image generation, a lot of diffusion-based methods have been
proposed, such as TabDDPM [6], STaSy [4], CoDi [5], and TabSyn [7].

LLMs and synthetic data generation. The collection of high-quality training data is crucial for
developing advanced deep-learning models, but it is often associated with significant costs and time
investment. Researchers have recently explored using pretrained large language models (LLMs) to
generate synthetic datasets as an alternative approach, which sounds promising since it does not
require training another deep generative model. High-quality synthetic data generated by other LLMs
now play an important role in creating the pertaining corpus of next-generation LLMs. Although
LLMs have been prone to generate high-quality synthetic text data, it remains a question if data-
prompted LLMs can generate a large number of synthetic data that can recover the input data
distribution [17]. Curated-LLM [9] demonstrates that LLMs are helpful in augmenting tabular data
in low-data regimes, while their application on large-scale input data is unclear. Another work,
GReaT [3], uses the GPT-2 language model to generate synthetic tabular data. However, fine-tuning
the model on every new dataset requires fine-tuning.

A.2 Prompts used for generating tabular data

This prompt template is used in our experiments to generate realistic data that follows the same
distribution as the given real data.

1 You are a synthetic data generator tasked with creating new tabular
data samples that closely mirror the distribution and
characteristics of the original dataset.

2

3 # Instruction
4 1. Analyze the provided real samples carefully.
5 2. Generate synthetic data that maintains the statistical properties

of the real data.
6 3. Ensure all attributes cover their full expected ranges , including

less common or extreme values.
7 4. Maintain the relationships and correlations between different

attributes.
8 5. Preserve the overall distribution of the real data while

introducing realistic variations.
9

10 # Key points to consider
11 - Replicate the data types of each column (e.g., numerical ,

categorical).
12 - Match the range and distribution of numerical attributes.
13 - Maintain the frequency distribution of categorical attributes.
14 - Reflect any patterns or trends present in the original data.
15 - Introduce realistic variability to avoid exact duplication.
16

17 # Real samples
18 {data}
19

20 # Output format:
21 Please present the generated data in a JSON format , structured as a

list of objects , where each object represents a single data point
with all attributes.
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A.3 Dummy Prompt

This is a dummy prompt that we use in Figure 1 (b). No in-context example is used in this prompt.

1 You are a synthetic data generator tasked with creating new tabular
data samples that closely mirror the distribution and
characteristics of the original dataset.

2 Generate 50 samples of synthetic data.
3

4 Each sample should include the following attributes:
5 {attributes_list}
6

7 Make sure that the numbers make sense for each attribute.
8

9 Output Format:
10 Present the generated data in a JSON format , structured as a list of

objects , where each object represents a single data point with all
attributes.

A.4 Visualization

We provide a visualization of the generated samples from different methods in Figure 3. Overall,
TABGEN-RAG, TabSyn, and SMOTE [18] generate more realistic samples than other methods.

(a) Ground Truth (b) TabSyn (c) SMOTE

(d) TVAE (e) CTGAN (f) TABGEN-RAG (Ours)

Figure 3: Joint density plots of the Longtitude and Latitude features in the California Housing dataset.

A.5 Datasets

We use five real-world datasets of varying scales, and all of them are available at Kaggle3 or the UCI
Machine Learning repository4. We consider five datasets containing both numberical and catergorical

3https://www.kaggle.com/
4https://archive.ics.uci.edu/
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attributes: California5, Magic6, Adult7, Default8, Shoppers9. The statistics of these datasets are
presented in Table 2.

Table 2: Statistics of datasets. # Num stands for the number of numerical columns, and # Cat stands
for the number of categorical columns.

Dataset # Rows # Num # Cat # Train (In-sample) # Test (Out-of-Sample)

California Housing 20, 640 9 - 14, 303 6, 337
Magic Gamma Telescope 19, 020 10 - 13, 314 5, 706
Adult Income 32, 561 6 8 22, 792 9, 769
Default of Credit Card Clients 30, 000 14 10 21, 000 9, 000
Online Shoppers Purchase 12, 330 10 7 8, 631 3, 699

A.6 Evaluation Metrics

Fidelity To evaluate if the generated data can faithfully recover the ground-truth data distribution,
we employ the following metrics: 1) Marginal distribution: The Marginal metric evaluates if each
column’s marginal distribution is faithfully recovered by the synthetic data. We use Kolmogorov-
Sirnov Test for continuous data and Total Variation Distance for discrete data. 2) Pair-wise column
correlation: This metric evaluates if the correlation between every two columns in the real data is
captured by the synthetic data. We compute the Pearson Correlation between all pairs of columns then
take average. In addition, we present joint density plots for the Longitude and Latitude features in the
California Housing data set in Figure 3. 3) Classifier Two Sample Test (C2ST): This metric evaluates
how difficult it is to distinguish real data from synthetic data. Specifically, we create an augmented
table that has all the rows of real data and all the rows of synthetic data. Add an extra column to keep
track of whether each original row is real or synthetic. Then we train a Logistic Regression classifier
to distinguish real and synthetic rows. 4) Precision and Recall: Precision measures the quality of
generated samples. High precision means the generated samples are realistic and similar to the true
data distribution. Recall measures how much of the true data distribution is covered by the generated
distribution. High recall means the model captures most modes/variations present in the true data.
5) Jensen-Shannon Divergence (JSD): This metric evaluates the Jensen-Shannon divergence [19]
between the distributions of real data and synthetic data.

Utility We evaluate the utility of the generated data by accessing their performance in Machine
Learning Efficiency (MLE). Following the previous works [7], we first split a real table into a real
training and a real testing set. The generative models are trained on the real training set, from
which a synthetic set of equivalent size is sampled. This synthetic data is then used to train a
classification/regression model (XGBoost Classifier and XGBoost Regressor [20]), which will be
evaluated using the real testing set. The performance of MLE is measured by the AUC score for
classification tasks and RMSE for regression tasks.

Privacy A high-quality synthetic dataset should accurately reflect the underlying distribution of
the original data, rather than merely replicating it. To assess this, we employ the Distance to Closest
Record (DCR) metric. We begin by splitting the real data into two equal parts: a training set and a
holdout set. Using the training set, we generate a synthetic dataset. We then measure the distances
between each synthetic data point and its nearest neighbor in both the training and holdout sets.
In theory, if both sets are drawn from the same distribution, and if the synthetic data effectively
captures this distribution, we should observe an equal proportion (around 50%) of synthetic samples
closer to each set. However, if the synthetic data simply copies the training set, a significantly higher
percentage would be closer to the training set, well exceeding the expected 50%.

5https://www.kaggle.com/datasets/camnugent/california-housing-prices
6https://archive.ics.uci.edu/dataset/159/magic+gamma+telescope
7https://archive.ics.uci.edu/dataset/2/adult
8https://archive.ics.uci.edu/dataset/350/default+of+credit+card+clients
9https://archive.ics.uci.edu/dataset/468/online+shoppers+purchasing+intention+

dataset
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A.7 Utility and Privacy results

Method California Adult Shoppers Magic Default
AUC↑ AUC↑ AUC↑ AUC↑ AUC↑

Real 0.999 0.927 0.926 0.946 0.770

VAE-based
TVAE [1] 0.986 0.846 0.898 0.912 0.744

GAN-based
CTGAN [1] 0.925 0.874 0.868 0.874 0.736

Diffusion-based
STaSy [4] 0.997 0.903 0.909 0.923 0.749
CoDi [5] 0.981 0.829 0.855 0.930 0.497
TabDDPM [6] 0.992 0.911 0.915 0.933 0.763
TabSyn [7] 0.993 0.904 0.913 0.934 0.764

LLM-Finetuned
GReaT [3] 0.996 0.913 0.902 0.888 0.755

LLM-Prompt-Only
CLLM w. GPT-4o-mini 0.840 0.879 0.708 0.826 0.557
TABGEN-RAG w. GPT-4o-mini (Ours) 0.947 0.894 0.792 0.891 0.628
Improvement 12.7% 1.7% 11.9% 7.9% 2.7%

CLLM w. GPT-4o 0.947 0.891 0.865 0.885 0.718
TABGEN-RAG w. GPT-4o (Ours) 0.975 0.892 0.879 0.903 0.713
Improvement 3.0% 0.1% 1.4% 1.8% 0.5%

Table 3: Utility: AUC scores of Train-on-synthetic-Test-on-real (TSTR) XGBoost model predicting
the target column of each table. ↑ indicates the higher the better. − indicates that the result is missing
due to training failure.
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Figure 4: Privacy: Distributions of the DCR scores between the synthetic dataset and the train-
ing/holdout datasets. TABGEN-RAG and Curated-LLM (CLLM) are both employed with GPT-4o-
mini.

A.8 Detailed Fidelity results
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Table 4: Error rate (%) of column-wise density estimation. Lower values indicate more accurate
estimation (superior results).

Method Adult↓ Default↓ Shoppers↓ Magic↓ California↓ Average↓
CTGAN 19.32± 0.77 18.25±0.82 25.71±0.12 5.69±0.17 12.84±0.29 16.36
TVAE 24.32±0.26 9.94±0.14 23.93±0.35 4.39±0.12 5.37±0.06 13.59
GReaT 12.12±0.24 19.94±0.16 14.51±0.12 16.16±0.39 10.25±0.20 14.20
STaSy 10.41±0.25 11.34±0.14 16.14±0.11 13.02±0.31 10.82±0.14 12.35
CoDi 24.84±0.36 16.54± 0.17 36.48±0.95 11.64±0.26 19.98±0.12 21.70
TabDDPM 1.32±0.13 7.59± 0.18 2.84±0.09 1.09±0.06 57.34±11.4 14.04
TabSyn 2.75±0.66 0.95±0.04 1.52±0.06 0.79±0.11 1.00±0.05 1.40

CLLM w. GPT-4o-mini 13.80±0.16 17.69±0.33 18.10±0.24 7.36±0.55 9.91±0.21 13.17
TABGEN-RAG w. GPT-4o-mini 13.19±0.16 10.99±0.33 15.10±0.24 10.12±0.55 7.54±0.21 11.54
CLLM w. GPT-4o 12.19±0.16 9.06±0.33 16.23±0.24 7.70±0.55 7.67±0.21 10.57
TABGEN-RAG w. GPT-4o 10.28±0.16 7.22±0.33 14.61±0.24 7.85±0.35 5.74±0.21 9.14

Table 5: Error rate (%) of pair-wise column correlation score.

Method Adult↓ Default↓ Shoppers↓ Magic↓ California↓ Average↓
CTGAN 27.35±1.20 30.52±1.13 24.24±0.16 5.04±0.19 14.49±0.08 20.33
TVAE 36.65±4.88 19.37±0.45 20.12±0.38 4.46±0.29 5.85±2.82 17.29
GReaT 17.59±0.52 70.02±7.12 45.16±8.18 10.23±2.40 59.60±10.6 40.48
STaSy 13.50±0.25 10.65±0.26 15.29±2.15 5.48±0.23 3.59±0.51 9.72
CoDi 22.72±0.08 67.88±0.15 21.18±0.43 6.93±0.15 6.89±0.15 24.92
TabDDPM 2.50±0.25 11.55±0.27 6.23±0.16 0.57±0.12 19.83±1.09 8.16
TabSyn 4.64±0.27 3.30±0.12 2.28±0.21 0.91±0.31 0.78±0.28 2.36

CLLM w. GPT-4o-mini 25.53±0.17 26.64±0.42 22.09±0.21 10.39±0.32 13.38±0.28 19.61
TABGEN-RAG w. GPT-4o-mini 25.70±0.27 22.25±0.12 20.04±0.21 5.66±0.32 10.65±0.28 17.07
CLLM w. GPT-4o 19.55±0.27 16.65±0.12 17.89±0.21 8.16±0.32 5.18±0.28 13.49
TABGEN-RAG w. GPT-4o 17.84±0.27 18.44±0.12 14.35±0.21 6.02±0.32 7.64±0.28 12.86

Table 6: Precision score in raw scale. The higher, the better.

Method Adult↑ Default↑ Shoppers↑ Magic↑ California↑ Average↑
CTGAN 0.8225± 0.03 0.2457± 0.04 0.7434± 0.02 0.7806± 0.07 0.8753± 0.01 0.6935
TVAE 0.9862± 0.05 0.6391± 0.04 0.8965± 0.03 0.9385± 0.02 0.9595± 0.06 0.8840
GReaT 0.9937± 0.01 0.9711± 0.02 0.9792± 0.03 0.9894± 0.01 0.9921± 0.01 0.9851
STaSy 0.9728± 0.04 0.9326± 0.05 0.9417± 0.03 0.9824± 0.02 0.6162± 0.08 0.8891
CoDi 0.7387± 0.07 0.8777± 0.02 0.9683± 0.01 0.9836± 0.01 0.9873± 0.01 0.9111
TabDDPM 0.9763± 0.02 0.7910± 0.06 0.9762± 0.02 0.9719± 0.01 0.6162± 0.04 0.8663
TabSyn 0.9739± 0.02 0.9127± 0.02 0.9764± 0.01 0.9725± 0.01 0.9763± 0.02 0.9624

CLLM w. GPT-4o-mini 0.9596± 0.05 0.9151± 0.03 0.9612± 0.02 0.9148± 0.02 0.9720± 0.02 0.9446
TABGEN-RAG w. GPT-4o-mini 0.9597± 0.02 0.8302± 0.04 0.9676± 0.01 0.9482± 0.02 0.9628± 0.03 0.9337
CLLM w. GPT-4o 0.9658± 0.01 0.9025± 0.04 0.9725± 0.02 0.9670± 0.03 0.9920± 0.01 0.9600
TABGEN-RAG w. GPT-4o 0.9569± 0.03 0.8811± 0.01 0.9692± 0.03 0.9768± 0.01 0.9697± 0.02 0.9507

Table 7: Recall score in raw scale. The higher, the better.

Method Adult↑ Default↑ Shoppers↑ Magic↑ California↑ Average↑
CTGAN 0.9045± 0.02 0.6892± 0.04 0.8710± 0.03 0.9756± 0.01 0.9894± 0.01 0.8859
TVAE 0.7436± 0.03 0.9620± 0.02 0.9541± 0.04 0.9604± 0.01 0.9742± 0.03 0.9189
GReaT 0.8681± 0.05 0.8871± 0.01 0.8989± 0.03 0.8651± 0.02 0.9501± 0.01 0.8939
STaSy 0.9881± 0.01 0.9413± 0.04 0.9835± 0.02 0.9652± 0.01 0.9899± 0.01 0.9736
CoDi 0.9978± 0.02 0.8841± 0.03 0.8871± 0.03 0.9520± 0.02 0.9420± 0.01 0.9326
TabDDPM 0.9823± 0.01 0.9661± 0.02 0.9677± 0.03 0.9806± 0.01 0.9899± 0.01 0.9773
TabSyn 0.9808± 0.02 0.9617± 0.01 0.9783± 0.01 0.9804± 0.01 0.9841± 0.02 0.9771

CLLM w. GPT-4o-mini 0.9838± 0.03 0.7578± 0.05 0.9566± 0.01 0.9701± 0.01 0.9278± 0.02 0.9192
TABGEN-RAG w. GPT-4o-mini 0.9870± 0.02 0.8608± 0.03 0.9691± 0.02 0.9732± 0.01 0.9762± 0.01 0.9533
CLLM w. GPT-4o 0.9875± 0.02 0.9023± 0.02 0.9697± 0.01 0.9723± 0.02 0.9558± 0.01 0.9575
TABGEN-RAG w. GPT-4o 0.9922± 0.01 0.9259± 0.03 0.9753± 0.02 0.9790± 0.01 0.9874± 0.01 0.9720
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Table 8: C2ST score in raw scale. The higher, the better.

Method Adult↑ Default↑ Shoppers↑ Magic↑ California↑ Average↑
CTGAN 0.6321± 0.04 0.3540± 0.03 0.5114± 0.02 0.8585± 0.01 0.4989± 0.04 0.5710
TVAE 0.2761± 0.05 0.5835± 0.02 0.2996± 0.03 0.8793± 0.01 0.8752± 0.02 0.5828
GReaT 0.9195± 0.01 0.9867± 0.02 0.9695± 0.01 0.9992± 0.01 0.9929± 0.01 0.9736
STaSy 0.4598± 0.03 0.5071± 0.02 0.3780± 0.05 0.4603± 0.04 0.4539± 0.03 0.4518
CoDi 0.1998± 0.02 0.4763± 0.04 0.1816± 0.05 0.7230± 0.03 0.5252± 0.01 0.4212
TabDDPM 0.9605± 0.01 0.8825± 0.03 0.8363± 0.02 0.9905± 0.01 0.1199± 0.06 0.7579
TabSyn 0.9195± 0.01 0.9867± 0.02 0.9695± 0.01 0.9992± 0.01 0.9929± 0.01 0.9736

CLLM w. GPT-4o-mini 0.5222± 0.04 0.5589± 0.03 0.4085± 0.02 0.7589± 0.01 0.8007± 0.02 0.6098
TABGEN-RAG w. GPT-4o-mini 0.5493± 0.05 0.5724± 0.03 0.4807± 0.04 0.7501± 0.01 0.7661± 0.02 0.6237
CLLM w. GPT-4o 0.5290± 0.03 0.6780± 0.01 0.5345± 0.02 0.8014± 0.01 0.8816± 0.02 0.6849
TABGEN-RAG w. GPT-4o 0.6067± 0.02 0.7646± 0.03 0.5752± 0.02 0.8054± 0.01 0.9130± 0.01 0.7330

Table 9: JSD in base of 10−2. The lower, the better.

Method Adult↓ Default↓ Shoppers↓ Magic↓ California↓ Average↓
CTGAN 0.38 0.114 0.066 0.056 0.182 0.091
TVAE 0.078 0.052 0.107 0.036 0.041 0.063
GReaT 0.182 0.076 0.056 0.107 0.111 0.106
STaSy 0.041 0.055 0.086 0.107 0.380 0.134
CoDi 0.073 0.067 0.103 0.142 0.152 0.107
TabDDPM 0.004 0.008 0.019 0.013 0.380 0.085
TabSyn 0.004 0.003 0.007 0.007 0.006 0.005

CLLM w. GPT-4o-mini 0.60 0.095 0.102 0.055 0.077 0.078
TABGEN-RAG w. GPT-4o-mini 0.062 0.078 0.085 0.126 0.077 0.086
CLLM w. GPT-4o 0.060 0.041 0.081 0.074 0.057 0.063
TABGEN-RAG w. GPT-4o 0.050 0.037 0.075 0.094 0.055 0.062
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