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Abstract

For the deployment of artificial intelligence (AI) in high risk settings, such as health-
care, methods that provide interpretability/explainability or allow fine-grained error
analysis are critical. Many recent methods for interpretability/explainability and
fine-grained error analysis use concepts, which are meta-labels that are semanti-
cally meaningful to humans. However, there are only a few datasets that include
concept-level meta-labels and most of these meta-labels are relevant for natural
images that do not require domain expertise. Previous densely annotated datasets
in medicine focused on meta-labels that are relevant to a single disease such as
osteoarthritis or melanoma. In dermatology, skin disease is described using an
established clinical lexicon that allows clinicians to describe physical exam findings
to one another. To provide a medical dataset densely annotated by domain experts
with annotations useful across multiple disease processes, we developed SkinCon:
a skin disease dataset densely annotated by dermatologists. SkinCon includes 3230
images from the Fitzpatrick 17k skin disease dataset densely annotated with 48
clinical concepts, 22 of which have at least 50 images representing the concept.
The concepts used were chosen by two dermatologists considering the clinical
descriptor terms used to describe skin lesions. Examples include "plaque”, "scale",
and "erosion". These same concepts were also used to label 656 skin disease
images from the Diverse Dermatology Images dataset, providing an additional
external dataset with diverse skin tone representations. We review the potential
applications for the SkinCon dataset, such as probing models, concept-based ex-
planations, concept bottlenecks, error analysis, and slice discovery. Furthermore,
we use SkinCon to demonstrate two of these use cases: debugging mistakes of an
existing dermatology Al model with concepts and developing interpretable models
with post-hoc concept bottleneck models.

1 Introduction

As we work towards deploying artificial intelligence (AI) for images in high risk settings such as
healthcare, methods that provide interpretation or explanation for human operators and allow fine-
grained error analysis are important. Previous methods developed to address these issues in image
analysis have relied on the use of high-level human concepts, which are semantically meaningful and
provide a way to further analyze images (Ghorbani et al.,|2019)). For example, for a dataset of images
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that contains cats and dogs, concept labels may include "whiskers" or "collar". These concepts can
then be used to provide interpretability/explainability for a model or to better understand when a
model makes an erroneous prediction.

An example of how concepts are applied is concept bottleneck models, which rely on labeled concepts
within image data in order to predict the class label in an interpretable manner by first predicting
concepts from image inputs and subsequently predicting class labels from those concepts (Koh et al.|
2020; | Yuksekgonul et al., 2022). |Abid et al.| (2022) developed an approach, conceptual counterfactual
explanations, which used human-explainable concepts to explain why a model misclassified a
particular instance.

While there has been work on the automatic generation of concepts (Ghorbani et al.,2019; |Yeh et al.,
2020), many of these methods rely on datasets with labeled concepts for development and testing.
Because both delineating what concepts to use and labeling concepts within an image is laborious,
these kind of datasets are not as common. Currently, healthcare datasets with meta-labels that could
be used as concepts include: 1) the Osteoarthritis Institute Knee X-ray dataset (OAI) which has knee
X-rays of patients at risk for osteoarthritis with over 4,000 patients and more than 36,000 observations
but only a subset of which have 18 clinical concepts related to osteoarthritis (Nevitt et al., 2006)
2) PH2 which has 200 images of skin disease with lesion segmentation and 7 clinical attributes
(Mendonca et al.,[2013) 3) derm7pt which has 1011 images with 7 clinical criteria associated with
melanoma (Kawahara et al.l |2018). However, all of these datasets focus on concept descriptions
related to identifying a single disease process (osteoarthritis for OAI and melanoma for PH2 and
derm7pt).

Dermatology serves as an ideal use case for concept-based labeling because clinicians have an
established lexicon for describing skin lesions based on their texture, shape, and color (Bolognia
et al,2017). Dermatologists use these standardized terms to describe lesions to one another when
discussing physical exam findings (Bolognia et al., [2017). Previous datasets in dermatology have
focused on descriptors specifically related to melanoma and have also lacked diversity in skin tones
(Mendonca et al.| 2013} |Kawahara et al.l [2018)). This more narrow focus may limit the potential
for developing generalizable interpretability/explainability methods and tools for fine-grained error
analysis.

Our contributions With the current limitations in mind, we present SkinCon: a skin disease dataset
densely annotated by domain experts (dermatologists). SkinCon includes 3230 images from the
Fitzpatrick 17k skin disease dataset densely annotated with 48 clinical concepts, 22 of which have
at least 50 images representing the concept. These same concepts were also used to label 656 skin
disease images from the Diverse Dermatology Images (DDI) dataset, providing an additional external
dataset. When combined with Fitzpatrick17k, we have 25 concepts with more than 50 images, and
32 concepts with more than 30 images. SkinCon is the first medical dataset densely annotated by
domain experts to provide annotations useful across multiple disease processes. To illustrate the
type of applications enabled by SkinCon, we show that we can use medical concepts learned from
SkinCon to explain why Al models misdiagnose patients and also to develop more interpretable Al
models.

2 Dataset

2.1 Data Sources

SkinCon is developed based on images from two existing datasets: Fitzpatrick 17k (Groh et al.|[2021)
and Diverse Dermatology Images (DDI) (Daneshjou et al., 2022). Both of these datasets are available
for scientific, non-commercial use. Images from Fitzpatrick 17k originate from two publicly available
online atlases, as described previously by (Groh et al.,|2021). Skin tone breakdown for the subset of
images included from Fitzpatrick 17k are in Table 1; skin tone breakdown for DDI was previously
reported in Daneshjou et al.[ (2022)) with of 208 images of FST (Fitzpatrick Skin Tone) I-1I, 241
images of FST III-IV, and 207 images of FST V-VL

Because Fitzpatrick 17k was scraped from online atlases, the level of dataset noise is higher (for
example, Fitzpatrick 17k has non-skin images) than DDI, which had every image curated by a
dermatologist. For Fitzpatrick 17k, we selected a random sampling of images; non-skin images or
images without a clear lesion were filtered out. All images from DDI were used. Disease annotations
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Figure 1: An overview of the SkinCon dataset. a) Data labeling interface. We provide the labeler
with potential skin descriptors, and the labeler marks the ones that exist in the image. We ask labelers
to consider 48 concepts, the list can be found in the Appendix. b) Data validation interface. We
provide the validator with the currently labeled concepts, and we let them mark the ones they agree
with. c¢) Potential applications. Using SkinCon, users can provide concept-based explanations, turn
their models into post-hoc concept bottlenecks, or analyze the mistakes made by their models.

(fine grained diagnosis as well as benign versus malignant) and Fitzpatrick skin tone annotations
were previously provided with each dataset. Fitzpatrick 17k disease annotations are not verified by
skin biopsy; a description of the verification process can found in 2021). Fitzpatrick 17k
skin tone was annotated by non-dermatologist human annotators using Scale Al using the 6-point
Fitzpatrick skin tone scale. DDI diseases were all verified by skin biopsy; skin tone was labeled
using three bins (Fitzpatrick I-II, III-IV, and V-VI) based on information from the clinical visit,
demographic images, and lesion images and further validated by two dermatologists as described

previously (Daneshjou et al.,[2022).
b) DDI
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Figure 2: Examples from the SkinCon dataset. a) Example concepts and samples. We show two
examples each for four prevalent concepts: Plaque, Pustule, Telangiectasia and Ulcer. b) Statistics.
Here we provide the distribution of number of concepts per each image for the Fitzpatrick17k subset.

2.2 Data Concepts and Labeling

A unique aspect of dermatology is the existence of a lexicon used for describing skin disease findings;
dermatologists undergo extensive training using these clinical terms which are used for both written
and verbal communication to describe the appearance of skin lesions (Bolognia et al}[2017). These
descriptors are meant to allow dermatologists to visualize the appearance of the disease process. For
example, atopic dermatitis lesions might be described as "erythematous plaques with scale" while
a skin cancer might appear as an "ulcerated erythematous nodule". These terms share information
about the size, texture, shape, and color of the lesion. For instance, a plaque is a raised lesion that
is greater than 1 cm in diameter but less than 1 cm in height; while a nodule is 1 cm or greater in
height (Bolognia et al.l 2017). Prior to reviewing the image data, two dermatologists with 5 and
6 years of clinical dermatology experience created a list of concepts based on the clinical lexicon
used by dermatologists to describe skin lesions and with consultation of the terms listed in one




Table 1: Distribution of images over skin tones. The Fitzpatrick skin tone scale has been used by
dermatologists and Al practitioners for assessing skin color. Fitzpatrick I-II represents white skin,
II-1V represents olive and light brown skin, while Fitzpatrick V-VI represents dark brown and black
skin.

Fitzpatrick Skin Tone  #Images (Fitzpatrick17k) # Images (DDI)

I-11 1738 208
1I-1v 1350 241
V-VI 467 207

Unknown 135 -

of the most widely used dermatology textbooks - Dermatology by Bolognia et al.| (2017). The
dermatologists were tasked with picking concept terms that would describe the most commonly
encountered lesion shapes/size, color, and texture. Each dermatologist selected terms to add to the
list, with both approving all terms prior to labeling. A total of 48 clinical concepts were selected
from existing clinical terms. During the labeling process, these were grouped by primary lesion
characteristics (which have to do with morphology) (Figure [Th), secondary lesion characteristics
(which cover textural changes), additional shape information, and color. Then, each image was
labeled with the present concepts using a standardized labeling interface by a single dermatologist
with 6 years of dermatology experience (Figure[T). Since dermatologists are trained in these clinical
descriptors, detailed explanations of each concept was not required. Note that images could have
multiple concepts. Figure [Zh shows a sampling of clinical concepts along with images that these
concepts appear in. A label of "Do not use" was allowed to remove any images that were poor quality.

2.3 Validation

As a first validation step, a board-certified dermatologist validated 323 (10%) of the images (selected
randomly); the validator agreed with 1056/1082 = 97.6% of the concept annotations from the
Fitzpatrick17k subset.

To get further validation, all of the images from the DDI dataset (656 images) and a random selection
of 300 images from the Fitzpatrick dataset were independently labeled using the same labeling
interface as was used in the initial labeling procedure, for a total of 956 images. 94% of these images
were of sufficient quality across all labelers. Validation labels were provided by two dermatologists
with 12 and 5 years of dermatology experience. Overall, we found that independent validators’
annotations agreed with SkinCon labels 94% of the time — 92% for Fitzpatrick and 94% for DDI.

2.4 Statistics

Overall, we release 3230 clinical images from Fitzpatrick17k and 656 images from DDI datasets
with meta-labels. We have 48 concepts, listed in the Appendix along with the number of images from
each concept. 22 of these concepts have more than 50 images in Fitzpatrick 17k subset, and when
combined with DDI, we have 28 concepts with more than 50 images. A summary of the distribution
of number of concepts seen in an image in Fitzpatrick 17k subset can be found in Figure [2p; the x-axis
bins represent the number of concepts annotated, while the y-axis shows the number of images that
are annotated with that particular number of concepts. The distribution of images across Fitzpatrick
skin tones can be found in Table[Il

3 Experiments with SkinCon

For all of the experiments, we use DeepDerm |Daneshjou et al.| (2022) model, which is trained on
the data used by (Esteva et al.,[2017) and based on Inceptionv3 (Szegedy et al.,2016). DeepDerm is
trained on clinical images to predict whether a skin lesion is benign or malignant. Because there is
data leak between the images used to train DeepDerm and the Fitzpatrick 17k dataset, we conduct all
our tests on the completely independent DDI dataset. The baseline performance of DeepDerm on
DDI is similar to what was previously reported in|Daneshjou et al.|(2022)) (Table 2).



3.1 Task 1: Explaining model mistakes with SkinCon
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Figure 3: Explaining model mistakes using SkinCon concepts. Here we report concepts we
found that would explain the model mistakes using Conceptual Counterfactual Explanations (CCE).
Particularly, a large positive weight would mean adding the concept to the image would help fix the
model mistake. Similarly, a large negative weight would mean removing the concept from the image
would help fix the mistake.

To explain DeepDerm’s mistakes, we follow Conceptual Counterfactual Explanations (CCE)
2022). Particularly, CCE has two steps, as described below.

Learning concepts: We use Concept Activation Vectors(CAV) to learn concepts
for these models. Let f : X — R denote the layers up to the final layer of the model, which takes
the image as an input and produces an embedding. For a given concept indexed by ¢, we collect two
sets of embeddings P; = {f(zp,), ..., f(xpy, )} that contains the concept, and similarly negative

examples N; = {f(zn,), ..., f(xpy, )} that do not contain the concept. We then train a linear SVM
using P; and N; to learn the corresponding CAV. In our experiments, we use concepts with at least
50 images in the Fitzpatrick 17k subset, which amounts to using 22 concepts. For training the linear
probes, we use 50 pairs of positive and negative images. In Appendix, we give an ablation where we
explore the effect of number of samples used on the performance of the linear probes.

Generating counterfactual explanations: Using concept activation vectors, we use the CCE
algorithm to generate counterfactual explanations. Briefly, CCE aims to add/remove concepts using
intermediate activations to reason about model behavior. Given the embedding of a mistake, CCE
finds a counterfactual example by modifying the embedding through adding a weighted sum of the
learned concept activation vectors such that the model assigns high likelihood to the opposite label.
Intuitively, this is done to understand what concepts should change in the sample in order for the
model to change its prediction.

We refer the reader to for implementation details. A set of examples can be found
in Figure[3] Particularly, a large positive weight would mean adding the concept to the image would
help fix the model mistake. Similarly, a large negative weight would mean removing the concept
from the image would help fix the mistake. For example, [3h shows that if this lesion would have
had telangiectasias, ulceration, or friability, it would have been more likely to be properly classified
as malignant. Overlying telangiectasias are often seen in skin cancers such as basal cell carcinoma.
Friability is tissue that looks like it may easily bleed, with existing tears; this is a characteristic of
abnormal skin in skin cancer. Ulcers are breakdown of the skin, which can be seen in skin cancer
since there is abnormal tissue present. Thus, these concepts are all clinical features seen in malignancy

(Bolognia et al} [2017).




Table 2: Post-hoc Concept Bottleneck Models with SkinCon. We report the model AUCs over the
DDI dataset for both the original model and the PCBM. We observe that PCBMs with SkinCon is at
least as good as, or in some cases better than the original model. We trained the PCBM 5 times with
random seeds and report the standard errors next to the mean accuracies over 5 runs.

Test AUC DDI DDI(I-II) DDI(III-IV) DDI(V-VI)
Original Model (DeepDerm) 0.595 0.649 0.632 0.528
PCBM with SkinCon 0.639 £0.001 0.643 £0.002 0.727 £0.002 0.542 £ 0.002

Table 3: Importance of concepts for the concept bottleneck model. A large positive weight means
larger contribution towards predicting an image as malignant. Similarly, a large negative weight
means larger contribution towards predicting as benign.

Concept Name Concept Weight
Ulcer 1.190

Concept Name Concept Weight

Telangiectasia 1.022 Patch -0.960
Pustule -0.836

Black 0.746
Purple 0.489 Scar -0.711
Friable 0.307 Dome-shaped -0.130

3.2 Task 2: Interpretable models with concept bottlenecks

Can we implement inherently interpretable models using concepts? Following Post-hoc Concept
Bottleneck Models (PCBM) (Yuksekgonul et al.| [2022]), we project all embeddings to a concept
bottleneck. Specifically, the bottleneck denoted by f.. : X — R¥¢ maps an input to an N, dimen-
sional vector, where each dimension corresponds to a concept and N, is the number of concepts.
Later, an interpretable predictor, such as a linear model is used to make the prediction. Particularly,
for a sample z, the prediction would be w? f.(x) + b. We can later analyze w to understand the
importance of each concept per the model.

In this experiment, we use the 22 concepts used in Section [3.T(concepts with at least 50 images)
to implement the bottleneck. The linear predictor of the PCBM is trained and evaluated on the
Fitzpatrick17k dataset images that were not used to label concepts, where we split the remaining
images into the training (2787 images, 80%) and test sets (697 images, 20%). Then, we test the
performance on both a held-out set of Fitzpatrick 17k, and also the Disparities in Dermatology
Dataset (Daneshjou et al.,[2022). In Table@], we report the overall results.

We observe that using 22 concepts in the bottleneck, we can recover the original model performance
or better using PCBMs. While we trained on images across all skin tones to learn the concepts, we
did analyze how PCBM performed across skin tone subsets on the DDI dataset. As seen in Table[2}
for Fitzpatrick ITII-IV images, PCBM had an AUC of 0.727 compared to the original model AUC of
0.632, and in Fitzpatrick V-VI images, PCBM had an AUC of 0.542 compared to an AUC of 0.528
for the original model. On the interpretability side, we can investigate which of these concepts are
important per the model. In Table[3] we observe the concepts that predict malignancy according to
the model. Particularly, skin lesions described using the concepts Ulcer, Telangiectasia, Black are
more likely to be predicted as a malignancy. Clinically, this makes sense, as black is a color seen in
melanoma, cancerous skin is more likely to ulcerate, and telangiectasias are prominent in several skin
cancers, most commonly basal cell carcinomas (Bolognia et al., 2017). However, concepts do not
always align with clinical expectation. Here, Scar is a concept that is predictive of a benign lesion,
and while scarring is often seen in non-malignant process, recurrent skin cancers appear near a scar
from prior removal. This is further discussed in the Limitations section.

4 Potential Applications

There is a large variety of applications that require fine-grained annotations. In Table ] we provide a
non-exhaustive list of example applications that can use SkinCon.



H Application ‘ Related Works H

Probing models (Alain & Bengio|, 2016} |Adi et al.,[2016)
Concept-based Explanations tCAV(Kim et al.| 2018), CCE(Abid et al.,[2022)
Concept Bottlenecks CBM(Koh et al.,[2020), PCBM(Yuksekgonul et al., {2022
Error Analysis, Slice Discovery (Eyuboglu et al.| 2022} |Chung et al.,[2019)

Table 4: Proposed applications for our dataset.

Application-1: Probing models The idea of training classifiers in internal representations of artifi-
cial/biological neural networks is prevalent across disciplines (Cox & Savoy, [2003; |Alain & Bengiol
2016} [Tvanova et al.| 2021)). In probing, the idea is to "probe" internal representations of models to
predict target features by training classifiers. If a classifier can predict a target feature well, we can
suggest that the particular feature is encoded in the representation space. It is important to note that
having a high-performing probe does not imply that the target feature is later used by the model (for
this purpose, see concept-based explanations below). Using our dataset, we can probe skin classifiers
to understand which of these important concepts are encoded by the model.

Application-2: Concept-based explanations try to explain model behavior using human-
interpretable concepts. |[Kim et al.| (2018) aims to find out the sensitivity of model predictions
to concepts in a bank, |Akula et al.| (2020); Abid et al.| (2022) generates counterfactual statements to
explain model behavior/mistakes. Different from probing, these methods aim to explain if a given
concept is being used / important for model behavior. In all of these use cases, users need to pre-define
a concept bank to probe the model behavior. Our work will allow dermatology models to be probed
for a rich set of clinical descriptors. Similar in spirit, |Lucieri et al.|(2020) uses derm7pt|Kawahara
et al.[(2018)) and PH2 Mendonga et al.|(2013)) datasets to obtain concept banks to analyze skin lesion
classifiers with CAVs(Concept Activation Vectors). In these datasets, they have a handful of concepts
(< 10) labeled for a limited number of images (1,011 for derm7pt, 200 for PH2). We showed in
Section [3.1]that we can leverage SkinCon to meaningfully reason about model mistakes over the DDI
dataset.

Application-3: Concept Bottlenecks projects the inputs onto a set of interpretable concepts, and
later uses the concepts to make predictions. Concept Bottleneck Models (CBMs) (Koh et al., 2020)
were first implemented using densely annotated training datasets and required concept annotations at
training time. Later, PCBMs (Yuksekgonul et al., 2022)) implemented this as a post-hoc procedure,
where any neural network can be turned into a concept bottleneck model, given a concept bank.
Our work will allow concept bottlenecks to be implemented in various dermatology use cases. We
demonstrated in Section [3.2]that using SkinCon, we can recover and in some cases exceed model
performance by converting a black-box model to a concept bottleneck. Furthermore, we can look at
concept importance in the interpretable predictor to understand what concepts the model is relying
on.

Application-4: Error Analysis, Slice Discovery aims to find coherent sets of mistakes to debug
machine learning models. A model may have high overall accuracy but make systematic errors
on particular subsets of the data, referred to as slices (Eyuboglu et al.| 2022). Such differential
performance has been noted in multiple applications of medical Al, which can have dangerous
consequences for patients (Badgeley et al., 2019). For example, images of pneumothorax chest
X-rays without chest drains (a treatment for pneumothorax) were more likely to be misclassified as a
false negative (Oakden-Rayner et al., [2020). Fine-grained analysis methods such as slice discovery
aim to identify these subsets or slices with differential performance. Concepts can serve as "ground
truth" slices of data for testing slice discovery methods (Eyuboglu et al., |2022).

5 Related Works

5.1 Densely annotated general datasets

Densely annotated datasets that provide meta-labels that could be used as concepts are key for the
development of interpretable/explainable methods and fine-grain analysis methods. There is a large
set of general purpose datasets that are densely annotated. Much of the non-medical datasets in this
realm do not require special domain expertise; however, there is also not an established lexicon for



describing these kinds of images, leaving the meta-labels to the discretion of the dataset creators. For
example, the Caltech-UCSD Birds-200-2011 (CUB) dataset has 11,788 bird photographs representing
200 species and 312 binary attributes based on the appearance of the bird; sentences describing
the birds have also been collected using Amazon Mechanical Turk to provide natural language
descriptions (Wah et al.}|2011). The Animals with Attributes (Xian et al.,|2018)) dataset provides 50
animals with 85 attributes, and is used in testing few-shot/zero-shot classification. Similar in spirit,
Visual Genome (Krishna et al.| 2017) is a large-scale crowdsourced dataset of 108k images densely-
annotated with object/attribute/action information. Metashift (Liang & Zou}|2022)) was derived from
Visual Genome with the purpose of testing for distribution shifts, introducing context-based shifts in
various classes. (Bau et al.,|2017) proposes Broden Visual Concepts dataset, which combines several
densely annotated datasets to derive 63,305 images with 1197 visual concepts, where concepts are
scenes, objects, texture, color, material or parts.

5.2 Densely annotated medical datasets

One of the largest medical datasets in this space is the the Osteoarthritis Institute Knee X-ray dataset
(OAI) which has knee X-rays of patients at risk for osteoarthritis with over 4,000 patients and more
than 36,000 observations (Nevitt et al., 2006). However denser annotations are only provided for
those images that meet a particular threshold of osteoarthritis severity, as these concepts are based
on clinical findings seen in osteoarthritis, such as subchondral sclerosis and joint space narrowing
(Koh et al.| 2020). PH2 has 200 images and derm7pt has 1011 images of skin lesions; both have
annotations for 7 clinical attributes associated with a diagnosis of melanoma (Mendonca et al., 2013},
Kawahara et al., 2018). Because of the need for domain expertise in annotations, medical datasets
generally focus on concepts related to a single diagnosis rather than broader concepts that could be
applied in a more generalized manner. Recently, explainable diagnostic methods were developed
using DermXDB, which has 554 dermatology images annotated by experts (Jalaboi et al.} 2022).

6 Conclusions

We release our dataset at https://SkinCon-dataset.github.io. We developed SkinCon to
meet the need for datasets that will facilitate the creation of methods for interpretability/explainability
and fine-grained error analysis for high risk settings such as healthcare. Unlike previous densely
labeled datasets in medicine, SkinCon does not use concepts based on identifying a single diagnosis
but rather relies on the general lexicon of terms used by dermatologists for describing a wide range of
skin diseases.

6.1 Contributions

Our main contribution is the SkinCon dataset, which provides dense, domain expert annotations on
two sets of images drawn from Fitzpatrick 17k and DDI. This is the first densely annotated medical
dataset with concepts that can be broadly applied to describe multiple disease states rather than
focusing on the features of a single diagnosis. To this end, we include 48 concepts, which represents
the highest number of meta-labels for any medical dataset. We demonstrate how this dataset can
be used for two important concept-based use cases: explaining model mistakes (Section 3.1) and
posthoc concept bottleneck models (Section 3.2). Additionally, we review potential methodological
use cases for datasets with dense concept labels such as SkinCon (Section 4).

6.2 Limitations and Future Work

While we pull from two distinct data sources that cover a range of skin diseases, these are not
comprehensive of all dermatological disease. For example, we find that Scar is a concept that predicts
a benign lesion (Table[3). While scars are seen in many benign diseases, recurrent skin cancers
appear near a scar from prior removal and certain types of skin cancer such as morpheaform basal
cell carcinoma and dermatofibrosarcoma protuberans can have a scarlike appearance. This dataset
likely did not include a large number of skin cancers that were due to recurrence or rarer scar-like
presentations of skin cancers. Healthcare datasets are often imbalanced due to real world differences
in disease prevalence; as a result, SkinCon is also imbalanced in its concepts. For example, papules
and plaques are commonly seen; while nodules, which are skin lesions that are > 1 cm in height are


https://SkinCon-dataset.github.io

seen less commonly. Additionally, information about patient sex and gender, race, and age were
not included with either Fitzpatrick 17k or DDI. This limits our ability to do fine-grained error
analysis across protected classes. For future work, we hope to expand the size and scope of this
dataset by densely labeling additional skin disease images. As we observe in DDI and Fitzpatrick
17k annotations, each dataset and task can have a different distribution of concepts and diseases.
Real-world practitioners should be aware of such differences, and fine-grained annotations facilitate
validations of models and datasets in different settings. SkinCon provides the foundation for this
future work.

6.3 Impact on society

Al datasets created for dermatology have traditionally lacked diverse skin tones (Daneshjou et al.}
2021} 2022), which is a significant concern since algorithms developed from datasets without diverse
skin tones perform worse on diverse skin tones (Daneshjou et al.| [2021)). For example, both the PH2
and derm7pt datasets lack dark skin tones (Mendonca et al.| [2013; [Kawahara et al., |2018)). Here, we
pulled from datasets that specifically included diverse skin tones, though even still, Fitzpatrick V-VI
represents a smaller portion of the data than I-IV (Table[I)). Moreover, we used the Fitzpatrick skin
tone scale since the data was previously labeled with this scale; however, this scale may not have
enough granularity to capture the full range of human skin diversity (Okoji et al.,[2021). Alternative
scales have been suggested but none have been validated for Al skin tone labeling tasks.

The concept labels here are based on previously defined clinical terms that were pulled from Derma-
tology by Bolognia et al and reviewed by 2 dermatologists (Bolognia et al.| [2017). However, this
does not mean that these terms are inclusive of all possible descriptor terms. While terms have agreed
upon definitions — such as a macule is a flat lesion less than 1 cm and a patch is a flat lesion greater
than 1 cm — the assessment of size in an image is subjective and therefore prone to some noise.

The images used come from prior datasets, which each report their terms of use and collection
practices. We did not have an IRB for this study since we were labeling publicly available data. We
note that since these are clinical images of disease processes on human skin, there may be sensitive
or distressing images.
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